Sample records for multi-method multi-informant approach

  1. Towards a Usability and Error "Safety Net": A Multi-Phased Multi-Method Approach to Ensuring System Usability and Safety.

    PubMed

    Kushniruk, Andre; Senathirajah, Yalini; Borycki, Elizabeth

    2017-01-01

    The usability and safety of health information systems have become major issues in the design and implementation of useful healthcare IT. In this paper we describe a multi-phased multi-method approach to integrating usability engineering methods into system testing to ensure both usability and safety of healthcare IT upon widespread deployment. The approach involves usability testing followed by clinical simulation (conducted in-situ) and "near-live" recording of user interactions with systems. At key stages in this process, usability problems are identified and rectified forming a usability and technology-induced error "safety net" that catches different types of usability and safety problems prior to releasing systems widely in healthcare settings.

  2. A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems

    NASA Astrophysics Data System (ADS)

    Peng, Juan-juan; Wang, Jian-qiang; Yang, Wu-E.

    2017-01-01

    In this paper, multi-criteria decision-making (MCDM) problems based on the qualitative flexible multiple criteria method (QUALIFLEX), in which the criteria values are expressed by multi-valued neutrosophic information, are investigated. First, multi-valued neutrosophic sets (MVNSs), which allow the truth-membership function, indeterminacy-membership function and falsity-membership function to have a set of crisp values between zero and one, are introduced. Then the likelihood of multi-valued neutrosophic number (MVNN) preference relations is defined and the corresponding properties are also discussed. Finally, an extended QUALIFLEX approach based on likelihood is explored to solve MCDM problems where the assessments of alternatives are in the form of MVNNs; furthermore an example is provided to illustrate the application of the proposed method, together with a comparison analysis.

  3. A novel framework for change detection in bi-temporal polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Pirrone, Davide; Bovolo, Francesca; Bruzzone, Lorenzo

    2016-10-01

    Last years have seen relevant increase of polarimetric Synthetic Aperture Radar (SAR) data availability, thanks to satellite sensors like Sentinel-1 or ALOS-2 PALSAR-2. The augmented information lying in the additional polarimetric channels represents a possibility for better discriminate different classes of changes in change detection (CD) applications. This work aims at proposing a framework for CD in multi-temporal multi-polarization SAR data. The framework includes both a tool for an effective visual representation of the change information and a method for extracting the multiple-change information. Both components are designed to effectively handle the multi-dimensionality of polarimetric data. In the novel representation, multi-temporal intensity SAR data are employed to compute a polarimetric log-ratio. The multitemporal information of the polarimetric log-ratio image is represented in a multi-dimensional features space, where changes are highlighted in terms of magnitude and direction. This representation is employed to design a novel unsupervised multi-class CD approach. This approach considers a sequential two-step analysis of the magnitude and the direction information for separating non-changed and changed samples. The proposed approach has been validated on a pair of Sentinel-1 data acquired before and after the flood in Tamil-Nadu in 2015. Preliminary results demonstrate that the representation tool is effective and that the use of polarimetric SAR data is promising in multi-class change detection applications.

  4. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  5. A Monte-Carlo game theoretic approach for Multi-Criteria Decision Making under uncertainty

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Lund, Jay R.

    2011-05-01

    Game theory provides a useful framework for studying Multi-Criteria Decision Making problems. This paper suggests modeling Multi-Criteria Decision Making problems as strategic games and solving them using non-cooperative game theory concepts. The suggested method can be used to prescribe non-dominated solutions and also can be used as a method to predict the outcome of a decision making problem. Non-cooperative stability definitions for solving the games allow consideration of non-cooperative behaviors, often neglected by other methods which assume perfect cooperation among decision makers. To deal with the uncertainty in input variables a Monte-Carlo Game Theory (MCGT) approach is suggested which maps the stochastic problem into many deterministic strategic games. The games are solved using non-cooperative stability definitions and the results include possible effects of uncertainty in input variables on outcomes. The method can handle multi-criteria multi-decision-maker problems with uncertainty. The suggested method does not require criteria weighting, developing a compound decision objective, and accurate quantitative (cardinal) information as it simplifies the decision analysis by solving problems based on qualitative (ordinal) information, reducing the computational burden substantially. The MCGT method is applied to analyze California's Sacramento-San Joaquin Delta problem. The suggested method provides insights, identifies non-dominated alternatives, and predicts likely decision outcomes.

  6. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    NASA Astrophysics Data System (ADS)

    Subagadis, Y. H.; Schütze, N.; Grundmann, J.

    2014-09-01

    The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  7. Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis

    PubMed Central

    Xu, Rui; Zhen, Zonglei; Liu, Jia

    2010-01-01

    Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081

  8. Combining multiple decisions: applications to bioinformatics

    NASA Astrophysics Data System (ADS)

    Yukinawa, N.; Takenouchi, T.; Oba, S.; Ishii, S.

    2008-01-01

    Multi-class classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. This article reviews two recent approaches to multi-class classification by combining multiple binary classifiers, which are formulated based on a unified framework of error-correcting output coding (ECOC). The first approach is to construct a multi-class classifier in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. In the second approach, misclassification of each binary classifier is formulated as a bit inversion error with a probabilistic model by making an analogy to the context of information transmission theory. Experimental studies using various real-world datasets including cancer classification problems reveal that both of the new methods are superior or comparable to other multi-class classification methods.

  9. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  10. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  11. A multi-strategy approach to informative gene identification from gene expression data.

    PubMed

    Liu, Ziying; Phan, Sieu; Famili, Fazel; Pan, Youlian; Lenferink, Anne E G; Cantin, Christiane; Collins, Catherine; O'Connor-McCourt, Maureen D

    2010-02-01

    An unsupervised multi-strategy approach has been developed to identify informative genes from high throughput genomic data. Several statistical methods have been used in the field to identify differentially expressed genes. Since different methods generate different lists of genes, it is very challenging to determine the most reliable gene list and the appropriate method. This paper presents a multi-strategy method, in which a combination of several data analysis techniques are applied to a given dataset and a confidence measure is established to select genes from the gene lists generated by these techniques to form the core of our final selection. The remainder of the genes that form the peripheral region are subject to exclusion or inclusion into the final selection. This paper demonstrates this methodology through its application to an in-house cancer genomics dataset and a public dataset. The results indicate that our method provides more reliable list of genes, which are validated using biological knowledge, biological experiments, and literature search. We further evaluated our multi-strategy method by consolidating two pairs of independent datasets, each pair is for the same disease, but generated by different labs using different platforms. The results showed that our method has produced far better results.

  12. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, Ya-Ling; Kang, Qinjun

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less

  13. Beyond mind-reading: multi-voxel pattern analysis of fMRI data.

    PubMed

    Norman, Kenneth A; Polyn, Sean M; Detre, Greg J; Haxby, James V

    2006-09-01

    A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.

  14. Multi-topic assignment for exploratory navigation of consumer health information in NetWellness using formal concept analysis

    PubMed Central

    2014-01-01

    Background Finding quality consumer health information online can effectively bring important public health benefits to the general population. It can empower people with timely and current knowledge for managing their health and promoting wellbeing. Despite a popular belief that search engines such as Google can solve all information access problems, recent studies show that using search engines and simple search terms is not sufficient. Our objective is to provide an approach to organizing consumer health information for navigational exploration, complementing keyword-based direct search. Multi-topic assignment to health information, such as online questions, is a fundamental step for navigational exploration. Methods We introduce a new multi-topic assignment method combining semantic annotation using UMLS concepts (CUIs) and Formal Concept Analysis (FCA). Each question was tagged with CUIs identified by MetaMap. The CUIs were filtered with term-frequency and a new term-strength index to construct a CUI-question context. The CUI-question context and a topic-subject context were used for multi-topic assignment, resulting in a topic-question context. The topic-question context was then directly used for constructing a prototype navigational exploration interface. Results Experimental evaluation was performed on the task of automatic multi-topic assignment of 99 predefined topics for about 60,000 consumer health questions from NetWellness. Using example-based metrics, suitable for multi-topic assignment problems, our method achieved a precision of 0.849, recall of 0.774, and F1 measure of 0.782, using a reference standard of 278 questions with manually assigned topics. Compared to NetWellness’ original topic assignment, a 36.5% increase in recall is achieved with virtually no sacrifice in precision. Conclusion Enhancing the recall of multi-topic assignment without sacrificing precision is a prerequisite for achieving the benefits of navigational exploration. Our new multi-topic assignment method, combining term-strength, FCA, and information retrieval techniques, significantly improved recall and performed well according to example-based metrics. PMID:25086916

  15. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    PubMed

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  16. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    PubMed

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Listening to the Voices of Boys: A Mosaic Approach to Exploring the Motivation to Engage in Reading

    ERIC Educational Resources Information Center

    Fiedler, Krista M.

    2012-01-01

    The purpose of this study was to examine what information third-grade boys attending school in three rural school districts might contribute to current understanding about what motivates boys to engage in reading. A multi-method, multi-sensory Mosaic Approach was used to explore, record, and interpret the voices of the 14 boys with varying levels…

  18. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  19. Selecting essential information for biosurveillance--a multi-criteria decision analysis.

    PubMed

    Generous, Nicholas; Margevicius, Kristen J; Taylor-McCabe, Kirsten J; Brown, Mac; Daniel, W Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillance defines biosurveillance as "the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels." However, the strategy does not specify how "essential information" is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being "essential". The question of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of "essential information" for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system.

  20. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    PubMed

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  1. Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways

    PubMed Central

    Galinsky, Vitaly L.; Frank, Lawrence R.

    2015-01-01

    We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167

  2. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  3. Multi-topic assignment for exploratory navigation of consumer health information in NetWellness using formal concept analysis.

    PubMed

    Cui, Licong; Xu, Rong; Luo, Zhihui; Wentz, Susan; Scarberry, Kyle; Zhang, Guo-Qiang

    2014-08-03

    Finding quality consumer health information online can effectively bring important public health benefits to the general population. It can empower people with timely and current knowledge for managing their health and promoting wellbeing. Despite a popular belief that search engines such as Google can solve all information access problems, recent studies show that using search engines and simple search terms is not sufficient. Our objective is to provide an approach to organizing consumer health information for navigational exploration, complementing keyword-based direct search. Multi-topic assignment to health information, such as online questions, is a fundamental step for navigational exploration. We introduce a new multi-topic assignment method combining semantic annotation using UMLS concepts (CUIs) and Formal Concept Analysis (FCA). Each question was tagged with CUIs identified by MetaMap. The CUIs were filtered with term-frequency and a new term-strength index to construct a CUI-question context. The CUI-question context and a topic-subject context were used for multi-topic assignment, resulting in a topic-question context. The topic-question context was then directly used for constructing a prototype navigational exploration interface. Experimental evaluation was performed on the task of automatic multi-topic assignment of 99 predefined topics for about 60,000 consumer health questions from NetWellness. Using example-based metrics, suitable for multi-topic assignment problems, our method achieved a precision of 0.849, recall of 0.774, and F₁ measure of 0.782, using a reference standard of 278 questions with manually assigned topics. Compared to NetWellness' original topic assignment, a 36.5% increase in recall is achieved with virtually no sacrifice in precision. Enhancing the recall of multi-topic assignment without sacrificing precision is a prerequisite for achieving the benefits of navigational exploration. Our new multi-topic assignment method, combining term-strength, FCA, and information retrieval techniques, significantly improved recall and performed well according to example-based metrics.

  4. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  5. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  6. A Generalized Approach for Measuring Relationships Among Genes.

    PubMed

    Wang, Lijun; Ahsan, Md Asif; Chen, Ming

    2017-07-21

    Several methods for identifying relationships among pairs of genes have been developed. In this article, we present a generalized approach for measuring relationships between any pairs of genes, which is based on statistical prediction. We derive two particular versions of the generalized approach, least squares estimation (LSE) and nearest neighbors prediction (NNP). According to mathematical proof, LSE is equivalent to the methods based on correlation; and NNP is approximate to one popular method called the maximal information coefficient (MIC) according to the performances in simulations and real dataset. Moreover, the approach based on statistical prediction can be extended from two-genes relationships to multi-genes relationships. This application would help to identify relationships among multi-genes.

  7. A reduced basis approach for implementing thermodynamic phase-equilibria information in geophysical and geodynamic studies

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Zlotnik, S.; Diez, P.

    2015-12-01

    We present a flexible, general and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on multi-dimensional decomposition methods, which transform the original multi-dimensional discrete information into a dimensional-separated representation. This representation has the property of increasing the number of coefficients to be stored linearly with the number of dimensions (opposite to a full multi-dimensional cube requiring exponential storage depending on the number of dimensions). Thus, the amount of information to be stored in memory during a numerical simulation or geophysical inversion is drastically reduced. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g. preliminary runs vs full resolution runs). We illustrate the benefits, generality and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies.

  8. Expanding multi-disciplinary approaches to healthcare information technologies: what does information systems offer medical informatics?

    PubMed

    Chiasson, Mike; Reddy, Madhu; Kaplan, Bonnie; Davidson, Elizabeth

    2007-06-01

    The effective use of information technology (IT) is a crucial component for the delivery of effective services in health care. Current approaches to medical informatics (MI) research have significantly contributed to the success of IT use in health care but important challenges remain to be addressed. We believe that expanding the multi-disciplinary basis for MI research is important to meeting these research challenges. In this paper, we outline theories and methods used in information systems (IS) research that we believe can inform our understanding of health care IT applications and outcomes. To do so, we discuss some general differences in the focus and methods of MI and IS research to identify broad opportunities. We then review conceptual and methodological approaches in IS that have been applied in health care IT research. These include: technology-use mediation, collaborative work, genre theory, interpretive research, action research, and modeling. Examples of these theories and methods in healthcare IS research are illustrated.

  9. Ensembles vs. information theory: supporting science under uncertainty

    NASA Astrophysics Data System (ADS)

    Nearing, Grey S.; Gupta, Hoshin V.

    2018-05-01

    Multi-model ensembles are one of the most common ways to deal with epistemic uncertainty in hydrology. This is a problem because there is no known way to sample models such that the resulting ensemble admits a measure that has any systematic (i.e., asymptotic, bounded, or consistent) relationship with uncertainty. Multi-model ensembles are effectively sensitivity analyses and cannot - even partially - quantify uncertainty. One consequence of this is that multi-model approaches cannot support a consistent scientific method - in particular, multi-model approaches yield unbounded errors in inference. In contrast, information theory supports a coherent hypothesis test that is robust to (i.e., bounded under) arbitrary epistemic uncertainty. This paper may be understood as advocating a procedure for hypothesis testing that does not require quantifying uncertainty, but is coherent and reliable (i.e., bounded) in the presence of arbitrary (unknown and unknowable) uncertainty. We conclude by offering some suggestions about how this proposed philosophy of science suggests new ways to conceptualize and construct simulation models of complex, dynamical systems.

  10. Identifying Emotional and Behavioral Risk among Gifted and Nongifted Children: A Multi-Gate, Multi-Informant Approach

    ERIC Educational Resources Information Center

    Eklund, Katie; Tanner, Nick; Stoll, Katie; Anway, Leslie

    2015-01-01

    The purpose of the current investigation was to compare 1,206 gifted and nongifted elementary students on the identification of emotional and behavioral risk (EBR) as rated by teachers and parents using a multigate, multi-informant approach to assessment. The Parent and Teacher Behavioral Assessment System for Children, Second Edition (BASC-2) and…

  11. Scene text detection by leveraging multi-channel information and local context

    NASA Astrophysics Data System (ADS)

    Wang, Runmin; Qian, Shengyou; Yang, Jianfeng; Gao, Changxin

    2018-03-01

    As an important information carrier, texts play significant roles in many applications. However, text detection in unconstrained scenes is a challenging problem due to cluttered backgrounds, various appearances, uneven illumination, etc.. In this paper, an approach based on multi-channel information and local context is proposed to detect texts in natural scenes. According to character candidate detection plays a vital role in text detection system, Maximally Stable Extremal Regions(MSERs) and Graph-cut based method are integrated to obtain the character candidates by leveraging the multi-channel image information. A cascaded false positive elimination mechanism are constructed from the perspective of the character and the text line respectively. Since the local context information is very valuable for us, these information is utilized to retrieve the missing characters for boosting the text detection performance. Experimental results on two benchmark datasets, i.e., the ICDAR 2011 dataset and the ICDAR 2013 dataset, demonstrate that the proposed method have achieved the state-of-the-art performance.

  12. The Validity of the Multi-Informant Approach to Assessing Child and Adolescent Mental Health

    PubMed Central

    De Los Reyes, Andres; Augenstein, Tara M.; Wang, Mo; Thomas, Sarah A.; Drabick, Deborah A.G.; Burgers, Darcy E.; Rabinowitz, Jill

    2015-01-01

    Child and adolescent patients may display mental health concerns within some contexts and not others (e.g., home vs. school). Thus, understanding the specific contexts in which patients display concerns may assist mental health professionals in tailoring treatments to patients' needs. Consequently, clinical assessments often include reports from multiple informants who vary in the contexts in which they observe patients' behavior (e.g., patients, parents, teachers). Previous meta-analyses indicate that informants' reports correlate at low-to-moderate magnitudes. However, is it valid to interpret low correspondence among reports as indicating that patients display concerns in some contexts and not others? We meta-analyzed 341 studies published between 1989 and 2014 that reported cross-informant correspondence estimates, and observed low-to-moderate correspondence (mean internalizing: r = .25; mean externalizing: r = .30; mean overall: r = .28). Informant pair, mental health domain, and measurement method moderated magnitudes of correspondence. These robust findings have informed the development of concepts for interpreting multi-informant assessments, allowing researchers to draw specific predictions about the incremental and construct validity of these assessments. In turn, we critically evaluated research on the incremental and construct validity of the multi-informant approach to clinical child and adolescent assessment. In so doing, we identify crucial gaps in knowledge for future research, and provide recommendations for “best practices” in using and interpreting multi-informant assessments in clinical work and research. This paper has important implications for developing personalized approaches to clinical assessment, with the goal of informing techniques for tailoring treatments to target the specific contexts where patients display concerns. PMID:25915035

  13. Multi-fidelity methods for uncertainty quantification in transport problems

    NASA Astrophysics Data System (ADS)

    Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.

    2016-12-01

    We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.

