GPU surface extraction using the closest point embedding
NASA Astrophysics Data System (ADS)
Kim, Mark; Hansen, Charles
2015-01-01
Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes
An electrostatic Particle-In-Cell code on multi-block structured meshes
NASA Astrophysics Data System (ADS)
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; Vernon, Louis J.; Moulton, J. David
2017-12-01
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.
An electrostatic Particle-In-Cell code on multi-block structured meshes
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; ...
2017-09-14
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less
An electrostatic Particle-In-Cell code on multi-block structured meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin
In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.
Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin; ...
2017-07-08
In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.
Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra
2018-05-29
Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra
Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less
Multi-scale calculation based on dual domain material point method combined with molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Tilak Raj
This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crackmore » tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared with direct MD simulation results to demonstrate the feasibility of the method. Also, the multi-scale method is applied for a two dimensional problem of jet formation around copper notch under a strong impact.« less
Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes
Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...
2016-08-18
In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less
A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh
NASA Astrophysics Data System (ADS)
Sun, Wenjun; Jiang, Song; Xu, Kun
2017-12-01
In order to extend the unified gas kinetic scheme (UGKS) to solve radiative transfer equations in a complex geometry, a multidimensional asymptotic preserving implicit method on unstructured mesh is constructed in this paper. With an implicit formulation, the CFL condition for the determination of the time step in UGKS can be much relaxed, and a large time step is used in simulations. Differently from previous direction-by-direction UGKS on orthogonal structured mesh, on unstructured mesh the interface flux transport takes into account multi-dimensional effect, where gradients of radiation intensity and material temperature in both normal and tangential directions of a cell interface are included in the flux evaluation. The multiple scale nature makes the UGKS be able to capture the solutions in both optically thin and thick regions seamlessly. In the optically thick region the condition of cell size being less than photon's mean free path is fully removed, and the UGKS recovers a solver for diffusion equation in such a limit on unstructured mesh. For a distorted quadrilateral mesh, the UGKS goes to a nine-point scheme for the diffusion equation, and it naturally reduces to the standard five-point scheme for a orthogonal quadrilateral mesh. Numerical computations covering a wide range of transport regimes on unstructured and distorted quadrilateral meshes will be presented to validate the current approach.
Unstructured and adaptive mesh generation for high Reynolds number viscous flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1991-01-01
A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.
Damping insert materials for settling chambers of supersonic wind tunnels
NASA Astrophysics Data System (ADS)
Wu, Jie; Radespiel, Rolf
2017-03-01
This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.
Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh
NASA Astrophysics Data System (ADS)
Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru
2017-11-01
We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby
2012-06-01
The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
Dual domain material point method for multiphase flows
NASA Astrophysics Data System (ADS)
Zhang, Duan
2017-11-01
Although the particle-in-cell method was first invented in the 60's for fluid computations, one of its later versions, the material point method, is mostly used for solid calculations. Recent development of the multi-velocity formulations for multiphase flows and fluid-structure interactions requires the Lagrangian capability of the method be combined with Eulerian calculations for fluids. Because of different numerical representations of the materials, additional numerical schemes are needed to ensure continuity of the materials. New applications of the method to compute fluid motions have revealed numerical difficulties in various versions of the method. To resolve these difficulties, the dual domain material point method is introduced and improved. Unlike other particle based methods, the material point method uses both Lagrangian particles and Eulerian mesh, therefore it avoids direct communication between particles. With this unique property and the Lagrangian capability of the method, it is shown that a multiscale numerical scheme can be efficiently built based on the dual domain material point method. In this talk, the theoretical foundation of the method will be introduced. Numerical examples will be shown. Work sponsored by the next generation code project of LANL.
Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials
NASA Astrophysics Data System (ADS)
Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi
2015-02-01
We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.
Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825
NASA Astrophysics Data System (ADS)
Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.
2010-11-01
We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.
Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration
NASA Astrophysics Data System (ADS)
Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel
2017-11-01
In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Wu, Xujun; Wang, Yuru; Zhu, Cancan; Tong, Xiaowen; Yang, Ming; Yang, Li; Liu, Zhang; Huang, Weihong; Wu, Feng; Zong, Honghai; Li, Huaifang; He, Hongbing
2016-01-01
Synthetic and biological materials are commonly used for pelvic floor reconstruction. In this study, host tissue response and biomechanical properties of mesh fabricated from co-electrospun poly(l-lactide-co-caprolactone) (PLCL) and fibrinogen (Fg) were compared with those of polypropylene mesh (PPM) in a canine abdominal defect model. Macroscopic, microscopic, histological, and biomechanical evaluations were performed over a 24-week period. The results showed that PLCL/Fg mesh had similar host tissue responses but better initial vascularization and graft site tissue organization than PPM. The efficacy of the PLCL/Fg mesh was further examined in human pelvic floor reconstruction. Operation time, intraoperative blood loss, and pelvic organ prolapse quantification during 6-month follow-up were compared for patients receiving PLCL/Fg mesh versus PPM. According to the pelvic organ prolapse quantification scores, the anterior vaginal wall 3 cm proximal to the hymen point (Aa point), most distal edge of the cervix or vaginal cuff scar point (C point), and posterior fornix point (D point) showed significant improvement (P<0.01) at 1, 3, and 6 months for both groups compared with preoperatively. At 6 months, improvements at the Aa point in the PLCL/Fg group were significantly more (P<0.005) than the PPM group, indicating that, while both materials improve the patient symptoms, PLCL/Fg mesh resulted in more obvious improvement. PMID:26893556
NASA Astrophysics Data System (ADS)
Tao, Y. B.; Liu, Y. W.; Gao, F.; Chen, X. Y.; He, Y. L.
2009-09-01
An anisotropic porous media model for mesh regenerator used in pulse tube refrigerator (PTR) is established. Formulas for permeability and Forchheimer coefficient are derived which include the effects of regenerator configuration and geometric parameters, oscillating flow, operating frequency, cryogenic temperature. Then, the fluid flow and heat transfer performances of mesh regenerator are numerically investigated under different mesh geometric parameters and material properties. The results indicate that the cooling power of the PTR increases with the increases of specific heat capacity and density of the regenerator mesh material, and decreases with the increases of penetration depth and thermal conductivity ratio ( a). The cooling power at a = 0.1 is 0.5-2.0 W higher than that at a = 1. Optimizing the filling scale of different mesh configurations (such as 75% #200 twill and 25% #250 twill) and adopting multi segments regenerator with stainless steel meshes at the cold end can enhance the regenerator's efficiency and achieve better heat transfer performance.
Merge measuring mesh for complex surface parts
NASA Astrophysics Data System (ADS)
Ye, Jianhua; Gao, Chenghui; Zeng, Shoujin; Xu, Mingsan
2018-04-01
Due to most parts self-occlude and limitation of scanner range, it is difficult to scan the entire part by one time. For modeling of part, multi measuring meshes need to be merged. In this paper, a new merge method is presented. At first, using the grid voxelization method to eliminate the most of non-overlap regions, and retrieval overlap triangles method by the topology of mesh is proposed due to its ability to improve the efficiency. Then, to remove the large deviation of overlap triangles, deleting by overlap distance is discussion. After that, this paper puts forward a new method of merger meshes by registration and combination mesh boundary point. Through experimental analysis, the suggested methods are effective.
A Multi-Resolution Data Structure for Two-Dimensional Morse Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, P-T; Edelsbrunner, H; Hamann, B
2003-07-30
The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.
Automatic Building Abstraction from Aerial Photogrammetry
NASA Astrophysics Data System (ADS)
Ley, A.; Hänsch, R.; Hellwich, O.
2017-09-01
Multi-view stereo has been shown to be a viable tool for the creation of realistic 3D city models. Nevertheless, it still states significant challenges since it results in dense, but noisy and incomplete point clouds when applied to aerial images. 3D city modelling usually requires a different representation of the 3D scene than these point clouds. This paper applies a fully-automatic pipeline to generate a simplified mesh from a given dense point cloud. The mesh provides a certain level of abstraction as it only consists of relatively large planar and textured surfaces. Thus, it is possible to remove noise, outlier, as well as clutter, while maintaining a high level of accuracy.
On Multi-Dimensional Unstructured Mesh Adaption
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1999-01-01
Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.
NASA Technical Reports Server (NTRS)
Wood, William A., III
2002-01-01
A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. A Blasius flat plate viscous validation case reveals a more accurate upsilon-velocity profile for fluctuation splitting, and the reduced artificial dissipation production is shown relative to DMFDSFV. Remarkably, the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. The second half of the report develops a local, compact, anisotropic unstructured mesh adaptation scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. The adaptation strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization.
Array-based Hierarchical Mesh Generation in Parallel
Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...
2015-11-03
In this paper, we describe an array-based hierarchical mesh generation capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial mesh that can be used for a number of purposes such as multi-level methods to generating large meshes. The capability is developed under the parallel mesh framework “Mesh Oriented dAtaBase” a.k.a MOAB. We describe the underlying data structures and algorithms to generate such hierarchies and present numerical results for computational efficiency and mesh quality. Inmore » conclusion, we also present results to demonstrate the applicability of the developed capability to a multigrid finite-element solver.« less
Deeken, Corey R.; Matthews, Brent D.
2013-01-01
Purpose. Poly-4-hydroxybutyrate (P4HB) is a naturally derived, absorbable polymer. P4HB has been manufactured into PHASIX Mesh and P4HB Plug designs for soft tissue repair. The objective of this study was to evaluate mechanical strength, resorption properties, and histologic characteristics in a porcine model. Methods. Bilateral defects were created in the abdominal wall of n = 20 Yucatan minipigs and repaired in a bridged fashion with PHASIX Mesh or P4HB Plug fixated with SorbaFix or permanent suture, respectively. Mechanical strength, resorption properties, and histologic characteristics were evaluated at 6, 12, 26, and 52 weeks (n = 5 each). Results. PHASIX Mesh and P4HB Plug repairs exhibited similar burst strength, stiffness, and molecular weight at all time points, with no significant differences detected between the two devices (P > 0.05). PHASIX Mesh and P4HB Plug repairs also demonstrated significantly greater burst strength and stiffness than native abdominal wall at all time points (P < 0.05), and material resorption increased significantly over time (P < 0.001). Inflammatory infiltrates were mononuclear, and both devices exhibited mild to moderate granulation tissue/vascularization. Conclusions. PHASIX Mesh and P4HB Plug demonstrated significant mechanical strength compared to native abdominal wall, despite significant material resorption over time. Histological assessment revealed a comparable mild inflammatory response and mild to moderate granulation tissue/vascularization. PMID:23781348
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Huang, Pei-Chen
2018-05-01
The long-term reliability of multi-stacked coatings suffering the bending or rolling load was a severe challenge to extend the lifespan of foregoing structure. In addition, the adhesive strength of dissimilar materials was regarded as the major mechanical reliability concerns among multi-stacked films. However, the significant scale-mismatch from several nano-meter to micro-meter among the multi-stacked coatings causing the numerical accuracy and converged capability issues on fracture-based simulation approach. For those reasons, this study proposed the FEA-based multi-level submodeling and multi-point constraint (MPC) technique to conquer the foregoing scale-mismatch issue. The results indicated that the decent region of first and second-order submodeling can achieve the small error of 1.27% compared with the experimental result and significantly reduced the mesh density and computing time. Moreover, the MPC method adopted in FEA simulation also shown only 0.54% error when the boundary of selected local region was away the concerned critical region following the Saint-Venant principle. In this investigation, two FEA-based approaches were used to conquer the evidently scale mismatch issue when the adhesive strengths of micro and nano-scale multi-stacked coating were taken into account.
Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.
Arikan, Murat; Preiner, Reinhold; Wimmer, Michael
2016-02-01
With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.
Computational domain discretization in numerical analysis of flow within granular materials
NASA Astrophysics Data System (ADS)
Sosnowski, Marcin
2018-06-01
The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.
Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.
2011-01-01
We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068
Dynamic Analysis of Geared Rotors by Finite Elements
NASA Technical Reports Server (NTRS)
Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.
1992-01-01
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
A moving mesh finite difference method for equilibrium radiation diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less
Big Geo Data Services: From More Bytes to More Barrels
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Baumann, Peter
2016-04-01
The data deluge is affecting the oil and gas industry just as much as many other industries. However, aside from the sheer volume there is the challenge of data variety, such as regular and irregular grids, multi-dimensional space/time grids, point clouds, and TINs and other meshes. A uniform conceptualization for modelling and serving them could save substantial effort, such as the proverbial "department of reformatting". The notion of a coverage actually can accomplish this. Its abstract model in ISO 19123 together with the concrete, interoperable OGC Coverage Implementation Schema (CIS), which is currently under adoption as ISO 19123-2, provieds a common platform for representing any n-D grid type, point clouds, and general meshes. This is paired by the OGC Web Coverage Service (WCS) together with its datacube analytics language, the OGC Web Coverage Processing Service (WCPS). The OGC WCS Core Reference Implementation, rasdaman, relies on Array Database technology, i.e. a NewSQL/NoSQL approach. It supports the grid part of coverages, with installations of 100+ TB known and single queries parallelized across 1,000+ cloud nodes. Recent research attempts to address the point cloud and mesh part through a unified query model. The Holy Grail envisioned is that these approaches can be merged into a single service interface at some time. We present both grid amd point cloud / mesh approaches and discuss status, implementation, standardization, and research perspectives, including a live demo.
NASA Technical Reports Server (NTRS)
James, Mark Anthony
1999-01-01
A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.
Jali - Unstructured Mesh Infrastructure for Multi-Physics Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Rao V; Berndt, Markus; Coon, Ethan
2017-04-13
Jali is a parallel unstructured mesh infrastructure library designed for use by multi-physics simulations. It supports 2D and 3D arbitrary polyhedral meshes distributed over hundreds to thousands of nodes. Jali can read write Exodus II meshes along with fields and sets on the mesh and support for other formats is partially implemented or is (https://github.com/MeshToolkit/MSTK), an open source general purpose unstructured mesh infrastructure library from Los Alamos National Laboratory. While it has been made to work with other mesh frameworks such as MOAB and STKmesh in the past, support for maintaining the interface to these frameworks has been suspended formore » now. Jali supports distributed as well as on-node parallelism. Support of on-node parallelism is through direct use of the the mesh in multi-threaded constructs or through the use of "tiles" which are submeshes or sub-partitions of a partition destined for a compute node.« less
3D face analysis by using Mesh-LBP feature
NASA Astrophysics Data System (ADS)
Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong
2017-11-01
Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David
The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
NASA Astrophysics Data System (ADS)
Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk
2017-10-01
A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.
Surface tension models for a multi-material ALE code with AMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wangyi; Koniges, Alice; Gott, Kevin
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Surface tension models for a multi-material ALE code with AMR
Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...
2017-06-01
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Adaptive grid methods for RLV environment assessment and nozzle analysis
NASA Technical Reports Server (NTRS)
Thornburg, Hugh J.
1996-01-01
Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement, based upon application of an equidistribution principle. The popularity of solution-adaptive techniques is growing in tandem with unstructured methods. The difficultly of precisely controlling mesh densities and orientations with current unstructured grid generation systems has driven the use of solution-adaptive meshing. Use of derivatives of density or pressure are widely used for construction of such weight functions, and have been proven very successful for inviscid flows with shocks. However, less success has been realized for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain the appropriate mesh point spacing in the various regions which require a fine spacing for adequate resolution. Mesh points often migrate from important regions due to refinement of dominant features. An example of this is the well know tendency of adaptive methods to increase the resolution of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution of the stagnation region. This problem has been the motivation for this research.
[Development of better tolerated prosthetic materials: applications in gynecological surgery].
Debodinance, P; Delporte, P; Engrand, J B; Boulogne, M
2002-10-01
Meshes have come to be widely used for surgical repair of the dysfunctional pelvic floor. The problem to date has been mesh intolerance. History. The first meshes were made with silver filigrees or stainless steel. Non-metallic and non-absorbable synthetic prostheses include nylon, silastic, polytetrafluoroethylene as well as expansive polyester and polypropylene forms. Most of the absorbable prostheses are made of polyglycolic acid and polyglactine 910. Classification. Four groups of biomaterials can be described according to pore size. Mechanical and biological properties. The mechanical properties of meshes have been tested industrially for resistance, pliability, elasticity and ductile qualities. These properties depend on type of tissue structure (woven or knitted) and the type of fiber used (mono and multi-filaments). The goal is to obtain a "silent" material, i.e. a material which does not trigger a host tissue reaction. Introducing the foreign body induces a "scarring" response. This fibroblastic reaction replaces the inflammatory reaction, leading to progressive colonization of the prosthesis. The major risk is infection caused by a disturbance of the inflammatory phase and bacterial development. Bacteria can be trapped in fibrotic tissue, with the risk of delayed infection. Immunological reactions may have an additive effect. These problems are not encountered with absorbable meshes. An ideal implant material must: not undergo physical modification by tissue fluids, be chemically inert, not trigger inflammatory or foreign body cell response in body tissues, be noncarcinogenic and nonallergenic, be capable of resisting mechanical stress and sterilization, and be able to be manufactured in the necessary shape. Polyester, polypropylene and expansive polytetrafluoroethylene fulfill these criteria. The ideal mesh. Eleven criteria are proposed. Complications for hernia repair. Infection and seroma are the most frequent complications with micro-porous meshes. Macro-porous meshes can cause erosive phenomena and adhesions. Retraction of synthetic tissues is observed in 20 to 30% of cases. Meshes in gynecology. In gynecology surgery, meshes made their first appearance in trans-abdominal sacrocolpopexy and slings. A detailed review of complications found in 32 articles studying slings and 22 studying sacrocolpopexy with approximately 10 types of meshes shows that intolerance of slings has oscillated between 1% with Prolene and 31% with Gore-Tex; for abdominal sacrocolpopexy the rate was between 1.7% with Prolene and 20% with Teflon. Rejection phenomena appear during the first year and are proportional to the surface area of the synthetic tissue and the proximity of the vaginal scar. New materials have been proposed over the last ten years for prolapse surgery, notably for cystocele, which accounts for 70% of all repair procedures. Nearly fifteen studies have reported a level of intolerance reaching 6%, the large majority of the meshes used being Prolene meshes. Our personal experience with 87 repair procedures has led us to the conclusion that Prolene is the most adapted mesh, allowing free tension between the bladder and the anterior vaginal wall. Continuous evaluation is needed to study these replacement materials which should in theory, improve the rate of recurrence, which is at present 20% with classic procedures not using a mesh.
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
Multi-Scale Surface Descriptors
Cipriano, Gregory; Phillips, George N.; Gleicher, Michael
2010-01-01
Local shape descriptors compactly characterize regions of a surface, and have been applied to tasks in visualization, shape matching, and analysis. Classically, curvature has be used as a shape descriptor; however, this differential property characterizes only an infinitesimal neighborhood. In this paper, we provide shape descriptors for surface meshes designed to be multi-scale, that is, capable of characterizing regions of varying size. These descriptors capture statistically the shape of a neighborhood around a central point by fitting a quadratic surface. They therefore mimic differential curvature, are efficient to compute, and encode anisotropy. We show how simple variants of mesh operations can be used to compute the descriptors without resorting to expensive parameterizations, and additionally provide a statistical approximation for reduced computational cost. We show how these descriptors apply to a number of uses in visualization, analysis, and matching of surfaces, particularly to tasks in protein surface analysis. PMID:19834190
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
A novel mesh processing based technique for 3D plant analysis
2012-01-01
Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean absolute errors of 9.34%, 5.75%, 8.78%, and correlation coefficients 0.88, 0.96, and 0.95 respectively. The temporal matching of leaves was accurate in 95% of the cases and the average execution time required to analyse a plant over four time-points was 4.9 minutes. The mesh processing based methodology is thus considered suitable for quantitative 4D monitoring of plant phenotypic features. PMID:22553969
A multi points ultrasonic detection method for material flow of belt conveyor
NASA Astrophysics Data System (ADS)
Zhang, Li; He, Rongjun
2018-03-01
For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.
Numerical study of multi-point forming of thick sheet using remeshing procedure
NASA Astrophysics Data System (ADS)
Cherouat, A.; Ma, X.; Borouchaki, H.; Zhang, Q.
2018-05-01
Multi-point forming MPF is an innovative technology of manufacturing complex thick sheet metal products without the need for solid tools. The central component of this system is a pair of the desired discrete matrices of punches, and die surface constructed by changing the positions of the tools though CAD and a control system. Because reconfigurable discrete tools are used, part-manufacturing costs are reduced and manufacturing time is shorten substantially. Firstly, in this work we develop constitutive equations which couples isotropic ductile damage into various flow stress based on the Continuum Damage Mechanic theory. The modified Johnson-Cook flow model fully coupled with an isotropic ductile damage is established using the quasi-unilateral damage evolution for considering both the open and the close of micro-cracks. During the forming processes severe mesh distortion of elements occur after a few incremental forming steps. Secondly, we introduce 3D adaptive remeshing procedure based on linear tetrahedral element and geometrical/physical errors estimation to optimize the element quality, to refine the mesh size in the whole model and to adapt the deformed mesh to the tools geometry. Simulation of the MPF process (see Fig. 1) and the unloading spring-back are carried out using adaptive remeshing scheme using the commercial finite element package ABAQUS and OPTIFORM mesher. Subsequently, influencing factors of MPF spring-back are researched to investigate the MPF spring-back tendency with the proposed remeshing procedure.
Carpet: Adaptive Mesh Refinement for the Cactus Framework
NASA Astrophysics Data System (ADS)
Schnetter, Erik; Hawley, Scott; Hawke, Ian
2016-11-01
Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.
Sawicki, Piotr
2018-01-01
The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011. PMID:29509679
Gabara, Grzegorz; Sawicki, Piotr
2018-03-06
The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011.
Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Gregory Herbert; Chen, Ken Shuang
2004-06-01
This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2015-11-01
This work extends a fiber-based immersed boundary (IB) model of esophageal transport by incorporating a continuum model of the deformable esophageal wall. The continuum-based esophagus model adopts finite element approach that is capable of describing more complex and realistic material properties and geometries. The leakage from mismatch between Lagrangian and Eulerian meshes resulting from large deformations of the esophageal wall is avoided by careful choice of interaction points. The esophagus model, which is described as a multi-layered, fiber-reinforced nonlinear elastic material, is coupled to bolus and muscle-activation models using the IB approach to form the esophageal transport model. Cases of esophageal transport with different esophagus models are studied. Results on the transport characteristics, including pressure field and esophageal wall kinematics and stress, are analyzed and compared. Support from NIH grant R01 DK56033 and R01 DK079902 is gratefully acknowledged. BEG is supported by NSF award ACI 1460334.
A multi-purpose method for analysis of spur gear tooth loading
NASA Technical Reports Server (NTRS)
Kasuba, R.; Evans, J. W.; August, R.; Frater, J. L.
1981-01-01
A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads.
Culligan, Patrick J; Salamon, Charbel; Priestley, Jennifer L; Shariati, Amir
2013-01-01
To compare the surgical outcomes 12 months after laparoscopic sacrocolpopexy performed with porcine dermis and the current gold standard of polypropylene mesh. Patients scheduled for laparoscopic sacrocolpopexy were eligible for this randomized controlled trial. Both our clinical research nurse and the patients were blinded as to which material was used. Our primary end point was objective anatomic cure defined as no pelvic organ prolapse quantification (POP-Q) points Stage 2 or greater at any postoperative interval. Our sample size calculation called for 57 patients in each group to achieve 90% power to detect a 23% difference in objective anatomic cure at 12 months (α=0.05). Our secondary end point was clinical cure. Any patient with a POP-Q point greater than zero, or Point C less than or equal to -5, or any complaints of prolapse symptoms whatsoever on Pelvic Floor Distress Inventory-20 or Pelvic Floor Impact Questionnaire, Short Form 7, or reoperation for prolapse were considered "clinical failures"; the rest were "clinical cures." Statistical comparisons were performed using the χ or independent samples t test as appropriate. As expected, there were no preoperative differences between the porcine (n=57) and mesh (n=58) groups. The 12-month objective anatomic cure rates for the porcine and mesh groups were 80.7% and 86.2%, respectively (P=.24), and the "clinical cure" rates for the porcine and mesh groups were 84.2% and 89.7%, respectively (P=.96). Pelvic Floor Distress Inventory-20 and Pelvic Floor Impact Questionnaire, Short Form 7 score improvements were significant for both groups with no differences found between groups. There were no major operative complications. There were similar outcomes in subjective or objective results 12 months after laparoscopic sacrocolpopexy performed with either porcine dermis or polypropylene mesh. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00564083. I.
Robust and efficient overset grid assembly for partitioned unstructured meshes
NASA Astrophysics Data System (ADS)
Roget, Beatrice; Sitaraman, Jayanarayanan
2014-03-01
This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
Current Trends in Wireless Mesh Sensor Networks: A Review of Competing Approaches
Rodenas-Herraiz, David; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan
2013-01-01
Finding a complete mesh-based solution for low-rate wireless personal area networks (LR-WPANs) is still an open issue. To cope with this concern, different competing approaches have emerged in the Wireless Mesh Sensor Networks (WMSNs) field in the last few years. They are usually supported by the IEEE 802.15.4 standard, the most commonly adopted LR-WPAN recommendation for point-to-point topologies. In this work, we review the most relevant and up-to-date WMSN solutions that extend the IEEE 802.15.4 standard to multi-hop mesh networks. To conduct this review, we start by identifying the most significant WMSN requirements (i.e., interoperability, robustness, scalability, mobility or energy-efficiency) that reveal the benefits and shortcomings of each proposal. Then, we re-examine thoroughly the group of proposals following different design guidelines which are usually considered by end-users and developers. Among all of the approaches reviewed, we highlight the IEEE 802.15.5 standard, a recent recommendation that, in its LR-WPAN version, fully satisfies the greatest number of WMSN requirements. As a result, IEEE 802.15.5 can be an appropriate solution for a wide-range of applications, unlike the majority of the remaining solutions reviewed, which are usually designed to solve particular problems, for instance in the home, building and industrial sectors. In this sense, a description of IEEE 802.15.5 is also included, paying special attention to its efficient energy-saving mechanisms. Finally, possible improvements of this recommendation are pointed out in order to offer hints for future research. PMID:23666128
Bioprosthetic Mesh in Abdominal Wall Reconstruction
Baumann, Donald P.; Butler, Charles E.
2012-01-01
Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454
NASA Astrophysics Data System (ADS)
Raymond, Samuel J.; Jones, Bruce; Williams, John R.
2018-01-01
A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.
Emerging CFD technologies and aerospace vehicle design
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.
1995-01-01
With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.
Practical implementation of tetrahedral mesh reconstruction in emission tomography
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2014-01-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373
Practical implementation of tetrahedral mesh reconstruction in emission tomography
NASA Astrophysics Data System (ADS)
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2013-05-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.
Challenges for Wireless Mesh Networks to provide reliable carrier-grade services
NASA Astrophysics Data System (ADS)
von Hugo, D.; Bayer, N.