  14. Manifold regularized matrix completion for multi-label learning with ADMM.

    PubMed

    Liu, Bin; Li, Yingming; Xu, Zenglin

    2018-05-01

    Multi-label learning is a common machine learning problem arising from numerous real-world applications in diverse fields, e.g, natural language processing, bioinformatics, information retrieval and so on. Among various multi-label learning methods, the matrix completion approach has been regarded as a promising approach to transductive multi-label learning. By constructing a joint matrix comprising the feature matrix and the label matrix, the missing labels of test samples are regarded as missing values of the joint matrix. With the low-rank assumption of the constructed joint matrix, the missing labels can be recovered by minimizing its rank. Despite its success, most matrix completion based approaches ignore the smoothness assumption of unlabeled data, i.e., neighboring instances should also share a similar set of labels. Thus they may under exploit the intrinsic structures of data. In addition, the matrix completion problem can be less efficient. To this end, we propose to efficiently solve the multi-label learning problem as an enhanced matrix completion model with manifold regularization, where the graph Laplacian is used to ensure the label smoothness over it. To speed up the convergence of our model, we develop an efficient iterative algorithm, which solves the resulted nuclear norm minimization problem with the alternating direction method of multipliers (ADMM). Experiments on both synthetic and real-world data have shown the promising results of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. MOCASSIN-prot: a multi-objective clustering approach for protein similarity networks.

    PubMed

    Keel, Brittney N; Deng, Bo; Moriyama, Etsuko N

    2018-04-15

    Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary history of proteins is hence best modeled through networks that incorporate information both from the sequence divergence and the domain content. Here, a game-theoretic approach proposed for protein network construction is adapted into the framework of multi-objective optimization, and extended to incorporate clustering refinement procedure. The new method, MOCASSIN-prot, was applied to cluster multi-domain proteins from ten genomes. The performance of MOCASSIN-prot was compared against two protein clustering methods, Markov clustering (TRIBE-MCL) and spectral clustering (SCPS). We showed that compared to these two methods, MOCASSIN-prot, which uses both domain composition and quantitative sequence similarity information, generates fewer false positives. It achieves more functionally coherent protein clusters and better differentiates protein families. MOCASSIN-prot, implemented in Perl and Matlab, is freely available at http://bioinfolab.unl.edu/emlab/MOCASSINprot. emoriyama2@unl.edu. Supplementary data are available at Bioinformatics online.

  16. Moving towards ecosystem-based fisheries management: Options for parameterizing multi-species biological reference points

    NASA Astrophysics Data System (ADS)

    Moffitt, Elizabeth A.; Punt, André E.; Holsman, Kirstin; Aydin, Kerim Y.; Ianelli, James N.; Ortiz, Ivonne

    2016-12-01

    Multi-species models can improve our understanding of the effects of fishing so that it is possible to make informed and transparent decisions regarding fishery impacts. Broad application of multi-species assessment models to support ecosystem-based fisheries management (EBFM) requires the development and testing of multi-species biological reference points (MBRPs) for use in harvest-control rules. We outline and contrast several possible MBRPs that range from those that can be readily used in current frameworks to those belonging to a broader EBFM context. We demonstrate each of the possible MBRPs using a simple two species model, motivated by walleye pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus) in the eastern Bering Sea, to illustrate differences among methods. The MBRPs we outline each differ in how they approach the multiple, potentially conflicting management objectives and trade-offs of EBFM. These options for MBRPs allow multi-species models to be readily adapted for EBFM across a diversity of management mandates and approaches.

  17. A High Performance Computing Study of a Scalable FISST-Based Approach to Multi-Target, Multi-Sensor Tracking

    NASA Astrophysics Data System (ADS)

    Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.

    2016-09-01

    Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.

  18. Multi-iPPseEvo: A Multi-label Classifier for Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into Chou's General PseAAC via Grey System Theory.

    PubMed

    Qiu, Wang-Ren; Zheng, Quan-Shu; Sun, Bi-Qian; Xiao, Xuan

    2017-03-01

    Predicting phosphorylation protein is a challenging problem, particularly when query proteins have multi-label features meaning that they may be phosphorylated at two or more different type amino acids. In fact, human protein usually be phosphorylated at serine, threonine and tyrosine. By introducing the "multi-label learning" approach, a novel predictor has been developed that can be used to deal with the systems containing both single- and multi-label phosphorylation protein. Here we proposed a predictor called Multi-iPPseEvo by (1) incorporating the protein sequence evolutionary information into the general pseudo amino acid composition (PseAAC) via the grey system theory, (2) balancing out the skewed training datasets by the asymmetric bootstrap approach, and (3) constructing an ensemble predictor by fusing an array of individual random forest classifiers thru a voting system. Rigorous cross-validations via a set of multi-label metrics indicate that the multi-label phosphorylation predictor is very promising and encouraging. The current approach represents a new strategy to deal with the multi-label biological problems, and the software is freely available for academic use at http://www.jci-bioinfo.cn/Multi-iPPseEvo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Multi-level discriminative dictionary learning with application to large scale image classification.

    PubMed

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  20. Selecting Essential Information for Biosurveillance—A Multi-Criteria Decision Analysis

    PubMed Central

    Generous, Nicholas; Margevicius, Kristen J.; Taylor-McCabe, Kirsten J.; Brown, Mac; Daniel, W. Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillancedefines biosurveillance as “the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels.” However, the strategy does not specify how “essential information” is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being “essential”. Thequestion of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of “essential information” for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system. PMID:24489748

  1. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).

    PubMed

    Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge

    2011-11-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations.

  2. Distributed multi-sensor particle filter for bearings-only tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Jungen; Ji, Hongbing

    2012-02-01

    In this article, the classical bearings-only tracking (BOT) problem for a single target is addressed, which belongs to the general class of non-linear filtering problems. Due to the fact that the radial distance observability of the target is poor, the algorithm-based sequential Monte-Carlo (particle filtering, PF) methods generally show instability and filter divergence. A new stable distributed multi-sensor PF method is proposed for BOT. The sensors process their measurements at their sites using a hierarchical PF approach, which transforms the BOT problem from Cartesian coordinate to the logarithmic polar coordinate and separates the observable components from the unobservable components of the target. In the fusion centre, the target state can be estimated by utilising the multi-sensor optimal information fusion rule. Furthermore, the computation of a theoretical Cramer-Rao lower bound is given for the multi-sensor BOT problem. Simulation results illustrate that the proposed tracking method can provide better performances than the traditional PF method.

  3. The validity of the multi-informant approach to assessing child and adolescent mental health.

    PubMed

    De Los Reyes, Andres; Augenstein, Tara M; Wang, Mo; Thomas, Sarah A; Drabick, Deborah A G; Burgers, Darcy E; Rabinowitz, Jill

    2015-07-01

    Child and adolescent patients may display mental health concerns within some contexts and not others (e.g., home vs. school). Thus, understanding the specific contexts in which patients display concerns may assist mental health professionals in tailoring treatments to patients' needs. Consequently, clinical assessments often include reports from multiple informants who vary in the contexts in which they observe patients' behavior (e.g., patients, parents, teachers). Previous meta-analyses indicate that informants' reports correlate at low-to-moderate magnitudes. However, is it valid to interpret low correspondence among reports as indicating that patients display concerns in some contexts and not others? We meta-analyzed 341 studies published between 1989 and 2014 that reported cross-informant correspondence estimates, and observed low-to-moderate correspondence (mean internalizing: r = .25; mean externalizing: r = .30; mean overall: r = .28). Informant pair, mental health domain, and measurement method moderated magnitudes of correspondence. These robust findings have informed the development of concepts for interpreting multi-informant assessments, allowing researchers to draw specific predictions about the incremental and construct validity of these assessments. In turn, we critically evaluated research on the incremental and construct validity of the multi-informant approach to clinical child and adolescent assessment. In so doing, we identify crucial gaps in knowledge for future research, and provide recommendations for "best practices" in using and interpreting multi-informant assessments in clinical work and research. This article has important implications for developing personalized approaches to clinical assessment, with the goal of informing techniques for tailoring treatments to target the specific contexts where patients display concerns. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  4. Multi-resolution information mining and a computer vision approach to pavement condition distress analysis.

    DOT National Transportation Integrated Search

    2014-07-01

    Pavement Condition surveys are carried out periodically to gather information on pavement distresses that will guide decision-making for maintenance and preservation. Traditional methods involve manual pavement inspections which are time-consuming : ...

  5. Multi-criteria decision making to support waste management: A critical review of current practices and methods.

    PubMed

    Goulart Coelho, Lineker M; Lange, Liséte C; Coelho, Hosmanny Mg

    2017-01-01

    Solid waste management is a complex domain involving the interaction of several dimensions; thus, its analysis and control impose continuous challenges for decision makers. In this context, multi-criteria decision-making models have become important and convenient supporting tools for solid waste management because they can handle problems involving multiple dimensions and conflicting criteria. However, the selection of the multi-criteria decision-making method is a hard task since there are several multi-criteria decision-making approaches, each one with a large number of variants whose applicability depends on information availability and the aim of the study. Therefore, to support researchers and decision makers, the objectives of this article are to present a literature review of multi-criteria decision-making applications used in solid waste management, offer a critical assessment of the current practices, and provide suggestions for future works. A brief review of fundamental concepts on this topic is first provided, followed by the analysis of 260 articles related to the application of multi-criteria decision making in solid waste management. These studies were investigated in terms of the methodology, including specific steps such as normalisation, weighting, and sensitivity analysis. In addition, information related to waste type, the study objective, and aspects considered was recorded. From the articles analysed it is noted that studies using multi-criteria decision making in solid waste management are predominantly addressed to problems related to municipal solid waste involving facility location or management strategy.

  6. A General Formulation for Robust and Efficient Integration of Finite Differences and Phase Unwrapping on Sparse Multidimensional Domains

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Minati, Federico

    2010-03-01

    Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.

  7. Tracking Virus Particles in Fluorescence Microscopy Images Using Multi-Scale Detection and Multi-Frame Association.

    PubMed

    Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl

    2015-11-01

    Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.

  8. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  9. A Heterogeneous Network Based Method for Identifying GBM-Related Genes by Integrating Multi-Dimensional Data.

    PubMed

    Chen Peng; Ao Li

    2017-01-01

    The emergence of multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of human diseases and therefore improving diagnosis, treatment, and prevention. In this study, we proposed a heterogeneous network based method by integrating multi-dimensional data (HNMD) to identify GBM-related genes. The novelty of the method lies in that the multi-dimensional data of GBM from TCGA dataset that provide comprehensive information of genes, are combined with protein-protein interactions to construct a weighted heterogeneous network, which reflects both the general and disease-specific relationships between genes. In addition, a propagation algorithm with resistance is introduced to precisely score and rank GBM-related genes. The results of comprehensive performance evaluation show that the proposed method significantly outperforms the network based methods with single-dimensional data and other existing approaches. Subsequent analysis of the top ranked genes suggests they may be functionally implicated in GBM, which further corroborates the superiority of the proposed method. The source code and the results of HNMD can be downloaded from the following URL: http://bioinformatics.ustc.edu.cn/hnmd/ .

  10. SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2017-02-01

    Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.

  11. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  12. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  13. SU-G-JeP2-02: A Unifying Multi-Atlas Approach to Electron Density Mapping Using Multi-Parametric MRI for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, S; Tianjin University, Tianjin; Hara, W

    Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less

  14. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  15. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  16. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    NASA Astrophysics Data System (ADS)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  17. Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification

    NASA Astrophysics Data System (ADS)

    Gao, G.; Zhang, M.; Gu, Y.

    2017-05-01

    Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".

  18. Hybrid E-Learning Tool TransLearning: Video Storytelling to Foster Vicarious Learning within Multi-Stakeholder Collaboration Networks

    ERIC Educational Resources Information Center

    van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.

    2016-01-01

    E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…

  19. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    PubMed

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  20. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method

    PubMed Central

    Deng, Xinyang

    2017-01-01

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905

  1. Digital case-based learning system in school.

    PubMed

    Gu, Peipei; Guo, Jiayang

    2017-01-01

    With the continuing growth of multi-media learning resources, it is important to offer methods helping learners to explore and acquire relevant learning information effectively. As services that organize multi-media learning materials together to support programming learning, the digital case-based learning system is needed. In order to create a case-oriented e-learning system, this paper concentrates on the digital case study of multi-media resources and learning processes with an integrated framework. An integration of multi-media resources, testing and learning strategies recommendation as the learning unit is proposed in the digital case-based learning framework. The learning mechanism of learning guidance, multi-media materials learning and testing feedback is supported in our project. An improved personalized genetic algorithm which incorporates preference information and usage degree into the crossover and mutation process is proposed to assemble the personalized test sheet for each learner. A learning strategies recommendation solution is proposed to recommend learning strategies for learners to help them to learn. The experiments are conducted to prove that the proposed approaches are capable of constructing personalized sheets and the effectiveness of the framework.

  2. Digital case-based learning system in school

    PubMed Central

    Gu, Peipei

    2017-01-01

    With the continuing growth of multi-media learning resources, it is important to offer methods helping learners to explore and acquire relevant learning information effectively. As services that organize multi-media learning materials together to support programming learning, the digital case-based learning system is needed. In order to create a case-oriented e-learning system, this paper concentrates on the digital case study of multi-media resources and learning processes with an integrated framework. An integration of multi-media resources, testing and learning strategies recommendation as the learning unit is proposed in the digital case-based learning framework. The learning mechanism of learning guidance, multi-media materials learning and testing feedback is supported in our project. An improved personalized genetic algorithm which incorporates preference information and usage degree into the crossover and mutation process is proposed to assemble the personalized test sheet for each learner. A learning strategies recommendation solution is proposed to recommend learning strategies for learners to help them to learn. The experiments are conducted to prove that the proposed approaches are capable of constructing personalized sheets and the effectiveness of the framework. PMID:29107965

  3. [Spatial-temporal evolution characterization of land subsidence by multi-temporal InSAR method and GIS technology].

    PubMed

    Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Duan, Guang-Yao; Xie, Jin-Rong

    2014-04-01

    Long-term over-exploitation of underground resources, and static and dynamic load increase year by year influence the occurrence and development of regional land subsidence to a certain extent. Choosing 29 scenes Envisat ASAR images covering plain area of Beijing, China, the present paper used the multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, and obtained monitoring information of regional land subsidence. Under different situation of space development and utilization, the authors chose five typical settlement areas; With classified information of land-use, multi-spectral remote sensing image, and geological data, and adopting GIS spatial analysis methods, the authors analyzed the time series evolution characteristics of uneven settlement. The comprehensive analysis results suggests that the complex situations of space development and utilization affect the trend of uneven settlement; the easier the situation of space development and utilization, the smaller the settlement gradient, and the less the uneven settlement trend.

  4. Strengthening the evidence and action on multi-sectoral partnerships in public health: an action research initiative

    PubMed Central

    Willis, C. D.; Greene, J. K.; Abramowicz, A.; Riley, B. L.

    2016-01-01

    Abstract Introduction: The Public Health Agency of Canada’s Multi-sectoral Partnerships Initiative, administered by the Centre for Chronic Disease Prevention (CCDP), brings together diverse partners to design, implement and advance innovative approaches for improving population health. This article describes the development and initial priorities of an action research project (a learning and improvement strategy) that aims to facilitate continuous improvement of the CCDP’s partnership initiative and contribute to the evidence on multi-sectoral partnerships. Methods: The learning and improvement strategy for the CCDP’s multi-sectoral partnership initiative was informed by (1) consultations with CCDP staff and senior management, and (2) a review of conceptual frameworks to do with multi-sectoral partnerships. Consultations explored the development of the multi-sectoral initiative, barriers and facilitators to success, and markers of effectiveness. Published and grey literature was reviewed using a systematic search strategy with findings synthesized using a narrative approach. Results: Consultations and the review highlighted the importance of understanding partnership impacts, developing a shared vision, implementing a shared measurement system and creating opportunities for knowledge exchange. With that in mind, we propose a six-component learning and improvement strategy that involves (1) prioritizing learning needs, (2) mapping needs to evidence, (3) using relevant data-collection methods, (4) analyzing and synthesizing data, (5) feeding data back to CCDP staff and teams and (6) taking action. Initial learning needs include investigating partnership reach and the unanticipated effects of multi-sectoral partnerships for individuals, groups, organizations or communities. Conclusion: While the CCDP is the primary audience for the learning and improvement strategy, it may prove useful for a range of audiences, including other government departments and external organizations interested in capturing and sharing new knowledge generated from multi-sectoral partnerships. PMID:27284702

  5. Cost and efficiency of a hybrid mobile multi-disease testing approach with high HIV testing coverage in East Africa

    PubMed Central

    Chang, Wei; Chamie, Gabriel; Mwai, Daniel; Clark, Tamara D.; Thirumurthy, Harsha; Charlebois, Edwin D.; Petersen, Maya; Kabami, Jane; Ssemmondo, Emmanuel; Kadede, Kevin; Kwarisiima, Dalsone; Sang, Norton; Bukusi, Elizabeth A.; Cohen, Craig R.; Kamya, Moses; Havlir, Diane V.; Kahn, James G.

    2016-01-01

    Background In 2013-14, we achieved 89% adult HIV testing coverage using a hybrid testing approach in 32 communities in Uganda and Kenya (SEARCH: NCT01864603). To inform scalability, we sought to determine: 1) overall cost and efficiency of this approach; and 2) costs associated with point-of-care (POC) CD4 testing, multi-disease services, and community mobilization. Methods We applied micro-costing methods to estimate costs of population-wide HIV testing in 12 SEARCH Trial communities. Main intervention components of the hybrid approach are census, multi-disease community health campaigns (CHC), and home-based testing (HBT) for CHC non-attendees. POC CD4 tests were provided for all HIV-infected participants. Data were extracted from expenditure records, activity registers, staff interviews, and time and motion logs. Results The mean cost per adult tested for HIV was $20.5 (range: $17.1 - $32.1) [2014 US$], including a POC CD4 test at $16 per HIV+ person identified. Cost per adult tested for HIV was $13.8 at CHC vs. $31.7 via HBT. The cost per HIV+ adult identified was $231 ($87 - $1,245), with variability due mainly to HIV prevalence among persons tested (i.e., HIV positivity rate). The marginal costs of multi-disease testing at CHCs were $1.16/person for hypertension and diabetes, and $0.90 for malaria. Community mobilization constituted 15.3% of total costs. Conclusions The hybrid testing approach achieved very high HIV testing coverage, with POC CD4, at costs similar to previously reported mobile, home-based, or venue-based HIV testing approaches in sub-Saharan Africa. By leveraging HIV infrastructure, multi-disease services were offered at low marginal costs. PMID:27741031

  6. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  7. Time-marching multi-grid seismic tomography

    NASA Astrophysics Data System (ADS)

    Tong, P.; Yang, D.; Liu, Q.

    2016-12-01

    From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.

  8. Judicialization 2.0: Understanding right-to-health litigation in real time.

    PubMed

    Biehl, João; Socal, Mariana P; Gauri, Varun; Diniz, Debora; Medeiros, Marcelo; Rondon, Gabriela; Amon, Joseph J

    2018-05-21

    Over the past two decades, debate over the whys, the hows, and the effects of the ever-expanding phenomenon of right-to-health litigation ('judicialization') throughout Latin America have been marked by polarised arguments and limited information. In contrast to claims of judicialization as a positive or negative trend, less attention has been paid to ways to better understand the phenomenon in real time. In this article, we propose a new approach-Judicialization 2.0-that recognises judicialization as an integral part of democratic life. This approach seeks to expand access to information about litigation on access to medicines (and health care generally) in order to better characterise the complexity of the phenomenon and thus inform new research and more robust public discussions. Drawing from our multi-disciplinary perspectives and field experiences in highly judicialized contexts, we thus describe a new multi-source, multi-stakeholder mixed-method approach designed to capture the patterns and heterogeneity of judicialization and understand its medical and socio-political impact in real time, along with its counterfactuals. By facilitating greater data availability and open access, we can drive advancements towards transparent and participatory priority setting, as well as accountability mechanisms that promote quality universal health coverage.

  9. A Multi-Level Decision Fusion Strategy for Condition Based Maintenance of Composite Structures

    PubMed Central

    Sharif Khodaei, Zahra; Aliabadi, M.H.

    2016-01-01

    In this work, a multi-level decision fusion strategy is proposed which weighs the Value of Information (VoI) against the intended functions of a Structural Health Monitoring (SHM) system. This paper presents a multi-level approach for three different maintenance strategies in which the performance of the SHM systems is evaluated against its intended functions. Level 1 diagnosis results in damage existence with minimum sensors covering a large area by finding the maximum energy difference for the guided waves propagating in pristine structure and the post-impact state; Level 2 diagnosis provides damage detection and approximate localization using an approach based on Electro-Mechanical Impedance (EMI) measures, while Level 3 characterizes damage (exact location and size) in addition to its detection by utilising a Weighted Energy Arrival Method (WEAM). The proposed multi-level strategy is verified and validated experimentally by detection of Barely Visible Impact Damage (BVID) on a curved composite fuselage panel. PMID:28773910

  10. Design and multi-physics optimization of rotary MRF brakes

    NASA Astrophysics Data System (ADS)

    Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan

    2018-03-01

    Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.

  11. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  12. Position-aware deep multi-task learning for drug-drug interaction extraction.

    PubMed

    Zhou, Deyu; Miao, Lei; He, Yulan

    2018-05-01

    A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework. The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease.

    PubMed

    Cheng, Bo; Liu, Mingxia; Shen, Dinggang; Li, Zuoyong; Zhang, Daoqiang

    2017-04-01

    Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer's Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multi-domain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods.

  14. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking.

    PubMed

    Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary

    2011-08-01

    Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  16. Adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo

    2018-04-01

    Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.

  17. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.

  18. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  19. Solving multi-objective optimization problems in conservation with the reference point method

    PubMed Central

    Dujardin, Yann; Chadès, Iadine

    2018-01-01

    Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650

  20. Collaborative filtering on a family of biological targets.

    PubMed

    Erhan, Dumitru; L'heureux, Pierre-Jean; Yue, Shi Yi; Bengio, Yoshua

    2006-01-01

    Building a QSAR model of a new biological target for which few screening data are available is a statistical challenge. However, the new target may be part of a bigger family, for which we have more screening data. Collaborative filtering or, more generally, multi-task learning, is a machine learning approach that improves the generalization performance of an algorithm by using information from related tasks as an inductive bias. We use collaborative filtering techniques for building predictive models that link multiple targets to multiple examples. The more commonalities between the targets, the better the multi-target model that can be built. We show an example of a multi-target neural network that can use family information to produce a predictive model of an undersampled target. We evaluate JRank, a kernel-based method designed for collaborative filtering. We show their performance on compound prioritization for an HTS campaign and the underlying shared representation between targets. JRank outperformed the neural network both in the single- and multi-target models.

  1. Assessing demand for improved sustainable sanitation in low-income informal settlements of urban areas: a critical review.

    PubMed

    Okurut, Kenan; Kulabako, Robinah Nakawunde; Chenoweth, Jonathan; Charles, Katrina

    2015-01-01

    Sanitation improvement is crucial in saving lives that are lost due to water contamination. Progress towards achieving full sanitation coverage is still slow in low-income informal settlements in most developing countries. Furthermore, resources are being wasted on installing facilities that are later misused or never used because they do not meet the local demand. Understanding demand for improved sanitation in the local context is critical if facilities are to be continually used. Various approaches that attempt to change peoples' behaviours or create demand have been reviewed to identify what they are designed to address. A multi-disciplinary research team using mixed methods is re-emphasised as a comprehensive approach for assessing demand for improved sanitation in low-income informal settlements, where the sanitation situation is more challenging than in other areas. Further research involving a multi-disciplinary research team and use of mixed methods to assess sanitation demand in informal settlements is needed.

  2. Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information

    PubMed Central

    Wang, Xiaohong; Wang, Lizhi

    2017-01-01

    Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system. PMID:28926930

  3. Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.

    PubMed

    Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi

    2017-09-15

    Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.

  4. [Individual growth modeling of the penshell Atrina maura (Bivalvia: Pinnidae) using a multi model inference approach].

    PubMed

    Aragón-Noriega, Eugenio Alberto

    2013-09-01

    Growth models of marine animals, for fisheries and/or aquaculture purposes, are based on the popular von Bertalanffy model. This tool is mostly used because its parameters are used to evaluate other fisheries models, such as yield per recruit; nevertheless, there are other alternatives (such as Gompertz, Logistic, Schnute) not yet used by fishery scientists, that may result useful depending on the studied species. The penshell Atrina maura, has been studied for fisheries or aquaculture supplies, but its individual growth has not yet been studied before. The aim of this study was to model the absolute growth of the penshell A. maura using length-age data. For this, five models were assessed to obtain growth parameters: von Bertalanffy, Gompertz, Logistic, Schnute case 1 and Schnute and Richards. The criterion used to select the best models was the Akaike information criterion, as well as the residual squared sum and R2 adjusted. To get the average asymptotic length, the multi model inference approach was used. According to Akaike information criteria, the Gompertz model better described the absolute growth of A. maura. Following the multi model inference approach the average asymptotic shell length was 218.9 mm (IC 212.3-225.5) of shell length. I concluded that the use of the multi model approach and the Akaike information criteria represented the most robust method for growth parameter estimation of A. maura and the von Bertalanffy growth model should not be selected a priori as the true model to obtain the absolute growth in bivalve mollusks like in the studied species in this paper.

  5. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  6. Multi-objects recognition for distributed intelligent sensor networks

    NASA Astrophysics Data System (ADS)

    He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.

    2008-04-01

    This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.

  7. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.

  8. Surface-region context in optimal multi-object graph-based segmentation: robust delineation of pulmonary tumors.

    PubMed

    Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong

    2011-01-01

    Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.

  9. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    PubMed

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm.

  10. Competitive-Cooperative Automated Reasoning from Distributed and Multiple Source of Data

    NASA Astrophysics Data System (ADS)

    Fard, Amin Milani

    Knowledge extraction from distributed database systems, have been investigated during past decade in order to analyze billions of information records. In this work a competitive deduction approach in a heterogeneous data grid environment is proposed using classic data mining and statistical methods. By applying a game theory concept in a multi-agent model, we tried to design a policy for hierarchical knowledge discovery and inference fusion. To show the system run, a sample multi-expert system has also been developed.

  11. D-Fussion: A Semantic Selective Disssemination of Information Service for the Research Community in Digital Libraries

    ERIC Educational Resources Information Center

    Morales-del-Castillo, Jose Manuel; Peis, Eduardo; Moreno, Juan Manuel; Herrera-Viedma, Enrique

    2009-01-01

    Introduction: In this paper we propose a multi-agent Selective Dissemination of Information service to improve the research community's access to digital library resources. The service also provides a new recommendation approach to satisfy researchers' specific information requirements. Method: The service model is developed by jointly applying…

  12. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  13. Monitoring and evaluating the quality consistency of Compound Bismuth Aluminate tablets by a simple quantified ratio fingerprint method combined with simultaneous determination of five compounds and correlated with antioxidant activities.

    PubMed

    Liu, Yingchun; Liu, Zhongbo; Sun, Guoxiang; Wang, Yan; Ling, Junhong; Gao, Jiayue; Huang, Jiahao

    2015-01-01

    A combination method of multi-wavelength fingerprinting and multi-component quantification by high performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was developed and validated to monitor and evaluate the quality consistency of herbal medicines (HM) in the classical preparation Compound Bismuth Aluminate tablets (CBAT). The validation results demonstrated that our method met the requirements of fingerprint analysis and quantification analysis with suitable linearity, precision, accuracy, limits of detection (LOD) and limits of quantification (LOQ). In the fingerprint assessments, rather than using conventional qualitative "Similarity" as a criterion, the simple quantified ratio fingerprint method (SQRFM) was recommended, which has an important quantified fingerprint advantage over the "Similarity" approach. SQRFM qualitatively and quantitatively offers the scientific criteria for traditional Chinese medicines (TCM)/HM quality pyramid and warning gate in terms of three parameters. In order to combine the comprehensive characterization of multi-wavelength fingerprints, an integrated fingerprint assessment strategy based on information entropy was set up involving a super-information characteristic digitized parameter of fingerprints, which reveals the total entropy value and absolute information amount about the fingerprints and, thus, offers an excellent method for fingerprint integration. The correlation results between quantified fingerprints and quantitative determination of 5 marker compounds, including glycyrrhizic acid (GLY), liquiritin (LQ), isoliquiritigenin (ILG), isoliquiritin (ILQ) and isoliquiritin apioside (ILA), indicated that multi-component quantification could be replaced by quantified fingerprints. The Fenton reaction was employed to determine the antioxidant activities of CBAT samples in vitro, and they were correlated with HPLC fingerprint components using the partial least squares regression (PLSR) method. In summary, the method of multi-wavelength fingerprints combined with antioxidant activities has been proved to be a feasible and scientific procedure for monitoring and evaluating the quality consistency of CBAT.

  14. Using Bayes factors for multi-factor, biometric authentication

    NASA Astrophysics Data System (ADS)

    Giffin, A.; Skufca, J. D.; Lao, P. A.

    2015-01-01

    Multi-factor/multi-modal authentication systems are becoming the de facto industry standard. Traditional methods typically use rates that are point estimates and lack a good measure of uncertainty. Additionally, multiple factors are typically fused together in an ad hoc manner. To be consistent, as well as to establish and make proper use of uncertainties, we use a Bayesian method that will update our estimates and uncertainties as new information presents itself. Our algorithm compares competing classes (such as genuine vs. imposter) using Bayes Factors (BF). The importance of this approach is that we not only accept or reject one model (class), but compare it to others to make a decision. We show using a Receiver Operating Characteristic (ROC) curve that using BF for determining class will always perform at least as well as the traditional combining of factors, such as a voting algorithm. As the uncertainty decreases, the BF result continues to exceed the traditional methods result.

  15. Urinary Incontinence: Causes and Methods of Evaluation

    ERIC Educational Resources Information Center

    Griebling, Tomas L.

    2008-01-01

    This article presents the third of a multi-part series offering the most timely educational information, innovative approaches, products and technology solutions as well as coping and stigma-fighting approaches available on the subject of incontinence. Here, the author introduces the types and physiology of urinary incontinence. The author also…

  16. Using multi-terminology indexing for the assignment of MeSH descriptors to health resources in a French online catalogue

    PubMed Central

    Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J.

    2008-01-01

    Background: To assist with the development of a French online quality-controlled health gateway (CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (F-MTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. Objective: In this paper, we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. Methods: The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. Results: There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. Conclusion: F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French. PMID:18998933

  17. Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer’s Disease

    PubMed Central

    Cheng, Bo; Liu, Mingxia; Li, Zuoyong

    2017-01-01

    Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer’s Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multidomain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods. PMID:27928657

  18. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution

    PubMed Central

    Sobieranski, Antonio C; Inci, Fatih; Tekin, H Cumhur; Yuksekkaya, Mehmet; Comunello, Eros; Cobra, Daniel; von Wangenheim, Aldo; Demirci, Utkan

    2017-01-01

    In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2. PMID:29657866

  19. A multi-objective programming model for assessment the GHG emissions in MSW management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.« less

  20. A Mixtures-of-Trees Framework for Multi-Label Classification

    PubMed Central

    Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos

    2015-01-01

    We propose a new probabilistic approach for multi-label classification that aims to represent the class posterior distribution P(Y|X). Our approach uses a mixture of tree-structured Bayesian networks, which can leverage the computational advantages of conditional tree-structured models and the abilities of mixtures to compensate for tree-structured restrictions. We develop algorithms for learning the model from data and for performing multi-label predictions using the learned model. Experiments on multiple datasets demonstrate that our approach outperforms several state-of-the-art multi-label classification methods. PMID:25927011

  1. Using the ALA's "Evaluating Library Instruction" (1996).

    ERIC Educational Resources Information Center

    Roselle, Ann

    1997-01-01

    Using a multi-method approach--student and faculty surveys and a comparison of bibliographies from senior nursing students--to evaluate the Information Literacy Skills Program at the University of Botswana, this study found that information about the impact of instruction can be discovered through more open-ended questions; the ALA's…

  2. An efficient method for the fusion of light field refocused images

    NASA Astrophysics Data System (ADS)

    Wang, Yingqian; Yang, Jungang; Xiao, Chao; An, Wei

    2018-04-01

    Light field cameras have drawn much attention due to the advantage of post-capture adjustments such as refocusing after exposure. The depth of field in refocused images is always shallow because of the large equivalent aperture. As a result, a large number of multi-focus images are obtained and an all-in-focus image is demanded. Consider that most multi-focus image fusion algorithms do not particularly aim at large numbers of source images and traditional DWT-based fusion approach has serious problems in dealing with lots of multi-focus images, causing color distortion and ringing effect. To solve this problem, this paper proposes an efficient multi-focus image fusion method based on stationary wavelet transform (SWT), which can deal with a large quantity of multi-focus images with shallow depth of fields. We compare SWT-based approach with DWT-based approach on various occasions. And the results demonstrate that the proposed method performs much better both visually and quantitatively.

  3. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection

    PubMed Central

    Dang, Yaoguo; Mao, Wenxin

    2018-01-01

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method. PMID:29510521

  4. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection.

    PubMed

    Sun, Huifang; Dang, Yaoguo; Mao, Wenxin

    2018-03-03

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method.

  5. Corpus callosum segmentation using deep neural networks with prior information from multi-atlas images

    NASA Astrophysics Data System (ADS)

    Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min

    2018-03-01

    In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.

  6. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  7. Information theoretic partitioning and confidence based weight assignment for multi-classifier decision level fusion in hyperspectral target recognition applications

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Bruce, L. M.

    2007-04-01

    There is a growing interest in using multiple sources for automatic target recognition (ATR) applications. One approach is to take multiple, independent observations of a phenomenon and perform a feature level or a decision level fusion for ATR. This paper proposes a method to utilize these types of multi-source fusion techniques to exploit hyperspectral data when only a small number of training pixels are available. Conventional hyperspectral image based ATR techniques project the high dimensional reflectance signature onto a lower dimensional subspace using techniques such as Principal Components Analysis (PCA), Fisher's linear discriminant analysis (LDA), subspace LDA and stepwise LDA. While some of these techniques attempt to solve the curse of dimensionality, or small sample size problem, these are not necessarily optimal projections. In this paper, we present a divide and conquer approach to address the small sample size problem. The hyperspectral space is partitioned into contiguous subspaces such that the discriminative information within each subspace is maximized, and the statistical dependence between subspaces is minimized. We then treat each subspace as a separate source in a multi-source multi-classifier setup and test various decision fusion schemes to determine their efficacy. Unlike previous approaches which use correlation between variables for band grouping, we study the efficacy of higher order statistical information (using average mutual information) for a bottom up band grouping. We also propose a confidence measure based decision fusion technique, where the weights associated with various classifiers are based on their confidence in recognizing the training data. To this end, training accuracies of all classifiers are used for weight assignment in the fusion process of test pixels. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies.

  8. Analytic hierarchy process-based approach for selecting a Pareto-optimal solution of a multi-objective, multi-site supply-chain planning problem

    NASA Astrophysics Data System (ADS)

    Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi

    2017-07-01

    The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.

  9. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  10. Only complementary voices tell the truth: a reevaluation of validity in multi-informant approaches of child and adolescent clinical assessments.

    PubMed

    Kaurin, Aleksandra; Egloff, Boris; Stringaris, Argyris; Wessa, Michèle

    2016-08-01

    Multi-informant approaches are thought to be key to clinical assessment. Classical theories of psychological measurements assume that only convergence among different informants' reports allows for an estimate of the true nature and causes of clinical presentations. However, the integration of multiple accounts is fraught with problems because findings in child and adolescent psychiatry do not conform to the fundamental expectation of convergence. Indeed, reports provided by different sources (self, parents, teachers, peers) share little variance. Moreover, in some cases informant divergence may be meaningful and not error variance. In this review, we give an overview of conceptual and theoretical foundations of valid multi-informant assessment and discuss why our common concepts of validity need revaluation.

  11. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  12. TU-AB-202-11: Tumor Segmentation by Fusion of Multi-Tracer PET Images Using Copula Based Statistical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapuyade-Lahorgue, J; Ruan, S; Li, H

    Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less

  13. Optimize scientific communication skills on work and energy concept with implementation of interactive conceptual instruction and multi representation approach

    NASA Astrophysics Data System (ADS)

    Patriot, E. A.; Suhandi, A.; Chandra, D. T.

    2018-05-01

    The ultimate goal of learning in the curriculum 2013 is that learning must improve and balance between soft skills and hard skills of learners. In addition to the knowledge aspect, one of the other skills to be trained in the learning process using a scientific approach is communication skills. This study aims to get an overview of the implementation of interactive conceptual instruction with multi representation to optimize the achievement of students’ scientific communication skills on work and energy concept. The scientific communication skills contains the sub-skills were searching the information, scientific writing, group discussion and knowledge presentation. This study was descriptive research with observation method. Subjects in this study were 35 students of class X in Senior High School at Sumedang. The results indicate an achievement of optimal scientific communication skills. The greatest achievement of KKI based on observation is at fourth meeting of KKI-3, which is a sub-skill of resume writing of 89%. Allmost students responded positively to the implication of interactive conceptual instruction with multi representation approach. It can be concluded that the implication of interactive conceptual instruction with multi representation approach can optimize the achievement of students’ scientific communication skill on work and energy concept.