2011-08-01
Provision of mobile and wireless services today within a competitive environment and driven by a huge amount of steadily emerging new services and applications is both challenge and chance for radio network operators. Deployment and operation of an infrastructure for mobile and wireless broadband connectivity generally requires planning effort and large investments. A promising approach to reduce expenses for radio access networking is offered by Wireless Mesh Networks (WMNs). Here traditional dedicated backhaul connections to each access point are replaced by wireless multi-hop links between neighbouring access nodes and few gateways to the backbone employing standard radio technology. Such a solution provides at the same time high flexibility in both deployment and the amount of offered capacity and shall reduce overall expenses. On the other hand currently available mesh solutions do not provide carrier grade service quality and reliability and often fail to cope with high traffic load. EU project CARMEN (CARrier grade MEsh Networks) was initiated to incorporate different heterogeneous technologies and new protocols to allow for reliable transmission over "best effort" radio channels, to support a reliable mobility and network management, self-configuration and dynamic resource usage, and thus to offer a permanent or temporary broadband access at high cost efficiency. The contribution provides an overview on preliminary project results with focus on main technical challenges from a research and implementation point of view. Especially impact of mesh topology on the overall system performance in terms of throughput and connection reliability and aspects of a dedicated hybrid mobility management solution will be discussed.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
Numerical modeling of landslide-generated tsunami using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Wilson, Cian; Collins, Gareth; Desousa Costa, Patrick; Piggott, Matthew
2010-05-01
Landslides impacting into or occurring under water generate waves, which can have devastating environmental consequences. Depending on the characteristics of the landslide the waves can have significant amplitude and potentially propagate over large distances. Linear models of classical earthquake-generated tsunamis cannot reproduce the highly nonlinear generation mechanisms required to accurately predict the consequences of landslide-generated tsunamis. Also, laboratory-scale experimental investigation is limited to simple geometries and short time-scales before wave reflections contaminate the data. Computational fluid dynamics models based on the nonlinear Navier-Stokes equations can simulate landslide-tsunami generation at realistic scales. However, traditional chessboard-like structured meshes introduce superfluous resolution and hence the computing power required for such a simulation can be prohibitively high, especially in three dimensions. Unstructured meshes allow the grid spacing to vary rapidly from high resolution in the vicinity of small scale features to much coarser, lower resolution in other areas. Combining this variable resolution with dynamic mesh adaptivity allows such high resolution zones to follow features like the interface between the landslide and the water whilst minimising the computational costs. Unstructured meshes are also better suited to representing complex geometries and bathymetries allowing more realistic domains to be simulated. Modelling multiple materials, like water, air and a landslide, on an unstructured adaptive mesh poses significant numerical challenges. Novel methods of interface preservation must be considered and coupled to a flow model in such a way that ensures conservation of the different materials. Furthermore this conservation property must be maintained during successive stages of mesh optimisation and interpolation. In this paper we validate a new multi-material adaptive unstructured fluid dynamics model against the well-known Lituya Bay landslide-generated wave experiment and case study [1]. In addition, we explore the effect of physical parameters, such as the shape, velocity and viscosity of the landslide, on wave amplitude and run-up, to quantify their influence on the landslide-tsunami hazard. As well as reproducing the experimental results, the model is shown to have excellent conservation and bounding properties. It also requires fewer nodes than an equivalent resolution fixed mesh simulation, therefore minimising at least one aspect of the computational cost. These computational savings are directly transferable to higher dimensions and some initial three dimensional results are also presented. These reproduce the experiments of DiRisio et al. [2], where an 80cm long landslide analogue was released from the side of an 8.9m diameter conical island in a 50 × 30m tank of water. The resulting impact between the landslide and the water generated waves with an amplitude of 1cm at wave gauges around the island. The range of scales that must be considered in any attempt to numerically reproduce this experiment makes it an ideal case study for our multi-material adaptive unstructured fluid dynamics model. [1] FRITZ, H. M., MOHAMMED, F., & YOO, J. 2009. Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary. Pure and Applied Geophysics, 166(1), 153-175. [2] DIRISIO, M., DEGIROLAMO, P., BELLOTTI, G., PANIZZO, A., ARISTODEMO, F.,
NASA Technical Reports Server (NTRS)
Schultz, Chris; Carey, Larry; Schultz, Elise V.; Stano, Geoffrey; Gatlin, Patrick N.; Kozlowski, Danielle M.; Blakeslee, Rich J.; Goodman, Steve
2013-01-01
Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships
2007-09-01
Configuration Consideration ...........................54 C. MAE NGAT DAM, CHIANG MAI , THAILAND, FIELD EXPERIMENT...2006 802.11 Network Topology Mae Ngat Dam, Chiang Mai , Thailand.......................39 Figure 31. View of COASTS 2006 802.11 Topology...Requirements (Background From Google Earth).....62 Figure 44. Mae Ngat Dam, Chiang Mai , Thailand (From Google Earth
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann
1993-01-01
A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann; Usab, William J., Jr.
1993-01-01
A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given technical topic (e.g., creating meshes, reordering nodes, applying boundary conditions), a given numerical topic (e.g., using various solution strategies, non-linear iterations), or that present a fully-developed solver designed to address a scientific topic (e.g., performing Stokes flow simulations in synthetic porous medium). References: Dabrowski, M., M. Krotkiewski, and D. W. Schmid MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, 2008
Melman, L.; Jenkins, E. D.; Hamilton, N. A.; Bender, L. C.; Brodt, M. D.; Deeken, C. R.; Greco, S. C.; Frisella, M. M.
2013-01-01
Purpose To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Methods Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard®Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO® (LWPP, Ethicon, http://www.ethicon.com), and GORE®INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P < 0.05) was determined using a two-way ANOVA and Bonferroni post-test. Results No significant difference in maximum force was detected between meshes at any of the time points (P > 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P < 0.05). No significant difference in stiffness was detected between the mesh types or between timepoints (P > 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However, over time, inflammation decreased significantly for all mesh types (P < 0.001) and tissue ingrowth reached a slight peak between 1 and 3 months (P = 0.001) but did not significantly change thereafter (P > 0.09). Conclusions The maximum tensile strength of mesh in the abdominal wall decreased over time for HWPP, LWPP, and mkPTFE mesh materials alike. This trend may actually reflect inability to adequately grip specimens at later time points rather than any mesh-specific trend. Histologically, inflammation decreased with time (P = 0.000), and tissue ingrowth increased (P = 0.019) for all meshes. No specific trends were observed between the polypropylene meshes and the monofilament knit PTFE, suggesting that this novel construction may be a suitable alternative to existing polypropylene meshes. PMID:21279663
Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D
2011-08-01
To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard(®)Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO(®) (LWPP, Ethicon, http://www.ethicon.com), and GORE(®)INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P < 0.05) was determined using a two-way ANOVA and Bonferroni post-test. No significant difference in maximum force was detected between meshes at any of the time points (P > 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P < 0.05). No significant difference in stiffness was detected between the mesh types or between timepoints (P > 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However, over time, inflammation decreased significantly for all mesh types (P < 0.001) and tissue ingrowth reached a slight peak between 1 and 3 months (P = 0.001) but did not significantly change thereafter (P > 0.09). The maximum tensile strength of mesh in the abdominal wall decreased over time for HWPP, LWPP, and mkPTFE mesh materials alike. This trend may actually reflect inability to adequately grip specimens at later time points rather than any mesh-specific trend. Histologically, inflammation decreased with time (P = 0.000), and tissue ingrowth increased (P = 0.019) for all meshes. No specific trends were observed between the polypropylene meshes and the monofilament knit PTFE, suggesting that this novel construction may be a suitable alternative to existing polypropylene meshes.
Wang, Gang; Wang, Yalin
2017-02-15
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling
NASA Astrophysics Data System (ADS)
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-02-01
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-02-07
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-01-01
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496
Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.
Automated crack detection in conductive smart-concrete structures using a resistor mesh model
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon
2018-03-01
Various nondestructive evaluation techniques are currently used to automatically detect and monitor cracks in concrete infrastructure. However, these methods often lack the scalability and cost-effectiveness over large geometries. A solution is the use of self-sensing carbon-doped cementitious materials. These self-sensing materials are capable of providing a measurable change in electrical output that can be related to their damage state. Previous work by the authors showed that a resistor mesh model could be used to track damage in structural components fabricated from electrically conductive concrete, where damage was located through the identification of high resistance value resistors in a resistor mesh model. In this work, an automated damage detection strategy that works through placing high value resistors into the previously developed resistor mesh model using a sequential Monte Carlo method is introduced. Here, high value resistors are used to mimic the internal condition of damaged cementitious specimens. The proposed automated damage detection method is experimentally validated using a 500 × 500 × 50 mm3 reinforced cement paste plate doped with multi-walled carbon nanotubes exposed to 100 identical impact tests. Results demonstrate that the proposed Monte Carlo method is capable of detecting and localizing the most prominent damage in a structure, demonstrating that automated damage detection in smart-concrete structures is a promising strategy for real-time structural health monitoring of civil infrastructure.
Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images
NASA Astrophysics Data System (ADS)
Su, Yi; Teo, S.-K.; Lim, C. W.; Zhong, L.; Tan, R. S.
2015-03-01
In this work, we develop an automatic method to generate a set of 4D 1-to-1 corresponding surface meshes of the left ventricle (LV) endocardial surface which are motion registered over the whole cardiac cycle. These 4D meshes have 1- to-1 point correspondence over the entire set, and is suitable for advanced computational processing, such as shape analysis, motion analysis and finite element modelling. The inputs to the method are the set of 3D LV endocardial surface meshes of the different frames/phases of the cardiac cycle. Each of these meshes is reconstructed independently from border-delineated MR images and they have no correspondence in terms of number of vertices/points and mesh connectivity. To generate point correspondence, the first frame of the LV mesh model is used as a template to be matched to the shape of the meshes in the subsequent phases. There are two stages in the mesh correspondence process: (1) a coarse matching phase, and (2) a fine matching phase. In the coarse matching phase, an initial rough matching between the template and the target is achieved using a radial basis function (RBF) morphing process. The feature points on the template and target meshes are automatically identified using a 16-segment nomenclature of the LV. In the fine matching phase, a progressive mesh projection process is used to conform the rough estimate to fit the exact shape of the target. In addition, an optimization-based smoothing process is used to achieve superior mesh quality and continuous point motion.
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2015-11-01
The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.
An interactive display system for large-scale 3D models
NASA Astrophysics Data System (ADS)
Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman
2018-04-01
With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.
NASA Astrophysics Data System (ADS)
Ji, X.; Shen, C.
2017-12-01
Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.
2010-09-01
and y, the axial and radial coordinates respectively. Point c lies somewhere within the mesh generated by the initial expansion (the kernel). All that...and the surface will be subjected to high heat loads restricting the choice of suitable materials. Material choice has direct implications for...Some legacy trajectory codes might not be able to deal with anything other than axial forces from engines, reflecting the class of problem they were
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
ALEGRA -- A massively parallel h-adaptive code for solid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, R.M.; Wong, M.K.; Boucheron, E.A.
1997-12-31
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less
NASA Astrophysics Data System (ADS)
Zhang, Lucy
In this talk, we show a robust numerical framework to model and simulate gas-liquid-solid three-phase flows. The overall algorithm adopts a non-boundary-fitted approach that avoids frequent mesh-updating procedures by defining independent meshes and explicit interfacial points to represent each phase. In this framework, we couple the immersed finite element method (IFEM) and the connectivity-free front tracking (CFFT) method that model fluid-solid and gas-liquid interactions, respectively, for the three-phase models. The CFFT is used here to simulate gas-liquid multi-fluid flows that uses explicit interfacial points to represent the gas-liquid interface and for its easy handling of interface topology changes. Instead of defining different levels simultaneously as used in level sets, an indicator function naturally couples the two methods together to represent and track each of the three phases. Several 2-D and 3-D testing cases are performed to demonstrate the robustness and capability of the coupled numerical framework in dealing with complex three-phase problems, in particular free surfaces interacting with deformable solids. The solution technique offers accuracy and stability, which provides a means to simulate various engineering applications. The author would like to acknowledge the supports from NIH/DHHS R01-2R01DC005642-10A1 and the National Natural Science Foundation of China (NSFC) 11550110185.
Filtering Airborne LIDAR Data by AN Improved Morphological Method Based on Multi-Gradient Analysis
NASA Astrophysics Data System (ADS)
Li, Y.
2013-05-01
The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR point clouds of complex landscapes, a novel morphological filtering algorithm is proposed based on multi-gradient analysis in terms of the characteristic of LIDAR data distribution in this paper. Firstly, point clouds are organized by an index mesh. Then, the multigradient of each point is calculated using the morphological method. And, objects are removed gradually by choosing some points to carry on an improved opening operation constrained by multi-gradient iteratively. 15 sample data provided by ISPRS Working Group III/3 are employed to test the filtering algorithm proposed. These sample data include those environments that may lead to filtering difficulty. Experimental results show that filtering algorithm proposed by this paper is of high adaptability to various scenes including urban and rural areas. Omission error, commission error and total error can be simultaneously controlled in a relatively small interval. This algorithm can efficiently remove object points while preserves ground points to a great degree.
Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks
2011-06-01
Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,
NASA Astrophysics Data System (ADS)
Pournoury, M.; Zamiri, A.; Kim, T. Y.; Yurlov, V.; Oh, K.
2016-03-01
Capacitive touch sensor screen with the metal materials has recently become qualified for substitution of ITO; however several obstacles still have to be solved. One of the most important issues is moiré phenomenon. The visibility problem of the metal-mesh, in touch sensor module (TSM) is numerically considered in this paper. Based on human eye contract sensitivity function (CSF), moiré pattern of TSM electrode mesh structure is simulated with MATLAB software for 8 inch screen display in oblique view. Standard deviation of the generated moiré by the superposition of electrode mesh and screen image is calculated to find the optimal parameters which provide the minimum moiré visibility. To create the screen pixel array and mesh electrode, rectangular function is used. The filtered image, in frequency domain, is obtained by multiplication of Fourier transform of the finite mesh pattern (product of screen pixel and mesh electrode) with the calculated CSF function for three different observer distances (L=200, 300 and 400 mm). It is observed that the discrepancy between analytical and numerical results is less than 0.6% for 400 mm viewer distance. Moreover, in the case of oblique view due to considering the thickness of the finite film between mesh electrodes and screen, different points of minimum standard deviation of moiré pattern are predicted compared to normal view.
Manual for automatic generation of finite element models of spiral bevel gears in mesh
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo
2018-01-01
There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture. PMID:29342129
Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo
2018-01-17
There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm-3 mm and a porosity of 10-35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm-50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture.
Status of LANL Efforts to Effectively Use Sequoia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, William David
2015-05-14
Los Alamos National Laboratory (LANL) is currently working on 3 new production applications, VPC, xRage, and Pagosa. VPIC was designed to be a 3D relativist, electromagnetic Particle-In-Cell code for plasma simulation. xRage, a 3D AMR mesh amd multi physics hydro code. Pagosa, is a 3D structured mesh and multi physics hydro code.
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu
2017-08-01
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.
2014-01-01
During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769
3D surface parameterization using manifold learning for medial shape representation
NASA Astrophysics Data System (ADS)
Ward, Aaron D.; Hamarneh, Ghassan
2007-03-01
The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.
Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings
NASA Astrophysics Data System (ADS)
Tsai, F.; Chang, H.; Lin, Y.-W.
2017-08-01
This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.
NASA Astrophysics Data System (ADS)
Kenway, Gaetan K. W.
This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.
Evaluation and correction of laser-scanned point clouds
NASA Astrophysics Data System (ADS)
Teutsch, Christian; Isenberg, Tobias; Trostmann, Erik; Weber, Michael; Berndt, Dirk; Strothotte, Thomas
2005-01-01
The digitalization of real-world objects is of great importance in various application domains. E.g. in industrial processes quality assurance is very important. Geometric properties of workpieces have to be measured. Traditionally, this is done with gauges which is somewhat subjective and time-consuming. We developed a robust optical laser scanner for the digitalization of arbitrary objects, primary, industrial workpieces. As measuring principle we use triangulation with structured lighting and a multi-axis locomotor system. Measurements on the generated data leads to incorrect results if the contained error is too high. Therefore, processes for geometric inspection under non-laboratory conditions are needed that are robust in permanent use and provide high accuracy as well as high operation speed. The many existing methods for polygonal mesh optimization produce very esthetic 3D models but often require user interaction and are limited in processing speed and/or accuracy. Furthermore, operations on optimized meshes consider the entire model and pay only little attention to individual measurements. However, many measurements contribute to parts or single scans with possibly strong differences between neighboring scans being lost during mesh construction. Also, most algorithms consider unsorted point clouds although the scanned data is structured through device properties and measuring principles. We use this underlying structure to achieve high processing speeds and extract intrinsic system parameters and use them for fast pre-processing.
A high-resolution Godunov method for compressible multi-material flow on overlapping grids
NASA Astrophysics Data System (ADS)
Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.
2007-04-01
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
NASA Astrophysics Data System (ADS)
Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2003-04-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Kelly, Michelle; Macdougall, Katherine; Olabisi, Oluwafisayo; McGuire, Neil
2017-02-01
Polypropylene is a material that is commonly used to treat pelvic floor conditions such as pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Owing to the nature of complications experienced by some patients implanted with either incontinence or prolapse meshes, the biocompatibility of polypropylene has recently been questioned. This literature review considers the in vivo response to polypropylene following implantation in animal models. The specific areas explored in this review are material selection, impact of anatomical location, and the structure, weight and size of polypropylene mesh types. All relevant abstracts from original articles investigating the host response of mesh in vivo were reviewed. Papers were obtained and categorised into various mesh material types: polypropylene, polypropylene composites, and other synthetic and biologically derived mesh. Polypropylene mesh fared well in comparison with other material types in terms of host response. It was found that a lightweight, large-pore mesh is the most appropriate structure. The evidence reviewed shows that polypropylene evokes a less inflammatory or similar host response when compared with other materials used in mesh devices.
Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2015-11-01
Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.
A mesh gradient technique for numerical optimization
NASA Technical Reports Server (NTRS)
Willis, E. A., Jr.
1973-01-01
A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.
Application of closed-form solutions to a mesh point field in silicon solar cells
NASA Technical Reports Server (NTRS)
Lamorte, M. F.
1985-01-01
A computer simulation method is discussed that provides for equivalent simulation accuracy, but that exhibits significantly lower CPU running time per bias point compared to other techniques. This new method is applied to a mesh point field as is customary in numerical integration (NI) techniques. The assumption of a linear approximation for the dependent variable, which is typically used in the finite difference and finite element NI methods, is not required. Instead, the set of device transport equations is applied to, and the closed-form solutions obtained for, each mesh point. The mesh point field is generated so that the coefficients in the set of transport equations exhibit small changes between adjacent mesh points. Application of this method to high-efficiency silicon solar cells is described; and the method by which Auger recombination, ambipolar considerations, built-in and induced electric fields, bandgap narrowing, carrier confinement, and carrier diffusivities are treated. Bandgap narrowing has been investigated using Fermi-Dirac statistics, and these results show that bandgap narrowing is more pronounced and that it is temperature-dependent in contrast to the results based on Boltzmann statistics.
MAGNA (Materially and Geometrically Nonlinear Analysis). Part II. Preprocessor Manual.
1982-12-01
AGRID can accept a virtually arbitrary collection of point coor- dinates which lie on a surface of interest, and generate a regular grid of mesh points...in the form of a collection of such patches to be translated into an assemblage of biquadratic surface elements (see Subsection 2.1, Figure 2.2...using IMPRESS can be converted for use with the present preprocessor by means of the IMPRINT translator. IMPRINT is a collection of conversion routines
Anisotropic evaluation of synthetic surgical meshes.
Saberski, E R; Orenstein, S B; Novitsky, Y W
2011-02-01
The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings
NASA Astrophysics Data System (ADS)
Lashkajani, Kazem Hasanzadeh
This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.
Patel, Deepak K; Waas, Anthony M
2016-07-13
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Shock waves simulated using the dual domain material point method combined with molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Duan Z.; Dhakal, Tilak Raj
Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less
Shock waves simulated using the dual domain material point method combined with molecular dynamics
Zhang, Duan Z.; Dhakal, Tilak Raj
2017-01-17
Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less
Using Multithreading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Bailey, David H. (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes. The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the question phase of FE applications on triangular meshes, and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments on EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies that are built into the runtime system.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
Building Facade Modeling Under Line Feature Constraint Based on Close-Range Images
NASA Astrophysics Data System (ADS)
Liang, Y.; Sheng, Y. H.
2018-04-01
To solve existing problems in modeling facade of building merely with point feature based on close-range images , a new method for modeling building facade under line feature constraint is proposed in this paper. Firstly, Camera parameters and sparse spatial point clouds data were restored using the SFM , and 3D dense point clouds were generated with MVS; Secondly, the line features were detected based on the gradient direction , those detected line features were fit considering directions and lengths , then line features were matched under multiple types of constraints and extracted from multi-image sequence. At last, final facade mesh of a building was triangulated with point cloud and line features. The experiment shows that this method can effectively reconstruct the geometric facade of buildings using the advantages of combining point and line features of the close - range image sequence, especially in restoring the contour information of the facade of buildings.
Application of multi-grid method on the simulation of incremental forging processes
NASA Astrophysics Data System (ADS)
Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel
2016-10-01
Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.
Performance Characteristics of the Multi-Zone NAS Parallel Benchmarks
NASA Technical Reports Server (NTRS)
Jin, Haoqiang; VanderWijngaart, Rob F.
2003-01-01
We describe a new suite of computational benchmarks that models applications featuring multiple levels of parallelism. Such parallelism is often available in realistic flow computations on systems of grids, but had not previously been captured in bench-marks. The new suite, named NPB Multi-Zone, is extended from the NAS Parallel Benchmarks suite, and involves solving the application benchmarks LU, BT and SP on collections of loosely coupled discretization meshes. The solutions on the meshes are updated independently, but after each time step they exchange boundary value information. This strategy provides relatively easily exploitable coarse-grain parallelism between meshes. Three reference implementations are available: one serial, one hybrid using the Message Passing Interface (MPI) and OpenMP, and another hybrid using a shared memory multi-level programming model (SMP+OpenMP). We examine the effectiveness of hybrid parallelization paradigms in these implementations on three different parallel computers. We also use an empirical formula to investigate the performance characteristics of the multi-zone benchmarks.
Adaptive Mesh Refinement for Microelectronic Device Design
NASA Technical Reports Server (NTRS)
Cwik, Tom; Lou, John; Norton, Charles
1999-01-01
Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of the spectrum as well as active device simulations that model charge transport and Maxwell's equations will be presented.
Coarse mesh and one-cell block inversion based diffusion synthetic acceleration
NASA Astrophysics Data System (ADS)
Kim, Kang-Seog
DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.
Jałyński, Marek; Piskorz, Łukasz; Brocki, Marian
2013-01-01
Introduction Formation of adhesions after laparoscopic hernia repair using the intra-peritoneal onlay mesh (IPOM) procedure can lead to intestinal obstruction or mesh erosion into intestinal lumen. The aims of this study included: measurement of adhesion formation with Dynamesh IPOM after laparoscopic intraperitoneal implantation, and assessment of the occurrence of isolated adhesions at the fastening sites of slowly absorbable sutures. Material and methods Twelve healthy pigs underwent laparoscopic implantation of 2 Dynamesh IPOM mesh fragments each, one was fastened with PDSII, and the other with Maxon sutures. An assessment of adhesion formation was carried out after 6 weeks and included an evaluation of surface area, hardness according to the Zhulke scale, and index values. The occurrence of isolated adhesions at slowly absorbable suture fixation points was also analyzed. Results Adhesions were noted in 83.3% of Dynamesh IPOM meshes. Adhesions covered on average 37.7% of the mesh surface with mean hardness 1.46 and index value 78.8. In groups fixed with PDS in comparison to Maxon sutures adhesions covered mean 31.6% vs. 42.5% (p = 0.62) of the mesh surface, mean hardness was 1.67 vs.1.25 (p = 0.34) and index 85.42 vs. 72.02 (p = 0.95). Conclusions The Dynamesh IPOM mesh, in spite of its anti-adhesive layer of PVDF, does not prevent the formation of adhesions. Adhesion hardness, surface area, and index values of the Dynamesh IPOM mesh are close to the mean values of these parameters for other commercially available 2-layer meshes. Slowly absorbable sutures used for fastening did not increase the risk of adhesion formation. PMID:23847671
Upadhyay, Manas V.; Patra, Anirban; Wen, Wei; ...
2018-05-08
In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Manas V.; Patra, Anirban; Wen, Wei
In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less
Adaptive and dynamic meshing methods for numerical simulations
NASA Astrophysics Data System (ADS)
Acikgoz, Nazmiye
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations. Therefore, in order to minimize user intervention and prevent frequent remeshings, we conclude this work by defining a novel mesh adaptation technique that integrates metric based target mesh definitions with the ball-vertex mesh deformation method. In this new approach, the entire mesh is deformed based on either an a-priori or an a-posteriori error estimator. In other words, nodal points are repositioned upon application of a force field in order to comply with the target mesh or to get more accurate solutions. The method has been tested for two-dimensional problems of a-priori metric definitions as well as for oblique shock clusterings.
SAGE: The Self-Adaptive Grid Code. 3
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1999-01-01
The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.
NASA Astrophysics Data System (ADS)
Amanowicz, Łukasz; Wojtkowiak, Janusz
2017-11-01
In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.
Update on Development of Mesh Generation Algorithms in MeshKit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay
2015-09-30
MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKitmore » are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.« less
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.
A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J W; Schwendeman, D W; Kapila, A K
2006-02-13
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less
Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei
2016-11-10
Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.
NASA Astrophysics Data System (ADS)
Becker, P.; Idelsohn, S. R.; Oñate, E.
2015-06-01
This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.
Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap
NASA Astrophysics Data System (ADS)
Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong
2017-10-01
Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.
CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Holst, B.; Toth, G.; Sokolov, I. V.
We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less
2014-05-01
solver to treat the spray process. An Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with...Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with high fidelity while keeping the cell...in single and multi-hole nozzle configurations. The models were added to the present CONVERGE liquid fuel database and validated extensively
Stochastic Surface Mesh Reconstruction
NASA Astrophysics Data System (ADS)
Ozendi, M.; Akca, D.; Topan, H.
2018-05-01
A generic and practical methodology is presented for 3D surface mesh reconstruction from the terrestrial laser scanner (TLS) derived point clouds. It has two main steps. The first step deals with developing an anisotropic point error model, which is capable of computing the theoretical precisions of 3D coordinates of each individual point in the point cloud. The magnitude and direction of the errors are represented in the form of error ellipsoids. The following second step is focused on the stochastic surface mesh reconstruction. It exploits the previously determined error ellipsoids by computing a point-wise quality measure, which takes into account the semi-diagonal axis length of the error ellipsoid. The points only with the least errors are used in the surface triangulation. The remaining ones are automatically discarded.
Passalía, Claudio; Nocetti, Emanuel; Alfano, Orlando; Brandi, Rodolfo
2017-03-01
An experimental comparative study of different meshes as support materials for photocatalytic applications in gas phase is presented. The photocatalytic oxidation of dichloromethane in air was addressed employing different coated meshes in a laboratory-scale, continuous reactor. Two fiberglass meshes and a stainless steel mesh were studied regarding the catalyst load, adherence, and catalytic activity. Titanium dioxide photocatalyst was immobilized on the meshes by dip-coating cycles. Results indicate the feasibility of the dichloromethane elimination in the three cases. When the number of coating cycles was doubled, the achieved conversion levels were increased twofold for stainless steel and threefold for the fiberglass meshes. One of the fiberglass meshes (FG2) showed the highest reactivity per mass of catalyst and per catalytic surface area.
Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.
Cao, Min; Luo, Xiaomin; Ren, Huijun; Feng, Jianyan
2018-02-15
The leakage of oil or organic pollutants into the ocean arouses a global catastrophe. The superhydrophobic materials have offered a new idea for the efficient, thorough and automated oil/water separation. However, most of such materials lose superhydrophobicity when exposed to hot water (e.g. >55 °C). In this study, a hot water-repellent superhydrophobic mesh used for oil/water separation was prepared with one-step spray of modified polyurethane and hydrophobic silica nanoparticles on the copper mesh. The as-prepared superhydrophobic mesh could be applied as the effective materials for the separation of oil/water mixture with a temperature up to 100 °C. In addition, the obtained mesh could selectively remove a wide range of organic solvents from water with high absorption capacity and good recyclability. Moreover, the as-prepared superhydrophobic mesh shows excellent mechanical durability, which makes it a promising material for practical oil/water separation. Copyright © 2017 Elsevier Inc. All rights reserved.
Facial expression reconstruction on the basis of selected vertices of triangle mesh
NASA Astrophysics Data System (ADS)
Peszor, Damian; Wojciechowska, Marzena
2016-06-01
Facial expression reconstruction is an important issue in the field of computer graphics. While it is relatively easy to create an animation based on meshes constructed through video recordings, this kind of high-quality data is often not transferred to another model because of lack of intermediary, anthropometry-based way to do so. However, if a high-quality mesh is sampled with sufficient density, it is possible to use obtained feature points to encode the shape of surrounding vertices in a way that can be easily transferred to another mesh with corresponding feature points. In this paper we present a method used for obtaining information for the purpose of reconstructing changes in facial surface on the basis of selected feature points.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
An advancing front Delaunay triangulation algorithm designed for robustness
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1992-01-01
A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less
Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J
2008-11-06
To assist with the development of a French online quality-controlled health gateway(CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (FMTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. In this paper,we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.
2016-10-10
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less
A continuum mechanics-based musculo-mechanical model for esophageal transport
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2017-11-01
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.
Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.
Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T
2013-01-01
Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.
Patel, Deepak K.
2016-01-01
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294
Advances and applications of ABCI
NASA Astrophysics Data System (ADS)
Chin, Y. H.
1993-05-01
ABCI (Azimuthal Beam Cavity Interaction) is a computer program which solves the Maxwell equations directly in the time domain when a Gaussian beam goes through an axi-symmetrical structure on or off axis. Many new features have been implemented in the new version of ABCI (presently version 6.6), including the 'moving mesh' and Napoly's method of calculation of wake potentials. The mesh is now generated only for the part of the structure inside a window and moves together with the window frame. This moving mesh option reduces the number of mesh points considerably, and very fine meshes can be used. Napoly's integration method makes it possible to compute wake potentials in a structure such as a collimator, where parts of the cavity material are at smaller radii than that of the beam pipes, in such a way that the contribution from the beam pipes vanishes. For the monopole wake potential, ABCI can be applied even to structures with unequal beam pipe radii. Furthermore, the radial mesh size can be varied over the structure, permitting use a fine mesh only where actually needed. With these improvements, the program allows computation of wake fields for structures far too complicated for older codes. Plots of a cavity shape and wake potentials can be obtained in the form of a Top Drawer file. The program can also calculate and plot the impedance of a structure and/or the distribution of the deposited energy as a function of the frequency from Fourier transforms of wake potentials. Its usefulness is illustrated by showing some numerical examples.
Past, Present and Future of Surgical Meshes: A Review.
Baylón, Karen; Rodríguez-Camarillo, Perla; Elías-Zúñiga, Alex; Díaz-Elizondo, Jose Antonio; Gilkerson, Robert; Lozano, Karen
2017-08-22
Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods.
Simulation of Comet Impact and Survivability of Organic Compounds
NASA Astrophysics Data System (ADS)
Liu, Benjamin; Lomov, Ilya; Blank, Jennifer; Antoun, Tarabay
2007-06-01
Comets have been proposed as a mechanism for the transport of complex organic compounds to Earth. For this to occur, a significant fraction of organic compounds must survive the shock loading, in particular the high temperatures, due to impact. 2D and 3D numerical simulations were performed to study the thermodynamic states due to a comet impact. The comet was modeled as a 1-km diameter icy sphere traveling at the Earth's escape velocity (11 km/s) impacting a half-space of basalt. Simulations were performed with GEODYN, a parallel, multi-material, Godunov-based Eulerian code employing adaptive mesh refinement. A constitutive model calibrated for hard rock was used for basalt. Tabular equations of state were used to account for the extreme conditions present upon shock loading. A major focus of the study was tracking the thermodynamic state of the comet material. Both the maximum temperature experienced and the phase were tracked for each point in the comet Temperature histories in the comet were also recorded. These quantities were used to estimate viability of organic compounds upon impact. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
NASA Astrophysics Data System (ADS)
Abdelmoula, Nouha; Harthong, Barthélémy; Imbault, Didier; Dorémus, Pierre
2017-12-01
The multi-particle finite element method involving assemblies of meshed particles interacting through finite-element contact conditions is adopted to study the plastic flow of a granular material with highly deformable elastic-plastic grains. In particular, it is investigated whether the flow rule postulate applies for such materials. Using a spherical stress probing method, the influence of incremental stress on plastic strain increment vectors was assessed for numerical samples compacted along two different loading paths up to different values of relative density. Results show that the numerical samples studied behave reasonably well according to an associated flow rule, except in the vicinity of the loading point where the influence of the stress increment proved to be very significant. A plausible explanation for the non-uniqueness of the direction of plastic flow is proposed, based on the idea that the resistance of the numerical sample to plastic straining can vary by an order of magnitude depending on the direction of the accumulated stress. The above-mentioned dependency of the direction of plastic flow on the direction of the stress increment was related to the difference in strength between shearing and normal stressing at the scale of contact surfaces between particles.
Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data
NASA Astrophysics Data System (ADS)
De Hoop, M. V.
2015-12-01
We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.
Progressive simplification and transmission of building polygons based on triangle meshes
NASA Astrophysics Data System (ADS)
Li, Hongsheng; Wang, Yingjie; Guo, Qingsheng; Han, Jiafu
2010-11-01
Digital earth is a virtual representation of our planet and a data integration platform which aims at harnessing multisource, multi-resolution, multi-format spatial data. This paper introduces a research framework integrating progressive cartographic generalization and transmission of vector data. The progressive cartographic generalization provides multiple resolution data from coarse to fine as key scales and increments between them which is not available in traditional generalization framework. Based on the progressive simplification algorithm, the building polygons are triangulated into meshes and encoded according to the simplification sequence of two basic operations, edge collapse and vertex split. The map data at key scales and encoded increments between them are stored in a multi-resolution file. As the client submits requests to the server, the coarsest map is transmitted first and then the increments. After data decoding and mesh refinement the building polygons with more details will be visualized. Progressive generalization and transmission of building polygons is demonstrated in the paper.
NASA Technical Reports Server (NTRS)
Warsi, Saif A.
1989-01-01
A detailed operating manual is presented for a grid generating program that produces 3-D meshes for advanced turboprops. The code uses both algebraic and elliptic partial differential equation methods to generate single rotation and counterrotation, H or C type meshes for the z - r planes and H type for the z - theta planes. The code allows easy specification of geometrical constraints (such as blade angle, location of bounding surfaces, etc.), mesh control parameters (point distribution near blades and nacelle, number of grid points desired, etc.), and it has good runtime diagnostics. An overview is provided of the mesh generation procedure, sample input dataset with detailed explanation of all input, and example meshes.
Material point method modeling in oil and gas reservoirs
Vanderheyden, William Brian; Zhang, Duan
2016-06-28
A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.
Update on Bioactive Prosthetic Material for the Treatment of Hernias.
Edelman, David S; Hodde, Jason P
2011-12-01
The use of mesh in the repair of hernias is commonplace. Synthetic mesh, like polypropylene, has been the workhorse for hernia repairs since the 1980s. Surgisis® mesh (Cook Surgical, Bloomington, IN), a biologic hernia graft material composed of purified porcine small intestinal submucosa (SIS), was first introduced to the United States in 1998 as an alternative to synthetic mesh materials. This mesh, composed of extracellular matrix collagen, fibronectin and associated glycosaminoglycans and growth factors, has been extensively investigated in animal models and used clinically in many types of surgical procedures. SIS acts as a scaffold for natural growth and strength. We reported our initial results in this publication in July 2006. Since then, there have been many more reports and numerous other bioactive prosthetic materials (BPMs) released. The object of this article is to briefly review some of the current literature on the use of BPM for inguinal hernias, sports hernias, and umbilical hernias.
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Culligan, Patrick J; Littman, Paul M; Salamon, Charbel G; Priestley, Jennifer L; Shariati, Amir
2010-11-01
We sought to track objective and subjective outcomes ≥1 year after transvaginal mesh system to correct prolapse. This was a retrospective cohort study of 120 women who received a transvaginal mesh procedure (Avaulta Solo, CR Bard Inc, Covington, GA). Outcomes were pelvic organ prolapse quantification values; Pelvic Floor Distress Inventory, Short Form 20/Pelvic Floor Impact Questionnaire, Short Form 7 scores; and a surgical satisfaction survey. "Surgical failure" was defined as pelvic organ prolapse quantification point >0, and/or any reports of vaginal bulge. Of 120 patients, 116 (97%) were followed up for a mean of 14.4 months (range, 12-30). In all, 74 patients had only anterior mesh, 21 only posterior mesh, and 21 both meshes. Surgical cure rate was 81%. Surgical failure was more common if preoperative point C ≥+2 (35% vs 16%; P = .04). Mesh erosion and de novo pain occurred in 11.7% and 3.3%, respectively. Pelvic Floor Distress Inventory, Short Form 20/Pelvic Floor Impact Questionnaire, Short Form 7 scores improved (P < .01). Objective and subjective improvements occurred at ≥1 year, yet failure rates were high when preoperative point C was ≥+2. Copyright © 2010 Mosby, Inc. All rights reserved.
Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications
NASA Astrophysics Data System (ADS)
Suzuki, Hiromichi; He, Jianmei
2017-11-01
There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.
A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network
2016-04-10
to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum
Lattice Cleaving: A Multimaterial Tetrahedral Meshing Algorithm with Guarantees
Bronson, Jonathan; Levine, Joshua A.; Whitaker, Ross
2014-01-01
We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded using this approach. PMID:24356365
NASA Astrophysics Data System (ADS)
Ren, Xiaodong; Xu, Kun; Shyy, Wei
2016-07-01
This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.
Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY
2011-11-08
A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.
Past, Present and Future of Surgical Meshes: A Review
Baylón, Karen; Rodríguez-Camarillo, Perla; Elías-Zúñiga, Alex; Díaz-Elizondo, Jose Antonio; Gilkerson, Robert; Lozano, Karen
2017-01-01
Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods. PMID:28829367
Lederhuber, Hans; Stiede, Franziska; Axer, Stephan; Dahlstrand, Ursula
2017-11-01
The issue of mesh fixation in endoscopic inguinal hernia repair is frequently debated and still no conclusive data exist on differences between methods regarding long-term outcome and postoperative complications. The quantity of trials and the simultaneous lack of high-quality evidence raise the question how future trials should be planned. PubMed, EMBASE and the Cochrane Library were searched, using the filters "randomised clinical trials" and "humans". Trials that compared one method of mesh fixation with another fixation method or with non-fixation in endoscopic inguinal hernia repair were eligible. To be included, the trial was required to have assessed at least one of the following primary outcome parameters: recurrence; surgical site infection; chronic pain; or quality-of-life. Fourteen trials assessing 2161 patients and 2562 hernia repairs were included. Only two trials were rated as low risk for bias. Eight trials evaluated recurrence or surgical site infection; none of these could show significant differences between methods of fixation. Two of 11 trials assessing chronic pain described significant differences between methods of fixation. One of two trials evaluating quality-of-life showed significant differences between fixation methods in certain functions. High-quality evidence for differences between the assessed mesh fixation techniques is still lacking. From a socioeconomic and ethical point of view, it is necessary that future trials will be properly designed. As small- and medium-sized single-centre trials have proven unable to find answers, register studies or multi-centre studies with an evident focus on methodology and study design are needed in order to answer questions about mesh fixation in inguinal hernia repair.
Nguyen, Thuy-Duong Thi; Bae, Tae-Sung; Yang, Dae-hyeok; Park, Myung-sik; Yoon, Sun-jung
2017-01-01
The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP) treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT) meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05). CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo. PMID:28686210
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics
Ma, Yinji; Jang, Kyung-In; Wang, Liang; Jung, Han Na; Kwak, Jean Won; Xue, Yeguang; Chen, Hang; Yang, Yiyuan; Shi, Dawei; Feng, Xue
2017-01-01
Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress–strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress–strain relation, with quantitative correspondence to finite element analysis and experiments. PMID:29033714
Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics.
Ma, Yinji; Jang, Kyung-In; Wang, Liang; Jung, Han Na; Kwak, Jean Won; Xue, Yeguang; Chen, Hang; Yang, Yiyuan; Shi, Dawei; Feng, Xue; Rogers, John A; Huang, Yonggang
2016-08-02
Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress-strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress-strain relation, with quantitative correspondence to finite element analysis and experiments.
Wolf, Matthew T.; Carruthers, Christopher A.; Dearth, Christopher L.; Crapo, Peter M.; Huber, Alexander; Burnsed, Olivia A.; Londono, Ricardo; Johnson, Scott A.; Daly, Kerry A.; Stahl, Elizabeth C.; Freund, John M.; Medberry, Christopher J.; Carey, Lisa E.; Nieponice, Alejandro; Amoroso, Nicholas J.; Badylak, Stephen F.
2013-01-01
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors which contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explantation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. The present study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model. PMID:23873846
Towards hybrid mesh generation for realistic design environments
NASA Astrophysics Data System (ADS)
McMorris, Harlan Tom
Two different techniques that allow hybrid mesh generation to be easily used in the design environment are presented. The purpose of this research is to allow for hybrid meshes to be used during the design process where the geometry is being varied. The first technique, modular hybrid mesh generation, allows for the replacement of portions of a geometry with a new design shape. The mesh is maintained for the portions of that have not changed during the design process. A new mesh is generated for the new part of the geometry and this piece is added to the existing mesh. The new mesh must match the remaining portions of the geometry plus the element sizes must match exactly across the interfaces. The second technique, hybrid mesh movement, is used when the basic geometry remains the same with only small variations to portions of the geometry. These small variations include changing the cross-section of a wing, twisting a blade or changing the length of some portion of the geometry. The mesh for the original geometry is moved onto the new geometry one step at a time beginning with the curves of the surface, continuing with the surface mesh geometry and ending with the interior points of the mesh. The validity of the hybrid mesh is maintained by applying corrections to the motion of the points. Finally, the quality of the new hybrid mesh is improved to ensure that the new mesh maintains the quality of the original hybrid mesh. Applications of both design techniques are applied to typical example cases from the fields of turbomachinery, aerospace and offshore technology. The example test cases demonstrate the ability of the two techniques to reuse the majority of an existing hybrid mesh for typical design changes. Modular mesh generation is used to change the shape of piece of a seafloor pipeline geometry to a completely different configuration. The hybrid mesh movement technique is used to change the twist of a turbomachinery blade, the tip clearance of a rotor blade and to simulate the aeroelastic bending of a wing. Finally, the movement technique is applied to an offshore application where the solution for the original configuration is used as a starting point for solution for a new configuration. The application of both techniques show that the methods can be a powerful addition to the design environment and will facilitate a rapid turnaround when the design geometry changes.
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
Stretchable Mesh for Cavity Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor)
2017-01-01
A stretchable mesh material extends across the opening of a cavity of the landing gear of an aircraft when the landing gear is in the deployed position. The mesh material alters the flow of air across the opening of the landing gear cavity and significantly reduces the amount of noise produced by the wheel well at low-to-mid frequencies.
Validating a Monotonically-Integrated Large Eddy Simulation Code for Subsonic Jet Acoustics
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Bridges, James
2017-01-01
The results of subsonic jet validation cases for the Naval Research Lab's Jet Engine Noise REduction (JENRE) code are reported. Two set points from the Tanna matrix, set point 3 (Ma = 0.5, unheated) and set point 7 (Ma = 0.9, unheated) are attempted on three different meshes. After a brief discussion of the JENRE code and the meshes constructed for this work, the turbulent statistics for the axial velocity are presented and compared to experimental data, with favorable results. Preliminary simulations for set point 23 (Ma = 0.5, Tj=T1 = 1.764) on one of the meshes are also described. Finally, the proposed configuration for the farfield noise prediction with JENRE's Ffowcs-Williams Hawking solver are detailed.
Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J.
2008-01-01
Background: To assist with the development of a French online quality-controlled health gateway (CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (F-MTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. Objective: In this paper, we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. Methods: The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. Results: There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. Conclusion: F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French. PMID:18998933
A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nivarti, Girish V., E-mail: g.nivarti@alumni.ubc.ca; Salehi, M. Mahdi; Bushe, W. Kendal
2015-01-15
Highlights: •An algorithm for partitioning computational meshes is proposed. •The Morton order space-filling curve is modified to achieve improved locality. •A spatial locality metric is defined to compare results with existing approaches. •Results indicate improved performance of the algorithm in complex geometries. -- Abstract: A space-filling curve (SFC) is a proximity preserving linear mapping of any multi-dimensional space and is widely used as a clustering tool. Equi-sized partitioning of an SFC ignores the loss in clustering quality that occurs due to inaccuracies in the mapping. Often, this results in poor locality within partitions, especially for the conceptually simple, Morton ordermore » curves. We present a heuristic that improves partition locality in arbitrary geometries by slicing a Morton order curve at points where spatial locality is sacrificed. In addition, we develop algorithms that evenly distribute points to the extent possible while maintaining spatial locality. A metric is defined to estimate relative inter-partition contact as an indicator of communication in parallel computing architectures. Domain partitioning tests have been conducted on geometries relevant to turbulent reactive flow simulations. The results obtained highlight the performance of our method as an unsupervised and computationally inexpensive domain partitioning tool.« less
Numerical Analysis of the Acoustic Field of Tip-Clearance Flow
NASA Astrophysics Data System (ADS)
Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team
2015-11-01
Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less
NASA Astrophysics Data System (ADS)
Delgado, Carlos; Cátedra, Manuel Felipe
2018-05-01
This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sentis, Manuel Lorenzo; Gable, Carl W.
Furthermore, there are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools willmore » provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. Here in this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.« less
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1999-01-01
The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).
Geometric identification and damage detection of structural elements by terrestrial laser scanner
NASA Astrophysics Data System (ADS)
Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min
2016-04-01
In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.
Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.
Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha
2012-05-01
Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.
Selective laser vaporization of polypropylene sutures and mesh
NASA Astrophysics Data System (ADS)
Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.
2012-02-01
Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.
NASA Astrophysics Data System (ADS)
Poirier, Vincent
Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.
A Generic Mesh Data Structure with Parallel Applications
ERIC Educational Resources Information Center
Cochran, William Kenneth, Jr.
2009-01-01
High performance, massively-parallel multi-physics simulations are built on efficient mesh data structures. Most data structures are designed from the bottom up, focusing on the implementation of linear algebra routines. In this thesis, we explore a top-down approach to design, evaluating the various needs of many aspects of simulation, not just…
A novel partitioning method for block-structured adaptive meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtainmore » the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.« less
A novel partitioning method for block-structured adaptive meshes
NASA Astrophysics Data System (ADS)
Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-07-01
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.
3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture
NASA Astrophysics Data System (ADS)
Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben
2016-12-01
This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.
NASA Astrophysics Data System (ADS)
Greene, Patrick; Nourgaliev, Robert; Schofield, Sam
2015-11-01
A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.
Biomechanical and Histologic Evaluation of LifeMesh™: A Novel Self-Fixating Mesh Adhesive.
Shahan, Charles P; Stoikes, Nathaniel N; Roan, Esra; Tatum, James; Webb, David L; Voeller, Guy R
2018-04-01
Mesh fixation with the use of adhesives results in an immediate and total surface area adhesion of the mesh, removing the need for penetrating fixation points. The purpose of this study was to evaluate LifeMesh™, a prototype mesh adhesive technology which coats polypropylene mesh. The strength of the interface between mesh and tissue, inflammatory responses, and histology were measured at varying time points in a swine model, and these results were compared with sutures. Twenty Mongrel swine underwent implantation of LifeMesh™ and one piece of bare polypropylene mesh secured with suture (control). One additional piece of either LifeMesh™ or control was used for histopathologic evaluation. The implants were retrieved at 3, 7, and 14 days. Only 3- and 7-day specimens underwent lap shear testing. On Day 3, LifeMesh™ samples showed considerably less contraction than sutured samples. The interfacial strength of Day 3 LifeMesh™ samples was similar to that of sutured samples. At seven days, LifeMesh™ samples continued to show significantly less contraction than sutured samples. The strength of fixation at seven days was greater in the control samples. The histologic findings were similar in LifeMesh™ and control samples. LifeMesh™ showed significantly less contraction than sutured samples at all measured time points. Although fixation strength was similar at three days, the interfacial strength of LifeMesh™ remained unchanged, whereas sutured controls increased by day 7. With histologic equivalence, considerably less contraction, and similar early fixation strength, LifeMesh™ is a viable mesh fixation technology.
Gas reservoir and a method to supply gas to plasma tubes
Stautner, Ernst Wolfgang; Michael, Joseph Darryl
2017-01-31
A reservoir for storing and supplying a portion of a reservoir gas into a gas-filled tube is presented. The reservoir includes a first vessel having a thermally conductive surface, a meshed vessel having a lid, and placed inside the first vessel to form a cavity between the meshed vessel and the first vessel, at least one tray placed inside the meshed vessel to divide an inner space of the meshed vessel into a plurality of compartments, a sorbent material placed inside the plurality of compartments in the meshed vessel, a temperature control device positioned such that a first portion of the temperature control device is in physical contact with at least a portion of the thermally conductive surface, and a change in the temperature of the temperature control device changes the temperature of the sorbent material, wherein the reservoir gas is retained by the sorbent material at the storage temperature.
Laparoscopic Sacral Colpopexy: The "6-Points" Technique.
Schaub, Marie; Lecointre, Lise; Faller, Emilie; Boisramé, Thomas; Baldauf, Jean-Jacques; Wattiez, Arnaud; Akladios, Cherif Youssef
To illustrate laparoscopic sacral colpopexy for pelvic organ prolapse, a new method using a simplified mesh fixation technique, with only 6 fixing points. Step-by-step explanation of the surgery using video (educative video). The video was approved by the local institutional review board. University Hospital of Strasbourg, France (Canadian Task Force Classification III). Women with multicompartment prolapse. We first dissected the promontorium and vertically incise the posterior parietal peritoneum on the right pelvic sidewall up the pouch of Douglas. We then dissect the rectovaginal septum up to the anal cap, laterally exposing the puborectalis muscle on each side. Middle rectal vessels can be coagulated and cut without increasing the risk of digestive disorders (especially constipation), but it is preferable to conserve them if the space is sufficient for suture. Then, we dissect the vesicovaginal space and realized the subtotal hysterectomy. Finally, we realized the fastening of the anterior and posterior meshes. The particularity is that we performed only 6 points for fixing the meshes: 1 on the puborectalis muscle on each side without tension (to reduce the risk of mesh contracture, dyspareunia, and chronic pelvic pain), 1 for the fixing of the anterior mesh on the anterior vaginal wall at the level of the bladder neck, and 1 on each side of the cervix for the reconstitution of the pericervical ring gathering together the anterior mesh, the pubocervical fascia, and the insertion of the uterosacral ligament at the level of the cervix and the posterior mesh. The sixth stitch fastened 1 of 2 meshes to the anterior paravertebral ligament at the level of the sacral promontory. We finished with the peritonization. The duration of surgery lasts approximately 120 minutes in well-experienced hands. Based on our experience the 6-point technique was relatively simple (few laparoscopic stiches) with few operative difficulties and was also associated with a low rate of reintervention. Surgical management of middle compartment prolapse could be performed quickly and efficiently under laparoscopy with the "6-points" technique. Copyright © 2017 AAGL. Published by Elsevier Inc. All rights reserved.
SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J; Zhang, L; Balter, P
2015-06-15
Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less
Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems
NASA Astrophysics Data System (ADS)
Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark
2017-11-01
Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.
NASA Astrophysics Data System (ADS)
Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki
2017-03-01
Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.
Efficient evaluation of wireless real-time control networks.
Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon
2015-02-11
In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.
Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P
2014-10-01
Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described in the clinical literature. The characteristics of the human abdominal wall must be extensively characterized to provide a thorough understanding of the tissue being reinforced/replaced by these meshes. A better understanding of these mechanical differences would enable matching of patient characteristics to a specific mesh with the properties best suited to that particular repair. Copyright © 2014 Elsevier Ltd. All rights reserved.
Real-time terrain storage generation from multiple sensors towards mobile robot operation interface.
Song, Wei; Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun; Um, Kyhyun
2014-01-01
A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots.
Real-Time Terrain Storage Generation from Multiple Sensors towards Mobile Robot Operation Interface
Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun
2014-01-01
A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots. PMID:25101321
Sentis, Manuel Lorenzo; Gable, Carl W.
2017-06-15
Furthermore, there are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools willmore » provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. Here in this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.« less
NASA Astrophysics Data System (ADS)
Sentís, Manuel Lorenzo; Gable, Carl W.
2017-11-01
There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.
Naumann, R; Alexander-Weber, Ch; Eberhardt, R; Giera, J; Spitzer, P
2002-11-01
Routine pH measurements are carried out with pH meter-glass electrode assemblies. In most cases the glass and reference electrodes are thereby fashioned into a single probe, the so-called 'combination electrode' or simply 'the pH electrode'. The use of these electrodes is subject to various effects, described below, producing uncertainties of unknown magnitude. Therefore, the measurement of pH of a sample requires a suitable calibration by certified standard buffer solutions (CRMs) traceable to primary pH standards. The procedures in use are based on calibrations at one point, at two points bracketing the sample pH and at a series of points, the so-called multi-point calibration. The multi-point calibration (MPC) is recommended if minimum uncertainty and maximum consistency are required over a wide range of unknown pH values. Details of uncertainty computations for the two-point and MPC procedure are given. Furthermore, the multi-point calibration is a useful tool to characterise the performance of pH electrodes. This is demonstrated with different commercial pH electrodes. ELECTRONIC SUPPLEMENTARY MATERIAL is available if you access this article at http://dx.doi.org/10.1007/s00216-002-1506-5. On that page (frame on the left side), a link takes you directly to the supplementary material.
Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W
2012-08-01
While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of biocompatibility at sites of mesh implantation. Copyright © 2012 Elsevier Inc. All rights reserved.