  14. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    PubMed

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  15. New approach to information fusion for Lipschitz classifiers ensembles: Application in multi-channel C-OTDR-monitoring systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, Andrey V.; Egorov, Dmitry V.

    This paper presents new results concerning selection of an optimal information fusion formula for an ensemble of Lipschitz classifiers. The goal of information fusion is to create an integral classificatory which could provide better generalization ability of the ensemble while achieving a practically acceptable level of effectiveness. The problem of information fusion is very relevant for data processing in multi-channel C-OTDR-monitoring systems. In this case we have to effectively classify targeted events which appear in the vicinity of the monitored object. Solution of this problem is based on usage of an ensemble of Lipschitz classifiers each of which corresponds tomore » a respective channel. We suggest a brand new method for information fusion in case of ensemble of Lipschitz classifiers. This method is called “The Weighing of Inversely as Lipschitz Constants” (WILC). Results of WILC-method practical usage in multichannel C-OTDR monitoring systems are presented.« less

  16. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  17. CFD Methods and Tools for Multi-Element Airfoil Analysis

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; George, Michael W. (Technical Monitor)

    1995-01-01

    This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.

  18. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  19. Multi-dimension feature fusion for action recognition

    NASA Astrophysics Data System (ADS)

    Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin

    2018-04-01

    Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.

  20. Multi-model inference for incorporating trophic and climate uncertainty into stock assessments

    NASA Astrophysics Data System (ADS)

    Ianelli, James; Holsman, Kirstin K.; Punt, André E.; Aydin, Kerim

    2016-12-01

    Ecosystem-based fisheries management (EBFM) approaches allow a broader and more extensive consideration of objectives than is typically possible with conventional single-species approaches. Ecosystem linkages may include trophic interactions and climate change effects on productivity for the relevant species within the system. Presently, models are evolving to include a comprehensive set of fishery and ecosystem information to address these broader management considerations. The increased scope of EBFM approaches is accompanied with a greater number of plausible models to describe the systems. This can lead to harvest recommendations and biological reference points that differ considerably among models. Model selection for projections (and specific catch recommendations) often occurs through a process that tends to adopt familiar, often simpler, models without considering those that incorporate more complex ecosystem information. Multi-model inference provides a framework that resolves this dilemma by providing a means of including information from alternative, often divergent models to inform biological reference points and possible catch consequences. We apply an example of this approach to data for three species of groundfish in the Bering Sea: walleye pollock, Pacific cod, and arrowtooth flounder using three models: 1) an age-structured "conventional" single-species model, 2) an age-structured single-species model with temperature-specific weight at age, and 3) a temperature-specific multi-species stock assessment model. The latter two approaches also include consideration of alternative future climate scenarios, adding another dimension to evaluate model projection uncertainty. We show how Bayesian model-averaging methods can be used to incorporate such trophic and climate information to broaden single-species stock assessments by using an EBFM approach that may better characterize uncertainty.

  1. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  2. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe

    2017-06-01

    Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.

  3. Applications of multi-frequency single beam sonar fisheries analysis methods for seep quantification and characterization

    NASA Astrophysics Data System (ADS)

    Price, V.; Weber, T.; Jerram, K.; Doucet, M.

    2016-12-01

    The analysis of multi-frequency, narrow-band single-beam acoustic data for fisheries applications has long been established, with methodology focusing on characterizing targets in the water column by utilizing complex algorithms and false-color time series data to create and compare frequency response curves for dissimilar biological groups. These methods were built on concepts developed for multi-frequency analysis of satellite imagery for terrestrial analysis and have been applied to a broad range of data types and applications. Single-beam systems operating at multiple frequencies are also used for the detection and identification of seeps in water column data. Here we incorporate the same analysis and visualization techniques used for fisheries applications to attempt to characterize and quantify seeps by creating and comparing frequency response curves and applying false coloration to shallow and deep multi-channel seep data. From this information, we can establish methods to differentiate bubble size in the echogram and differentiate seep composition. These techniques are also useful in differentiating plume content from biological noise (volume reverberation) created by euphausid layers and fish with gas-filled swim bladders. The combining of the multiple frequencies using false coloring and other image analysis techniques after applying established normalization and beam pattern correction algorithms is a novel approach to quantitatively describing seeps. Further, this information could be paired with geological models, backscatter, and bathymetry data to assess seep distribution.

  4. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    PubMed Central

    Mu, Lin

    2018-01-01

    This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. PMID:29309403

  5. Multi-site precipitation downscaling using a stochastic weather generator

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Chen, Hua; Guo, Shenglian

    2018-03-01

    Statistical downscaling is an efficient way to solve the spatiotemporal mismatch between climate model outputs and the data requirements of hydrological models. However, the most commonly-used downscaling method only produces climate change scenarios for a specific site or watershed average, which is unable to drive distributed hydrological models to study the spatial variability of climate change impacts. By coupling a single-site downscaling method and a multi-site weather generator, this study proposes a multi-site downscaling approach for hydrological climate change impact studies. Multi-site downscaling is done in two stages. The first stage involves spatially downscaling climate model-simulated monthly precipitation from grid scale to a specific site using a quantile mapping method, and the second stage involves the temporal disaggregating of monthly precipitation to daily values by adjusting the parameters of a multi-site weather generator. The inter-station correlation is specifically considered using a distribution-free approach along with an iterative algorithm. The performance of the downscaling approach is illustrated using a 10-station watershed as an example. The precipitation time series derived from the National Centers for Environment Prediction (NCEP) reanalysis dataset is used as the climate model simulation. The precipitation time series of each station is divided into 30 odd years for calibration and 29 even years for validation. Several metrics, including the frequencies of wet and dry spells and statistics of the daily, monthly and annual precipitation are used as criteria to evaluate the multi-site downscaling approach. The results show that the frequencies of wet and dry spells are well reproduced for all stations. In addition, the multi-site downscaling approach performs well with respect to reproducing precipitation statistics, especially at monthly and annual timescales. The remaining biases mainly result from the non-stationarity of NCEP precipitation. Overall, the proposed approach is efficient for generating multi-site climate change scenarios that can be used to investigate the spatial variability of climate change impacts on hydrology.

  6. A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation

    NASA Astrophysics Data System (ADS)

    Luo, Ji-An; Zhang, Xiao-Ping; Wang, Zhi

    2017-12-01

    Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.

  7. Solving multi-customer FPR model with quality assurance and discontinuous deliveries using a two-phase algebraic approach.

    PubMed

    Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang

    2016-01-01

    A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.

  8. Detecting a hierarchical genetic population structure via Multi-InDel markers on the X chromosome

    PubMed Central

    Fan, Guang Yao; Ye, Yi; Hou, Yi Ping

    2016-01-01

    Detecting population structure and estimating individual biogeographical ancestry are very important in population genetics studies, biomedical research and forensics. Single-nucleotide polymorphism (SNP) has long been considered to be a primary ancestry-informative marker (AIM), but it is constrained by complex and time-consuming genotyping protocols. Following up on our previous study, we propose that a multi-insertion-deletion polymorphism (Multi-InDel) with multiple haplotypes can be useful in ancestry inference and hierarchical genetic population structures. A validation study for the X chromosome Multi-InDel marker (X-Multi-InDel) as a novel AIM was conducted. Genetic polymorphisms and genetic distances among three Chinese populations and 14 worldwide populations obtained from the 1000 Genomes database were analyzed. A Bayesian clustering method (STRUCTURE) was used to discern the continental origins of Europe, East Asia, and Africa. A minimal panel of ten X-Multi-InDels was verified to be sufficient to distinguish human ancestries from three major continental regions with nearly the same efficiency of the earlier panel with 21 insertion-deletion AIMs. Along with the development of more X-Multi-InDels, an approach using this novel marker has the potential for broad applicability as a cost-effective tool toward more accurate determinations of individual biogeographical ancestry and population stratification. PMID:27535707

  9. Using multi-terminology indexing for the assignment of MeSH descriptors to health resources in a French online catalogue.

    PubMed

    Pereira, Suzanne; Névéol, Aurélie; Kerdelhué, Gaétan; Serrot, Elisabeth; Joubert, Michel; Darmoni, Stéfan J

    2008-11-06

    To assist with the development of a French online quality-controlled health gateway(CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (FMTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them. In this paper,we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI. The indexing strategies were assessed on a corpus of 18,814 resources indexed manually. There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall. F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French.

  10. Configuration of management accounting information system for multi-stage manufacturing

    NASA Astrophysics Data System (ADS)

    Mkrtychev, S. V.; Ochepovsky, A. V.; Enik, O. A.

    2018-05-01

    The article presents an approach to configuration of a management accounting information system (MAIS) that provides automated calculations and the registration of normative production losses in multi-stage manufacturing. The use of MAIS with the proposed configuration at the enterprises of textile and woodworking industries made it possible to increase the accuracy of calculations for normative production losses and to organize accounting thereof with the reference to individual stages of the technological process. Thus, high efficiency of multi-stage manufacturing control is achieved.

  11. Modeling activity recognition of multi resident using label combination of multi label classification in smart home

    NASA Astrophysics Data System (ADS)

    Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah

    2017-10-01

    Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.

  12. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    PubMed Central

    Ong, Frank; Lustig, Michael

    2016-01-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978

  13. Dual-acting of Hybrid Compounds - A New Dawn in the Discovery of Multi-target Drugs: Lead Generation Approaches.

    PubMed

    Abdolmaleki, Azizeh; Ghasemi, Jahan B

    2017-01-01

    Finding high quality beginning compounds is a critical job at the start of the lead generation stage for multi-target drug discovery (MTDD). Designing hybrid compounds as selective multitarget chemical entity is a challenge, opportunity, and new idea to better act against specific multiple targets. One hybrid molecule is formed by two (or more) pharmacophore group's participation. So, these new compounds often exhibit two or more activities going about as multi-target drugs (mtdrugs) and may have superior safety or efficacy. Application of integrating a range of information and sophisticated new in silico, bioinformatics, structural biology, pharmacogenomics methods may be useful to discover/design, and synthesis of the new hybrid molecules. In this regard, many rational and screening approaches have followed by medicinal chemists for the lead generation in MTDD. Here, we review some popular lead generation approaches that have been used for designing multiple ligands (DMLs). This paper focuses on dual- acting chemical entities that incorporate a part of two drugs or bioactive compounds to compose hybrid molecules. Also, it presents some of key concepts and limitations/strengths of lead generation methods by comparing combination framework method with screening approaches. Besides, a number of examples to represent applications of hybrid molecules in the drug discovery are included. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Statistical post-processing of seasonal multi-model forecasts: Why is it so hard to beat the multi-model mean?

    NASA Astrophysics Data System (ADS)

    Siegert, Stefan

    2017-04-01

    Initialised climate forecasts on seasonal time scales, run several months or even years ahead, are now an integral part of the battery of products offered by climate services world-wide. The availability of seasonal climate forecasts from various modeling centres gives rise to multi-model ensemble forecasts. Post-processing such seasonal-to-decadal multi-model forecasts is challenging 1) because the cross-correlation structure between multiple models and observations can be complicated, 2) because the amount of training data to fit the post-processing parameters is very limited, and 3) because the forecast skill of numerical models tends to be low on seasonal time scales. In this talk I will review new statistical post-processing frameworks for multi-model ensembles. I will focus particularly on Bayesian hierarchical modelling approaches, which are flexible enough to capture commonly made assumptions about collective and model-specific biases of multi-model ensembles. Despite the advances in statistical methodology, it turns out to be very difficult to out-perform the simplest post-processing method, which just recalibrates the multi-model ensemble mean by linear regression. I will discuss reasons for this, which are closely linked to the specific characteristics of seasonal multi-model forecasts. I explore possible directions for improvements, for example using informative priors on the post-processing parameters, and jointly modelling forecasts and observations.

  15. Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials.

    PubMed

    Hori, Tomoaki; Montcho, David; Agbangla, Clement; Ebana, Kaworu; Futakuchi, Koichi; Iwata, Hiroyoshi

    2016-11-01

    A method based on a multi-task Gaussian process using self-measuring similarity gave increased accuracy for imputing missing phenotypic data in multi-trait and multi-environment trials. Multi-environmental trial (MET) data often encounter the problem of missing data. Accurate imputation of missing data makes subsequent analysis more effective and the results easier to understand. Moreover, accurate imputation may help to reduce the cost of phenotyping for thinned-out lines tested in METs. METs are generally performed for multiple traits that are correlated to each other. Correlation among traits can be useful information for imputation, but single-trait-based methods cannot utilize information shared by traits that are correlated. In this paper, we propose imputation methods based on a multi-task Gaussian process (MTGP) using self-measuring similarity kernels reflecting relationships among traits, genotypes, and environments. This framework allows us to use genetic correlation among multi-trait multi-environment data and also to combine MET data and marker genotype data. We compared the accuracy of three MTGP methods and iterative regularized PCA using rice MET data. Two scenarios for the generation of missing data at various missing rates were considered. The MTGP performed a better imputation accuracy than regularized PCA, especially at high missing rates. Under the 'uniform' scenario, in which missing data arise randomly, inclusion of marker genotype data in the imputation increased the imputation accuracy at high missing rates. Under the 'fiber' scenario, in which missing data arise in all traits for some combinations between genotypes and environments, the inclusion of marker genotype data decreased the imputation accuracy for most traits while increasing the accuracy in a few traits remarkably. The proposed methods will be useful for solving the missing data problem in MET data.

  16. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel

    PubMed Central

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468

  17. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.

    PubMed

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.

  18. Comparing Indirect Effects in Different Groups in Single-Group and Multi-Group Structural Equation Models

    PubMed Central

    Ryu, Ehri; Cheong, Jeewon

    2017-01-01

    In this article, we evaluated the performance of statistical methods in single-group and multi-group analysis approaches for testing group difference in indirect effects and for testing simple indirect effects in each group. We also investigated whether the performance of the methods in the single-group approach was affected when the assumption of equal variance was not satisfied. The assumption was critical for the performance of the two methods in the single-group analysis: the method using a product term for testing the group difference in a single path coefficient, and the Wald test for testing the group difference in the indirect effect. Bootstrap confidence intervals in the single-group approach and all methods in the multi-group approach were not affected by the violation of the assumption. We compared the performance of the methods and provided recommendations. PMID:28553248

  19. Mentorship in Practice: A Multi-Method Approach.

    ERIC Educational Resources Information Center

    Schreck, Timothy J.; And Others

    This study was conducted to evaluate a field-based mentorship program using a multi-method approach. It explored the use of mentorship as practiced in the Florida Compact, a business education partnership established in Florida in 1987. The study was designed to identify differences between mentors and mentorees, as well as differences within…

  20. Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L.; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.

    2017-02-01

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≍1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  1. Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly.

    PubMed

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L; Assad, Albert; Abramson, Richard G; Landman, Bennett A

    2017-02-11

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  2. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  3. Absolute order-of-magnitude reasoning applied to a social multi-criteria evaluation framework

    NASA Astrophysics Data System (ADS)

    Afsordegan, A.; Sánchez, M.; Agell, N.; Aguado, J. C.; Gamboa, G.

    2016-03-01

    A social multi-criteria evaluation framework for solving a real-case problem of selecting a wind farm location in the regions of Urgell and Conca de Barberá in Catalonia (northeast of Spain) is studied. This paper applies a qualitative multi-criteria decision analysis approach based on linguistic labels assessment able to address uncertainty and deal with different levels of precision. This method is based on qualitative reasoning as an artificial intelligence technique for assessing and ranking multi-attribute alternatives with linguistic labels in order to handle uncertainty. This method is suitable for problems in the social framework such as energy planning which require the construction of a dialogue process among many social actors with high level of complexity and uncertainty. The method is compared with an existing approach, which has been applied previously in the wind farm location problem. This approach, consisting of an outranking method, is based on Condorcet's original method. The results obtained by both approaches are analysed and their performance in the selection of the wind farm location is compared in aggregation procedures. Although results show that both methods conduct to similar alternatives rankings, the study highlights both their advantages and drawbacks.

  4. A Data-Based Approach to Discovering Multi-Topic Influential Leaders.

    PubMed

    Tang, Xing; Miao, Qiguang; Yu, Shangshang; Quan, Yining

    2016-01-01

    Recently, increasing numbers of users have adopted microblogging services as their main information source. However, most of them find themselves drowning in the millions of posts produced by other users every day. To cope with this, identifying a set of the most influential people is paramount. Moreover, finding a set of related influential users to expand the coverage of one particular topic is required in real world scenarios. Most of the existing algorithms in this area focus on topology-related methods such as PageRank. These methods mine link structures to find the expected influential rank of users. However, because they ignore the interaction data, these methods turn out to be less effective in social networks. In reality, a variety of topics exist within the information diffusing through the network. Because they have different interests, users play different roles in the diffusion of information related to different topics. As a result, distinguishing influential leaders according to different topics is also worthy of research. In this paper, we propose a multi-topic influence diffusion model (MTID) based on traces acquired from historic information. We decompose the influential scores of users into two parts: the direct influence determined by information propagation along the link structure and indirect influence that extends beyond the restrictions of direct follower relationships. To model the network from a multi-topical viewpoint, we introduce topic pools, each of which represents a particular topic information source. Then, we extract the topic distributions from the traces of tweets, determining the influence propagation probability and content generation probability. In the network, we adopt multiple ground nodes representing topic pools to connect every user through bidirectional links. Based on this multi-topical view of the network, we further introduce the topic-dependent rank (TD-Rank) algorithm to identify the multi-topic influential users. Our algorithm not only effectively overcomes the shortages of PageRank but also effectively produces a measure of topic-related rank. Extensive experiments on a Weibo dataset show that our model is both effective and robust.

  5. A Data-Based Approach to Discovering Multi-Topic Influential Leaders

    PubMed Central

    Tang, Xing; Miao, Qiguang; Yu, Shangshang; Quan, Yining

    2016-01-01

    Recently, increasing numbers of users have adopted microblogging services as their main information source. However, most of them find themselves drowning in the millions of posts produced by other users every day. To cope with this, identifying a set of the most influential people is paramount. Moreover, finding a set of related influential users to expand the coverage of one particular topic is required in real world scenarios. Most of the existing algorithms in this area focus on topology-related methods such as PageRank. These methods mine link structures to find the expected influential rank of users. However, because they ignore the interaction data, these methods turn out to be less effective in social networks. In reality, a variety of topics exist within the information diffusing through the network. Because they have different interests, users play different roles in the diffusion of information related to different topics. As a result, distinguishing influential leaders according to different topics is also worthy of research. In this paper, we propose a multi-topic influence diffusion model (MTID) based on traces acquired from historic information. We decompose the influential scores of users into two parts: the direct influence determined by information propagation along the link structure and indirect influence that extends beyond the restrictions of direct follower relationships. To model the network from a multi-topical viewpoint, we introduce topic pools, each of which represents a particular topic information source. Then, we extract the topic distributions from the traces of tweets, determining the influence propagation probability and content generation probability. In the network, we adopt multiple ground nodes representing topic pools to connect every user through bidirectional links. Based on this multi-topical view of the network, we further introduce the topic-dependent rank (TD-Rank) algorithm to identify the multi-topic influential users. Our algorithm not only effectively overcomes the shortages of PageRank but also effectively produces a measure of topic-related rank. Extensive experiments on a Weibo dataset show that our model is both effective and robust. PMID:27415429

  6. VIGAN: Missing View Imputation with Generative Adversarial Networks.

    PubMed

    Shang, Chao; Palmer, Aaron; Sun, Jiangwen; Chen, Ko-Shin; Lu, Jin; Bi, Jinbo

    2017-01-01

    In an era when big data are becoming the norm, there is less concern with the quantity but more with the quality and completeness of the data. In many disciplines, data are collected from heterogeneous sources, resulting in multi-view or multi-modal datasets. The missing data problem has been challenging to address in multi-view data analysis. Especially, when certain samples miss an entire view of data, it creates the missing view problem. Classic multiple imputations or matrix completion methods are hardly effective here when no information can be based on in the specific view to impute data for such samples. The commonly-used simple method of removing samples with a missing view can dramatically reduce sample size, thus diminishing the statistical power of a subsequent analysis. In this paper, we propose a novel approach for view imputation via generative adversarial networks (GANs), which we name by VIGAN. This approach first treats each view as a separate domain and identifies domain-to-domain mappings via a GAN using randomly-sampled data from each view, and then employs a multi-modal denoising autoencoder (DAE) to reconstruct the missing view from the GAN outputs based on paired data across the views. Then, by optimizing the GAN and DAE jointly, our model enables the knowledge integration for domain mappings and view correspondences to effectively recover the missing view. Empirical results on benchmark datasets validate the VIGAN approach by comparing against the state of the art. The evaluation of VIGAN in a genetic study of substance use disorders further proves the effectiveness and usability of this approach in life science.

  7. Gene prioritization and clustering by multi-view text mining

    PubMed Central

    2010-01-01

    Background Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model. Results We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods. Conclusions In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification. PMID:20074336

  8. Automatic seizure detection based on the combination of newborn multi-channel EEG and HRV information

    NASA Astrophysics Data System (ADS)

    Mesbah, Mostefa; Balakrishnan, Malarvili; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    This article proposes a new method for newborn seizure detection that uses information extracted from both multi-channel electroencephalogram (EEG) and a single channel electrocardiogram (ECG). The aim of the study is to assess whether additional information extracted from ECG can improve the performance of seizure detectors based solely on EEG. Two different approaches were used to combine this extracted information. The first approach, known as feature fusion, involves combining features extracted from EEG and heart rate variability (HRV) into a single feature vector prior to feeding it to a classifier. The second approach, called classifier or decision fusion, is achieved by combining the independent decisions of the EEG and the HRV-based classifiers. Tested on recordings obtained from eight newborns with identified EEG seizures, the proposed neonatal seizure detection algorithms achieved 95.20% sensitivity and 88.60% specificity for the feature fusion case and 95.20% sensitivity and 94.30% specificity for the classifier fusion case. These results are considerably better than those involving classifiers using EEG only (80.90%, 86.50%) or HRV only (85.70%, 84.60%).

  9. Prior knowledge guided active modules identification: an integrated multi-objective approach.

    PubMed

    Chen, Weiqi; Liu, Jing; He, Shan

    2017-03-14

    Active module, defined as an area in biological network that shows striking changes in molecular activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated with cellular or disease states. A prior information guided active module identification approach is proposed to detect modules that are both active and enriched by prior knowledge. We formulate the active module identification problem as a multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage of known biological pathways and the activity of the active module simultaneously. Network is constructed from protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to ensure the connectedness of the identified active modules. Application of proposed algorithm on a small yeast molecular network shows that it can identify modules with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions generated by the algorithm provides solutions with different trade-off between prior knowledge and novel information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene ontology analysis is applied to the identified modules for biological interpretation. Integrating knowledge of functional groups into the identification of active module is an effective method and provides a flexible control of balance between pure data-driven method and prior information guidance.

  10. A multi-state trajectory method for non-adiabatic dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Guohua, E-mail: taogh@pkusz.edu.cn

    2016-03-07

    A multi-state trajectory approach is proposed to describe nuclear-electron coupled dynamics in nonadiabatic simulations. In this approach, each electronic state is associated with an individual trajectory, among which electronic transition occurs. The set of these individual trajectories constitutes a multi-state trajectory, and nuclear dynamics is described by one of these individual trajectories as the system is on the corresponding state. The total nuclear-electron coupled dynamics is obtained from the ensemble average of the multi-state trajectories. A variety of benchmark systems such as the spin-boson system have been tested and the results generated using the quasi-classical version of the method showmore » reasonably good agreement with the exact quantum calculations. Featured in a clear multi-state picture, high efficiency, and excellent numerical stability, the proposed method may have advantages in being implemented to realistic complex molecular systems, and it could be straightforwardly applied to general nonadiabatic dynamics involving multiple states.« less

  11. a Framework for Low-Cost Multi-Platform VR and AR Site Experiences

    NASA Astrophysics Data System (ADS)

    Wallgrün, J. O.; Huang, J.; Zhao, J.; Masrur, A.; Oprean, D.; Klippel, A.

    2017-11-01

    Low-cost consumer-level immersive solutions have the potential to revolutionize education and research in many fields by providing virtual experiences of sites that are either inaccessible, too dangerous, or too expensive to visit, or by augmenting in-situ experiences using augmented and mixed reality methods. We present our approach for creating low-cost multi-platform virtual and augmented reality site experiences of real world places for education and research purposes, making extensive use of Structure-from-Motion methods as well as 360° photography and videography. We discuss several example projects, for the Mayan City of Cahal Pech, Iceland's Thrihnukar volcano, the Santa Marta informal settlement in Rio, and for the Penn State Campus, and we propose a framework for creating and maintaining such applications by combining declarative content specification methods with a central linked-data based spatio-temporal information system.

  12. Plant trait detection with multi-scale spectrometry

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  13. Deterministic methods for multi-control fuel loading optimization

    NASA Astrophysics Data System (ADS)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  14. Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology

    PubMed Central

    Mokhtari, Ghassem; Zhang, Qing; Karunanithi, Mohanraj

    2018-01-01

    Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario. PMID:29562666

  15. Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology.

    PubMed

    Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Zhang, Qing; Karunanithi, Mohanraj

    2018-03-19

    Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario.

  16. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

    PubMed

    Granovsky, Alexander A

    2011-06-07

    The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics

  17. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    NASA Astrophysics Data System (ADS)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  18. Enhanced Imaging of Building Interior for Portable MIMO Through-the-wall Radar

    NASA Astrophysics Data System (ADS)

    Song, Yongping; Zhu, Jiahua; Hu, Jun; Jin, Tian; Zhou, Zhimin

    2018-01-01

    Portable multi-input multi-output (MIMO) radar system is able to imaging the building interior through aperture synthesis. However, significant grating lobes are invoked in the directly imaging results, which may deteriorate the imaging quality of other targets and influence the detail information extraction of imaging scene. In this paper, a two-stage coherence factor (CF) weighting method is proposed to enhance the imaging quality. After obtaining the sub-imaging results of each spatial sampling position using conventional CF approach, a window function is employed to calculate the proposed “enhanced CF” adaptive to the spatial variety effect behind the wall for the combination of these sub-images. The real data experiment illustrates the better performance of proposed method on grating lobes suppression and imaging quality enhancement compare to the traditional radar imaging approach.

  19. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    DTIC Science & Technology

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement...learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable...shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  20. Consensus oriented fuzzified decision support for oil spill contingency management.

    PubMed

    Liu, Xin; Wirtz, Kai W

    2006-06-30

    Studies on multi-group multi-criteria decision-making problems for oil spill contingency management are in their infancy. This paper presents a second-order fuzzy comprehensive evaluation (FCE) model to resolve decision-making problems in the area of contingency management after environmental disasters such as oil spills. To assess the performance of different oil combat strategies, second-order FCE allows for the utilization of lexical information, the consideration of ecological and socio-economic criteria and the involvement of a variety of stakeholders. On the other hand, the new approach can be validated by using internal and external checks, which refer to sensitivity tests regarding its internal setups and comparisons with other methods, respectively. Through a case study, the Pallas oil spill in the German Bight in 1998, it is demonstrated that this approach can help decision makers who search for an optimal strategy in multi-thread contingency problems and has a wider application potential in the field of integrated coastal zone management.

  1. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    NASA Astrophysics Data System (ADS)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; Radney, James G.; Kolesar, Katheryn R.; Zhang, Qi; Setyan, Ari; O'Neill, Norman T.; Cappa, Christopher D.

    2018-04-01

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.

  2. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE PAGES

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; ...

    2018-04-23

    Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  3. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli

    Here, multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare wellmore » with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  4. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well withmore » other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM 1 and PM 10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.« less

  5. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.

    PubMed

    Perdikaris, P; Raissi, M; Damianou, A; Lawrence, N D; Karniadakis, G E

    2017-02-01

    Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.

  6. Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation

    PubMed Central

    Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan

    2010-01-01

    Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939

  7. Deep Visual Attention Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Wenguan; Shen, Jianbing

    2018-05-01

    In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.

  8. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  9. Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores

    PubMed Central

    Kim, Youngmin; Lee, Chan-Gun

    2017-01-01

    In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695

  10. Decision-Level Fusion of Spatially Scattered Multi-Modal Data for Nondestructive Inspection of Surface Defects

    PubMed Central

    Heideklang, René; Shokouhi, Parisa

    2016-01-01

    This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200

  11. Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information

    NASA Astrophysics Data System (ADS)

    Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.

    2016-12-01

    This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.

  12. Experimental Design for Multi-drug Combination Studies Using Signaling Networks

    PubMed Central

    Huang, Hengzhen; Fang, Hong-Bin; Tan, Ming T.

    2017-01-01

    Summary Combinations of multiple drugs are an important approach to maximize the chance for therapeutic success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations have received increasing attention because major advances in biomedical research have made available large number of potential agents for testing. The preclinical experiment on multi-drug combinations plays a key role in (especially cancer) drug development because of the complex nature of the disease, the need to reduce development time and costs. Despite recent progresses in statistical methods for assessing drug interaction, there is an acute lack of methods for designing experiments on multi-drug combinations. The number of combinations grows exponentially with the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing experimental dose-response data of single drugs and a few combinations along with pathway/network information to obtain an estimate of the functional structure of the dose-response relationship in silico, we propose an optimal design that allows exploration of the dose-effect surface with the smallest possible sample size in this paper. The simulation studies show our proposed methods perform well. PMID:28960231

  13. Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design.

    PubMed

    Kim, Eunhee; Zhang, Zheng; Wang, Youdan; Zeng, Donglin

    2014-12-01

    Receiver operating characteristic (ROC) analysis is widely used to evaluate the performance of diagnostic tests with continuous or ordinal responses. A popular study design for assessing the accuracy of diagnostic tests involves multiple readers interpreting multiple diagnostic test results, called the multi-reader, multi-test design. Although several different approaches to analyzing data from this design exist, few methods have discussed the sample size and power issues. In this article, we develop a power formula to compare the correlated areas under the ROC curves (AUC) in a multi-reader, multi-test design. We present a nonparametric approach to estimate and compare the correlated AUCs by extending DeLong et al.'s (1988, Biometrics 44, 837-845) approach. A power formula is derived based on the asymptotic distribution of the nonparametric AUCs. Simulation studies are conducted to demonstrate the performance of the proposed power formula and an example is provided to illustrate the proposed procedure. © 2014, The International Biometric Society.

  14. Large scale maps of cropping intensity in Asia from MODIS

    NASA Astrophysics Data System (ADS)

    Gray, J. M.; Friedl, M. A.; Frolking, S. E.; Ramankutty, N.; Nelson, A.

    2013-12-01

    Agricultural systems are geographically extensive, have profound significance to society, and also affect regional energy, carbon, and water cycles. Since most suitable lands worldwide have been cultivated, there is growing pressure to increase yields on existing agricultural lands. In tropical and sub-tropical regions, multi-cropping is widely used to increase food production, but regional-to-global information related to multi-cropping practices is poor. Such information is of critical importance to ensure sustainable food production while mitigating against negative environmental impacts associated with agriculture such as contamination and depletion of freshwater resources. Unfortunately, currently available large-area inventory statistics are inadequate because they do not capture important spatial patterns in multi-cropping, and are generally not available in a timeframe that can be used to help manage cropping systems. High temporal resolution sensors such as MODIS provide an excellent source of information for addressing this need. However, relative to studies that document agricultural extensification, systematic assessment of agricultural intensification via multi-cropping has received relatively little attention. The goal of this work is to help close this methodological and information gap by developing methods that use multi-temporal remote sensing to map multi-cropping systems in Asia. Image time series analysis is especially challenging in Asia because atmospheric conditions including clouds and aerosols lead to high frequencies of missing or low quality remote sensing observations, especially during the Asian Monsoon. The methodology that we use for this work builds upon the algorithm used to produce the MODIS Land Cover Dynamics product (MCD12Q2), but employs refined methods to segment, smooth, and gap-fill 8-day EVI time series calculated from MODIS BRDF corrected surface reflectances. Crop cycle segments are identified based on changes in slope for linear regressions estimated for local windows, and constrained by the EVI amplitude and length of crop cycles that are identified. The procedure can be used to map seasonal or long-term average cropping strategies, and to characterize changes in cropping intensity over longer time periods. The datasets produced using this method therefore provide information related to global cropping systems, and more broadly, provide important information that is required to ensure sustainable management of Earth's resources and ensure food security. To test our algorithm, we applied it to time series of MODIS EVI images over Asia from 2000-2012. Our results demonstrate the utility of multi-temporal remote sensing for characterizing multi-cropping practices in some of the most important and intensely agricultural regions in the world. To evaluate our approach, we compared results from MODIS to field-scale survey data at the pixel scale, and agricultural inventory statistics at sub-national scales. We then mapped changes in multi-cropped area in Asia from the early MODIS period (2001-2004) to present (2009-2012), and characterizes the magnitude and location of changes in cropping intensity over the last 12 years. We conclude with a discussion of the challenges, future improvements, and broader impacts of this work.

  15. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    NASA Astrophysics Data System (ADS)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  16. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network

    PubMed Central

    Qu, Xiaobo; He, Yifan

    2018-01-01

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666

  17. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    PubMed

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  18. A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks

    NASA Astrophysics Data System (ADS)

    Haijun, Xiong; Qi, Zhang

    2016-08-01

    Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.

  19. Medical information, communication, and archiving system (MICAS): Phase II integration and acceptance testing

    NASA Astrophysics Data System (ADS)

    Smith, Edward M.; Wandtke, John; Robinson, Arvin E.

    1999-07-01

    The Medical Information, Communication and Archive System (MICAS) is a multi-modality integrated image management system that is seamlessly integrated with the Radiology Information System (RIS). This project was initiated in the summer of 1995 with the first phase being installed during the first half of 1997 and the second phase installed during the summer of 1998. Phase II enhancements include a permanent archive, automated workflow including modality worklist, study caches, NT diagnostic workstations with all components adhering to Digital Imaging and Communications in Medicine (DICOM) standards. This multi-vendor phased approach to PACS implementation is designed as an enterprise-wide PACS to provide images and reports throughout our healthcare network. MICAS demonstrates that aa multi-vendor open system phased approach to PACS is feasible, cost-effective, and has significant advantages over a single vendor implementation.

  20. [Research on the methods for multi-class kernel CSP-based feature extraction].

    PubMed

    Wang, Jinjia; Zhang, Lingzhi; Hu, Bei

    2012-04-01

    To relax the presumption of strictly linear patterns in the common spatial patterns (CSP), we studied the kernel CSP (KCSP). A new multi-class KCSP (MKCSP) approach was proposed in this paper, which combines the kernel approach with multi-class CSP technique. In this approach, we used kernel spatial patterns for each class against all others, and extracted signal components specific to one condition from EEG data sets of multiple conditions. Then we performed classification using the Logistic linear classifier. Brain computer interface (BCI) competition III_3a was used in the experiment. Through the experiment, it can be proved that this approach could decompose the raw EEG singles into spatial patterns extracted from multi-class of single trial EEG, and could obtain good classification results.

  1. Data fusion of multi-scale representations for structural damage detection

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-01-01

    Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.

  2. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  3. Using Rocks: A Discovery Approach to Multi-faceted Learning.

    ERIC Educational Resources Information Center

    Thomas, John I.

    Pupils' natural questioning attitudes lead them to discovery in a learning center, in contrast to the lecture method, by which information is forced on students regardless of their interests. This paper describes learning experiences built around rocks. Materials placed in a rock center (rocks, stones, pebbles, magnifying glasses hammers, and…

  4. A multi-objective optimization approach accurately resolves protein domain architectures

    PubMed Central

    Bernardes, J.S.; Vieira, F.R.J.; Zaverucha, G.; Carbone, A.

    2016-01-01

    Motivation: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. Availability and implementation: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26458889

  5. EXPERIMENTING WITH MULTI-ATTRIBUTE UTILITY SURVEY METHODS IN A MULTI-DIMENSIONAL VALUATION PROBLEM. (R824699)

    EPA Science Inventory

    Abstract

    The use of willingness-to-pay (WTP) survey techniques based on multi-attribute utility (MAU) approaches has been recommended by some authors as a way to deal simultaneously with two difficulties that increasingly plague environmental valuation. The first of th...

  6. A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care

    NASA Astrophysics Data System (ADS)

    Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.

    This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.

  7. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. MultiWaveLink: An interactive data base for the coordination of multiwavelength and multifacility observations

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.

    1993-01-01

    MultiWaveLink is an interactive, computerized data base that was developed to facilitate a multi-wavelength approach to studying astrophysical sources. It can be used to access information about multiwavelenth resources (observers, telescopes, data bases and analysis facilities) or to organize observing campaigns that require either many telescopes operating in different spectral regimes or a network of similar telescopes circumspanning the Earth.