Audigier, Chloé; Mansi, Tommaso; Delingette, Hervé; Rapaka, Saikiran; Passerini, Tiziano; Mihalef, Viorel; Jolly, Marie-Pierre; Pop, Raoul; Diana, Michele; Soler, Luc; Kamen, Ali; Comaniciu, Dorin; Ayache, Nicholas
2017-09-01
We aim at developing a framework for the validation of a subject-specific multi-physics model of liver tumor radiofrequency ablation (RFA). The RFA computation becomes subject specific after several levels of personalization: geometrical and biophysical (hemodynamics, heat transfer and an extended cellular necrosis model). We present a comprehensive experimental setup combining multimodal, pre- and postoperative anatomical and functional images, as well as the interventional monitoring of intra-operative signals: the temperature and delivered power. To exploit this dataset, an efficient processing pipeline is introduced, which copes with image noise, variable resolution and anisotropy. The validation study includes twelve ablations from five healthy pig livers: a mean point-to-mesh error between predicted and actual ablation extent of 5.3 ± 3.6 mm is achieved. This enables an end-to-end preclinical validation framework that considers the available dataset.
Adaptive Skin Meshes Coarsening for Biomolecular Simulation
Shi, Xinwei; Koehl, Patrice
2011-01-01
In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137
2007-09-01
is necessary to convert the solids to a 3-D computational mesh. The user must decide how many layers of mesh elements are required for each material ...together to define the geology gives the user more control over the material contacts. Secondly, the tool to convert directly to a 3-D mesh from the...included in the model. Rocks, cracks , fissures, and plant material can affect the flow character- istics, but cannot be included in a model on this scale
Numerical Simulations of Spacecraft Charging: Selected Applications
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.; Borovsky, J.; Thomsen, M. F.
2016-12-01
The electrical charging of spacecraft due to bombarding charged particles affects their performance and operation. We study this charging using CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. It is interfaced to a mesh generator that creates a computational mesh conforming to complex objects like a spacecraft. Relevant plasma parameters can be imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Selected physics results will be presented, together with an overview of the code. The physics results include spacecraft-charging simulations with geometry representative of the Van Allen Probes spacecraft, focusing on the conditions that can lead to significant spacecraft charging events. Second, results from a recent study that investigates the conditions for which a high-power (>keV) electron beam could be emitted from a magnetospheric spacecraft will be presented. The latter study proposes a spacecraft-charging mitigation strategy based on the plasma contactor technology that might allow beam experiments to operate in the low-density magnetosphere. High-power electron beams could be used for instance to establish magnetic-field-line connectivity between ionosphere and magnetosphere and help solving long-standing questions in ionospheric/magnetospheric physics.
Utilization of flax fibers for biomedical applications.
Michel, Sophie A A X; Vogels, Ruben R M; Bouvy, Nicole D; Knetsch, Menno L W; van den Akker, Nynke M S; Gijbels, Marion J J; van der Marel, Cees; Vermeersch, Jan; Molin, Daniel G M; Koole, Leo H
2014-04-01
Over the past decades, a large number of animal-derived materials have been introduced for several biomedical applications. Surprisingly, the use of plant-based materials has lagged behind. To study the feasibility of plant-derived biomedical materials, we chose flax (Linum usitatissimum). Flax fibers possess excellent physical-mechanical properties, are nonbiodegradable, and there is extensive know-how on weaving/knitting of them. One area where they could be useful is as implantable mesh structures in surgery, in particular for the repair of incisional hernias of the abdominal wall. Starting with a bleached flax thread, a prototype mesh was specifically knitted for this study, and its cytocompatibility was studied in vitro and in vivo. The experimental data revealed that application of flax in surgery first requires a robust method to remove endotoxins and purify the flax fiber. Such a method was developed, and purified meshes did not cause loss of cell viability in vitro. In addition, endotoxins determined using limulus amebocyte lysate test were at acceptable levels. In vivo, the flax meshes showed only mild inflammation, comparable to commercial polypropylene meshes. This study revealed that plant-derived biomaterials can provide a new class of implantable materials that could be used as surgical meshes or for other biomedical applications. Copyright © 2013 Wiley Periodicals, Inc.
a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums
NASA Astrophysics Data System (ADS)
Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.
2012-07-01
Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.
Vectorized and multitasked solution of the few-group neutron diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zee, S.K.; Turinsky, P.J.; Shayer, Z.
1989-03-01
A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. Formore » the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model.« less
Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.
2016-01-01
Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow–derived MSCs improves infection resistance in vivo after inoculation with Escherichia coli (E. coli). Methods: Rat bone marrow–derived MSCs at passage 3 were seeded onto bovine pericardium and cultured for 7 days before implantation. Additional rats (n = 24) were implanted subcutaneously with MSC-seeded or unseeded mesh and inoculated with 7 × 105 colony-forming units of E. coli or saline before wound closure (group 1, unseeded mesh/saline; group 2, unseeded mesh/E. coli; group 3, MSC-seeded mesh/E. coli; 8 rats per group). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Results: MSC-seeded meshes inoculated with E. coli demonstrated superior bacterial clearance and preservation of mesh integrity compared with E. coli–inoculated unseeded meshes (87.5% versus 0% clearance; p = 0.001). Complete mesh degradation concurrent with abscess formation was observed in 100% of rats in the unseeded/E. coli group, which is in contrast to 12.5% of rats in the MSC-seeded/E. coli group. Histologic evaluation determined that remodeling characteristics of E. coli–inoculated MSC-seeded meshes were similar to those of uninfected meshes 4 weeks after implantation. Conclusions: Augmenting a bioprosthetic material with stem cells seems to markedly enhance resistance to bacterial infection in vivo and preserve mesh integrity. PMID:27482490
NASA Astrophysics Data System (ADS)
Venkatachari, Balaji Shankar; Chang, Chau-Lyan
2016-11-01
The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).
3D Printing Multi-Functionality: Embedded RF Antennas and Components
NASA Technical Reports Server (NTRS)
Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.
2015-01-01
Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.
Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni
2018-01-01
In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F
2015-08-01
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Convergence study of global meshing on enamel-cement-bracket finite element model
NASA Astrophysics Data System (ADS)
Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.
2017-09-01
This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.
2017-01-01
PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388
Biomechanical behavior of cavity configuration on micropush-out test: a finite-element-study.
Cekic-Nagas, Isil; Shinya, Akikazu; Ergun, Gulfem; Vallittu, Pekka K; Lassila, Lippo V J
2011-01-01
The objective of this study was to simulate the micropush-out bond strength test from a biomechanical point of view. For this purpose, stress analysis using finite element (FE) method was performed. Three different occlusal cavity shapes were simulated in disc specimens (model A: 1.5 mm cervical, 2 mm occlusal diameter; model B: 1.5 mm cervical, 1.75 mm occlusal diameter; model C: 1.5 mm cervical, 1.5 mm occlusal diameter). Quarter sizes of 3D FE specimen models of 4.0 x 4.0 x 1.25 mm3 were constructed. In order to avoid quantitative differences in the stress value in the models, models were derived from a single mapping mesh pattern that generated 47.182 elements and 66.853 nodes. The materials that were used were resin composite (Filtek Z250, 3M ESPE), bonding agent (Adper Scotchbond Multi-Purpose, 3M ESPE) and dentin as an isotropic material. Loading conditions consisted of subjecting a press of 4 MPa to the top of the resin composite discs. The postprocessing files allowed the calculation of the maximum principal stress, minimum principal stress and displacement within the disc specimens and stresses at the bonding layer. FE model construction and analysis were performed on PC workstation (Precision Work Station 670, Dell Inc.) using FE analysis program (ANSYS 10 Sp, ANSYS Inc.). Compressive stress concentrations were observed equally in the bottom interface edge of dentin. Tensile stresses were observed on the top area of dentin and at the half of lower side of composite under the loading point in all of the FE models. The FE model revealed differences in displacement and stress between different cavity shaped disc specimens. As the slope of the cavity was increased, the maximum displacement, compressive and tensile stresses also increased.
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.
Todros, S; Pavan, P G; Natali, A N
2015-03-01
Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-graphite crucible for high temperature applications
Holcombe, C.E.; Pfeiler, W.A.
1994-08-02
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. 6 figs.
Non-graphite crucible for high temperature applications
Holcombe, Cressie E.; Pfeiler, William A.
1994-01-01
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material.
2014-10-26
From the parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow...field-based method [7, 12] to generate adaptive and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline ...parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based
2015-01-07
and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality...shade-off. Halos are bright or dark thin regions around the boundary of the sample. These false edges around the object make many segmentation
A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes
Yohe, Stefan T.; Freedman, Jonathan D.; Falde, Eric J.; Colson, Yolonda L.; Grinstaff, Mark W.
2014-01-01
Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate-co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications. PMID:25309305
Tangle-Free Mesh Motion for Ablation Simulations
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Problems involving mesh motion-which should not be mistakenly associated with moving mesh methods, a class of adaptive mesh redistribution techniques-are of critical importance in numerical simulations of the thermal response of melting and ablative materials. Ablation is the process by which material vaporizes or otherwise erodes due to strong heating. Accurate modeling of such materials is of the utmost importance in design of passive thermal protection systems ("heatshields") for spacecraft, the layer of the vehicle that ensures survival of crew and craft during re-entry. In an explicit mesh motion approach, a complete thermal solve is first performed. Afterwards, the thermal response is used to determine surface recession rates. These values are then used to generate boundary conditions for an a posteriori correction designed to update the location of the mesh nodes. Most often, linear elastic or biharmonic equations are used to model this material response, traditionally in a finite element framework so that complex geometries can be simulated. A simple scheme for moving the boundary nodes involves receding along the surface normals. However, for all but the simplest problem geometries, evolution in time following such a scheme will eventually bring the mesh to intersect and "tangle" with itself, inducing failure. This presentation demonstrates a comprehensive and sophisticated scheme that analyzes the local geometry of each node with help from user-provided clues to eliminate the tangle and enable simulations on a wide-class of difficult problem geometries. The method developed is demonstrated for linear elastic equations but is general enough that it may be adapted to other modeling equations. The presentation will explicate the inner workings of the tangle-free mesh motion algorithm for both two and three-dimensional meshes. It will show abstract examples of the method's success, including a verification problem that demonstrates its accuracy and correctness. The focus of the presentation will be on the algorithm; specifics on how the techniques may be used in spacecraft design will be not discussed.
Biomechanical analyses of mesh fixation in TAPP and TEP hernia repair.
Schwab, R; Schumacher, O; Junge, K; Binnebösel, M; Klinge, U; Becker, H P; Schumpelick, V
2008-03-01
Reliable laparoscopic fixation of meshes prior to their fibrous incorporation is intended to minimize recurrences following transabdominal preperitoneal hernia repair (TAPP) and totally extraperitoneal repair (TEP) repair of inguinal hernias. However, suture-, tack- and staple-based fixation systems are associated with postoperative chronic inguinal pain. Initial fixation with fibrin sealant offers an atraumatic alternative, but there is little data demonstrating directly whether fibrin-based mesh adhesion provides adequate biomechanical stability for repair of inguinal hernia by TAPP and TEP. Using a newly developed, standardized simulation model for abdominal wall hernias, sublay repairs were performed with six different types of commercially available hernia mesh. The biomechanical stability achieved, and the protection afforded by the mesh-hernia overlap, were compared for three different techniques: nonfixation, point-by-point suture fixation, and fibrin sealant fixation. Mesh dislocation from the repaired hernia defect was consistently seen with nonfixation. This was reliably prevented with all six mesh types when fixed using either sutures or fibrin sealant. The highest stress resistance across the whole abdominal wall was found following superficial fixation with fibrin sealant across the mesh types. There was a highly statistically significant improvement in fixation stability with fibrin sealant versus fixation using eight single sutures (p = 0.008), as assessed by the range of achievable peak pressure stress up to 200 mmHg. To ensure long-term freedom from recurrence, intraoperative mesh-hernia overlap must be retained. This can be achieved with fibrin sealant up to the incorporation of the mesh - without trauma and with biomechanical stability.
Reynolds, W Stuart; Gold, Karen P; Ni, Shenghua; Kaufman, Melissa R; Dmochowski, Roger R; Penson, David F
2013-04-01
Prompted by increased reports of complications with the use of mesh for pelvic organ prolapse (POP) surgery, the FDA issued an initial public health notification (PHN) in 2008. We proposed to determine if the numbers of POP cases augmented with surgical mesh performed in U.S. Medicare beneficiaries changed relative to this PHN. Using administrative healthcare claims for beneficiaries enrolled in the U.S. Medicare program from 2008 to 2009, we identified women who underwent POP surgery with and without surgical mesh by procedural and diagnosis coding. In addition to comparing cases with and without mesh, we also calculated rates (number of cases per 100,000 female beneficiaries) and compared these relative to the timing of the PHN. We identified 104,185 POP procedures, of which 27,839 (26.7%) included mesh material and 76,346 (73.3%) did not. Between the last three quarters of 2008 and the first three of 2009, the rates of mesh cases increased (40.3-42.1, P < 0.001) and those without mesh decreased (115.5-111.4, P < 0.001). Inpatient procedures decreased and outpatient procedures increased for both those with and without mesh augmentation. For inpatient procedures, the relative use of biologic graft and synthetic mesh material did not vary over the study period. A substantial number of Medicare beneficiaries underwent mesh POP procedures in 2008-2009. However, despite the PHN cautioning about potential mesh complications, the numbers of mesh cases continued to rise in the immediate period after the PHN. Copyright © 2012 Wiley Periodicals, Inc.
Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun
2017-10-24
Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.
Chipuk, Joseph E; Brodbelt, Jennifer S
2009-04-01
Adaptation of desorption electrospray ionization to a transmission mode (TM-DESI) entails passing an electrospray plume through a sample that has been deposited onto a mesh substrate. A combination of mass spectrometry and fluorescence microscopy studies is used to illustrate the critical role material composition, mesh open space, and mesh fiber diameter play on the transmission, desorption, and ionization process. Substrates with open spaces less than 150 microm and accompanying minimal strand diameters produce less scattering of the plume and therefore favor transmission. Larger strand diameters typically encompass larger open spaces, but the increase in the surface area of the strand increases plume scattering as well as solvent and analyte spreading on the mesh. Polypropylene (PP), ethylene tetrafluoroethylene (ETFE), and polyetheretherketone (PEEK) materials afford much better desorption than similarly sized polyethylene terephthalate (PETE) or nylon-6,6 (PA66) substrates. Ultimately, the manner in which the electrospray plume interacts with the mesh as it is transmitted through the substrate is shown to be critical to performing and optimizing TM-DESI analyses. In addition, evidence is presented for analyte dependent variations in the desorption mechanisms of dry and solvated samples.
Biocompatibility assessment of synthetic sling materials for female stress urinary incontinence.
Gomelsky, Alex; Dmochowski, Roger R
2007-10-01
We evaluated the performance and complications of currently available synthetic sling materials with a focus on in vitro and in vivo biocompatibility, and acceptance in the human body. We reviewed the MEDLINE database for relevant literature pertaining to various synthetic sling materials. The Food and Drug Administration regulations regarding the regulation and biocompatibility testing of synthetic meshes were also reviewed. Many synthetic meshes used for sling construction were introduced before rigorous Food and Drug Administration regulations were passed and, thus, some became associated with unique complications. Most meshes used in pubovaginal and mid urethral sling surgery are associated with high short-term success rates and relatively few intraoperative complications. Despite modifications and additives, slings constructed from polytetrafluoroethylene and polyethylene are poorly accepted by the human body. Flexible, macroporous, polypropylene meshes appear to integrate more completely with human tissue than other synthetic materials. However, multifilament and nonknitted polypropylene slings may integrate poorly. The composition, weave and pore size of each material are unique. These properties are responsible for the strength and durability of the material, as well as the ultimate acceptance and incorporation in the human body. Each material should be individually evaluated and patients should be counseled appropriately before implantation.
Unstructured Polyhedral Mesh Thermal Radiation Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, T.S.; Zika, M.R.; Madsen, N.K.
2000-07-27
Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.
NASA Astrophysics Data System (ADS)
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R
2011-12-01
This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (<6 in.), Prolene Soft, or Physiomesh, but the tensile strengths were reduced for Bard Mesh, C-QUR, ProLite, and C-QUR Lite (>6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.
NASA Astrophysics Data System (ADS)
Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko
2017-09-01
Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
MUTILS - a set of efficient modeling tools for multi-core CPUs implemented in MEX
NASA Astrophysics Data System (ADS)
Krotkiewski, Marcin; Dabrowski, Marcin
2013-04-01
The need for computational performance is common in scientific applications, and in particular in numerical simulations, where high resolution models require efficient processing of large amounts of data. Especially in the context of geological problems the need to increase the model resolution to resolve physical and geometrical complexities seems to have no limits. Alas, the performance of new generations of CPUs does not improve any longer by simply increasing clock speeds. Current industrial trends are to increase the number of computational cores. As a result, parallel implementations are required in order to fully utilize the potential of new processors, and to study more complex models. We target simulations on small to medium scale shared memory computers: laptops and desktop PCs with ~8 CPU cores and up to tens of GB of memory to high-end servers with ~50 CPU cores and hundereds of GB of memory. In this setting MATLAB is often the environment of choice for scientists that want to implement their own models with little effort. It is a useful general purpose mathematical software package, but due to its versatility some of its functionality is not as efficient as it could be. In particular, the challanges of modern multi-core architectures are not fully addressed. We have developed MILAMIN 2 - an efficient FEM modeling environment written in native MATLAB. Amongst others, MILAMIN provides functions to define model geometry, generate and convert structured and unstructured meshes (also through interfaces to external mesh generators), compute element and system matrices, apply boundary conditions, solve the system of linear equations, address non-linear and transient problems, and perform post-processing. MILAMIN strives to combine the ease of code development and the computational efficiency. Where possible, the code is optimized and/or parallelized within the MATLAB framework. Native MATLAB is augmented with the MUTILS library - a set of MEX functions that implement the computationally intensive, performance critical parts of the code, which we have identified to be bottlenecks. Here, we discuss the functionality and performance of the MUTILS library. Currently, it includes: 1. time and memory efficient assembly of sparse matrices for FEM simulations 2. parallel sparse matrix - vector product with optimizations speficic to symmetric matrices and multiple degrees of freedom per node 3. parallel point in triangle location and point in tetrahedron location for unstructured, adaptive 2D and 3D meshes (useful for 'marker in cell' type of methods) 4. parallel FEM interpolation for 2D and 3D meshes of elements of different types and orders, and for different number of degrees of freedom per node 5. a stand-alone, MEX implementation of the Conjugate Gradients iterative solver 6. interface to METIS graph partitioning and a fast implementation of RCM reordering
Semi-regular remeshing based trust region spherical geometry image for 3D deformed mesh used MLWNN
NASA Astrophysics Data System (ADS)
Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Ben Amar, Chokri
2017-03-01
Triangular surface are now widely used for modeling three-dimensional object, since these models are very high resolution and the geometry of the mesh is often very dense, it is then necessary to remesh this object to reduce their complexity, the mesh quality (connectivity regularity) must be ameliorated. In this paper, we review the main methods of semi-regular remeshing of the state of the art, given the semi-regular remeshing is mainly relevant for wavelet-based compression, then we present our method for re-meshing based trust region spherical geometry image to have good scheme of 3d mesh compression used to deform 3D meh based on Multi library Wavelet Neural Network structure (MLWNN). Experimental results show that the progressive re-meshing algorithm capable of obtaining more compact representations and semi-regular objects and yield an efficient compression capabilities with minimal set of features used to have good 3D deformation scheme.
Multi-mesh gear dynamics program evaluation and enhancements
NASA Technical Reports Server (NTRS)
Boyd, L. S.; Pike, J.
1985-01-01
A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.
Accelerating Large Data Analysis By Exploiting Regularities
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Ellsworth, David
2003-01-01
We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.
Meija, Juris; Chartrand, Michelle M G
2018-01-01
Isotope delta measurements are normalized against international reference standards. Although multi-point normalization is becoming a standard practice, the existing uncertainty evaluation practices are either undocumented or are incomplete. For multi-point normalization, we present errors-in-variables regression models for explicit accounting of the measurement uncertainty of the international standards along with the uncertainty that is attributed to their assigned values. This manuscript presents framework to account for the uncertainty that arises due to a small number of replicate measurements and discusses multi-laboratory data reduction while accounting for inevitable correlations between the laboratories due to the use of identical reference materials for calibration. Both frequentist and Bayesian methods of uncertainty analysis are discussed.
Mesh for prolapse surgery: Why the fuss?
Rajshekhar, Smita; Mukhopadhyay, Sambit; Klinge, Uwe
2015-06-01
Pelvic organ prolapse is a common gynaecological problem. Surgical techniques to repair prolapse have been constantly evolving to reduce the recurrence of prolapse and need for reoperation. Grafts made of synthetic and biological materials became popular in the last decade as they were intended to provide extra support to native tissue repairs. However, serious complications related to use of synthetic meshes have been reported and there is increasing medico-legal concern about mesh use in prolapse surgery. Some mesh products already have been withdrawn from the market and the FDA has introduced stricter surveillance of new and existing products. Large randomized studies comparing mesh with non-mesh procedures are lacking which creates uncertainty for the surgeon and their patients.The small cohorts of the RCTs available with short follow-up periods just allow the conclusion that the mesh repair can be helpful in the short to medium term but unfortunately are not able to prove safety for all patients. In particular, current clinical reports cannot define for which indication what material may be superior compared to non-mesh repair.Quality control through long-term individual and national mesh registries is needed to keep a record of all surgeons using mesh and all devices being used, monitoring their effectiveness and safety data. Meshes with better biocompatibility designed specifically for use in vaginal surgery may provide superior clinical results, where the reduction of complications may allow a wider range of indications. © The Author(s) 2015.
Infiltration behaviour of liquids over fibres or woven
NASA Astrophysics Data System (ADS)
Martinez, M. A.; Abenojar, J.; Enciso, B.; Lopez de Armentia, S.
2018-05-01
The high porosity of fabrics and fibres have hindered the study of the interaction between fluids and those kind of materials. In order to understand penetration mechanisms of polymeric matrices or woven sealing, some properties such as wettability or capillarity must be analysed. The fluid speed through some woven could be compared with metallic meshes in those is easy to determine pores size. In this work it is tried to solve these problems from a theoretical point of view by using hydrostatic laws and capillarity effect.
Engagement of Metal Debris into a Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.
2009-01-01
A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.
Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response
Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie
2006-01-01
Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308
High Performance Computing of Meshless Time Domain Method on Multi-GPU Cluster
NASA Astrophysics Data System (ADS)
Ikuno, Soichiro; Nakata, Susumu; Hirokawa, Yuta; Itoh, Taku
2015-01-01
High performance computing of Meshless Time Domain Method (MTDM) on multi-GPU using the supercomputer HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences) at University of Tsukuba is investigated. Generally, the finite difference time domain (FDTD) method is adopted for the numerical simulation of the electromagnetic wave propagation phenomena. However, the numerical domain must be divided into rectangle meshes, and it is difficult to adopt the problem in a complexed domain to the method. On the other hand, MTDM can be easily adept to the problem because MTDM does not requires meshes. In the present study, we implement MTDM on multi-GPU cluster to speedup the method, and numerically investigate the performance of the method on multi-GPU cluster. To reduce the computation time, the communication time between the decomposed domain is hided below the perfect matched layer (PML) calculation procedure. The results of computation show that speedup of MTDM on 128 GPUs is 173 times faster than that of single CPU calculation.
NASA Astrophysics Data System (ADS)
Huang, Daniel Z.; De Santis, Dante; Farhat, Charbel
2018-07-01
The Finite Volume method with Exact two-material Riemann Problems (FIVER) is both a computational framework for multi-material flows characterized by large density jumps, and an Embedded Boundary Method (EBM) for computational fluid dynamics and highly nonlinear Fluid-Structure Interaction (FSI) problems. This paper deals with the EBM aspect of FIVER. For FSI problems, this EBM has already demonstrated the ability to address viscous effects along wall boundaries, and large deformations and topological changes of such boundaries. However, like for most EBMs - also known as immersed boundary methods - the performance of FIVER in the vicinity of a wall boundary can be sensitive with respect to the position and orientation of this boundary relative to the embedding mesh. This is mainly due to ill-conditioning issues that arise when an embedded interface becomes too close to a node of the embedding mesh, which may lead to spurious oscillations in the computed solution gradients at the wall boundary. This paper resolves these issues by introducing an alternative definition of the active/inactive status of a mesh node that leads to the removal of all sources of potential ill-conditioning from all spatial approximations performed by FIVER in the vicinity of a fluid-structure interface. It also makes two additional contributions. The first one is a new procedure for constructing the fluid-structure half Riemann problem underlying the semi-discretization by FIVER of the convective fluxes. This procedure eliminates one extrapolation from the conventional treatment of the wall boundary conditions and replaces it by an interpolation, which improves robustness. The second contribution is a post-processing algorithm for computing quantities of interest at the wall that achieves smoothness in the computed solution and its gradients. Lessons learned from these enhancements and contributions that are triggered by the new definition of the status of a mesh node are then generalized and exploited to eliminate from the original version of the FIVER method its sensitivities with respect to both of the position and orientation of the wall boundary relative to the embedding mesh, while maintaining the original definition of the status of a mesh node. This leads to a family of second-generation FIVER methods whose performance is illustrated in this paper for several flow and FSI problems. These include a challenging flow problem over a bird wing characterized by a feather-induced surface roughness, and a complex flexible flapping wing problem for which experimental data is available.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Shemon, E. R.; Yu, Y. Q.
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong
2005-01-01
Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and reasonably low dimension error ratio. Again proving the applicability of the algorithm.
Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon
2015-03-11
For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.
Inaki, N; Waseda, M; Schurr, M O; Braun, M; Buess, G F
2007-02-01
Laparoscopic mesh fixation using a stapler can lead to complications such as nerve injury and bowel injury. However, mesh fixation by suturing with conventional laparoscopic instruments (CLI) is difficult because of limited degrees of freedom. A manual manipulator--Radius Surgical System (Radius)--whose tip can deflect and rotate, gives the surgeon two additional degrees of freedom. The aim of this study is to evaluate the introduction of Radius to mesh fixation in laparoscopic inguinal hernia repair. A model for inguinal hernia repair was prepared using animal organs in a trainer. Mesh fixation was performed using Radius, stapler, and CLI. Tensile strength during extraction of mesh toward the vertical direction, and execution time, were measured. The mean number of fixation points of Radius, stapler, and CLI was 9.3 +/- 1.5, 8.5 +/- 1.4, and 9.0 +/- 1.0, respectively. The mean tensile strength of fixation of mesh of Radius, stapler, and CLI was 140.7 +/- 48.9, 73.1 +/- 23.4, and 53.6 +/- 31.5 (N), respectively. The mean tensile strength per one fixation point by Radius, stapler, and CLI was 16.5 +/- 5.3, 8.7 +/- 2.8, and 6.3 +/- 3.6 (N), respectively. The mean execution time of Radius, stapler, and CLI was 479 +/- 108, 54 +/- 31, and 431 +/- 77 (sec), respectively. The mesh fixation by Radius was stronger than that by staples and CLI. Two additional degrees of freedom were useful in difficult angles. The introduction of Radius is feasible and facilitates the fixation of mesh with sutures in laparoscopic inguinal hernia repair.
Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2003-01-01
An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.
Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen
2017-04-15
We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.
Basevi, Hector R A; Guggenheim, James A; Dehghani, Hamid; Styles, Iain B
2013-03-25
Knowledge of the surface geometry of an imaging subject is important in many applications. This information can be obtained via a number of different techniques, including time of flight imaging, photogrammetry, and fringe projection profilometry. Existing systems may have restrictions on instrument geometry, require expensive optics, or require moving parts in order to image the full surface of the subject. An inexpensive generalised fringe projection profilometry system is proposed that can account for arbitrarily placed components and use mirrors to expand the field of view. It simultaneously acquires multiple views of an imaging subject, producing a cloud of points that lie on its surface, which can then be processed to form a three dimensional model. A prototype of this system was integrated into an existing Diffuse Optical Tomography and Bioluminescence Tomography small animal imaging system and used to image objects including a mouse-shaped plastic phantom, a mouse cadaver, and a coin. A surface mesh generated from surface capture data of the mouse-shaped plastic phantom was compared with ideal surface points provided by the phantom manufacturer, and 50% of points were found to lie within 0.1mm of the surface mesh, 82% of points were found to lie within 0.2mm of the surface mesh, and 96% of points were found to lie within 0.4mm of the surface mesh.
Use of bimodal carbon distribution in compacts for producing metallic iron nodules
Iwasaki, Iwao
2012-10-16
A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.
Use of bimodal carbon distribution in compacts for producing metallic iron nodules
Iwasaki, Iwao
2014-04-08
A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.
Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks
Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young
2014-01-01
Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241
Resource optimization scheme for multimedia-enabled wireless mesh networks.
Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young
2014-08-08
Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.
2004-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa
2012-01-01
Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.
NASA Astrophysics Data System (ADS)
Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin
The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.
Formation stability analysis of unmanned multi-vehicles under interconnection topologies
NASA Astrophysics Data System (ADS)
Yang, Aolei; Naeem, Wasif; Fei, Minrui
2015-04-01
In this paper, the overall formation stability of an unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically stable, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. A simulation study of the formation manoeuvre of multiple Aerosonde UAVs (unmanned aerial vehicles), in 3-D space, is finally carried out verifying the achieved formation stability result.
Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.
2014-01-01
Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060
3D shape decomposition and comparison for gallbladder modeling
NASA Astrophysics Data System (ADS)
Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen
2011-03-01
This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
Studying Spacecraft Charging via Numerical Simulations
NASA Astrophysics Data System (ADS)
Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.
2015-12-01
The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.
1999-01-01
Several paradigms for accessing computer-aided design (CAD) geometry during surface meshing for computational fluid dynamics are discussed. File translation, inconsistent geometry engines, and nonnative point construction are all identified as sources of nonrobustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing.
Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing
NASA Technical Reports Server (NTRS)
Ordaz, Irian
2011-01-01
Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.
Huang, W.; Zheng, Lingyun; Zhan, X.
2002-01-01
Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.
Lamblin, Gery; Dubernard, Gil; de Saint Hilaire, Pierre; Jacquot, Franck; Chabert, Philippe; Chene, Gautier; Golfier, François
2017-01-01
To assess the anatomic efficacy and safety of synthetic glue to fix prosthetic material in laparoscopic sacrocolpopexy. A 1-year follow-up in a prospective multicenter pilot study between November 2013 and November 2014 (Canadian Task Force Classification II-2). An academic urogynecology research hospital. Seventy consecutive patients with Pelvic Organ Prolapse Quantification stage ≥3 anterior and/or medial prolapse underwent laparoscopic sacrocolpopexy. All women underwent laparoscopic sacrocolpopexy with the same standardized technique using a synthetic surgical glue to fix anterior and posterior meshes. Patients were followed up at 1 month and 1 year, with anatomic and functional assessment (Pelvic Floor Distress Inventory-20, Pelvic Floor Impact Questionnaire-7, and Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire-12). Anatomic success was defined as 1-year Pelvic Organ Prolapse Quantification stage ≤1. Sixty-six patients were included; the mean age was 56.7 ± 1.2 years. The mean operative time was 145 ± 5 minutes. The mean glue fixation time was less than 2 minutes for both anterior and posterior meshes. The 1-year anatomic success rate was 87.5% in the anterior compartment (Ba at -2.3 cm, p < .0001) and 95.3% in the medial compartment (point C at -6.1 cm, p < .0001). There were no intra- or postoperative complications and no cases of mesh exposure; 5 cases of mesh shrinkage (7.8%) were observed at 1 year. The postoperative urinary stress incontinence rate was 29.7% at 1 year. Eight patients (12.1%) underwent revision surgery with transobturator tape. All quality of life scores showed significant improvement (p < .0001) at 1 year. Synthetic glue attachment of prosthetic material in laparoscopic sacrocolpopexy proved straightforward, safe, time-saving, and effective at 1 year. Prospective randomized studies will be needed to confirm the long-term benefit. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Superhydrophobic hierarchical structure carbon mesh films for oil/water separation application
NASA Astrophysics Data System (ADS)
Lu, Zhaoxia; Huang, Xing; Wang, Lisheng
2017-08-01
In this study, we showed that a superoleophobic mesh with the self-cleaning ability could be readily prepared by a facile spray-coating method on stainless steel mesh. Poly(methyl methacrylate) was employed to provide a stable strength between carbon nanotubes and steel mesh surface. The effect of opening size of these steel meshes on surface wetting has been investigated. The dynamics of liquid droplets was investigated as well. The as-prepared meshes exhibited both superhydrophobicity and superoleophilicity and could effectively separate water from the oil and water mixture. The present study contributes to the development of oil and water separation materials for marine industrial application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.
This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compoundsmore » was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; ...
2016-04-25
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Method of and apparatus for modeling interactions
Budge, Kent G.
2004-01-13
A method and apparatus for modeling interactions can accurately model tribological and other properties and accommodate topological disruptions. Two portions of a problem space are represented, a first with a Lagrangian mesh and a second with an ALE mesh. The ALE and Lagrangian meshes are constructed so that each node on the surface of the Lagrangian mesh is in a known correspondence with adjacent nodes in the ALE mesh. The interaction can be predicted for a time interval. Material flow within the ALE mesh can accurately model complex interactions such as bifurcation. After prediction, nodes in the ALE mesh in correspondence with nodes on the surface of the Lagrangian mesh can be mapped so that they are once again adjacent to their corresponding Lagrangian mesh nodes. The ALE mesh can then be smoothed to reduce mesh distortion that might reduce the accuracy or efficiency of subsequent prediction steps. The process, from prediction through mapping and smoothing, can be repeated until a terminal condition is reached.
46 CFR 162.017-3 - Materials, construction, and workmanship.
Code of Federal Regulations, 2012 CFR
2012-10-01
... corrosion-resistant wire mesh with a 1/2-inch corrosion-resistant separator on a single screen of 30×30 corrosion-resistant wire mesh shall be fitted on all openings to atmosphere. The net free area through the... bronze or such corrosion-resistant material as may be approved by the Commanding Officer, USCG Marine...
46 CFR 162.017-3 - Materials, construction, and workmanship.
Code of Federal Regulations, 2014 CFR
2014-10-01
... corrosion-resistant wire mesh with a 1/2-inch corrosion-resistant separator on a single screen of 30 × 30 corrosion-resistant wire mesh shall be fitted on all openings to atmosphere. The net free area through the... bronze or such corrosion-resistant material as may be approved by the Commanding Officer, USCG Marine...
46 CFR 162.017-3 - Materials, construction, and workmanship.
Code of Federal Regulations, 2013 CFR
2013-10-01
... corrosion-resistant wire mesh with a 1/2-inch corrosion-resistant separator on a single screen of 30 × 30 corrosion-resistant wire mesh shall be fitted on all openings to atmosphere. The net free area through the... bronze or such corrosion-resistant material as may be approved by the Commanding Officer, USCG Marine...
Thermographic inspection of external thermal insulation systems with mechanical fixing
NASA Astrophysics Data System (ADS)
Simões, Nuno; Simões, Inês; Serra, Catarina; Tadeu, António
2015-05-01
An External Thermal Insulation Composite System (ETICS) kit may include anchors to mechanically fix the insulation product onto the wall. Using this option increases safety when compared to a simple bonded solution, however, it is more expensive and needs higher labor resources. The insulation product is then coated with rendering, which applied to the insulation material without any air gap. The rendering comprises one or more layers of coats with an embedded reinforcement. The most common multi-coat rendering system presents a base coat applied directly to the insulation product with a glass fiber mesh as reinforcement, followed by a second base coat, before a very thin coat (key coat) that prepares the surface to receive the finishing and decorative coat. The thickness of the rendering system may vary between around 5 to 10 mm. The higher thicknesses may be associated with a reinforcement composed by two layers of glass fiber mesh. The main purpose of this work is to apply infrared thermography (IRT) techniques to 2 ETICS solution (single or double layer of glass fiber mesh) and evaluate its capability in the detection of anchors. The reliability of IRT was tested using an ETICS configuration of expanded cork boards and a rendering system with one or two layers of glass fiber mesh. An active thermography approach was performed in laboratory conditions, in transmission and reflection mode. In the reflection mode halogen lamps and air heater were employed as the thermal stimulus. Air heater was also the source used in the transmission mode tests. The resulting data was processed in both time and frequency domains. In this last approach, phase contrast images were generated and studied.
2010-05-01
has been an increasing move towards armor systems which are both structural and protection components at the same time. Analysis of material response...the materials can move. As the FE analysis progresses the component will move while the mesh remains motionless (Figure 4). Individual nodes and cells...this parameter. This subroutine needs many inputs, such as the speed of sound in the material , the FE size mesh and the safety factor, which prevents
Non-graphite crucible for high temperature applications
Holcombe, Cressie E.; Pfeiler, William A.
1996-01-01
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.
Non-graphite crucible for high temperature applications
Holcombe, C.E.; Pfeiler, W.A.
1996-01-09
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Reconstruction and simplification of urban scene models based on oblique images
NASA Astrophysics Data System (ADS)
Liu, J.; Guo, B.
2014-08-01
We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.
Dynamic and thermal response finite element models of multi-body space structural configurations
NASA Technical Reports Server (NTRS)
Edighoffer, Harold H.
1987-01-01
Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
NASA Astrophysics Data System (ADS)
Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin
2017-11-01
A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.
Gonçalves, Fernanda de Cássia Papaiz; Amaral, Marina; Borges, Alexandre Luiz Souto; Gonçalves, Luiz Fernando Martins; Paes-Junior, Tarcisio José de Arruda
2018-04-01
Complete-arch implant-supported prostheses without a framework have a high risk of failure: a straightforward and inexpensive reinforcement material, such as nylon mesh, could improve their longevity. The purpose of this in vitro study was to evaluate a nylon-silica mesh compound on the fracture strength of acrylic resin and the fracture load of complete-arch implant-supported prostheses. Twenty-four complete mandibular arch implant-supported prostheses were divided into 2 groups according to cantilever length (molar and premolar) and subdivided into another 2 subgroups according to the presence or absence of reinforcing mesh. The specimens were submitted to a maximum load-to-fracture test in a universal testing machine, with a 100-N load cell, a 2 mm/min crosshead speed, and a spherical metal tip diameter of 4 mm at different points (molar and premolar). These were submitted to 1-way analysis of variance for repeated measurement and the post hoc Tukey multiple comparison test (α=.05). The mean maximum load ±standard deviation for the molar group was 393.4 ±95.0 N with reinforcement and 305.4 ±76.3 N without reinforcement (P=.02); and for the premolar group was 1083.3 ±283.7 N with reinforcement and 605.3 ±90.5 N without reinforcement (P=.001). Reinforcement with nylon mesh increased the mean maximum load of implant-supported complete-arch prostheses at both cantilever lengths. The cantilever to the premolar (5 mm) presented the highest maximum load values to fracture. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.
New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less
Visualization of AMR data with multi-level dual-mesh interpolation.
Moran, Patrick J; Ellsworth, David
2011-12-01
We present a new technique for providing interpolation within cell-centered Adaptive Mesh Refinement (AMR) data that achieves C(0) continuity throughout the 3D domain. Our technique improves on earlier work in that it does not require that adjacent patches differ by at most one refinement level. Our approach takes the dual of each mesh patch and generates "stitching cells" on the fly to fill the gaps between dual meshes. We demonstrate applications of our technique with data from Enzo, an AMR cosmological structure formation simulation code. We show ray-cast visualizations that include contributions from particle data (dark matter and stars, also output by Enzo) and gridded hydrodynamic data. We also show results from isosurface studies, including surfaces in regions where adjacent patches differ by more than one refinement level. © 2011 IEEE
NASA Astrophysics Data System (ADS)
He, Jianmei
2017-11-01
Present metal artificial bones for bone grafts have the problems like too heavy and excessive elastic modulus compared with natural bones. In this study, three-dimensionally (3D) free-formable titanium mesh plates for bone graft applications was introduced to improve these problems. Fundamental mesh shapes and patterns were designed under different base shapes and design parameters through three dimensional CAD tools from higher flexibility and strength points of view. Based on the designed mesh shape and patterns, sample specimens of titanium mesh plates with different base shapes and design variables were manufactured through laser processing. Tensile properties of the sample titanium mesh plates like volume density, tensile elastic modulus were experimentally and analytically evaluated. Experimental results showed that such titanium mesh plates had much higher flexibility and their mechanical properties could be controlled to close to the natural bones. More details on the mechanical properties of titanium mesh plates including compression, bending, torsion and durability will be carried out in future study.
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less
Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N
2013-06-01
Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, however newer composite materials are recommended by some centers because of their advantages. However, these meshes are more expensive than pure polypropylene meshes. Resterilisation of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces that suitable for hernia type or defect size. Nevertheless there is no data about the safety after resterilisation of the composite meshes. To search the effects of resterilisation and In vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweigth meshes. Laboratory-based research. Two composite meshes were used in the study: One mesh is consisted of monofilament polypropylene and monofilament polyglecaprone--a copolymer of glycolide and epsilon (ε)-caprolactone--(Ultrapro®, 28 g/m2, Ethicon, Hamburg, Germany),andthe otherone consisted of multifilamentpolypropyleneandmultifilament polyglactine (Vypro II®, 30 g/m2,Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50x20 mm for mechanical testing and 20x20 mm for In vitro degradation experiments. Meshes were divided into control group with no resterilisation and gas resterilisation. Ethylene oxide gas sterilisation was performed at 55°C for 4.5 hours. In vitro degradation in 0.01 M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electron microscopyic evaluations were completed for control and resterilisation specimens. Regardless of resterilisation, when meshes were exposed to In vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilisation by ethylene oxide did not have significant difference on the degradation characteristics and almost similar physical structures were observed for resterilised and non-resterilised meshes. For Vypro II meshes, no significant mechanical difference was observedbetweenresterilised andnon-resterilised meshes after degradationwhile resterilised Ultrapro meshes exhibited stronger characteristics than non-resterilised counterparts, after degradation. Resterilisation with ethylene oxide did not affect the mechanical properties of partially absorbable composite meshes. No important surface changeswere observed in scanning electron microscopy after resterilisation.
Mesh materials and hernia repair
Elango, Santhini; Perumalsamy, Sakthivel; Ramachandran, Krishnakumar; Vadodaria, Ketankumar
2017-01-01
Hernia incidence has been observed since ancient time. Advancement in the medical textile industry came up with the variety of mesh materials to repair hernia, but none of them are without complications including recurrence of hernia. Therefore individuals once developed with the hernia could not lead a healthy and comfortable life. This drawn attention of surgeons, patients, researchers and industry to know the exact mechanism behind its development, complications and recurrence. Recent investigations highlighted the role of genetic factors and connective tissue disorders being the reason for the development of hernia apart from the abnormal pressure that is known to develop during other disease conditions. This review discusses different mesh materials, their advantages and disadvantages and their biological response after its implantation. PMID:28840830
Shape optimization using a NURBS-based interface-enriched generalized FEM
Najafi, Ahmad R.; Safdari, Masoud; Tortorelli, Daniel A.; ...
2016-11-26
This study presents a gradient-based shape optimization over a fixed mesh using a non-uniform rational B-splines-based interface-enriched generalized finite element method, applicable to multi-material structures. In the proposed method, non-uniform rational B-splines are used to parameterize the design geometry precisely and compactly by a small number of design variables. An analytical shape sensitivity analysis is developed to compute derivatives of the objective and constraint functions with respect to the design variables. Subtle but important new terms involve the sensitivity of shape functions and their spatial derivatives. As a result, verification and illustrative problems are solved to demonstrate the precision andmore » capability of the method.« less
Water Penetration through a Superhydrophobic Mesh During a Drop Impact.
Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop
2017-01-06
When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.
Water Penetration through a Superhydrophobic Mesh During a Drop Impact
NASA Astrophysics Data System (ADS)
Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop
2017-01-01
When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.
Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N
2013-01-01
Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, although newer composite materials are recommended by some centers due to their advantages.However, these meshes are more expensive than pure polypropylene meshes. Resterilization of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces, suitable for any hernia type or defect size. Nevertheless there is no data about the safety after resterilization of the composite meshes. The present study was carried out to investigate the effects of resterilization and in vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweight meshes. Two composite meshes were used in the study: One mesh consists of monofilament polypropylene and monofilament polyglecaprone -a copolymer of glycolide and epsilon(ε)- caprolactone - (Ultrapro®, 28 g m2, Ethicon, Hamburg,Germany), and the other one consisted of multifilament polypropylene and multifilament polyglactine (Vypro II®, 30g m2, Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50 x 20 mm for mechanical testing and 20 x 20 mm for in vitro degradation experiments.Meshes were divided into control group with no resterilization and gas resterilization. Ethylene oxide gas sterilization was performed at 55°C for 4.5 hours. In vitro degradation in 0.01M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electronmicroscopic evaluations were completed for control and resterilization specimens. Regardless of resterilization, when the meshes were exposed to in vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilization by ethylene oxide did not determine significant difference on the degradation characteristics and almost similar physical structures were observed for resterilized and non-resterilized meshes. For VyproII meshes, no significant mechanical difference was observed between resterilized and non-resterilized meshes after degradation while resterilized Ultrapro meshes exhibited stronger characteristics than non-resterilized counterparts, after degradation. Resterilization with ethylene oxide did not affect the mechanical properties of partially absorbable compositemeshes. No important surface changes were observed inscanning electron microscopy after resterilization. Celsius.
Membrane Shell Reflector Segment Antenna
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Moore, James
2012-01-01
The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.
3D active shape models of human brain structures: application to patient-specific mesh generation
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.
2015-03-01
The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
Engagement of Metal Debris into Gear Mesh
NASA Technical Reports Server (NTRS)
handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
NASA Astrophysics Data System (ADS)
Xin, Qin; Yao, Xiaolan; Engelstad, Paal E.
2010-09-01
Wireless Mesh Networking is an emerging communication paradigm to enable resilient, cost-efficient and reliable services for the future-generation wireless networks. We study here the minimum-latency communication primitive of gossiping (all-to-all communication) in multi-hop ad-hoc Wireless Mesh Networks (WMNs). Each mesh node in the WMN is initially given a message and the objective is to design a minimum-latency schedule such that each mesh node distributes its message to all other mesh nodes. Minimum-latency gossiping problem is well known to be NP-hard even for the scenario in which the topology of the WMN is known to all mesh nodes in advance. In this paper, we propose a new latency-efficient approximation scheme that can accomplish gossiping task in polynomial time units in any ad-hoc WMN under consideration of Large Interference Range (LIR), e.g., the interference range is much larger than the transmission range. To the best of our knowledge, it is first time to investigate such a scenario in ad-hoc WMNs under LIR, our algorithm allows the labels (e.g., identifiers) of the mesh nodes to be polynomially large in terms of the size of the WMN, which is the first time that the scenario of large labels has been considered in ad-hoc WMNs under LIR. Furthermore, our gossiping scheme can be considered as a framework which can be easily implied to the scenario under consideration of mobility-related issues since we assume that the mesh nodes have no knowledge on the network topology even for its neighboring mesh nodes.
Marschke, J; Hengst, L; Schwertner-Tiepelmann, N; Beilecke, K; Tunn, R
2015-05-01
Single-incision transvaginal mesh for reconstruction of Level I and II prolapses in women with recurrent or advanced prolapse. We evaluated functional, anatomical, sonomorphological and quality-of-life outcome. Data were collected retrospectively for preoperative parameters and at follow-up visits. Anatomical cure was assessed with vaginal examination using the ICS-POP-Q system; introital-ultrasound scan for postvoidal residual and description of mesh characteristics was performed. We applied a visual analogue scale (VAS) and the German Pelvic Floor Questionnaire to assess quality-of-life. Seventy women with cystocele (III: 61.3%/IV: 16%), all post-hysterectomy and in majority (81.4%) after previous cystocele repair, were operated using a single-incision transvaginal technique. Overall anatomical success rate was 95.7% with significant improvement in quality-of-life (p < 0.0001). Mesh erosion occurred in 5.7%, one patient presented symptomatic vaginal vault prolapse. Postvoidal residual declined significantly (58 vs. 2.9%). Sonographic mesh length was 55.7% of implanted mesh with a wide range of mesh position, but no signs of mesh dislocation. There was no de novo dyspareunia reported, one case of preoperative existing dyspareunia worsened. No severe adverse event was observed. We hereby present a trial of a high-risk group of patients requiring reconstruction of anterior and apical vaginal wall in mostly recurrent prolapse situation. Our data support the hypothesis of improved anatomical and functional results and less mesh shrinkage caused by the single-incision technique with fixation in sacrospinous ligament in combination with modification in mesh quality compared to former multi-incision techniques.
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-01-01
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-11-19
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.
NASA Astrophysics Data System (ADS)
Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki
2015-11-01
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.
Adaptive Flow Control for Enabling Quality of Service in Tactical Ad Hoc Wireless Networks
2010-12-01
environment in wireless networks , we use sensors in the network routers to detect and respond to congestion. We use backpressure techniques... wireless mesh network . In the current approach, we used OLSR as the routing scheme. However, B.A.T.M.A.N. offers the significant advantage of being based...Control and QoS Routing in Multi-Channel Wireless Mesh Networks ,” 68-77. ACM International Symposium on Mobile Ad Hoc Networking &
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.; Gaby, Joseph D., Jr.; Sinacore, Steven A., Jr.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a 'bubble filter' and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300. These tests represent the first known nonproprietary effort to collect bubble point data for LCH4.
Louri, A; Furlonge, S; Neocleous, C
1996-12-10
A prototype of a novel topology for scaleable optical interconnection networks called the optical multi-mesh hypercube (OMMH) is experimentally demonstrated to as high as a 150-Mbit/s data rate (2(7) - 1 nonreturn-to-zero pseudo-random data pattern) at a bit error rate of 10(-13)/link by the use of commercially available devices. OMMH is a scaleable network [Appl. Opt. 33, 7558 (1994); J. Lightwave Technol. 12, 704 (1994)] architecture that combines the positive features of the hypercube (small diameter, connectivity, symmetry, simple routing, and fault tolerance) and the mesh (constant node degree and size scaleability). The optical implementation method is divided into two levels: high-density local connections for the hypercube modules, and high-bit-rate, low-density, long connections for the mesh links connecting the hypercube modules. Free-space imaging systems utilizing vertical-cavity surface-emitting laser (VCSEL) arrays, lenslet arrays, space-invariant holographic techniques, and photodiode arrays are demonstrated for the local connections. Optobus fiber interconnects from Motorola are used for the long-distance connections. The OMMH was optimized to operate at the data rate of Motorola's Optobus (10-bit-wide, VCSEL-based bidirectional data interconnects at 150 Mbits/s). Difficulties encountered included the varying fan-out efficiencies of the different orders of the hologram, misalignment sensitivity of the free-space links, low power (1 mW) of the individual VCSEL's, and noise.
Distributed Multiple Access Control for the Wireless Mesh Personal Area Networks
NASA Astrophysics Data System (ADS)
Park, Moo Sung; Lee, Byungjoo; Rhee, Seung Hyong
Mesh networking technologies for both high-rate and low-rate wireless personal area networks (WPANs) are under development by several standardization bodies. They are considering to adopt distributed TDMA MAC protocols to provide seamless user mobility as well as a good peer-to-peer QoS in WPAN mesh. It has been, however, pointed out that the absence of a central controller in the wireless TDMA MAC may cause a severe performance degradation: e. g., fair allocation, service differentiation, and admission control may be hard to achieve or can not be provided. In this paper, we suggest a new framework of resource allocation for the distributed MAC protocols in WPANs. Simulation results show that our algorithm achieves both a fair resource allocation and flexible service differentiations in a fully distributed way for mesh WPANs where the devices have high mobility and various requirements. We also provide an analytical modeling to discuss about its unique equilibrium and to compute the lengths of reserved time slots at the stable point.
Data Assimilation Methods on a Non-conservative Adaptive Mesh
NASA Astrophysics Data System (ADS)
Guider, Colin Thomas; Rabatel, Matthias; Carrassi, Alberto; Jones, Christopher K. R. T.
2017-04-01
Adaptive mesh methods are used to model a wide variety of physical phenomena. Some of these models, in particular those of sea ice movement, are particularly interesting in that they use a remeshing process to remove and insert mesh points at various points in their evolution. This presents a challenge in developing compatible data assimilation schemes, as the dimension of the state space we wish to estimate can change over time when these remeshings occur. In this work, we first describe a remeshing scheme for an adaptive mesh in one dimension. We then develop advanced data assimilation methods that are appropriate for such a moving and remeshed grid. We hope to extend these techniques to two-dimensional models, like the Lagrangian sea ice model neXtSIM te{ns}. \\bibitem{ns} P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. ne{X}t{SIM}: a new {L}agrangian sea ice model. {The Cryosphere}, 10 (3): 1055-1073, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunhart-Lupo, Nicholas
2016-12-06
LibIsopach is a toolkit for high performance distributed immersive visualization, leveraging modern OpenGL. It features a multi-process scenegraph, explicit instance rendering, mesh generation, and three-dimensional user interaction event processing.
Caveney, Maxx; Haddad, Devin; Matthews, Catherine; Badlani, Gopal; Mirzazadeh, Majid
2017-11-01
Vaginal reconstructive surgery can be performed with or without mesh. We sought to determine comparative rates of perioperative complications of native tissue versus vaginal mesh repairs for pelvic organ prolapse. Using the National Surgical Quality Improvement Program (NSQIP) database, we concatenated surgical data from vaginal procedures for prolapse repair, including anterior and posterior colporrhaphy, paravaginal defect repair, enterocele repair, and vaginal colpopexy using Current Procedural Terminology (CPT) coding. We stratified this data by the modifier associated with mesh usage at the time of the procedure. We then compared 30-day perioperative outcomes, postoperative complications (bleeding, infection, etc), and readmission rates between women with and without mesh-based repairs. We identified 10 657 vaginal reconstructive procedures without mesh and 959 mesh-based repairs from 2009 through 2013. Patients undergoing mesh repair were more likely to experience at least one complication than native tissue repair (9.28% vs 6.15%, P < 0.001), with the overall complication rate also being higher in the mesh group (11.37% vs 9.39%, P = 0.03). Procedures with mesh had a higher rate of perioperative bleeding requiring transfusion than native tissue repair (2.3% vs 0.49%, P < 0.001), and organ surgical site infection (SSI) (0.52% vs 0.17%, P = 0.02). There were no significant differences in rates of readmission, superficial, or deep SSIs, pneumonia, urinary tract infection, sepsis, or renal failure. The use of vaginal mesh for pelvic organ prolapse repair appears to result in a higher rate of perioperative complications than native tissue repair. Patients undergoing these procedures should be counselled preoperatively concerning these risks. © 2017 Wiley Periodicals, Inc.
Development of an Acetate-Fed or Sugar-Fed Microbial Power Generator for Military Bases
2011-01-01
quarter. We tested graphite and stainless steel as anode materials for ARB growth, showing the greater suitability of carbon fibers as anode material...microbial electrolysis cells (MECs) with graphite rods and stainless steel meshes as anodes to select the optimum material for use in MFC modules to...be tested in the future. We selected meshes made from 316-grade stainless steel for these initial studies. We conducted several trials with the MECs
Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.
This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less
A new technique for simulating composite material
NASA Technical Reports Server (NTRS)
Volakis, John L.
1991-01-01
This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.
2006-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.
Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.
2016-01-01
BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical end-points of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extra-cellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. PMID:27615441
Production of iron from metallurgical waste
Hendrickson, David W; Iwasaki, Iwao
2013-09-17
A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.
Transparent thin shield for radio frequency transmit coils.
Rivera, Debra S; Schulz, Jessica; Siegert, Thomas; Zuber, Verena; Turner, Robert
2015-02-01
To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target. We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array. The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield. We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.
Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.
2018-03-01
Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.
Beaulieu, A; Reebs, S G
2009-01-01
The present study investigated the effects of bedding material (pine shavings versus beta chip) and running wheel surfaces (standard metal bars versus metal bars covered with a plastic mesh) on the occurrence of wounds on the paws of male and female Syrian (golden) hamsters, Mesocricetus auratus. Four groups of 10 males and 10 females were each assigned to one of the following treatments: pine/no mesh, pine/mesh, chips/no mesh and chips/mesh. Each hamster paw was observed at 1-3-day intervals for 60 days. A total of 1-3 wounds, separate in time, developed on the paws (mostly the hind ones) of almost all animals. Wounds appeared as small pinpricks, cuts or scabs, mostly on the palms. Females ran 15% less than males, yet their front paws were more commonly affected and their wounds tended to last longer. Hamsters with plastic mesh inside their wheels took longer to develop wounds but once they appeared, the wounds were larger and lasted longer. Hamsters on pine shavings developed fewer wounds and had more wound-free days. Hamsters kept running at high levels and many wounds did not heal during the study, suggesting a need for veterinary intervention.
Geraldi, Nicasio R; Dodd, Linzi E; Xu, Ben B; Wood, David; Wells, Gary G; McHale, Glen; Newton, Michael I
2018-02-02
Much of the inspiration for the creation of superhydrophobic surfaces has come from nature, from plants such as the sacred lotus (Nelumbo nucifera), where the micro-scale papillae epidermal cells on the surfaces of the leaves are covered with nano-scale epicuticular wax crystalloids. The combination of the surface roughness and the hydrophobic wax coating produces a superhydrophobic wetting state on the leaves, allowing them to self-clean and easily shed water. Here, a simple scaled-up carbon nanoparticle spray coating is presented that mimics the surface of sacred lotus leaves and can be applied to a wide variety of materials, complex structures, and flexible substrates, rendering them superhydrophobic, with contact angles above 160°. The sprayable mixture is produced by combining toluene, polydimethylsiloxane, and inherently hydrophobic rapeseed soot. The ability to spray the superhydrophobic coating allows for the hydrophobisation of complex structures such as metallic meshes, which allows for the production of flexible porous superhydrophobic materials that, when formed into U-shaped channels, can be used to direct flows. The porous meshes, whilst being superhydrophobic, are also oleophilic. Being both superhydrophobic and oleophilic allows oil to pass through the mesh, whilst water remains on the surface. The meshes were tested for their ability to separate mixtures of oil and water in flow conditions. When silicone oil/water mixtures were passed over the meshes, all meshes tested were capable of separating more than 93% of the oil from the mixture.
On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies
Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe
2016-01-01
Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks. PMID:27164106
On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies.
Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe
2016-05-05
Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks.
Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu
2017-07-01
The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.
40 KG Sample of Fish-Clay from Stevns Klint, Denmark
NASA Astrophysics Data System (ADS)
Gwozdz, R.; Hansen, H. J.; Rasmussen, K. L.
1992-07-01
In March 1986 a 50-m-long exposure of the cliff at Stevns Klint fell down and exposed about 40 square meters of Fish Clay. Due to this extraordinary event we were able to pick by hand about 50 kg black KT boundary layer material. After drying, the material was homogenized using a wooden pestle and an agate mortar. The powdered material was sieved through 200 mesh nylon gauze. The fraction larger than 200 mesh was collected and powdered again in an agate mortar. After four repetitions the amount of material with grain size less than 200 mesh was about 40 kg. The fraction larger than 200 mesh was reduced to about 7 kg. The 40-kg powder was mixed in a rotating polyethylene drum for three weeks. The material was analyzed by instrumental neutron activation analysis, atomic absorption and X-ray fluorescence analysis for about 40 elements. INAA was made on 20 aliquots with weight about 300 mg, 20 aliquots with weight about 80 mg, and 30 with weights between 10 and 20 mg. The preliminary results show that our KT boundary sample (1) is very homogeneous, (2) is very close in composition to other K-T boundary clays analyzed by us or described in the literature, and (3) has an Ir concentration of 32 +- 2 ng/g. We hope that our Fish Clay sample (termed by us "Mesozoic Midnight") after analysis in other laboratories and by other analytical methods may qualify as reference material in analytical work on boundary clay material.
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
NASA Astrophysics Data System (ADS)
Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Oliphant, A. J.; Dodge, C.; Bowman, M.; Wilson, S.; Mairs, A. A.; Gravelle, M.; Barkley, T.
2016-12-01
At multiple sites across central CA, several passive fog water collectors have been deployed for the past 3 years. All of the sites employ standard Raschel polypropylene mesh as the fog collection medium and five of them also integrated a novel polypropylene mesh of German manufacture with a 3-dimensional internal structure. Additionally, six metal mesh manufactured by McMaster-Carr of various hole sizing were coated with a POSS-PEMA substance at the Massachusetts Institute of Technology and deployed in parallel with the Raschel mesh at six distinct locations. Finally, fluorine-free versions of the POSS-PEMA substance were generated by NBD Nanotechnology and coated on a much finer mesh substrate. Three of those and one control (uncoated mesh) were deployed at one of the fog collection sites for one season, along with a standard Raschel mesh. Preliminary results from one intercomparison from just one pair of mesh over two seasons seem to reveal a wind speed and also, possibly, a droplet-size dependence on the fog collection efficiency for the mesh. This study will continue to intercompare the various mesh in conjunction with the wind speed and direction data. If a collection efficiency dependence on mesh size or coating is confirmed, it may point to interesting and relevant mechanisms for fog droplet capture and collection hitherto unobserved in field conditions.
NASA Astrophysics Data System (ADS)
Jaini, Z. M.; Rum, R. H. M.; Boon, K. H.
2017-10-01
This paper presents the utilization of rice husk ash (RHA) as sand replacement and polypropylene mega-mesh 55 (PMM) as fiber reinforcement in foamed concrete. High pozzolanic reaction and the ability to become filler make RHA as a strategic material to enhance the strength and durability of foamed concrete. Furthermore, the presence of PMM optimizes the toughness of foamed concrete in resisting shrinkage and cracking. In this experimental study, cube and cylinder specimens were prepared for the compression and splitting-tensile tests. Meanwhile, notched beam specimens were cast for the three-point bending test. It was found that 40% RHA and 9kg/m3 PMM contribute to the highest strength and fracture energy. The compressive, tensile and flexural strengths are 32MPa, 2.88MPa and 6.68MPa respectively, while the fracture energy achieves 42.19N/m. The results indicate high potential of RHA and PMM in enhancing the mechanical properties of foamed concrete.
NASA Astrophysics Data System (ADS)
Kirshman, David
A numerical method for the solution of inviscid compressible flow using an array of embedded Cartesian meshes in conjunction with gridless surface boundary conditions is developed. The gridless boundary treatment is implemented by means of a least squares fitting of the conserved flux variables using a cloud of nodes in the vicinity of the surface geometry. The method allows for accurate treatment of the surface boundary conditions using a grid resolution an order of magnitude coarser than required of typical Cartesian approaches. Additionally, the method does not suffer from issues associated with thin body geometry or extremely fine cut cells near the body. Unlike some methods that consider a gridless (or "meshless") treatment throughout the entire domain, multi-grid acceleration can be effectively incorporated and issues associated with global conservation are alleviated. The "gridless" surface boundary condition provides for efficient and simple problem set up since definition of the body geometry is generated independently from the field mesh, and automatically incorporated into the field discretization of the domain. The applicability of the method is first demonstrated for steady flow of single and multi-element airfoil configurations. Using this method, comparisons with traditional body-fitted grid simulations reveal that steady flow solutions can be obtained accurately with minimal effort associated with grid generation. The method is then extended to unsteady flow predictions. In this application, flow field simulations for the prescribed oscillation of an airfoil indicate excellent agreement with experimental data. Furthermore, it is shown that the phase lag associated with shock oscillation is accurately predicted without the need for a deformable mesh. Lastly, the method is applied to the prediction of transonic flutter using a two-dimensional wing model, in which comparisons with moving mesh simulations yield nearly identical results. As a result, applicability of the method to transient and vibrating fluid-structure interaction problems is established in which the requirement for a deformable mesh is eliminated.
Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.
Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon
2015-01-01
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. Copyright © 2014. Published by Elsevier Inc.
Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI
Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon
2016-01-01
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446
NASA Astrophysics Data System (ADS)
Arora, Shitij; Fourment, Lionel
2018-05-01
In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing.more » RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.« less
Mechanical biocompatibility of highly deformable biomedical materials.
Mazza, Edoardo; Ehret, Alexander E
2015-08-01
Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scalable Computing of the Mesh Size Effect on Modeling Damage Mechanics in Woven Armor Composites
2008-12-01
manner of a user defined material subroutine to provide overall stress increments to, the parallel LS-DYNA3D a Lagrangian explicit code used in...finite element code, as a user defined material subroutine . The ability of this subroutine to model the effect of the progressions of a select number...is added as a user defined material subroutine to parallel LS-DYNA3D. The computations of the global mesh are handled by LS-DYNA3D and are spread
Proposal and validation of a new model to estimate survival for hepatocellular carcinoma patients.
Liu, Po-Hong; Hsu, Chia-Yang; Hsia, Cheng-Yuan; Lee, Yun-Hsuan; Huang, Yi-Hsiang; Su, Chien-Wei; Lee, Fa-Yauh; Lin, Han-Chieh; Huo, Teh-Ia
2016-08-01
The survival of hepatocellular carcinoma (HCC) patients is heterogeneous. We aim to develop and validate a simple prognostic model to estimate survival for HCC patients (MESH score). A total of 3182 patients were randomised into derivation and validation cohort. Multivariate analysis was used to identify independent predictors of survival in the derivation cohort. The validation cohort was employed to examine the prognostic capabilities. The MESH score allocated 1 point for each of the following parameters: large tumour (beyond Milan criteria), presence of vascular invasion or metastasis, Child-Turcotte-Pugh score ≥6, performance status ≥2, serum alpha-fetoprotein level ≥20 ng/ml, and serum alkaline phosphatase ≥200 IU/L, with a maximal of 6 points. In the validation cohort, significant survival differences were found across all MESH scores from 0 to 6 (all p < 0.01). The MESH system was associated with the highest homogeneity and lowest corrected Akaike information criterion compared with Barcelona Clínic Liver Cancer, Hong Kong Liver Cancer (HKLC), Cancer of the Liver Italian Program, Taipei Integrated Scoring and model to estimate survival in ambulatory HCC Patients systems. The prognostic accuracy of the MESH scores remained constant in patients with hepatitis B- or hepatitis C-related HCC. The MESH score can also discriminate survival for patients from early to advanced stages of HCC. This newly proposed simple and accurate survival model provides enhanced prognostic accuracy for HCC. The MESH system is a useful supplement to the BCLC and HKLC classification schemes in refining treatment strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials
Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457
A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes
NASA Astrophysics Data System (ADS)
Lundquist, Tomas; Malan, Arnaud; Nordström, Jan
2018-06-01
We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.
2006-06-01
scenario, occurring just north of Chiang Mai , Thailand at the Mae Ngat Dam. Figure 3 is a map of Thailand and some of its bordering countries...displayed, and distributed in real-time to local ( Chiang Mai ), theater (Bangkok), and global (Alameda and Monterey, CA) Command and Control (C2) 11...systems in support of tactical action scenarios. This year’s COASTS scenario took place at the Mae Ngat Dam, located just north of Chiang Mai , Thailand
Airplane Mesh Development with Grid Density Studies
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.
1999-01-01
Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum angle, stretching ratios, etc.).
Efficient generation of discontinuity-preserving adaptive triangulations from range images.
Garcia, Miguel Angel; Sappa, Angel Domingo
2004-10-01
This paper presents an efficient technique for generating adaptive triangular meshes from range images. The algorithm consists of two stages. First, a user-defined number of points is adaptively sampled from the given range image. Those points are chosen by taking into account the surface shapes represented in the range image in such a way that points tend to group in areas of high curvature and to disperse in low-variation regions. This selection process is done through a noniterative, inherently parallel algorithm in order to gain efficiency. Once the image has been subsampled, the second stage applies a two and one half-dimensional Delaunay triangulation to obtain an initial triangular mesh. To favor the preservation of surface and orientation discontinuities (jump and crease edges) present in the original range image, the aforementioned triangular mesh is iteratively modified by applying an efficient edge flipping technique. Results with real range images show accurate triangular approximations of the given range images with low processing times.
Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP
NASA Technical Reports Server (NTRS)
Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)
1995-01-01
The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.
Underworld: What we set out to do, How far did we get, What did we Learn ? (Invited)
NASA Astrophysics Data System (ADS)
Moresi, L. N.
2013-12-01
Underworld was conceived as a tool for modelling 3D lithospheric deformation coupled with the underlying / surrounding mantle flow. The challenges involved were to find a method capable of representing the complicated, non-linear, history dependent rheology of the near surface as well as being able to model mantle convection, and, simultaneously, to be able to solve the numerical system efficiently. Underworld is a hybrid particle / mesh code reminiscent of the particle-in-cell techniques from the early 1960s. The Underworld team (*) was not the first to use this approach, nor the last, but the team does have considerable experience and much has been learned along the way. The use of a finite element method as the underlying "cell" in which the Lagrangian particles are embedded considerably reduces errors associated with mapping material properties to the cells. The particles are treated as moving quadrature points in computing the stiffness matrix integrals. The decoupling of deformation markers from computation points allows the use of structured meshes, efficient parallel decompositions, and simple-to-code geometric multigrid solution methods. For a 3D code such efficiencies are very important. The elegance of the method is that it can be completely described in a couple of sentences. However, there are some limitations: it is not obvious how to retain this elegance for unstructured or adaptive meshes, arbitrary element types are not sufficiently well integrated by the simple quadrature approach, and swarms of particles representing volumes are usually an inefficient representation of surfaces. This will be discussed ! (*) Although not formally constituted, my co-conspirators in this exercise are listed as the Underworld team and I will reveal their true identities on the day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staley, Martin
Metamesh is a general-purpose C++ library for creating "mesh" data structures from smaller parts. That is, rather than providing a traditional "mesh format," as many libraries do, or a GUI for building meshes, Metamesh provides tools by which the mesh structures themselves can be built. Consider that a mesh in up to three dimensions can contain nodes (0d entities), edges (1d), faces (2d), and cells (3d). Edges are typically defined from two nodes. Faces can be defined from nodes or edges; and cells from nodes, edges, or faces. Someone might also wish to allow for general faces or cells, ormore » for only a specific variant - say, triangular faces and tetrahedral cells. Moreover, a mesh can have the same or a lesser dimension than that of its enclosing space. In 3d, say, one could have a full 3d mesh, a 2d "sheet" mesh without cells, a 1d "string" mesh with neither faces nor cells, or even a 1d "point cloud." And, aside from the mesh structure itself, additional data might be wanted: velocities at nodes, say, or fluxes across faces, or an average density in each cell. Metamesh supports all of this, through C++ generics and template metaprogramming techniques. Users fit Metamesh constructs together to define a mesh layout, and Metamesh then automatically provides the newly constructed mesh with functionality. Metamesh also provides facilities for spinning, extruding, visualizing, and performing I/O of whatever meshes a user builds.« less
Material Models for the Human Torso Finite Element Model
2018-04-04
material characterizations drawn from current literature. Biofidelity of the ARL torso was determined by comparing peak force, force-displacement, peak...Flesh simulation. The soft tissue mesh in the upper neck was highly distorted at 21.2 ms (right) compared to the original mesh (left...a realistic response with results comparable to physical experiments to support future efforts to evaluate BABT. 2. Methods 2.1 Review of
Recent Results from NASA's Morphing Project
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Washburn, Anthony E.; Horta, Lucas G.; Bryant, Robert G.; Cox, David E.; Siochi, Emilie J.; Padula, Sharon L.; Holloway, Nancy M.
2002-01-01
The NASA Morphing Project seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include macro, micro, structural and/or fluidic approaches. The project includes research on smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls. This paper presents an updated overview of the content of the Morphing Project including highlights of recent research results.
Deposition and post-processing techniques for transparent conductive films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto
2017-07-04
In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.
Engagement of Metal Debris into a Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
NASA Astrophysics Data System (ADS)
de Zelicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit
2008-11-01
Image-guided computational fluid dynamics has recently gained attention as a tool for predicting the outcome of different surgical scenarios. Cartesian Immersed-Boundary methods constitute an attractive option to tackle the complexity of real-life anatomies. However, when such methods are applied to the branching, multi-vessel configurations typically encountered in cardiovascular anatomies the majority of the grid nodes of the background Cartesian mesh end up lying outside the computational domain, increasing the memory and computational overhead without enhancing the numerical resolution in the region of interest. To remedy this situation, the method presented here superimposes local mesh refinement onto an unstructured Cartesian grid formulation. A baseline unstructured Cartesian mesh is generated by eliminating all nodes that reside in the exterior of the flow domain from the grid structure, and is locally refined in the vicinity of the immersed-boundary. The potential of the method is demonstrated by carrying out systematic mesh refinement studies for internal flow problems ranging in complexity from a 90 deg pipe bend to an actual, patient-specific anatomy reconstructed from magnetic resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Bockelie
2002-01-04
This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less
Unnikrishnan, Ginu U.; Morgan, Elise F.
2011-01-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740
Optical control of multi-stage thin film solar cell production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Levi, Dean H.; Contreras, Miguel A.
2016-05-17
Embodiments include methods of depositing and controlling the deposition of a film in multiple stages. The disclosed deposition and deposition control methods include the optical monitoring of a deposition matrix to determine a time when at least one transition point occurs. In certain embodiments, the transition point or transition points are a stoichiometry point. Methods may also include controlling the length of time in which material is deposited during a deposition stage or controlling the amount of the first, second or subsequent materials deposited during any deposition stage in response to a determination of the time when a selected transitionmore » point occurs.« less
Exploring Discretization Error in Simulation-Based Aerodynamic Databases
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian
2010-01-01
This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.
Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W
2010-11-01
The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Hydrodynamic parameters of mesh fillers relevant to miniature regenerative cryocoolers
NASA Astrophysics Data System (ADS)
Landrum, E. C.; Conrad, T. J.; Ghiaasiaan, S. M.; Kirkconnell, Carl S.
2010-06-01
Directional hydrodynamic parameters of two fine-mesh porous materials that are suitable for miniature regenerative cryocoolers were studied under steady and oscillating flows of helium. These materials included stacked discs of #635 stainless steel (wire diameter of 20.3 μm) and #325 phosphor bronze (wire diameter of 35.6 μm) wire mesh screens, which are among the commercially available fillers for use in small-scale regenerators and heat exchangers, respectively. Experiments were performed in test sections in which pressure variations across these fillers, in the axial and lateral (radial) directions, were measured under steady and oscillatory flows. The directional permeability and Forchheimer's inertial coefficient were then obtained by using a Computational Fluid Dynamics (CFD)-assisted method. The oscillatory flow experiments covered a frequency range of 50-200 Hz. The results confirmed the importance of anisotropy in the mesh screen fillers, and indicated differences between the directional hydrodynamic resistance parameters for steady and oscillating flow regimes.
One piece microwave container screens for electrodeless lamps
Turner, Brian; Ury, Michael
1998-01-01
A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.
Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E
2016-07-01
The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.
Local mesh adaptation technique for front tracking problems
NASA Astrophysics Data System (ADS)
Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.
1998-09-01
A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.
The research on multi-projection correction based on color coding grid array
NASA Astrophysics Data System (ADS)
Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu
2017-10-01
There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.
New software developments for quality mesh generation and optimization from biomedical imaging data.
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2014-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
Superhydrophobic materials for drug delivery
NASA Astrophysics Data System (ADS)
Yohe, Stefan Thomas
Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension. Superhydrophobicity is shown to be enhanced with further increases in PGC-C18 content and surface roughness (a decrease in fiber size). We demonstrate the utility of superhydrophobicity as a method for drug delivery. When the camptothecin derivatives SN-38 and CPT-11 are encapsulated within electrospun meshes, changes in air layer stability (due to changes in PGC-C18 content) dictate the rate of drug release by controlling the rate in which water can permeate into the porous 3D electrospun structure. Drug release can be tuned from 2 weeks to >10 weeks from 300 mum meshes, and meshes effectively kill a variety of cancer cell lines (lung, colon, breast) when utilized in a cytotoxicity assay. After determining that air could be used to control the rate of drug release, superhydrophobic 3D materials are explored for three applications. First, meshes are considered as a potential combination reinforcement-drug delivery device for use in resectable colorectal cancer. Second, removal of the air layer in superhydrophobic meshes is used as a method to trigger drug release. The pressure generated from high-intensity focused ultrasound (0.75-4.25 MPa) can remove the air layer spatially and temporally, allowing drug release to be controlled with application of a sufficient treatment. Third, "connective" electrosprayed coatings are deposited on chemically distinct material surfaces, which are both three-dimensional and mechanically robust. In summary, superhydrophobic 3D materials are fabricated and characterized, and are utilized as drug delivery devices. Controlled air removal from these materials offers an entirely new strategy for drug delivery, and is promising for the applications considered in this work as well as many others.
Specialty functions singularity mechanics problems
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1989-01-01
The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.
A multifunctional polymeric nanofilm with robust chemical performances for special wettability.
Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong
2016-03-07
A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.
TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu
2011-12-01
We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergen, Ben; Moss, Nicholas; Charest, Marc Robert Joseph
FleCSI is a compile-time configurable framework designed to support multi-physics application development. As such, FleCSI attempts to provide a very general set of infrastructure design patterns that can be specialized and extended to suit the needs of a broad variety of solver and data requirements. Current support includes multi-dimensional mesh topology, mesh geometry, and mesh adjacency information, n-dimensional hashed-tree data structures, graph partitioning interfaces, and dependency closures. FleCSI also introduces a functional programming model with control, execution, and data abstractions that are consistent with both MPI and state-of-the-art task-based runtimes such as Legion and Charm++. The FleCSI abstraction layer providesmore » the developer with insulation from the underlying runtime, while allowing support for multiple runtime systems, including conventional models like asynchronous MPI. The intent is to give developers a concrete set of user-friendly programming tools that can be used now, while allowing flexibility in choosing runtime implementations and optimizations that can be applied to architectures and runtimes that arise in the future. The control and execution models in FleCSI also provide formal nomenclature for describing poorly understood concepts like kernels and tasks.« less
NASA Astrophysics Data System (ADS)
Dang, Haizheng; Zhao, Yibo
2016-09-01
This paper presents the CFD modeling and experimental verifications of a single-stage inertance tube coaxial Stirling-type pulse tube cryocooler operating at 30-35 K using mixed stainless steel mesh regenerator matrices without either double-inlet or multi-bypass. A two-dimensional axis-symmetric CFD model with the thermal non-equilibrium mode is developed to simulate the internal process, and the underlying mechanism of significantly reducing the regenerator losses with mixed matrices is discussed in detail based on the given six cases. The modeling also indicates that the combination of the given different mesh segments can be optimized to achieve the highest cooling efficiency or the largest exergy ratio, and then the verification experiments are conducted in which the satisfactory agreements between simulated and tested results are observed. The experiments achieve a no-load temperature of 27.2 K and the cooling power of 0.78 W at 35 K, or 0.29 W at 30 K, with an input electric power of 220 W and a reject temperature of 300 K.
Huang, Wen-Chen; Yang, Jenn-Ming
2017-03-01
The purpose of this study was to explore the association between mesh location and de novo stress urinary incontinence (SUI) after transvaginal mesh procedures. We retrospectively analyzed a database of women who had received transvaginal mesh procedures for stage III or greater cystocele according to the Pelvic Organ Prolapse Quantification system. Only data for women who neither reported SUI preoperatively nor had received concomitant anti-incontinence surgery were included for analyses. The mesh location was investigated by sonography via the percentage of the urethra covered by mesh, defined as the number calculated by dividing the portion of the urethral length covered by mesh (the distance from the bladder neck to the point of the urethra, which was indicated by an imaginary line at the level of the lower [caudal] mesh end and perpendicular to the urethra) by the total urethral length (the distance from the bladder neck to the external urethral meatus) in the sagittal plane. The resting, straining, coughing, and squeezing mesh locations of women who did (n = 29) and did not (n = 54) report SUI at the 12-month follow-up were compared. At the 12-month follow-up, women who reported SUI had a significantly smaller straining percentage of the urethra covered by mesh (mean ± SD, 28.5% ± 9.6%) compared with continent women (35.2% ± 15.8%), indicating a more proximal straining mesh location. Sonography is useful in investigating the location of the transvaginal mesh. De novo SUI after transvaginal mesh procedures is associated with a more proximal straining mesh location. © 2017 by the American Institute of Ultrasound in Medicine.
von Ahnen, Thomas; von Ahnen, Martin; Schardey, Hans
2010-01-01
Background The aim of this prospective, randomized, single-blinded clinical trial was to compare the incidence of chronic pain after laparoscopic transabdominal preperitoneal hernia repair (TAPP) using a 35-g/m2 titanized polypropylene mesh and a 16-g/m2 titanized polypropylene mesh. The reported incidence of chronic pain in patients who underwent laparoscopic hernia repair is a serious problem. The techniques of dissection, mesh fixation, and the mesh material used have all been identified as being part of the problem. Excellent biocompatibility through a unique combination of a lightweight open porous polypropylene mesh covered with a covalent-bonded titanium layer has been claimed. The aim of this study was to find out whether the titanium surface alone or the difference in material load between the two available meshes influences clinical outcomes. Methods Three hundred eighty patients with 466 inguinal hernias were operated on between 2002 and 2006 with the laparoscopic transabdominal preperitoneal (TAPP) technique. Mesh fixation with staples was carried out routinely. After the dissection was completed just prior to the implantation of the mesh, patients were randomized into two groups. In Group A, 250 (53.6%) inguinal hernias were repaired with a 35-g/m2 titanized polypropylene mesh, and in Group B, 216 (46.4%) inguinal hernias were repaired with a 16-g/m2 titanized polypropylene mesh. The primary outcome was chronic pain 3 years after surgery. The degree of pain was determined using a visual analog scale (VAS) with a range from 0 to 10. The secondary outcome was the rate of recurrence. Results The postoperative period of observation was at least 3 years for every patient. In both groups, 90% of the patients could be questioned and examined clinically: in Group A (Light), 5.3% of the patients and in Group B (Extralight), 1.5% of the patients suffered from chronic pain. Chronic pain was significantly more common in Group A than in Group B (p = 0.037). There was no difference with respect to the rate of recurrence: for Group A it was 3.1% and for Group B it was 2.6% (p = 0.724). Conclusions Chronic pain is not very common in patients who have had their inguinal hernias repaired with titanium-covered polypropylene mesh. Reducing the material load from 35 to 16 g/m2 seems to further improve the biocompatibility of these meshes, thus improving the clinical outcome by reducing chronic pain to a rare event. The role of staples in causing chronic pain following inguinal hernia repair may be overestimated. There was no evidence supporting the notion that the use of the 16-g/m2 titanized meshes is associated with increased recurrence rates. PMID:21103989
A spring system method for a mesh generation problem
NASA Astrophysics Data System (ADS)
Romanov, A.