  10. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider. Conclusion By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition. PMID:17570145

  11. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    NASA Astrophysics Data System (ADS)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites with depths of exploration ranging from 150 to 450 m. The sites included shallow geothermal sites near Reno Nevada, Pomarance Italy, and Volterra Italy; a mineral exploration site near Timmins Quebec; and a landslide investigation near Vajont Dam in northern Italy. These sites provided a series of challenges in survey design and deployment including some extremely difficult terrain and a broad range of background resistivity and induced values. Despite these challenges, comparison of multi-source results to resistivity and induced polarization data collection with more traditional methods support the thesis that the multi-source approach is capable of providing substantial improvements in both depth of penetration and resolution over conventional approaches.

  12. Application of Deep Learning of Multi-Temporal SENTINEL-1 Images for the Classification of Coastal Vegetation Zone of the Danube Delta

    NASA Astrophysics Data System (ADS)

    Niculescu, S.; Ienco, D.; Hanganu, J.

    2018-04-01

    Land cover is a fundamental variable for regional planning, as well as for the study and understanding of the environment. This work propose a multi-temporal approach relying on a fusion of radar multi-sensor data and information collected by the latest sensor (Sentinel-1) with a view to obtaining better results than traditional image processing techniques. The Danube Delta is the site for this work. The spatial approach relies on new spatial analysis technologies and methodologies: Deep Learning of multi-temporal Sentinel-1. We propose a deep learning network for image classification which exploits the multi-temporal characteristic of Sentinel-1 data. The model we employ is a Gated Recurrent Unit (GRU) Network, a recurrent neural network that explicitly takes into account the time dimension via a gated mechanism to perform the final prediction. The main quality of the GRU network is its ability to consider only the important part of the information coming from the temporal data discarding the irrelevant information via a forgetting mechanism. We propose to use such network structure to classify a series of images Sentinel-1 (20 Sentinel-1 images acquired between 9.10.2014 and 01.04.2016). The results are compared with results of the classification of Random Forest.

  13. DAFNE: A Matlab toolbox for Bayesian multi-source remote sensing and ancillary data fusion, with application to flood mapping

    NASA Astrophysics Data System (ADS)

    D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco P.; Pasquariello, Guido

    2018-03-01

    High-resolution, remotely sensed images of the Earth surface have been proven to be of help in producing detailed flood maps, thanks to their synoptic overview of the flooded area and frequent revisits. However, flood scenarios can be complex situations, requiring the integration of different data in order to provide accurate and robust flood information. Several processing approaches have been recently proposed to efficiently combine and integrate heterogeneous information sources. In this paper, we introduce DAFNE, a Matlab®-based, open source toolbox, conceived to produce flood maps from remotely sensed and other ancillary information, through a data fusion approach. DAFNE is based on Bayesian Networks, and is composed of several independent modules, each one performing a different task. Multi-temporal and multi-sensor data can be easily handled, with the possibility of following the evolution of an event through multi-temporal output flood maps. Each DAFNE module can be easily modified or upgraded to meet different user needs. The DAFNE suite is presented together with an example of its application.

  14. Screening reservoir systems by considering the efficient trade-offs—informing infrastructure investment decisions on the Blue Nile

    NASA Astrophysics Data System (ADS)

    Geressu, Robel T.; Harou, Julien J.

    2015-12-01

    Multi-reservoir system planners should consider how new dams impact downstream reservoirs and the potential contribution of each component to coordinated management. We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. This proof-of concept study shows that recommended Blue Nile system designs would depend on whether monthly firm energy or annual energy is prioritized. 39 TWh/yr of energy potential is available from the proposed Blue Nile reservoirs. The results show that depending on the amount of energy deemed sufficient, the current maximum capacities of the planned reservoirs could be larger than they need to be. The method can also be used to inform which of the proposed reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in different objectives of upstream operating objectives (i.e., operated to maximize either average annual energy or firm energy). The proposed approach identifies the most promising system designs, reveals how they imply different trade-offs between metrics of system performance, and helps system planners asses the sensitivity of overall performance to the design parameters of component reservoirs.

  15. Cell Motility Dynamics: A Novel Segmentation Algorithm to Quantify Multi-Cellular Bright Field Microscopy Images

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications. PMID:22096600

  16. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    PubMed

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications.

  17. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  18. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records

    PubMed Central

    Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    Objective There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. Materials and methods We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. Results An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. Discussion A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. Conclusion We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries. PMID:22319176

  19. Adding Semantics and OPM Ontology for the Provenance of Multi-sensor Merged Climate Data Records. Now What About Reproducibility?

    NASA Astrophysics Data System (ADS)

    Hua, H.; Wilson, B. D.; Manipon, G.; Pan, L.; Fetzer, E.

    2011-12-01

    Multi-decadal climate data records are critical to studying climate variability and change. These often also require merging data from multiple instruments such as those from NASA's A-Train that contain measurements covering a wide range of atmospheric conditions and phenomena. Multi-decadal climate data record of water vapor measurements from sensors on A-Train, operational weather, and other satellites are being assembled from existing data sources, or produced from well-established methods published in peer-reviewed literature. However, the immense volume and inhomogeneity of data often requires an "exploratory computing" approach to product generation where data is processed in a variety of different ways with varying algorithms, parameters, and code changes until an acceptable intermediate product is generated. This process is repeated until a desirable final merged product can be generated. Typically the production legacy is often lost due to the complexity of processing steps that were tried along the way. The data product information associated with source data, processing methods, parameters used, intermediate product outputs, and associated materials are often hidden in each of the trials and scattered throughout the processing system(s). We will discuss methods to help users better capture and explore the production legacy of the data, metadata, ancillary files, code, and computing environment changes used during the production of these merged and multi-sensor data products. By leveraging existing semantic and provenance tools, we can capture sufficient information to enable users to track, perform faceted searches, and visualize the provenance of the products and processing lineage. We will explore if sufficient provenance information can be captured to enable science reproducibility of these climate data records.

  20. Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording

    PubMed Central

    Eliseyev, Andrey; Aksenova, Tetiana

    2016-01-01

    In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience. PMID:27196417

  1. Device Independent Layout and Style Editing Using Multi-Level Style Sheets

    NASA Astrophysics Data System (ADS)

    Dees, Walter

    This paper describes a layout and styling framework that is based on the multi-level style sheets approach. It shows some of the techniques that can be used to add layout and style information to a UI in a device-independent manner, and how to reuse the layout and style information to create user interfaces for different devices

  2. A practical salient region feature based 3D multi-modality registration method for medical images

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Wolz, Gabriele; Sun, Yiyong; Hornegger, Joachim; Sauer, Frank; Kuwert, Torsten; Xu, Chenyang

    2006-03-01

    We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection, tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by a medical expert with an approach that measures the distance between a set of selected corresponding points consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential medical applications and possibilities for integration into a non-rigid registration framework.

  3. Generating multi-double-scroll attractors via nonautonomous approach.

    PubMed

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  4. A Generalized Mixture Framework for Multi-label Classification

    PubMed Central

    Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos

    2015-01-01

    We develop a novel probabilistic ensemble framework for multi-label classification that is based on the mixtures-of-experts architecture. In this framework, we combine multi-label classification models in the classifier chains family that decompose the class posterior distribution P(Y1, …, Yd|X) using a product of posterior distributions over components of the output space. Our approach captures different input–output and output–output relations that tend to change across data. As a result, we can recover a rich set of dependency relations among inputs and outputs that a single multi-label classification model cannot capture due to its modeling simplifications. We develop and present algorithms for learning the mixtures-of-experts models from data and for performing multi-label predictions on unseen data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods. PMID:26613069

  5. Parasites and vectors carry no passport: how to fund cross-border and regional efforts to achieve malaria elimination

    PubMed Central

    2012-01-01

    Background Tremendous progress has been made in the last ten years in reducing morbidity and mortality caused by malaria, in part because of increases in global funding for malaria control and elimination. Today, many countries are striving for malaria elimination. However, a major challenge is the neglect of cross-border and regional initiatives in malaria control and elimination. This paper seeks to better understand Global Fund support for multi-country initiatives. Methods Documents and proposals were extracted and reviewed from two main sources, the Global Fund website and Aidspan.org. Documents and reports from the Global Fund Technical Review Panel, Board, and Secretariat documents such as guidelines and proposal templates were reviewed to establish the type of policies enacted and guidance provided from the Global Fund on multi-country initiatives and applications. From reviewing this information, the researchers created 29 variables according to eight dimensions to use in a review of Round 10 applications. All Round 10 multi-country applications (for HIV, malaria and tuberculosis) and all malaria multi-country applications (6) from Rounds 1 – 10 were extracted from the Global Fund website. A blind review was conducted of Round 10 applications using the 29 variables as a framework, followed by a review of four of the six successful malaria multi-country grant applications from Rounds 1 – 10. Findings During Rounds 3 – 10 of the Global Fund, only 5.8% of grants submitted were for multi-country initiatives. Out of 83 multi-country proposals submitted, 25.3% were approved by the Technical Review Panel (TRP) for funding, compared to 44.9% of single-country applications. The majority of approved multi-country applications were for HIV (76.2%), followed by malaria (19.0%), then tuberculosis (4.8%). TRP recommendations resulted in improvements to application forms, although guidance was generally vague. The in-depth review of Round 10 multi-country proposals showed that applicants described their projects in one of two ways: a regional ‘network approach’ by which benefits are derived from economies of scale or from enhanced opportunities for mutual support and learning or the development of common policies and approaches; or a ‘cross-border’ approach for enabling activities to be more effectively delivered towards border-crossing populations or vectors. In Round 10, only those with a ‘network approach’ were recommended for funding. The Global Fund has only ever approved six malaria multi-country applications. Four approved applications stated strong arguments for a multi-country initiative, combining both ‘cross-border’ and ‘network’ approaches. Conclusion With the cancellation of Round 11 and the proposal that the Global Fund adopt a more targeted and strategic approach to funding, the time is opportune for the Global Fund to develop a clear consensus about the key factors and criteria for funding malaria specific multi-country initiatives. This study found that currently there was a lack of guidance on the key features that a successful multi-country proposal needs to be approved and that applications directed towards the ‘network’ approach were most successful in Round 10. This type of multi-country proposal may favour other diseases such as HIV, whereas the need for malaria control and elimination is different, focusing on cross-border coordination and delivery of interventions to specific groups. The Global Fund should seek to address these issues and give better guidance to countries and regions and investigate disease-specific calls for multi-country and regional applications. PMID:23057734

  6. A multi-threshold sampling method for TOF-PET signal processing

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.; Zhou, L.; Tang, F.; Frisch, H.; Moses, W. W.; Choong, W. S.

    2009-04-01

    As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25×6.25×25 mm3 LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an ˜18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an ˜9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain ˜300 ps coincidence timing resolution, ˜14% energy resolution at 511 keV, and ˜5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.

  7. Detecting experimental techniques and selecting relevant documents for protein-protein interactions from biomedical literature.

    PubMed

    Wang, Xinglong; Rak, Rafal; Restificar, Angelo; Nobata, Chikashi; Rupp, C J; Batista-Navarro, Riza Theresa B; Nawaz, Raheel; Ananiadou, Sophia

    2011-10-03

    The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest's Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task's development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew's Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance.

  8. Risk Governance of Multiple Natural Hazards: Centralized versus Decentralized Approach in Europe

    NASA Astrophysics Data System (ADS)

    Komendantova, Nadejda; Scolobig, Anna; Vinchon, Charlotte

    2014-05-01

    The multi-risk approach is a relatively new field and its definition includes the need to consider multiple hazards and vulnerabilities in their interdependency (Selva, 2013) and the current multi-hazards disasters, such as the 2011 Tohoku earthquake, tsunami and nuclear catastrophe, showed the need for a multi-risk approach in hazard mitigation and management. Our knowledge about multi-risk assessment, including studies from different scientific disciplines and developed assessment tools, is constantly growing (White et al., 2001). However, the link between scientific knowledge, its implementation and the results in terms of improved governance and decision-making have gained significantly less attention (IRGC, 2005; Kappes et al., 2012), even though the interest to risk governance, in general, has increased significantly during the last years (Verweiy and Thompson, 2006). Therefore, the key research question is how risk assessment is implemented and what is the potential for the implementation of a multi-risk approach in different governance systems across Europe. More precisely, how do the characteristics of risk governance, such as the degree of centralization versus decentralization, influence the implementation of a multi-risk approach. The methodology of this research includes comparative case study analysis of top-down and bottom-up interactions in governance in the city of Naples, (Italy), where the institutional landscape is marked by significant autonomy of Italian regions in decision-making processes for assessing the majority of natural risks, excluding volcanic, and in Guadeloupe, French West Indies, an overseas department of France, where the decision-making process is marked by greater centralization in decision making associated with a well established state governance within regions, delegated to the prefect and decentralised services of central ministries. The research design included documentary analysis and extensive empirical work involving policy makers, private sector actors and practitioners in risk and emergency management. This work was informed by 36 semi-structured interviews, three workshops with over seventy participants from eleven different countries, feedback from questionnaires and focus group discussions (Scolobig et al., 2013). The results show that both governance systems have their own strengths and weaknesses (Komendantova et al., 2013). Elements of the centralized multi-risk governance system could lead to improvements in interagency communication and the creation of an inter-agency environment, where the different departments at the national level can exchange information, identify the communities that are most exposed to multiple risks and set priorities, while providing consistent information about and responses to multi-risk to the relevant stakeholders at the local level. A decentralised multi-risk governance system by contrast can instead favour the creation of local multi-risk commissions to conduct discussions between experts in meteorological, geological and technological risks and practitioners, to elaborate risk and hazard maps, and to develop local capacities which would include educational and training activities. Both governance systems suffer from common deficiencies, the most important being the frequent lack of capacities at the local level, especially financial, but sometimes also technical and institutional ones, as the responsibilities for disaster risk management are often transferred from the national to local levels without sufficient resources for implementation of programs on risk management (UNISDR, 2013). The difficulty in balancing available resources between short-term and medium-term priorities often complicates the issue. Our recommendations are that the implementation of multi-risk approach can be facilitated through knowledge exchange and dialogue between different disciplinary communities, such as geological and meteorological, and between the natural and social sciences. The implementation of a multi-risk approach can be strengthened through the creation of multi-risk platforms and multi-risk commissions, which can liaise between risk management experts and local communities and to unify numerous actions on natural hazard management. However, the multi-risk approach cannot be a subsidiary to a single risk approach, and both have to be pursued. References: IRGC. (2011). Concept note: Improving the management of emerging risks: Risks from new technologies, system interactions, and unforeseen or changing circumstances. International Risk Governance Council (IRGC), Geneva. Kappes, M. S., Keiler, M., Elverfeldt, von K., & Glade, T, (2012). Challenges of analyzing multi-hazard risk: A review. Natural Hazards, 64(2), 1925-1958. doi: 10.1007/s11069-012-0294-2. Komendantova N, Scolobig A, Vinchon C (2013). Multi-risk approach in centralized and decentralized risk governance systems: Case studies of Naples, Italy and Guadeloupe, France. International Relations and Diplomacy, 1(3):224-239 (December 2013) Scolobig, A., Vichon, C., Komendantova, N., Bengoubou-Valerius, M., & Patt, A. (2013). Social and institutional barriers to effective multi-hazard and multi-risk decision-making governance. D6.3 MATRIX project. Selva, J. (2013). Long-term multi-risk assessment: statistical treatment of interaction among risks. Natural Hazards, 67(2),701-722. UNISDR. (2013). Implementing the HYOGO framework for action in Europe: Regional synthesis report 2011-2013. Verweij, M., & Thompson, M. (Eds.). (2006). Clumsy solutions for a complex world: Governance, politics, and plural perceptions. New York: Palgrave Macmillan. White, G., Kates, R., & Burton, I. (2001). Knowing better and losing even more: the use of knowledge in hazards management. Environmental Hazards, 3, 81-92.

  9. An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method

    NASA Astrophysics Data System (ADS)

    Furuya, N.; Sakamoto, K.; Kanai, H.

    2010-04-01

    It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.

  10. Co-Labeling for Multi-View Weakly Labeled Learning.

    PubMed

    Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W

    2016-06-01

    It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi-view datasets clearly demonstrate that our proposed co-labeling approach achieves state-of-the-art performance for various multi-view weakly labeled learning problems including multi-view SSL, multi-view MIL and multi-view ROD.

  11. Developmental psycholinguistics teaches us that we need multi-method, not single-method, approaches to the study of linguistic representation.

    PubMed

    Rowland, Caroline F; Monaghan, Padraic

    2017-01-01

    In developmental psycholinguistics, we have, for many years, been generating and testing theories that propose both descriptions of adult representations and explanations of how those representations develop. We have learnt that restricting ourselves to any one methodology yields only incomplete data about the nature of linguistic representations. We argue that we need a multi-method approach to the study of representation.

  12. Online Teaching in Networked Learning Communities: A Multi-Method Approach to Studying the Role of the Teacher

    ERIC Educational Resources Information Center

    De Laat, Maarten; Lally, Vic; Lipponen, Lasse; Simons, Robert-Jan

    2007-01-01

    The aim of this paper is to study the online teaching styles of two teachers who each tutor a networked learning community (NLC), within the same workshop. The study is undertaking empirical work using a multi-method approach in order to triangulate and contextualise our findings and enrich our understanding of the teacher participation in these…

  13. An Active Learning Approach to Teach Advanced Multi-Predictor Modeling Concepts to Clinicians

    ERIC Educational Resources Information Center

    Samsa, Gregory P.; Thomas, Laine; Lee, Linda S.; Neal, Edward M.

    2012-01-01

    Clinicians have characteristics--high scientific maturity, low tolerance for symbol manipulation and programming, limited time outside of class--that limit the effectiveness of traditional methods for teaching multi-predictor modeling. We describe an active-learning based approach that shows particular promise for accommodating these…

  14. A multi-views multi-learners approach towards dysarthric speech recognition using multi-nets artificial neural networks.

    PubMed

    Shahamiri, Seyed Reza; Salim, Siti Salwah Binti

    2014-09-01

    Automatic speech recognition (ASR) can be very helpful for speakers who suffer from dysarthria, a neurological disability that damages the control of motor speech articulators. Although a few attempts have been made to apply ASR technologies to sufferers of dysarthria, previous studies show that such ASR systems have not attained an adequate level of performance. In this study, a dysarthric multi-networks speech recognizer (DM-NSR) model is provided using a realization of multi-views multi-learners approach called multi-nets artificial neural networks, which tolerates variability of dysarthric speech. In particular, the DM-NSR model employs several ANNs (as learners) to approximate the likelihood of ASR vocabulary words and to deal with the complexity of dysarthric speech. The proposed DM-NSR approach was presented as both speaker-dependent and speaker-independent paradigms. In order to highlight the performance of the proposed model over legacy models, multi-views single-learner models of the DM-NSRs were also provided and their efficiencies were compared in detail. Moreover, a comparison among the prominent dysarthric ASR methods and the proposed one is provided. The results show that the DM-NSR recorded improved recognition rate by up to 24.67% and the error rate was reduced by up to 8.63% over the reference model.

  15. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    DOE PAGES

    Yu, Hua-Gen

    2015-01-28

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less

  16. Teaching University Students Cultural Diversity by Means of Multi-Cultural Picture Books in Taiwan

    ERIC Educational Resources Information Center

    Wu, Jia-Fen

    2017-01-01

    In a pluralistic society, learning about foreign cultures is an important goal in the kind of multi-cultural education that will lead to cultural competency. This study adopted a qualitative dominant mixed-method approach to examine the effectiveness of the multi-cultural picture books on: (1) students' achieving awareness towards cultural…

  17. "I'm on it 24/7 at the moment": A qualitative examination of multi-screen viewing behaviours among UK 10-11 year olds

    PubMed Central

    2011-01-01

    Background Screen-viewing has been associated with increased body mass, increased risk of metabolic syndrome and lower psychological well-being among children and adolescents. There is a shortage of information about the nature of contemporary screen-viewing amongst children especially given the rapid advances in screen-viewing equipment technology and their widespread availability. Anecdotal evidence suggests that large numbers of children embrace the multi-functionality of current devices to engage in multiple forms of screen-viewing at the same time. In this paper we used qualitative methods to assess the nature and extent of multiple forms of screen-viewing in UK children. Methods Focus groups were conducted with 10-11 year old children (n = 63) who were recruited from five primary schools in Bristol, UK. Topics included the types of screen-viewing in which the participants engaged; whether the participants ever engaged in more than one form of screen-viewing at any time and if so the nature of this multiple viewing; reasons for engaging in multi-screen-viewing; the room within the house where multi-screen-viewing took place and the reasons for selecting that room. All focus groups were transcribed verbatim, anonymised and thematically analysed. Results Multi-screen viewing was a common behaviour. Although multi-screen viewing often involved watching TV, TV viewing was often the background behaviour with attention focussed towards a laptop, handheld device or smart-phone. There were three main reasons for engaging in multi-screen viewing: 1) tempering impatience that was associated with a programme loading; 2) multi-screen facilitated filtering out unwanted content such as advertisements; and 3) multi-screen viewing was perceived to be enjoyable. Multi-screen viewing occurred either in the child's bedroom or in the main living area of the home. There was considerable variability in the level and timing of viewing and this appeared to be a function of whether the participants attended after-school clubs. Conclusions UK children regularly engage in two or more forms of screen-viewing at the same time. There are currently no means of assessing multi-screen viewing nor any interventions that specifically focus on reducing multi-screen viewing. To reduce children's overall screen-viewing we need to understand and then develop approaches to reduce multi-screen viewing among children. PMID:21812945

  18. Analysis of yield and oil from a series of canola breeding trials. Part II. Exploring variety by environment interaction using factor analysis.

    PubMed

    Cullis, B R; Smith, A B; Beeck, C P; Cowling, W A

    2010-11-01

    Exploring and exploiting variety by environment (V × E) interaction is one of the major challenges facing plant breeders. In paper I of this series, we presented an approach to modelling V × E interaction in the analysis of complex multi-environment trials using factor analytic models. In this paper, we develop a range of statistical tools which explore V × E interaction in this context. These tools include graphical displays such as heat-maps of genetic correlation matrices as well as so-called E-scaled uniplots that are a more informative alternative to the classical biplot for large plant breeding multi-environment trials. We also present a new approach to prediction for multi-environment trials that include pedigree information. This approach allows meaningful selection indices to be formed either for potential new varieties or potential parents.

  19. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    PubMed

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  20. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network

    PubMed Central

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-01-01

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466

  1. MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes.

    PubMed

    Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán

    2017-04-24

    We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.

  2. Combinatorial Optimization in Project Selection Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Dewi, Sari; Sawaluddin

    2018-01-01

    This paper discusses the problem of project selection in the presence of two objective functions that maximize profit and minimize cost and the existence of some limitations is limited resources availability and time available so that there is need allocation of resources in each project. These resources are human resources, machine resources, raw material resources. This is treated as a consideration to not exceed the budget that has been determined. So that can be formulated mathematics for objective function (multi-objective) with boundaries that fulfilled. To assist the project selection process, a multi-objective combinatorial optimization approach is used to obtain an optimal solution for the selection of the right project. It then described a multi-objective method of genetic algorithm as one method of multi-objective combinatorial optimization approach to simplify the project selection process in a large scope.

  3. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  4. Multi-rendezvous low-thrust trajectory optimization using costate transforming and homotopic approach

    NASA Astrophysics Data System (ADS)

    Chen, Shiyu; Li, Haiyang; Baoyin, Hexi

    2018-06-01

    This paper investigates a method for optimizing multi-rendezvous low-thrust trajectories using indirect methods. An efficient technique, labeled costate transforming, is proposed to optimize multiple trajectory legs simultaneously rather than optimizing each trajectory leg individually. Complex inner-point constraints and a large number of free variables are one main challenge in optimizing multi-leg transfers via shooting algorithms. Such a difficulty is reduced by first optimizing each trajectory leg individually. The results may be, next, utilized as an initial guess in the simultaneous optimization of multiple trajectory legs. In this paper, the limitations of similar techniques in previous research is surpassed and a homotopic approach is employed to improve the convergence efficiency of the shooting process in multi-rendezvous low-thrust trajectory optimization. Numerical examples demonstrate that newly introduced techniques are valid and efficient.

  5. Combination of uncertainty theories and decision-aiding methods for natural risk management in a context of imperfect information

    NASA Astrophysics Data System (ADS)

    Tacnet, Jean-Marc; Dupouy, Guillaume; Carladous, Simon; Dezert, Jean; Batton-Hubert, Mireille

    2017-04-01

    In mountain areas, natural phenomena such as snow avalanches, debris-flows and rock-falls, put people and objects at risk with sometimes dramatic consequences. Risk is classically considered as a combination of hazard, the combination of the intensity and frequency of the phenomenon, and vulnerability which corresponds to the consequences of the phenomenon on exposed people and material assets. Risk management consists in identifying the risk level as well as choosing the best strategies for risk prevention, i.e. mitigation. In the context of natural phenomena in mountainous areas, technical and scientific knowledge is often lacking. Risk management decisions are therefore based on imperfect information. This information comes from more or less reliable sources ranging from historical data, expert assessments, numerical simulations etc. Finally, risk management decisions are the result of complex knowledge management and reasoning processes. Tracing the information and propagating information quality from data acquisition to decisions are therefore important steps in the decision-making process. One major goal today is therefore to assist decision-making while considering the availability, quality and reliability of information content and sources. A global integrated framework is proposed to improve the risk management process in a context of information imperfection provided by more or less reliable sources: uncertainty as well as imprecision, inconsistency and incompleteness are considered. Several methods are used and associated in an original way: sequential decision context description, development of specific multi-criteria decision-making methods, imperfection propagation in numerical modeling and information fusion. This framework not only assists in decision-making but also traces the process and evaluates the impact of information quality on decision-making. We focus and present two main developments. The first one relates to uncertainty and imprecision propagation in numerical modeling using both classical Monte-Carlo probabilistic approach and also so-called Hybrid approach using possibility theory. Second approach deals with new multi-criteria decision-making methods which consider information imperfection, source reliability, importance and conflict, using fuzzy sets as well as possibility and belief function theories. Implemented methods consider information imperfection propagation and information fusion in total aggregation methods such as AHP (Saaty, 1980) or partial aggregation methods such as the Electre outranking method (see Soft Electre Tri ) or decisions in certain but also risky or uncertain contexts (see new COWA-ER and FOWA-ER- Cautious and Fuzzy Ordered Weighted Averaging-Evidential Reasoning). For example, the ER-MCDA methodology considers expert assessment as a multi-criteria decision process based on imperfect information provided by more or less heterogeneous, reliable and conflicting sources: it mixes AHP, fuzzy sets theory, possibility theory and belief function theory using DSmT (Dezert-Smarandache Theory) framework which provides powerful fusion rules.

  6. Troubling the Boundaries: Overcoming Methodological Challenges in a Multi-Sectoral and Multi-Jurisdictional HIV/HCV Policy Scoping Review

    ERIC Educational Resources Information Center

    Hare, Kathleen A.; Dubé, Anik; Marshall, Zack; Gahagan, Jacqueline; Harris, Gregory E.; Tucker, Maryanne; Dykeman, Margaret; MacDonald, Jo-Ann

    2016-01-01

    Policy scoping reviews are an effective method for generating evidence-informed policies. However, when applying guiding methodological frameworks to complex policy evidence, numerous, unexpected challenges can emerge. This paper details five challenges experienced and addressed by a policy trainee-led, multi-disciplinary research team, while…

  7. A multi-domain spectral method for time-fractional differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  8. Multi-disciplinary decision making in general practice.

    PubMed

    Kirby, Ann; Murphy, Aileen; Bradley, Colin

    2018-04-09

    Purpose Internationally, healthcare systems are moving towards delivering care in an integrated manner which advocates a multi-disciplinary approach to decision making. Such an approach is formally encouraged in the management of Atrial Fibrillation patients through the European Society of Cardiology guidelines. Since the emergence of new oral anticoagulants switching between oral anticoagulants (OACs) has become prevalent. This case study considers the role of multi-disciplinary decision making, given the complex nature of the agents. The purpose of this paper is to explore Irish General Practitioners' (GPs) experience of switching between all OACs for Arial Fibrillation (AF) patients; prevalence of multi-disciplinary decision making in OAC switching decisions and seeks to determine the GP characteristics that appear to influence the likelihood of multi-disciplinary decision making. Design/methodology/approach A probit model is used to determine the factors influencing multi-disciplinary decision making and a multinomial logit is used to examine the factors influencing who is involved in the multi-disciplinary decisions. Findings Results reveal that while some multi-disciplinary decision-making is occurring (64 per cent), it is not standard practice despite international guidelines on integrated care. Moreover, there is a lack of patient participation in the decision-making process. Female GPs and GPs who have initiated prescriptions for OACs are more likely to engage in multi-disciplinary decision-making surrounding switching OACs amongst AF patients. GPs with training practices were less likely to engage with cardiac consultants and those in urban areas were more likely to engage with other (non-cardiac) consultants. Originality/value For optimal decision making under uncertainty multi-disciplinary decision-making is needed to make a more informed judgement and to improve treatment decisions and reduce the opportunity cost of making the wrong decision.

  9. Measurement of positron annihilation lifetimes for positron burst by multi-detector array

    NASA Astrophysics Data System (ADS)

    Wang, B. Y.; Kuang, P.; Liu, F. Y.; Han, Z. J.; Cao, X. Z.; Zhang, P.

    2018-03-01

    It is currently impossible to exploit the timing information in a gamma-ray pulse generated within nanoseconds when a high-intensity positron burst annihilation event occurs in a target using conventional single-detector methods. A state-of-the-art solution to the problem is proposed in this paper. In this approach, a multi-detector array composed of many independent detection cells mounted spherically around the target is designed to detect the time distribution of the annihilated gamma rays generated following, in particular, a positron burst emitting huge amounts of positrons in a short pulse duration, even less than a few nano- or picoseconds.

  10. Multi-task feature learning by using trace norm regularization

    NASA Astrophysics Data System (ADS)

    Jiangmei, Zhang; Binfeng, Yu; Haibo, Ji; Wang, Kunpeng

    2017-11-01

    Multi-task learning can extract the correlation of multiple related machine learning problems to improve performance. This paper considers applying the multi-task learning method to learn a single task. We propose a new learning approach, which employs the mixture of expert model to divide a learning task into several related sub-tasks, and then uses the trace norm regularization to extract common feature representation of these sub-tasks. A nonlinear extension of this approach by using kernel is also provided. Experiments conducted on both simulated and real data sets demonstrate the advantage of the proposed approach.

  11. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review.

    PubMed

    De Luca, Anna Irene; Iofrida, Nathalie; Leskinen, Pekka; Stillitano, Teodora; Falcone, Giacomo; Strano, Alfio; Gulisano, Giovanni

    2017-10-01

    Life cycle (LC) methodologies have attracted a great interest in agricultural sustainability assessments, even if, at the same time, they have sometimes been criticized for making unrealistic assumptions and subjective choices. To cope with these weaknesses, Multi-Criteria Decision Analysis (MCDA) and/or participatory methods can be used to balance and integrate different sustainability dimensions. The purpose of this study is to highlight how life cycle approaches were combined with MCDA and participatory methods to address agricultural sustainability in the published scientific literature. A systematic and critical review was developed, highlighting the following features: which multi-criterial and/or participatory methods have been associated with LC tools; how they have been integrated or complemented (methodological relationships); the intensity of the involvement of stakeholders (degree of participation); and which synergies have been achieved by combining the methods. The main typology of integration was represented by multi-criterial frameworks integrating LC evaluations. LC tools can provide MCDA studies with local and global information on how to reduce negative impacts and avoid burden shifts, while MCDA methods can help LC practitioners deal with subjective assumptions in an objective way, to take into consideration actors' values and to overcome trade-offs among the different dimensions of sustainability. Considerations concerning the further development of Life Cycle Sustainability Assessment (LCSA) have been identified as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Soft-information flipping approach in multi-head multi-track BPMR systems

    NASA Astrophysics Data System (ADS)

    Warisarn, C.; Busyatras, W.; Myint, L. M. M.

    2018-05-01

    Inter-track interference is one of the most severe impairments in bit-patterned media recording system. This impairment can be effectively handled by a modulation code and a multi-head array jointly processing multiple tracks; however, such a modulation constraint has never been utilized to improve the soft-information. Therefore, this paper proposes the utilization of modulation codes with an encoded constraint defined by the criteria for soft-information flipping during a three-track data detection process. Moreover, we also investigate the optimal offset position of readheads to provide the most improvement in system performance. The simulation results indicate that the proposed systems with and without position jitter are significantly superior to uncoded systems.

  13. Sustainable prevention of obesity through integrated strategies: The SPOTLIGHT project's conceptual framework and design.

    PubMed

    Lakerveld, Jeroen; Brug, Johannes; Bot, Sandra; Teixeira, Pedro J; Rutter, Harry; Woodward, Euan; Samdal, Oddrun; Stockley, Lynn; De Bourdeaudhuij, Ilse; van Assema, Patricia; Robertson, Aileen; Lobstein, Tim; Oppert, Jean-Michel; Adány, Róza; Nijpels, Giel

    2012-09-17

    The prevalence of overweight and obesity in Europe is high. It is a major cause of the overall rates of many of the main chronic (or non communicable) diseases in this region and is characterized by an unequal socio-economic distribution within the population. Obesity is largely determined by modifiable lifestyle behaviours such as low physical activity levels, sedentary behaviour and consumption of energy dense diets. It is increasingly being recognised that effective responses must go beyond interventions that only focus on a specific individual, social or environmental level and instead embrace system-based multi-level intervention approaches that address both the individual and environment. The EU-funded project "sustainable prevention of obesity through integrated strategies" (SPOTLIGHT) aims to increase and combine knowledge on the wide range of determinants of obesity in a systematic way, and to identify multi-level intervention approaches that are strong in terms of Reach, Efficacy, Adoption, Implementation and Maintenance (RE-AIM). SPOTLIGHT comprises a series of systematic reviews on: individual-level predictors of success in behaviour change obesity interventions; social and physical environmental determinants of obesity; and on the RE-AIM of multi-level interventions. An interactive web-atlas of currently running multi-level interventions will be developed, and enhancing and impeding factors for implementation will be described. At the neighbourhood level, these elements will inform the development of methods to assess obesogenicity of diverse environments, using remote imaging techniques linked to geographic information systems. The validity of these methods will be evaluated using data from surveys of health and lifestyles of adults residing in the neighbourhoods surveyed. At both the micro- and macro-levels (national and international) the different physical, economical, political and socio-cultural elements will be assessed. SPOTLIGHT offers the potential to develop approaches that combine an understanding of the obesogenicity of environments in Europe, and thus how they can be improved, with an appreciation of the individual factors that explain why people respond differently to such environments. Its findings will inform governmental authorities and professionals, academics, NGOs and private sector stakeholders engaged in the development and implementation of policies to tackle the obesity epidemic in Europe.

  14. Shifting Preservice Teachers' Beliefs and Understandings to Support Pedagogical Change in Mathematics

    ERIC Educational Resources Information Center

    Letwinsky, Karim Medico; Cavender, Monica

    2018-01-01

    Many preservice teacher (PST) programs throughout the world are preparing students to implement the Core Standards, which require deeper conceptual understandings of mathematics and an informed approach for teaching. In this qualitative multi-case study, researchers explored the teaching methods for two university instructors and changes in PSTs…

  15. Information Needs within a Multi-District Environment.

    ERIC Educational Resources Information Center

    Thomas, Gregory P.

    This paper argues that no single measurement strategy serves all purposes and that applying methods and techniques which allow a variety of data elements to be retrieved and juxtaposed may be an investment in the future. Item response theory, Rasch model, and latent trait theory are all approaches to a single conceptual topic. An abbreviated look…

  16. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    PubMed

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multi-objective optimization in systematic conservation planning and the representation of genetic variability among populations.

    PubMed

    Schlottfeldt, S; Walter, M E M T; Carvalho, A C P L F; Soares, T N; Telles, M P C; Loyola, R D; Diniz-Filho, J A F

    2015-06-18

    Biodiversity crises have led scientists to develop strategies for achieving conservation goals. The underlying principle of these strategies lies in systematic conservation planning (SCP), in which there are at least 2 conflicting objectives, making it a good candidate for multi-objective optimization. Although SCP is typically applied at the species level (or hierarchically higher), it can be used at lower hierarchical levels, such as using alleles as basic units for analysis, for conservation genetics. Here, we propose a method of SCP using a multi-objective approach. We used non-dominated sorting genetic algorithm II in order to identify the smallest set of local populations of Dipteryx alata (baru) (a Brazilian Cerrado species) for conservation, representing the known genetic diversity and using allele frequency information associated with heterozygosity and Hardy-Weinberg equilibrium. We worked in 3 variations for the problem. First, we reproduced a previous experiment, but using a multi-objective approach. We found that the smallest set of populations needed to represent all alleles under study was 7, corroborating the results of the previous study, but with more distinct solutions. In the 2nd and 3rd variations, we performed simultaneous optimization of 4 and 5 objectives, respectively. We found similar but refined results for 7 populations, and a larger portfolio considering intra-specific diversity and persistence with populations ranging from 8-22. This is the first study to apply multi-objective algorithms to an SCP problem using alleles at the population level as basic units for analysis.

  18. Introduction to the Special Issue: Discrepancies in Adolescent-Parent Perceptions of the Family and Adolescent Adjustment.

    PubMed

    De Los Reyes, Andres; Ohannessian, Christine McCauley

    2016-10-01

    Researchers commonly rely on adolescents' and parents' reports to assess family functioning (e.g., conflict, parental monitoring, parenting practices, relationship quality). Recent work indicates that these reports may vary as to whether they converge or diverge in estimates of family functioning. Further, patterns of converging or diverging reports may yield important information about adolescent adjustment and family functioning. This work is part of a larger literature seeking to understand and interpret multi-informant assessments of psychological phenomena, namely mental health. In fact, recent innovations in conceptualizing, measuring, and analyzing multi-informant mental health assessments might meaningfully inform efforts to understand multi-informant assessments of family functioning. Therefore, in this Special Issue we address three aims. First, we provide a guiding framework for using and interpreting multi-informant assessments of family functioning, informed by recent theoretical work focused on using and interpreting multi-informant mental health assessments. Second, we report research on adolescents' and parents' reports of family functioning that leverages the latest methods for measuring and analyzing patterns of convergence and divergence between informants' reports. Third, we report research on measurement invariance and its role in interpreting adolescents' and parents' reports of family functioning. Research and theory reported in this Special Issue have important implications for improving our understanding of the links between multi-informant assessments of family functioning and adolescent adjustment.

  19. Assessing the challenges of multi-scope clinical research sites: an example from NIH HIV/AIDS clinical trials networks.

    PubMed

    Rosas, Scott R; Cope, Marie T; Villa, Christie; Motevalli, Mahnaz; Utech, Jill; Schouten, Jeffrey T

    2014-04-01

    Large-scale, multi-network clinical trials are seen as a means for efficient and effective utilization of resources with greater responsiveness to new discoveries. Formal structures instituted within the National Institutes of Health (NIH) HIV/AIDS Clinical Trials facilitate collaboration and coordination across networks and emphasize an integrated approach to HIV/AIDS vaccine, prevention and therapeutics clinical trials. This study examines the joint usage of clinical research sites as means of gaining efficiency, extending capacity, and adding scientific value to the networks. A semi-structured questionnaire covering eight clinical management domains was administered to 74 (62% of sites) clinical site coordinators at single- and multi-network sites to identify challenges and efficiencies related to clinical trials management activities and coordination with multi-network units. Overall, respondents at multi-network sites did not report more challenges than single-network sites, but did report unique challenges to overcome including in the areas of study prioritization, community engagement, staff education and training, and policies and procedures. The majority of multi-network sites reported that such affiliations do allow for the consolidation and cost-sharing of research functions. Suggestions for increasing the efficiency or performance of multi-network sites included streamlining standards and requirements, consolidating protocol activation methods, using a single cross-network coordinating centre, and creating common budget and payment mechanisms. The results of this assessment provide important information to consider in the design and management of multi-network configurations for the NIH HIV/AIDS Clinical Trials Networks, as well as others contemplating and promoting the concept of multi-network settings. © 2013 John Wiley & Sons Ltd.

  20. Versatile multi-functionalization of protein nanofibrils for biosensor applications

    NASA Astrophysics Data System (ADS)

    Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.

    2014-01-01

    Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry. Electronic supplementary information (ESI) available: Cyclic voltammetry characterization of biosensor platforms including bare Au electrodes (Fig. S1), biosensor response to various glucose concentrations (Fig. S2), and AFM roughness measurements due to WPNF modifications (Fig. S3). See DOI: 10.1039/c3nr05752f

  1. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities

    PubMed Central

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2015-01-01

    Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies. PMID:25411412

  2. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  3. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  4. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  5. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  6. Generating multi-double-scroll attractors via nonautonomous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Qinghui; Xie, Qingguo, E-mail: qgxie@mail.hust.edu.cn; Shen, Yi

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify themore » availability and feasibility of this method.« less

  7. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems

    NASA Astrophysics Data System (ADS)

    Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong

    2016-07-01

    As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.

  8. α-Information Based Registration of Dynamic Scans for Magnetic Resonance Cystography

    PubMed Central

    Han, Hao; Lin, Qin; Li, Lihong; Duan, Chaijie; Lu, Hongbing; Li, Haifang; Yan, Zengmin; Fitzgerald, John

    2015-01-01

    To continue our effort on developing magnetic resonance (MR) cystography, we introduce a novel non–rigid 3D registration method to compensate for bladder wall motion and deformation in dynamic MR scans, which are impaired by relatively low signal–to–noise ratio in each time frame. The registration method is developed on the similarity measure of α–information, which has the potential of achieving higher registration accuracy than the commonly-used mutual information (MI) measure for either mono-modality or multi-modality image registration. The α–information metric was also demonstrated to be superior to both the mean squares and the cross-correlation metrics in multi-modality scenarios. The proposed α–registration method was applied for bladder motion compensation via real patient studies, and its effect to the automatic and accurate segmentation of bladder wall was also evaluated. Compared with the prevailing MI-based image registration approach, the presented α–information based registration was more effective to capture the bladder wall motion and deformation, which ensured the success of the following bladder wall segmentation to achieve the goal of evaluating the entire bladder wall for detection and diagnosis of abnormality. PMID:26087506

  9. Innovative Contamination Certification of Multi-Mission Flight Hardware

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.

    1998-01-01

    Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.

  10. Innovative Contamination Certification of Multi-Mission Flight Hardware

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.

    1999-01-01

    Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.

  11. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    PubMed

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Single Cell Multi-Omics Technology: Methodology and Application.

    PubMed

    Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying

    2018-01-01

    In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions.

  13. Single Cell Multi-Omics Technology: Methodology and Application

    PubMed Central

    Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying

    2018-01-01

    In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions. PMID:29732369

  14. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    PubMed

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  15. A game theory-reinforcement learning (GT-RL) method to develop optimal operation policies for multi-operator reservoir systems

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Hooshyar, Milad

    2014-11-01

    Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.

  16. Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.

    PubMed

    Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin

    2018-06-22

    Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.

  17. Discriminative Multi-View Interactive Image Re-Ranking.

    PubMed

    Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng

    2017-07-01

    Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.

  18. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    PubMed Central

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  19. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    PubMed Central

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  20. Dangerous gas detection based on infrared video

    NASA Astrophysics Data System (ADS)

    Ding, Kang; Hong, Hanyu; Huang, Likun

    2018-03-01

    As the gas leak infrared imaging detection technology has significant advantages of high efficiency and remote imaging detection, in order to enhance the detail perception of observers and equivalently improve the detection limit, we propose a new type of gas leak infrared image detection method, which combines background difference methods and multi-frame interval difference method. Compared to the traditional frame methods, the multi-frame interval difference method we proposed can extract a more complete target image. By fusing the background difference image and the multi-frame interval difference image, we can accumulate the information of infrared target image of the gas leak in many aspect. The experiment demonstrate that the completeness of the gas leakage trace information is enhanced significantly, and the real-time detection effect can be achieved.

  1. Bottom-up assessment of the Net Ecosystem Carbon Balance of Russian forests in 2010 for comparison to Top-down estimates.

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Shvidenko, A.; Shchepashchenko, D.

    2014-12-01

    The verified full carbon assessment of Russian forests (FCA) is based on an Integrated Land Information System (ILIS) that includes a multi-layer and multi-scale GIS with basic resolution of 1 km and corresponding attributive databases. The ILIS aggregates all available information about ecosystems and landscapes, sets of empirical and semi-empirical data and aggregations, data of different inventories and surveys, and multi-sensor remote sensing data. The ILIS serves as an information base for application of the landscape-ecosystem approach (LEA) of the FCA and as a systems design for comparison and mutual constraints with other methods of study of carbon cycling of forest ecosystems (eddy covariance; process models; inverse modeling; and multi-sensor application of remote sensing). The LEA is based on a complimentary use of the flux-based method with some elements of the pool-based method. Introduction of climatic parameters of individual years in the LEA, as well as some process-based elements, allows providing a substantial decrease of the uncertainties of carbon cycling yearly indicators of forest ecosystems. Major carbon pools (live biomass, coarse woody debris, soil organic carbon) are estimated based on data on areas, distribution and major biometric characteristics of Russian forests presented in form of the ILIS for the country. The major fluxes accounted for include Net Primary Production (NPP), Soil Heterotrophic Respiration (SHR), as well as fluxes caused by decomposition of Coarse Woody Debris (CWD), harvest and use of forest products, fluxes caused by natural disturbances (fire, insect outbreaks, impacts of unfavorable environment) and lateral fluxes to hydrosphere and lithosphere. Use of landscape-ecosystem approach resulted in the NECB at 573±140 Tg C yr-1 (CI 0.9). While the total carbon sink is high, large forest areas, particularly on permafrost, serve as a carbon source. The ratio between net primary production and soil heterotrophic respiration, together with natural and human-induced disturbances are major drivers of the magnitude and spatial distribution of the NECB of forest ecosystems. We also present comparison to the recent top-down estimates of the Siberian carbon sink.

  2. The application analysis of the multi-angle polarization technique for ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongchao; Zhu, Jun; Yin, Huan; Zhang, Keli

    2017-02-01

    The multi-angle polarization technique, which uses the intensity of polarized radiation as the observed quantity, is a new remote sensing means for earth observation. With this method, not only can the multi-angle light intensity data be provided, but also the multi-angle information of polarized radiation can be obtained. So, the technique may solve the problems, those could not be solved with the traditional remote sensing methods. Nowadays, the multi-angle polarization technique has become one of the hot topics in the field of the international quantitative research on remote sensing. In this paper, we firstly introduce the principles of the multi-angle polarization technique, then the situations of basic research and engineering applications are particularly summarized and analysed in 1) the peeled-off method of sun glitter based on polarization, 2) the ocean color remote sensing based on polarization, 3) oil spill detection using polarization technique, 4) the ocean aerosol monitoring based on polarization. Finally, based on the previous work, we briefly present the problems and prospects of the multi-angle polarization technique used in China's ocean color remote sensing.

  3. Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.

    PubMed

    Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl

    2015-01-01

    The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo

    A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less

  5. Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred

    Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less

  6. Multi-mode of Four and Six Wave Parametric Amplified Process

    NASA Astrophysics Data System (ADS)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  7. Multi-mode of Four and Six Wave Parametric Amplified Process.

    PubMed

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-03

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  8. Application of the multi-scale finite element method to wave propagation problems in damaged structures

    NASA Astrophysics Data System (ADS)

    Casadei, F.; Ruzzene, M.

    2011-04-01

    This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.

  9. Incremental Validity and Informant Effect from a Multi-Method Perspective: Assessing Relations between Parental Acceptance and Children’s Behavioral Problems

    PubMed Central

    Izquierdo-Sotorrío, Eva; Holgado-Tello, Francisco P.; Carrasco, Miguel Á.

    2016-01-01

    This study examines the relationships between perceived parental acceptance and children’s behavioral problems (externalizing and internalizing) from a multi-informant perspective. Using mothers, fathers, and children as sources of information, we explore the informant effect and incremental validity. The sample was composed of 681 participants (227 children, 227 fathers, and 227 mothers). Children’s (40% boys) ages ranged from 9 to 17 years (M = 12.52, SD = 1.81). Parents and children completed both the Parental Acceptance Rejection/Control Questionnaire (PARQ/Control) and the check list of the Achenbach System of Empirically Based Assessment (ASEBA). Statistical analyses were based on the correlated uniqueness multitrait-multimethod matrix (model MTMM) by structural equations and different hierarchical regression analyses. Results showed a significant informant effect and a different incremental validity related to which combination of sources was considered. A multi-informant perspective rather than a single one increased the predictive value. Our results suggest that mother–father or child–father combinations seem to be the best way to optimize the multi-informant method in order to predict children’s behavioral problems based on perceived parental acceptance. PMID:27242582

  10. Incremental Validity and Informant Effect from a Multi-Method Perspective: Assessing Relations between Parental Acceptance and Children's Behavioral Problems.

    PubMed

    Izquierdo-Sotorrío, Eva; Holgado-Tello, Francisco P; Carrasco, Miguel Á

    2016-01-01

    This study examines the relationships between perceived parental acceptance and children's behavioral problems (externalizing and internalizing) from a multi-informant perspective. Using mothers, fathers, and children as sources of information, we explore the informant effect and incremental validity. The sample was composed of 681 participants (227 children, 227 fathers, and 227 mothers). Children's (40% boys) ages ranged from 9 to 17 years (M = 12.52, SD = 1.81). Parents and children completed both the Parental Acceptance Rejection/Control Questionnaire (PARQ/Control) and the check list of the Achenbach System of Empirically Based Assessment (ASEBA). Statistical analyses were based on the correlated uniqueness multitrait-multimethod matrix (model MTMM) by structural equations and different hierarchical regression analyses. Results showed a significant informant effect and a different incremental validity related to which combination of sources was considered. A multi-informant perspective rather than a single one increased the predictive value. Our results suggest that mother-father or child-father combinations seem to be the best way to optimize the multi-informant method in order to predict children's behavioral problems based on perceived parental acceptance.

  11. PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting

    NASA Astrophysics Data System (ADS)

    Dumon, M.; Van Ranst, E.

    2016-01-01

    This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.

  12. Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method

    NASA Astrophysics Data System (ADS)

    Nugraha, A. L.; Awaluddin, M.; Sasmito, B.

    2018-02-01

    One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.

  13. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  14. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  15. A novel method for overlapping community detection using Multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa

    2018-09-01

    The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.

  16. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  17. Control Synthesis of Discrete-Time T-S Fuzzy Systems: Reducing the Conservatism Whilst Alleviating the Computational Burden.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Peng, Chen

    2017-09-01

    The augmented multi-indexed matrix approach acts as a powerful tool in reducing the conservatism of control synthesis of discrete-time Takagi-Sugeno fuzzy systems. However, its computational burden is sometimes too heavy as a tradeoff. Nowadays, reducing the conservatism whilst alleviating the computational burden becomes an ideal but very challenging problem. This paper is toward finding an efficient way to achieve one of satisfactory answers. Different from the augmented multi-indexed matrix approach in the literature, we aim to design a more efficient slack variable approach under a general framework of homogenous matrix polynomials. Thanks to the introduction of a new extended representation for homogeneous matrix polynomials, related matrices with the same coefficient are collected together into one sole set and thus those redundant terms of the augmented multi-indexed matrix approach can be removed, i.e., the computational burden can be alleviated in this paper. More importantly, due to the fact that more useful information is involved into control design, the conservatism of the proposed approach as well is less than the counterpart of the augmented multi-indexed matrix approach. Finally, numerical experiments are given to show the effectiveness of the proposed approach.

  18. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.

    PubMed

    Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E

    2010-09-17

    Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. From user needs to system specifications: multi-disciplinary thematic seminars as a collaborative design method for development of health information systems.

    PubMed

    Scandurra, I; Hägglund, M; Koch, S

    2008-08-01

    This paper presents a new multi-disciplinary method for user needs analysis and requirements specification in the context of health information systems based on established theories from the fields of participatory design and computer supported cooperative work (CSCW). Whereas conventional methods imply a separate, sequential needs analysis for each profession, the "multi-disciplinary thematic seminar" (MdTS) method uses a collaborative design process. Application of the method in elderly homecare resulted in prototypes that were well adapted to the intended user groups. Vital information in the points of intersection between different care professions was elicited and a holistic view of the entire care process was obtained. Health informatics-usability specialists and clinical domain experts are necessary to apply the method. Although user needs acquisition can be time-consuming, MdTS was perceived to efficiently identify in-context user needs, and transformed these directly into requirements specifications. Consequently the method was perceived to expedite the entire ICT implementation process.

  20. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  1. Reconstructing multi-mode networks from multivariate time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Dang, Wei-Dong; Cai, Qing; Wang, Zhen; Marwan, Norbert; Boccaletti, Stefano; Kurths, Jürgen

    2017-09-01

    Unveiling the dynamics hidden in multivariate time series is a task of the utmost importance in a broad variety of areas in physics. We here propose a method that leads to the construction of a novel functional network, a multi-mode weighted graph combined with an empirical mode decomposition, and to the realization of multi-information fusion of multivariate time series. The method is illustrated in a couple of successful applications (a multi-phase flow and an epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain states of seizure and non-seizure.

  2. Programmed Multi-Image Lectures for College Biology Instruction.

    ERIC Educational Resources Information Center

    Jensen, William A.; Knauft, Robert L.

    1977-01-01

    Discusses the use of a programed multi-image lecture approach for teaching a botany course to nonmajor students at the University of California, Berkeley. Also considers the advantages, production, method of presentation, and design of the multimedia lectures. (HM)

  3. 3-D Wave-Structure Interaction with Coastal Sediments - A Multi-Physics/Multi-Solution-Techniques Approach

    DTIC Science & Technology

    2008-01-01

    element method (BEM). Reynolds averaged Navier-Stokes (RANS) and the particle finite element method ( PFEM ) will be used in the water/mine/sand domain...and deformable sandy seabed (median grain diameter: 0.2 mm) 12 SOLID/FEM SAND/SPH GEOMATERIALS FNPF/BEM FNPF/BEMRANS/ PFEM

  4. A Multi-Method Approach to Studying the Relationship between Character Strengths and Vocational Interests in Adolescents

    ERIC Educational Resources Information Center

    Proyer, Rene T.; Sidler, Nicole; Weber, Marco; Ruch, Willibald

    2012-01-01

    The relationship between character strengths and vocational interests was tested. In an online study, 197 thirteen to eighteen year-olds completed a questionnaire measuring character strengths and a multi-method measure for interests (questionnaire, nonverbal test, and objective personality tests). The main findings were that intellectual…

  5. A Novel Sky-Subtraction Method Based on Non-negative Matrix Factorisation with Sparsity for Multi-object Fibre Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Long; Ye, Zhongfu

    2016-12-01

    A novel sky-subtraction method based on non-negative matrix factorisation with sparsity is proposed in this paper. The proposed non-negative matrix factorisation with sparsity method is redesigned for sky-subtraction considering the characteristics of the skylights. It has two constraint terms, one for sparsity and the other for homogeneity. Different from the standard sky-subtraction techniques, such as the B-spline curve fitting methods and the Principal Components Analysis approaches, sky-subtraction based on non-negative matrix factorisation with sparsity method has higher accuracy and flexibility. The non-negative matrix factorisation with sparsity method has research value for the sky-subtraction on multi-object fibre spectroscopic telescope surveys. To demonstrate the effectiveness and superiority of the proposed algorithm, experiments are performed on Large Sky Area Multi-Object Fiber Spectroscopic Telescope data, as the mechanisms of the multi-object fibre spectroscopic telescopes are similar.