2018-04-01
A new direct method for the 2d-mesh generation for a simply-connected domain using a spring system is observed. The method can be used with other methods to modify a mesh for growing solid problems. Advantages and disadvantages of the method are shown. Different types of boundary conditions are explored. The results of modelling for different target domains are given. Some applications for composite materials are studied.
Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.
Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi
2014-02-10
This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.
Siddique, K; Shrestha, A; Basu, S
2014-02-01
Repair of primary and recurrent giant incisional herniae is extremely challenging and more so in the face of surgical field contamination. Literature supports the single- and multi-staged approaches including the use of biological meshes for these difficult patients with their associated benefits and limitations. This is a retrospective analysis of a prospective study of five patients who were successfully treated through a multi-staged approach but in the same hospital admission, not previously described, for the repair of contaminated primary and recurrent giant incisional herniae in a district general hospital between 2009 and 2012. Patient demographics including their BMI and ASA, previous and current operative history including complications and follow-up were collected in a secure database. The first stage involved the eradication of contamination, and the second stage was the definitive hernia repair with the new generation-coated synthetic meshes. Of the five patients, three were men and two women with a mean age of 58 (45-74) years. Two patients had grade 4 while the remaining had grade 3 hernia as per the hernia grading system with a mean BMI of 35 (30-46). All patients required extensive adhesiolysis, bowel resection and anastomoses and wash out. Hernial defect was measured as 204* (105-440) cm(2), size of mesh implant was 568* (375-930) cm(2) and the total duration of operation (1st + 2nd Stage) was 354* (270-540) min. Duration of hospital stay was 11* (7-19) days with a follow-up of 17* (6-36) months. We believe that our multi-staged approach in the same hospital admission (for the repair of contaminated primary and recurrent giant incisional herniae), excludes the disadvantages of a true multi-staged approach and simultaneously minimises the risks and complications associated with a single-staged repair, can be adopted for these challenging patients for a successful outcome (* indicates mean).
Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.
Simulation of the Francis-99 Hydro Turbine During Steady and Transient Operation
NASA Astrophysics Data System (ADS)
Dewan, Yuvraj; Custer, Chad; Ivashchenko, Artem
2017-01-01
Numerical simulation of the Francis-99 hydroturbine with correlation to experimental measurements are presented. Steady operation of the hydroturbine is analyzed at three operating conditions: the best efficiency point (BEP), high load (HL), and part load (PL). It is shown that global quantities such as net head, discharge and efficiency are well predicted. Additionally, time-averaged velocity predictions compare well with PIV measurements obtained in the draft tube immediately downstream of the runner. Differences in vortex rope structure between operating points are discussed. Unsteady operation of the hydroturbine from BEP to HL and from BEP to PL are modeled. It is shown that simulation methods used to model the steady operation produce predictions that correlate well with experiment for transient operation. Time-domain unsteady simulation is used for both steady and unsteady operation. The full-fidelity geometry including all components is meshed using an unstructured polyhedral mesh with body-fitted prism layers. Guide vane rotation for transient operation is imposed using fully-conservative, computationally efficient mesh morphing. The commercial solver STAR-CCM+ is used for all portions of the analysis including meshing, solving and post-processing.
Reliability optimization design of the gear modification coefficient based on the meshing stiffness
NASA Astrophysics Data System (ADS)
Wang, Qianqian; Wang, Hui
2018-04-01
Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.
Finite element mesh refinement criteria for stress analysis
NASA Technical Reports Server (NTRS)
Kittur, Madan G.; Huston, Ronald L.
1990-01-01
This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.
Options for Parallelizing a Planning and Scheduling Algorithm
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin D.
2011-01-01
Space missions have a growing interest in putting multi-core processors onboard spacecraft. For many missions processing power significantly slows operations. We investigate how continual planning and scheduling algorithms can exploit multi-core processing and outline different potential design decisions for a parallelized planning architecture. This organization of choices and challenges helps us with an initial design for parallelizing the CASPER planning system for a mesh multi-core processor. This work extends that presented at another workshop with some preliminary results.
Influence of reinforcement mesh configuration for improvement of concrete durability
NASA Astrophysics Data System (ADS)
Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong
2017-10-01
Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.
NASA Astrophysics Data System (ADS)
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
NASA Technical Reports Server (NTRS)
Bibel, George; Lewicki, David G. (Technical Monitor)
2002-01-01
A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.
Ball mill tool for crushing coffee and cocoa beans base on fraction size sieving results
NASA Astrophysics Data System (ADS)
Haryanto, B.; Sirait, M.; Azalea, M.; Alvin; Cahyani, S. E.
2018-02-01
Crushing is one of the operation units that aimed to convert the size of solid material to be smoother particle’s size. The operation unit that can be used in this crushing is ball mill. The purpose of this study is to foresee the effect of raw material mass, grinding time, and the number of balls that are used in the ball mill tool related to the amount of raw material of coffee and cocoa beans. Solid material that has become smooth is then sieved with sieve mesh with size number: 50, 70, 100, and 140. It is in order to obtain the mass fraction that escaped from each sieve mesh. From the experiment, it can be concluded that mass percentage fraction of coffee powder is bigger than cocoa powder that escaped from the mesh. Hardness and humidity of coffee beans and cocoa beans have been the important factors that made coffee beans is easier to be crushed than cocoa beans.
An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Han, Jianqiang; Tang, Huazhong
2007-01-01
This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud-shock interaction problem.
Selecting criteria for the right prosthesis in defect of the abdominal wall surgery.
Mohamed, H; Ion, D; Serban, M B; Ciurea, M
2009-01-01
The article is debating a theme of great interest for the defect of the abdominal wall surgery--the use of biocompatible prosthesis. The surgeon is often confused by the avalanche of offers made by the mesh producers, making it mandatory for him to know very well the behavior of these alloplastic structures in the tissue environment. From this point of view, we have discussed both the physicochemical properties and the histological reaction brought by the most common type of meshes: polypropylene, polyethylene - tereftalat, polytetrafluorideethylene. This presentation brings out the minimal but mandatory criteria for any mesh to be accepted, but also the criteria that need to be taken into consideration when we try to improve the qualities of the mesh closer to the desideratum of the "ideal mesh". The main conclusion of this review is that we have to change the myth of the "ideal mesh" with "the right chosen mesh", that based on its chemical, physical, structural and biological qualities will adapt perfectly first to the patient's needs and second to the surgeon's needs.
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
NASA Technical Reports Server (NTRS)
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Feola, Andrew; Abramowitch, Steven; Jallah, Zegbeh; Stein, Suzan; Barone, William; Palcsey, Stacy; Moalli, Pamela
2012-01-01
Objective Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon). Design A study employing a non-human primate model Setting University of Pittsburgh Population 45 parous rhesus macaques Methods Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months. Main Outcome Measures Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol. Results Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively). Conclusions Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. PMID:23240801
2013-01-01
ξi be the Legendre -Gauss-Lobatto (LGL) points defined as the roots of (1 − ξ2)P ′N (ξ) = 0, where PN (ξ) is the N th order Legendre polynomial . The...mesh refinement. By expanding the solution in a basis of high order polynomials in each element, one can dynamically adjust the order of these basis...on refining the mesh while keeping the polynomial order constant across the elements. If we choose to allow non-conforming elements, the challenge in
Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds
2012-02-29
element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element
Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor
NASA Astrophysics Data System (ADS)
Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata
2015-09-01
Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.
Meso-scale framework for modeling granular material using computed tomography
Turner, Anne K.; Kim, Felix H.; Penumadu, Dayakar; ...
2016-03-17
Numerical modeling of unconsolidated granular materials is comprised of multiple nonlinear phenomena. Accurately capturing these phenomena, including grain deformation and intergranular forces depends on resolving contact regions several orders of magnitude smaller than the grain size. Here, we investigate a method for capturing the morphology of the individual particles using computed X-ray and neutron tomography, which allows for accurate characterization of the interaction between grains. The ability of these numerical approaches to determine stress concentrations at grain contacts is important in order to capture catastrophic splitting of individual grains, which has been shown to play a key role in themore » plastic behavior of the granular material on the continuum level. Discretization approaches, including mesh refinement and finite element type selection are presented to capture high stress concentrations at contact points between grains. The effect of a grain’s coordination number on the stress concentrations is also investigated.« less
Well-posed and stable transmission problems
NASA Astrophysics Data System (ADS)
Nordström, Jan; Linders, Viktor
2018-07-01
We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.
FANS-3D Users Guide (ESTEP Project ER 201031)
2016-08-01
governing laminar and turbulent flows in body-fitted curvilinear grids. The code employs multi-block overset ( chimera ) grids, including fully matched...governing incompressible flow in body-fitted grids. The code allows for multi-block overset ( chimera ) grids, which can be fully matched, arbitrarily...interested reader may consult the Chimera Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file used for
Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.
Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent
2016-02-01
Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities.
Bogu, V Phanindra; Kumar, Y Ravi; Kumar Khanara, Asit
2017-01-01
This computational study explores modelling and finite element study of the implant under Intracranial pressure (ICP) conditions with normal ICP range (7 mm Hg to 15 mm Hg) or increased ICP (>I5 mm Hg). The implant fixation points allow implant behaviour with respect to intracranial pressure conditions. However, increased fixation points lead to variation in deformation and equivalent stress. Finite element analysis is providing a valuable insight to know the deformation and equivalent stress. The patient CT data (Computed Tomography) is processed in Mimics software to get the mesh model. The implant is modelled by using modified reverse engineering technique with the help of Rhinoceros software. This modelling method is applicable for all types of defects including those beyond the middle line and multiple ones. It is designed with eight fixation points and ten fixation points to fix an implant. Consequently, the mechanical deformation and equivalent stress (von Mises) are calculated in ANSYS 15 software with distinctive material properties such as Titanium alloy (Ti6Al4V), Polymethyl methacrylate (PMMA) and polyether-ether-ketone (PEEK). The deformation and equivalent stress results are obtained through ANSYS 15 software. It is observed that Ti6Al4V material shows low deformation and PEEK material shows less equivalent stress. Among all materials PEEK shows noticeably good result. Hence, a concept was established and more clinically relevant results can be expected with implementation of realistic 3D printed model in the future. This will allow physicians to gain knowledge and decrease surgery time with proper planning.
NASA Astrophysics Data System (ADS)
Sun, Huafei; Darmofal, David L.
2014-12-01
In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.
A hybrid multiview stereo algorithm for modeling urban scenes.
Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep
2013-01-01
We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.
Topological patterns of mesh textures in serpentinites
NASA Astrophysics Data System (ADS)
Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.
2017-12-01
Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.
Sayer, T; Lim, J; Gauld, J M; Hinoul, P; Jones, P; Franco, N; Van Drie, D; Slack, M
2012-04-01
This study was designed to evaluate clinical outcomes ≥2 years following surgery with polypropylene mesh and vaginal support device (VSD) in women with vaginal prolapse, in a prospective, multi-center setting. Patients re-consented for this extended follow-up (n = 110), with anatomic evaluation using Pelvic Organ Prolapse Quantification (POP-Q) and validated questionnaires to assess pelvic symptoms and sexual function. Complications were recorded (safety set; n = 121). Median length of follow-up was 29 months (range 24-34 months). The primary anatomic success, defined as POP-Q 0-I, was 69.1%; however, in 84.5% of the cases, the leading vaginal edge was above the hymen. Pelvic symptoms and sexual function improved significantly from baseline (p < 0.01). Mesh exposure rate was 9.1%. Five percent reported stress urinary incontinence and 3.3% required further prolapse surgery. These results indicate this non-anchored mesh repair is a safe and effective treatment for women with symptomatic vaginal prolapse in the medium term.
FaceWarehouse: a 3D facial expression database for visual computing.
Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun
2014-03-01
We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Kinect, an off-the-shelf RGBD camera, to capture 150 individuals aged 7-80 from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions such as mouth-opening, smile, kiss, etc. For every RGBD raw data record, a set of facial feature points on the color image such as eye corners, mouth contour, and the nose tip are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-3 tensor to build a bilinear face model with two attributes: identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse for visual computing with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2010-01-01
The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points--the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.
Semantic segmentation of 3D textured meshes for urban scene analysis
NASA Astrophysics Data System (ADS)
Rouhani, Mohammad; Lafarge, Florent; Alliez, Pierre
2017-01-01
Classifying 3D measurement data has become a core problem in photogrammetry and 3D computer vision, since the rise of modern multiview geometry techniques, combined with affordable range sensors. We introduce a Markov Random Field-based approach for segmenting textured meshes generated via multi-view stereo into urban classes of interest. The input mesh is first partitioned into small clusters, referred to as superfacets, from which geometric and photometric features are computed. A random forest is then trained to predict the class of each superfacet as well as its similarity with the neighboring superfacets. Similarity is used to assign the weights of the Markov Random Field pairwise-potential and to account for contextual information between the classes. The experimental results illustrate the efficacy and accuracy of the proposed framework.
Im, So-Min; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin
2017-02-01
The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture ( P <.05) and the control group ( P <.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.
Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve.
Jiang, Hongjun; Campbell, Gord; Xi, Fengfeng
2005-03-01
This paper describes the measurement and reconstruction of the leaflet geometry for a pericardial heart valve. Tasks involved include mapping the leaflet geometries by laser digitizing and reconstructing the 3D freeform leaflet surface based on a laser scanned profile. The challenge is to design a prosthetic valve that maximizes the benefits offered to the recipient as compared to the normally operating naturally-occurring valve. This research was prompted by the fact that artificial heart valve bioprostheses do not provide long life durability comparable to the natural heart valve, together with the anticipated benefits associated with defining the valve geometries, especially the leaflet geometries for the bioprosthetic and human valves, in order to create a replicate valve fabricated from synthetic materials. Our method applies the concept of reverse engineering in order to reconstruct the freeform surface geometry. A Brown & Shape coordinate measuring machine (CMM) equipped with a HyMARC laser-digitizing system was used to measure the leaflet profiles of a Baxter Carpentier-Edwards pericardial heart valve. The computer software, Polyworks was used to pre-process the raw data obtained from the scanning, which included merging images, eliminating duplicate points, and adding interpolated points. Three methods, creating a mesh model from cloud points, creating a freeform surface from cloud points, and generating a freeform surface by B-splines are presented in this paper to reconstruct the freeform leaflet surface. The mesh model created using Polyworks can be used for rapid prototyping and visualization. To fit a freeform surface to cloud points is straightforward but the rendering of a smooth surface is usually unpredictable. A surface fitted by a group of B-splines fitted to cloud points was found to be much smoother. This method offers the possibility of manually adjusting the surface curvature, locally. However, the process is complex and requires additional manipulation. Finally, this paper presents a reverse engineered design for the pericardial heart valve which contains three identical leaflets with reconstructed geometry.
Recent advances in high-order WENO finite volume methods for compressible multiphase flows
NASA Astrophysics Data System (ADS)
Dumbser, Michael
2013-10-01
We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.
A Langevin approach to multi-scale modeling
Hirvijoki, Eero
2018-04-13
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less
A Langevin approach to multi-scale modeling
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero
2018-04-01
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this letter, we propose a multi-scale method which allows us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. This allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.
A Langevin approach to multi-scale modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirvijoki, Eero
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less
NASA Astrophysics Data System (ADS)
Smith, R. C.; Collins, G. S.; Hill, J.; Piggott, M. D.; Mouradian, S. L.
2015-12-01
Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic slides) and examine the hazard posed to the UK coast.
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Robinson, R. A. J.; Savi, S.; Bookhagen, B.; Tofelde, S.; Strecker, M. R.
2014-12-01
Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic slides) and examine the hazard posed to the UK coast.
NASA Technical Reports Server (NTRS)
Frazer, Robert E. (Inventor)
1982-01-01
Production of strong lightweight membrane structure by applying a thin reflective coating such as aluminum to a rotating cylinder, applying a mesh material such as nylon over the aluminum coating, coating the mesh overlying the aluminum with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum, and applying an emissivity increasing material such as chromium and silicon monoxide to the polymer film to disperse such material colloidally into the growing polymer film, or applying such material to the final polymer film, and removing the resulting membrane structure from the cylinder. Alternatively, such membrane structure can be formed by etching a substrate in the form of an organic film such as a polyimide, or a metal foil, to remove material from the substrate and reduce its thickness, applying a thin reflective coating such as aluminum on one side of the substrate and applying an emissivity increasing coating such as chromium and silicon monoxide on the reverse side of the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasouli, C.; Abbasi Davani, F.; Rokrok, B.
Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation hasmore » been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.« less
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
Investigation into the optimal prosthetic material for wound healing of abdominal wall defects
Akcakaya, Adem; Aydogdu, Ibrahim; Citgez, Bulent
2018-01-01
The purpose of this experimental study is to investigate and compare the effects of prosthetic materials used for wound healing of abdominal wall hernias. A total of 60 rats were divided into five equal groups: Group I, control subjected to laparotomy; group II, abdominal wall defect 3×2 cm+polypropylene (PP) mesh; group III, abdominal wall defect 3×2 cm+PP mesh+hyaluronate and carboxymethylcellulose (H-CMC; Seprafilm®); group IV, abdominal wall defect 3×2 cm+polytetrafluoroethylene (PTFE; Composix™); and group V, abdominal wall defect 3×2 cm+polyethylene terephthalate (PET; Dacron®). A total of 14 days after the surgery, rats were sacrificed and the meshes with the surrounding tissue were extracted in block. The breaking strength of the mesh from the fascia was recorded. The healing tissue was examined with the index of histopathology and the hydroxyproline value was analyzed using the Switzer method. Both the breaking strength and histopathological index of the wound healing were significantly improved in groups II and III compared with that in groups IV and V (P<0.001). Hydroxyproline values were the highest in group I (P<0.001). There was also a statistically significant difference between groups II and IV, and group V and the other groups (P<0.001). The present findings demonstrated that PP mesh and PP mesh+H-CMC had a superior breaking strength and improved histopathologic indices compared with PTFE and PET. Furthermore, hydroxyproline values were the lowest in the PET group. In conclusion, wound healing was improved in the PP mesh group and the PP mesh+H-CMC group compared with the PTFE and PET groups according to the present study parameters. PMID:29399133
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.
Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E
2010-01-01
Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.
Choi, Sangil; Park, Jong Hyuk
2016-12-02
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network
Choi, Sangil; Park, Jong Hyuk
2016-01-01
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438
Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging
NASA Astrophysics Data System (ADS)
Liu, Feng; Ye, Chengcheng; Zhu, Erzhou
2017-09-01
Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
Analysis of ground-motion simulation big data
NASA Astrophysics Data System (ADS)
Maeda, T.; Fujiwara, H.
2016-12-01
We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine particular scenario parameters which characterize the cluster. In other word, by utilizing this system, we can obtain critical scenario parameters of the ground-motion simulation for each evaluation point objectively. This research was supported by CREST, JST.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2014-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2013-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
A new procedure for dynamic adaption of three-dimensional unstructured grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.
Low Profile Mesh Plating for Patella Fractures: Video of a Novel Surgical Technique.
Verbeek, Diederik O; Hickerson, Lindsay E; Warner, Stephen J; Helfet, David L; Lorich, Dean G
2016-08-01
Patella fractures can be challenging to treat particularly in the presence of inferior pole comminution. In this video we present a novel surgical technique for the treatment of patella fractures using a small fragment low profile mesh plate. Key points are the surgical exposure with direct visualization of the articular reduction, the preparation of the mesh plate to accommodate patellar anatomy and the augmentation of the construct using Krackow sutures to address inferior pole comminution. Low profile mesh plating allows for multiplanar fixation of patella fractures while avoiding implant and fixation problems related to tension band fixation. Our early experience with this technique is encouraging and it appears that this technique is useful for the treatment of the majority of patella fractures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less
NASA Technical Reports Server (NTRS)
Haimes, Robert; Follen, Gregory J.
1998-01-01
CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.
NASA Astrophysics Data System (ADS)
Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen
2018-04-01
It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.
NASA Astrophysics Data System (ADS)
Kronsteiner, J.; Horwatitsch, D.; Zeman, K.
2017-10-01
Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.
Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.; ...
2016-04-27
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less
Implicit method for the computation of unsteady flows on unstructured grids
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1995-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.
NASA Astrophysics Data System (ADS)
Giacalone, Philip L.
1993-06-01
The design of the Intelsat VII surface tension propellant management device (PMD) (an all-welded assembly consisting of about 100 individual components) was developed using a modular design approach that allowed the complex PMD assembly to be divided into smaller modules. The modular approach reduces manufacturing-related technical and schedule risks and allows many components and assemblies to be processed in parallel, while also facilitating the incorporation of quality assurance tests at all critical PMD subassembly levels. The baseline PMD assembly is made from titanium and stainless steel materials. In order to obtain a 100 percent titanium PMD, a new, state-of-the-art fine mesh titanium screen material was developed, tested, and qualified for use as an alternaltive to the stainless steel screen material. The Ti based screen material demonstrated a high level of bubble point performance. It was integrated into a PMD assembly and was successfully qualification tested at the tank assembly level.
Towards a 3d Based Platform for Cultural Heritage Site Survey and Virtual Exploration
NASA Astrophysics Data System (ADS)
Seinturier, J.; Riedinger, C.; Mahiddine, A.; Peloso, D.; Boï, J.-M.; Merad, D.; Drap, P.
2013-07-01
This paper present a 3D platform that enables to make both cultural heritage site survey and its virtual exploration. It provides a single and easy way to use framework for merging multi scaled 3D measurements based on photogrammetry, documentation produced by experts and the knowledge of involved domains leaving the experts able to extract and choose the relevant information to produce the final survey. Taking into account the interpretation of the real world during the process of archaeological surveys is in fact the main goal of a survey. New advances in photogrammetry and the capability to produce dense 3D point clouds do not solve the problem of surveys. New opportunities for 3D representation are now available and we must to use them and find new ways to link geometry and knowledge. The new platform is able to efficiently manage and process large 3D data (points set, meshes) thanks to the implementation of space partition methods coming from the state of the art such as octrees and kd-trees and thus can interact with dense point clouds (thousands to millions of points) in real time. The semantisation of raw 3D data relies on geometric algorithms such as geodetic path computation, surface extraction from dense points cloud and geometrical primitive optimization. The platform provide an interface that enables expert to describe geometric representations of interesting objects like ashlar blocs, stratigraphic units or generic items (contour, lines, … ) directly onto the 3D representation of the site and without explicit links to underlying algorithms. The platform provide two ways for describing geometric representation. If oriented photographs are available, the expert can draw geometry on a photograph and the system computes its 3D representation by projection on the underlying mesh or the points cloud. If photographs are not available or if the expert wants to only use the 3D representation then he can simply draw objects shape on it. When 3D representations of objects of a surveyed site are extracted from the mesh, the link with domain related documentation is done by means of a set of forms designed by experts. Information from these forms are linked with geometry such that documentation can be attached to the viewed objects. Additional semantisation methods related to specific domains have been added to the platform. Beyond realistic rendering of surveyed site, the platform embeds non photorealistic rendering (NPR) algorithms. These algorithms enable to dynamically illustrate objects of interest that are related to knowledge with specific styles. The whole platform is implemented with a Java framework and relies on an actual and effective 3D engine that make available latest rendering methods. We illustrate this work on various photogrammetric survey, in medieval archaeology with the Shawbak castle in Jordan and in underwater archaeology on different marine sites.
WALSH, TIMOTHY F.; JONES, ANDREA; BHARDWAJ, MANOJ; ...
2013-04-01
Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, onemore » derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.« less
Ellington, David R.; Richter, Holly E.
2013-01-01
Women are seeking care for pelvic organ prolapse (POP) in increasing numbers and a significant proportion of them will undergo a second repair for recurrence. This has initiated interest by both surgeons and industry to utilize and design prosthetic mesh materials to help augment longevity of prolapse repairs. Unfortunately, the introduction of transvaginal synthetic mesh kits for use in women was done without the benefit of Level 1 data to determine its utility compared to native tissue repair. This report summarizes the potential benefit/risks of transvaginal synthetic mesh use for POP and recommendations regarding its continued use. PMID:23563869
Autoclaved Sand-Lime Products with a Polypropylene Mesh
NASA Astrophysics Data System (ADS)
Kostrzewa, Paulina; Stępień, Anna
2017-10-01
The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.
Bubble Point Measurements with Liquid Methane of a Screen Capillary Liquid Acquisition Device
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a bubble filter and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300 and 200 by 1400 wires per inch. Data is presented for both saturated and sub-cooled LCH4, and is compared with predicted values.
Hypervelocity impact and dynamic fragmentation of brittle materials
NASA Astrophysics Data System (ADS)
Agrawal, Vinamra; Ortega, Alejandro; Meiron, Daniel
2017-06-01
The process of hypervelocity impact and dynamic fragmentation finds application in planetary formation, satellite design for micrometeorite impact damage mitigation, armor design and crater formations. In this work, we study high velocity impact induced dynamic fragmentation processes of brittle materials. We implement ideas of Continuum Damage Mechanics (CDM) to perform fragmentation simulations on brittle materials in various geometries. The damage formulation was implemented on an existing computational framework capable of adaptive mesh refinement that operates on an Eulerian grid, thereby avoiding problems associated with grid entanglement in large deformation processes. A damage sensitive equation of state is developed for hyperelastic materials that depends on a damage variable D, the volume fraction of micro-cracks in the brittle material. The evolution of D is governed by a modified, thermodynamically consistent Grady-Kipp model that evolves damage at points of tensile eigenvalue stresses. We simulate sphere-on-sphere and sphere-on-plate impact events with ductile and brittle materials and study the resulting damage propagation. We validate our calculations with existing literature and comment on energy dissipation and optimal design. Caltech - JPL President's and Director's Fund.
Field collection of Nasonia (parasitoid wasp) using baits.
Werren, John H; Loehlin, David W
2009-10-01
This protocol describes a standard method for collecting Nasonia wasps using "flyliver": liver remains fed upon by fly maggots (e.g., Sarcophaga) and collected after the mature larvae have dispersed. The flyliver, which contains a volatile substance that is very attractive to the wasps, is placed in a large (approximately 15-cm(2)) mesh bag hung in appropriate collection spots (e.g., near birds' nests or under culverts). Within the large mesh bag is a smaller mesh bag placed abutting the flyliver and containing four to six Sarcophaga pupae. These retain the wasps, which will enter the bag and begin stinging the hosts. The mesh bags can be made with standard nylon window screening, or any other material with mesh width large enough to permit entry of the wasps.
First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.
2016-05-01
In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
An adaptive multi-moment FVM approach for incompressible flows
NASA Astrophysics Data System (ADS)
Liu, Cheng; Hu, Changhong
2018-04-01
In this study, a multi-moment finite volume method (FVM) based on block-structured adaptive Cartesian mesh is proposed for simulating incompressible flows. A conservative interpolation scheme following the idea of the constrained interpolation profile (CIP) method is proposed for the prolongation operation of the newly created mesh. A sharp immersed boundary (IB) method is used to model the immersed rigid body. A moving least squares (MLS) interpolation approach is applied for reconstruction of the velocity field around the solid surface. An efficient method for discretization of Laplacian operators on adaptive meshes is proposed. Numerical simulations on several test cases are carried out for validation of the proposed method. For the case of viscous flow past an impulsively started cylinder (Re = 3000 , 9500), the computed surface vorticity coincides with the result of the body-fitted method. For the case of a fast pitching NACA 0015 airfoil at moderate Reynolds numbers (Re = 10000 , 45000), the predicted drag coefficient (CD) and lift coefficient (CL) agree well with other numerical or experimental results. For 2D and 3D simulations of viscous flow past a pitching plate with prescribed motions (Re = 5000 , 40000), the predicted CD, CL and CM (moment coefficient) are in good agreement with those obtained by other numerical methods.
NASA Astrophysics Data System (ADS)
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Cyrus; Larsen, Matt; Brugger, Eric
Strawman is a system designed to explore the in situ visualization and analysis needs of simulation code teams running multi-physics calculations on many-core HPC architectures. It porvides rendering pipelines that can leverage both many-core CPUs and GPUs to render images of simulation meshes.
On the Interconnection of Incompatible Solid Finite Element Meshes Using Multipoint Constraints
NASA Technical Reports Server (NTRS)
Fox, G. L.
1985-01-01
Incompatible meshes, i.e., meshes that physically must have a common boundary, but do not necessarily have coincident grid points, can arise in the course of a finite element analysis. For example, two substructures may have been developed at different times for different purposes and it becomes necessary to interconnect the two models. A technique that uses only multipoint constraints, i.e., MPC cards (or MPCS cards in substructuring), is presented. Since the method uses only MPC's, the procedure may apply at any stage in an analysis; no prior planning or special data is necessary.
Unstructured Euler flow solutions using hexahedral cell refinement
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1991-01-01
An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.
A 3D front tracking method on a CPU/GPU system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Wurigen; Grove, John
2011-01-21
We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...
2016-03-30
Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less
Gamma motes for detection of radioactive materials in shipping containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold McHugh; William Quam; Stephan Weeks
Shipping containers can be effectively monitored for radiological materials using gamma (and neutron) motes in distributed mesh networks. The mote platform is ideal for collecting data for integration into operational management systems required for efficiently and transparently monitoring international trade. Significant reductions in size and power requirements have been achieved for room-temperature cadmium zinc telluride (CZT) gamma detectors. Miniaturization of radio modules and microcontroller units are paving the way for low-power, deeply-embedded, wireless sensor distributed mesh networks.
Hierarchical Regularization of Polygons for Photogrammetric Point Clouds of Oblique Images
NASA Astrophysics Data System (ADS)
Xie, L.; Hu, H.; Zhu, Q.; Wu, B.; Zhang, Y.
2017-05-01
Despite the success of multi-view stereo (MVS) reconstruction from massive oblique images in city scale, only point clouds and triangulated meshes are available from existing MVS pipelines, which are topologically defect laden, free of semantical information and hard to edit and manipulate interactively in further applications. On the other hand, 2D polygons and polygonal models are still the industrial standard. However, extraction of the 2D polygons from MVS point clouds is still a non-trivial task, given the fact that the boundaries of the detected planes are zigzagged and regularities, such as parallel and orthogonal, cannot preserve. Aiming to solve these issues, this paper proposes a hierarchical polygon regularization method for the photogrammetric point clouds from existing MVS pipelines, which comprises of local and global levels. After boundary points extraction, e.g. using alpha shapes, the local level is used to consolidate the original points, by refining the orientation and position of the points using linear priors. The points are then grouped into local segments by forward searching. In the global level, regularities are enforced through a labeling process, which encourage the segments share the same label and the same label represents segments are parallel or orthogonal. This is formulated as Markov Random Field and solved efficiently. Preliminary results are made with point clouds from aerial oblique images and compared with two classical regularization methods, which have revealed that the proposed method are more powerful in abstracting a single building and is promising for further 3D polygonal model reconstruction and GIS applications.
Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code
NASA Technical Reports Server (NTRS)
Mathur, Sanjay
2011-01-01
A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.
GENIE(++): A Multi-Block Structured Grid System
NASA Technical Reports Server (NTRS)
Williams, Tonya; Nadenthiran, Naren; Thornburg, Hugh; Soni, Bharat K.
1996-01-01
The computer code GENIE++ is a continuously evolving grid system containing a multitude of proven geometry/grid techniques. The generation process in GENIE++ is based on an earlier version. The process uses several techniques either separately or in combination to quickly and economically generate sculptured geometry descriptions and grids for arbitrary geometries. The computational mesh is formed by using an appropriate algebraic method. Grid clustering is accomplished with either exponential or hyperbolic tangent routines which allow the user to specify a desired point distribution. Grid smoothing can be accomplished by using an elliptic solver with proper forcing functions. B-spline and Non-Uniform Rational B-splines (NURBS) algorithms are used for surface definition and redistribution. The built in sculptured geometry definition with desired distribution of points, automatic Bezier curve/surface generation for interior boundaries/surfaces, and surface redistribution is based on NURBS. Weighted Lagrance/Hermite transfinite interpolation methods, interactive geometry/grid manipulation modules, and on-line graphical visualization of the generation process are salient features of this system which result in a significant time savings for a given geometry/grid application.
3D reconstruction optimization using imagery captured by unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bassie, Abby L.; Meacham, Sean; Young, David; Turnage, Gray; Moorhead, Robert J.
2017-05-01
Because unmanned air vehicles (UAVs) are emerging as an indispensable image acquisition platform in precision agriculture, it is vitally important that researchers understand how to optimize UAV camera payloads for analysis of surveyed areas. In this study, imagery captured by a Nikon RGB camera attached to a Precision Hawk Lancaster was used to survey an agricultural field from six different altitudes ranging from 45.72 m (150 ft.) to 121.92 m (400 ft.). After collecting imagery, two different software packages (MeshLab and AgiSoft) were used to measure predetermined reference objects within six three-dimensional (3-D) point clouds (one per altitude scenario). In-silico measurements were then compared to actual reference object measurements, as recorded with a tape measure. Deviations of in-silico measurements from actual measurements were recorded as Δx, Δy, and Δz. The average measurement deviation in each coordinate direction was then calculated for each of the six flight scenarios. Results from MeshLab vs. AgiSoft offered insight into the effectiveness of GPS-defined point cloud scaling in comparison to user-defined point cloud scaling. In three of the six flight scenarios flown, MeshLab's 3D imaging software (user-defined scale) was able to measure object dimensions from 50.8 to 76.2 cm (20-30 inches) with greater than 93% accuracy. The largest average deviation in any flight scenario from actual measurements was 14.77 cm (5.82 in.). Analysis of the point clouds in AgiSoft (GPS-defined scale) yielded even smaller Δx, Δy, and Δz than the MeshLab measurements in over 75% of the flight scenarios. The precisions of these results are satisfactory in a wide variety of precision agriculture applications focused on differentiating and identifying objects using remote imagery.
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...
2016-04-27
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
Proximal Femoral Reconstructions with Bone Impaction Grafting and Metal Mesh
Comba, Fernando; Piccaluga, Francisco
2009-01-01
Extensive circumferential proximal cortical bone loss is considered by some a contraindication for impaction bone grafting in the femur. We asked whether reconstruction with a circumferential metal mesh, impacted bone allografts, and a cemented stem would lead to acceptable survival in these patients. We retrospectively reviewed 14 patients (15 hips) with severe proximal femoral bone defects (average, 12 cm long; 14 type IV and one type IIIB using the classification of Della Valle and Paprosky) reconstructed with this method. The minimum followup was 20 months (average, 43.2 months; range, 20–72 months). Preoperative Merle D’Aubigné and Postel score averaged 4.8 points. With revision of the stem as the end point, the survivorship of the implant was 100% at one year and 86.6% at 72 months. The mean functional score at last followup was 14.4 points. We observed two fractures of the metal mesh at 31 and 48 months in cases reconstructed with a stem that did not bypass the mesh. Dislocation (3 cases) and acute deep infection (3 cases) were the most frequent complications. Patients with complete absence of the proximal femur may be candidates for biological proximal femoral reconstructions using this salvage procedure. Bone impaction grafting must be a routine technique if this method is selected. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19294476
Adaptive radial basis function mesh deformation using data reduction
NASA Astrophysics Data System (ADS)
Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.
2016-09-01
Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited bandwidth available between CPU and memory. In terms of parallel efficiency/scaling the different studied methods perform similarly, with the greedy algorithm being the bottleneck. In terms of absolute computational work the adaptive methods are better for the cases studied due to their more efficient selection of the control points. By automating most of the RBF mesh deformation, a robust, efficient and almost user-independent mesh deformation method is presented.
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
Pereira, N F; Sitek, A
2011-01-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
NASA Astrophysics Data System (ADS)
Pereira, N. F.; Sitek, A.
2010-09-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Zhou, Weixin; Chen, Jun; Li, Yi; Wang, Danbei; Chen, Jianyu; Feng, Xiaomiao; Huang, Zhendong; Liu, Ruiqing; Lin, Xiujing; Zhang, Hongmei; Mi, Baoxiu; Ma, Yanwen
2016-05-04
Metal mesh is a significant candidate of flexible transparent electrodes to substitute the current state-of-the-art material indium tin oxide (ITO) for future flexible electronics. However, there remains a challenge to fabricate metal mesh with order patterns by a bottom-up approach. In this work, high-quality Cu mesh transparent electrodes with ordered pore arrays are prepared by using breath-figure polymer films as template. The optimal Cu mesh films present a sheet resistance of 28.7 Ω·sq(-1) at a transparency of 83.5%. The work function of Cu mesh electrode is tuned from 4.6 to 5.1 eV by Ag deposition and the following short-time UV-ozone treatment, matching well with the PSS (5.2 eV) hole extraction layer. The modified Cu mesh electrodes show remarkable potential as a substitute of ITO/PET in the flexible OPV and OLED devices. The OPV cells constructed on our Cu mesh electrodes present a similar power conversion efficiency of 2.04% as those on ITO/PET electrodes. The flexible OLED prototype devices can achieve a brightness of 10 000 cd at an operation voltage of 8 V.
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
Multiscale registration algorithm for alignment of meshes
NASA Astrophysics Data System (ADS)
Vadde, Srikanth; Kamarthi, Sagar V.; Gupta, Surendra M.
2004-03-01
Taking a multi-resolution approach, this research work proposes an effective algorithm for aligning a pair of scans obtained by scanning an object's surface from two adjacent views. This algorithm first encases each scan in the pair with an array of cubes of equal and fixed size. For each scan in the pair a surrogate scan is created by the centroids of the cubes that encase the scan. The Gaussian curvatures of points across the surrogate scan pair are compared to find the surrogate corresponding points. If the difference between the Gaussian curvatures of any two points on the surrogate scan pair is less than a predetermined threshold, then those two points are accepted as a pair of surrogate corresponding points. The rotation and translation values between the surrogate scan pair are determined by using a set of surrogate corresponding points. Using the same rotation and translation values the original scan pairs are aligned. The resulting registration (or alignment) error is computed to check the accuracy of the scan alignment. When the registration error becomes acceptably small, the algorithm is terminated. Otherwise the above process is continued with cubes of smaller and smaller sizes until the algorithm is terminated. However at each finer resolution the search space for finding the surrogate corresponding points is restricted to the regions in the neighborhood of the surrogate points that were at found at the preceding coarser level. The surrogate corresponding points, as the resolution becomes finer and finer, converge to the true corresponding points on the original scans. This approach offers three main benefits: it improves the chances of finding the true corresponding points on the scans, minimize the adverse effects of noise in the scans, and reduce the computational load for finding the corresponding points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Zhen, X; Zhou, L
2014-06-15
Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, themore » algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less
NASA Astrophysics Data System (ADS)
Ragay-Enot, Monalisa; Lee, Young Hee; Kim, Yong-Gyoo
2017-07-01
A mini multi-fixed-point cell (length 118 mm, diameter 33 mm) containing three materials (In-Zn eutectic (mass fraction 3.8% Zn), Sn and Pb) in a single crucible was designed and fabricated for the easy and economical fixed-point calibration of industrial platinum resistance thermometers (IPRTs) for use in industrial temperature measurements. The melting and freezing behaviors of the metals were investigated and the phase transition temperatures were determined using a commercial dry-block calibrator. Results showed that the melting plateaus are generally easy to realize and are reproducible, flatter and of longer duration. On the other hand, the freezing process is generally difficult, especially for Sn, due to the high supercooling required to initiate freezing. The observed melting temperatures at optimum set conditions were 143.11 °C (In-Zn), 231.70 °C (Sn) and 327.15 °C (Pb) with expanded uncertainties (k = 2) of 0.12 °C, 0.10 °C and 0.13 °C, respectively. This multi-fixed-point cell can be treated as a sole reference temperature-generating system. Based on the results, the realization of melting points of the mini multi-fixed-point cell can be recommended for the direct calibration of IPRTs in industrial applications without the need for a reference thermometer.
NASA Astrophysics Data System (ADS)
Alby, E.; Elter, R.; Ripoche, C.; Quere, N.; de Strasbourg, INSA
2013-07-01
In a geopolitical very complex context as the Gaza Strip it has to be dealt with an enhancement of an archaeological site. This site is the monastery of St. Hilarion. To enable a cultural appropriation of a place with several identified phases of occupation must undertake extensive archaeological excavation. Excavate in this geographical area is to implement emergency excavations, so the aim of such a project can be questioned for each mission. Real estate pressure is also a motivating setting the documentation because the large population density does not allow systematic studies of underground before construction projects. This is also during the construction of a road that the site was discovered. Site dimensions are 150 m by 80 m. It is located on a sand dune, 300 m from the sea. To implement the survey, four different levels of detail have been defined for terrestrial photogrammetry. The first level elements are similar to objects, capitals, fragment of columns, tiles for example. Modeling of small objects requires the acquisition of very dense point clouds (density: 1 point / 1 mm on average). The object must then be a maximum area of the sensor of the camera, while retaining in the field of view a reference pattern for the scaling of the point cloud generated. The pictures are taken at a short distance from the object, using the images at full resolution. The main obstacle to the modeling of objects is the presence of noise partly due to the studied materials (sand, smooth rock), which do not favor the detection of points of interest quality. Pretreatments of the cloud will be achieved meticulously since the ouster of points on a surface of a small object results in the formation of a hole with a lack of information, useful to resulting mesh. Level 2 focuses on the stratigraphic units such as mosaics. The monastery of St. Hilarion identifies thirteen floors of which has been documented years ago by silver photographs, scanned later. Modeling of pavements is to obtain a three-dimensional model of the mosaic in particular to analyze the subsidence, which it may be subjected. The dense point cloud can go beyond by including the geometric shapes of the pavement. The calculation mesh using high-density point cloud colorization allows cloud sufficient to final rendering. Levels 3 and 4 will allow the survey and representation of loci and sectors. Their modeling can be done by colored mesh or textured by a generic pattern but also by geometric primitives. This method requires the segmentation simple geometrical elements and creates a surface geometry by analysis of the sample points. Statistical tools allow the extraction plans meet the requirements of the operator can monitor quantitatively the quality of the final rendering. Each level has constraints on the accuracy of survey and types of representation especially from the point clouds, which are detailed in the complete article.
3D hierarchical interface-enriched finite element method: Implementation and applications
NASA Astrophysics Data System (ADS)
Soghrati, Soheil; Ahmadian, Hossein
2015-10-01
A hierarchical interface-enriched finite element method (HIFEM) is proposed for the mesh-independent treatment of 3D problems with intricate morphologies. The HIFEM implements a recursive algorithm for creating enrichment functions that capture gradient discontinuities in nonconforming finite elements cut by arbitrary number and configuration of materials interfaces. The method enables the mesh-independent simulation of multiphase problems with materials interfaces that are in close proximity or contact while providing a straightforward general approach for evaluating the enrichments. In this manuscript, we present a detailed discussion on the implementation issues and required computational geometry considerations associated with the HIFEM approximation of thermal and mechanical responses of 3D problems. A convergence study is provided to investigate the accuracy and convergence rate of the HIFEM and compare them with standard FEM benchmark solutions. We will also demonstrate the application of this mesh-independent method for simulating the thermal and mechanical responses of two composite materials systems with complex microstructures.
Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B
2011-11-01
The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D
2011-04-01
Biologic meshes have unique physical properties as a result of manufacturing techniques such as decellularization, crosslinking, and sterilization. The purpose of this study is to directly compare the biocompatibility profiles of five different biologic meshes, AlloDerm(®) (non-crosslinked human dermal matrix), PeriGuard(®) (crosslinked bovine pericardium), Permacol(®) (crosslinked porcine dermal matrix), Strattice(®) (non-crosslinked porcine dermal matrix), and Veritas(®) (non-crosslinked bovine pericardium), using a porcine model of ventral hernia repair. Full-thickness fascial defects were created in 20 Yucatan minipigs and repaired with the retromuscular placement of biologic mesh 3 weeks later. Animals were euthanized at 1 month and the repair sites were subjected to tensile testing and histologic analysis. Samples of unimplanted (de novo) meshes and native porcine abdominal wall were also analyzed for their mechanical properties. There were no significant differences in the biomechanical characteristics between any of the mesh-repaired sites at 1 month postimplantation or between the native porcine abdominal wall without implanted mesh and the mesh-repaired sites (P > 0.05 for all comparisons). Histologically, non-crosslinked materials exhibited greater cellular infiltration, extracellular matrix (ECM) deposition, and neovascularization compared to crosslinked meshes. While crosslinking differentiates biologic meshes with regard to cellular infiltration, ECM deposition, scaffold degradation, and neovascularization, the integrity and strength of the repair site at 1 month is not significantly impacted by crosslinking or by the de novo strength/stiffness of the mesh.
Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.
Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.
Multi-scale Material Appearance
NASA Astrophysics Data System (ADS)
Wu, Hongzhi
Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.
Li, Jian; Kang, Ruimei; Tang, Xiaohua; She, Houde; Yang, Yaoxia; Zha, Fei
2016-04-14
Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as they can be used for the filtration of heavy oil or the absorption of floating oil from water/oil mixtures. However, most of the superhydrophobic materials used for oil/water separation lose their superhydrophobicity when exposed to hot (e.g. >50 °C) water and strong corrosive liquids. Herein, we demonstrate superhydrophobic overlapped candle soot (CS) and silica coated meshes that can repel hot water (about 92 °C) and strong corrosive liquids, and were used for the gravity driven separation of oil-water mixtures in hot water and strong acidic, alkaline, and salty environments. To the best of our knowledge, we are unaware of any previously reported studies on the use of superhydrophobic materials for the separation of oil from hot water and corrosive aqueous media. In addition, the as-prepared robust superhydrophobic CS and silica coated meshes can separate a series of oils and organic solvents like kerosene, toluene, petroleum ether, heptane and chloroform from water with a separation efficiency larger than 99.0%. Moreover, the as-prepared coated mesh still maintained a separation efficiency above 98.5% and stable recyclability after 55 cycles of separation. The robust superhydrophobic meshes developed in this work can therefore be practically used as a highly efficient filtration membrane for the separation of oil from harsh water conditions, benefiting the environment and human health.
Dasdia, T; Bazzaco, S; Bottero, L; Buffa, R; Ferrero, S; Campanelli, G; Dolfini, E
1998-01-01
A new in vitro method to evaluate the early critical interactions between synthetic prosthetic materials and growing tissues is reported. The correct spatial organization and proper cell to cell interaction required to mimic the in vivo environment was obtained in a 3-dimensional (3-D) embryo organ culture. The clot formed by plasma and chick-embryo extract provided a natural 3-D extracellular matrix that was able to support the growth and differentiation of intestinal tissue dissected from 12-day-old chick embryos. Different materials used for the repair of abdominal wall defects were taken as standards; all the prosthetic materials were devoid of any evident cytotoxic potential over a 10-day culture period, so they did not interfere with the organogenesis process. A polyglactin mesh (Vicryl) was fully incorporated into the growing tissue, but early signs of its degradation were detectable. The biologically inert materials polyethylene terephthalate (Mersilene) and polypropylene (Marlex, Prolene, and Herniamesh) retained their structural integrity when incubated with cultured tissue at 37 degrees C, and they did not hinder cellular proliferation or fibroblast migration. However, the outgrowth behavior was very different while the connective tissue invaded the interstices of the polyethylene terephthalate mesh; the explants and the migrating cells were repelled by hydrophobic polypropylene meshes. These findings are in agreement with other reported results in in vivo studies. Therefore, this method can be considered as reliable and predictable for the evaluation of biopolymers.
A Finite Element Method for Simulation of Compressible Cavitating Flows
NASA Astrophysics Data System (ADS)
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
NASA Astrophysics Data System (ADS)
Wu, Kailiang; Tang, Huazhong
2018-06-01
The paper studies the physical-constraints-preserving (PCP) schemes for multi-dimensional special relativistic magnetohydrodynamics with a general equation of state (EOS) on more general meshes. It is an extension of the work (Wu and Tang in Math. Models Methods Appl. Sci. 27:1871-1928, 2017) which focuses on the ideal EOS and uniform Cartesian meshes. The general EOS without a special expression poses some additional difficulties in discussing the mathematical properties of admissible state set with the physical constraints on the fluid velocity, density and pressure. Rigorous analyses are provided for the PCP property of finite volume or discontinuous Galerkin schemes with the Lax-Friedrichs (LxF)-type flux on a general mesh with non-self-intersecting polytopes. Those are built on a more general form of generalized LxF splitting property and a different convex decomposition technique. It is shown in theory that the PCP property is closely connected with a discrete divergence-free condition, which is proposed on the general mesh and milder than that in Wu and Tang (2017).
NASA Astrophysics Data System (ADS)
Li, Gaohua; Fu, Xiang; Wang, Fuxin
2017-10-01
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.
A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems
NASA Astrophysics Data System (ADS)
Tosa, V.; Kovacs, Katalin; Mercea, P.; Piringer, O.
2008-09-01
A finite difference method to solve the one-dimensional diffusion of impurities in a multilayer system was developed for the special case in which a partition coefficient K impose a ratio of the concentrations at the interface between two adiacent layers. The fictitious point method was applied to derive the algebraic equations for the mesh points at the interface, while for the non-uniform mesh points within the layers a combined method was used. The method was tested and then applied to calculate migration of impurities from multilayer systems into liquids or solids samples, in migration experiments performed for quality testing purposes. An application was developed in the field of impurities migrations from multilayer plastic packagings into food, a problem of increasing importance in food industry.
NASA Astrophysics Data System (ADS)
Teil, Maxime; Harthong, Barthélémy; Imbault, Didier; Peyroux, Robert
2017-06-01
Polymeric deformable granular materials are widely used in industry and the understanding and the modelling of their shaping process is a point of interest. This kind of materials often presents a viscoelasticplastic behaviour and the present study promotes a joint approach between numerical simulations and experiments in order to derive the behaviour law of such granular material. The experiment is conducted on a polystyrene powder on which a confining pressure of 7MPa and an axial pressure reaching 30MPa are applied. Between different steps of the in-situ test, the sample is scanned in an X-rays microtomograph in order to know the structure of the material depending on the density. From the tomographic images and by using specific algorithms to improve the images quality, grains are automatically identified, separated and a finite element mesh is generated. The long-term objective of this study is to derive a representative sample directly from the experiments in order to run numerical simulations using a viscoelactic or viscoelastic-plastic constitutive law and compare numerical and experimental results at the particle scale.
Retrieval feedback in MEDLINE.
Srinivasan, P
1996-01-01
OBJECTIVE: To investigate a new approach for query expansion based on retrieval feedback. The first objective in this study was to examine alternative query-expansion methods within the same retrieval-feedback framework. The three alternatives proposed are: expansion on the MeSH query field alone, expansion on the free-text field alone, and expansion on both the MeSH and the free-text fields. The second objective was to gain further understanding of retrieval feedback by examining possible dependencies on relevant documents during the feedback cycle. DESIGN: Comparative study of retrieval effectiveness using the original unexpanded and the alternative expanded user queries on a MEDLINE test collection of 75 queries and 2,334 MEDLINE citations. MEASUREMENTS: Retrieval effectivenesses of the original unexpanded and the alternative expanded queries were compared using 11-point-average precision scores (11-AvgP). These are averages of precision scores obtained at 11 standard recall points. RESULTS: All three expansion strategies significantly improved the original queries in terms of retrieval effectiveness. Expansion on MeSH alone was equivalent to expansion on both MeSH and the free-text fields. Expansion on the free-text field alone improved the queries significantly less than did the other two strategies. The second part of the study indicated that retrieval-feedback-based expansion yields significant performance improvements independent of the availability of relevant documents for feedback information. CONCLUSIONS: Retrieval feedback offers a robust procedure for query expansion that is most effective for MEDLINE when applied to the MeSH field. PMID:8653452
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...
2014-10-28
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less
Comparison of infectious complications with synthetic mesh in ventral hernia repair.
Brown, Rodger H; Subramanian, Anuradha; Hwang, Cindy S; Chang, Shirong; Awad, Samir S
2013-02-01
Infection can be a devastating complication associated with prosthetic incisional hernia repair. It is unclear whether the type of mesh used affects the risk of infection. A retrospective review was performed of all patients who underwent elective incisional hernia repair with permanent prosthetic mesh between January 1, 2000, and August 1, 2007. A total of 176 patients underwent elective incisional hernia repair with mesh. The overall infection rate with the use of goretex (Flagstaff, AZ, USA) was 12 of 86 (14%) and 2 of 90 (2.2%) in cases in which nongoretex material was used (P = .016). In the goretex group, infection rates were significantly higher in open versus laparoscopic cases (26.5% vs 5.8%, P = .030). Methicillin-resistant Staphylococcus aureus was the most common organism recovered. The risk of mesh infection with the use of goretex was found to be higher than with the use of nongoretex mesh. Laparoscopic placement of goretex reduces this risk of infection. No significant differences in recurrence rates were found. Published by Elsevier Inc.
Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.
Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei
2016-09-14
Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications.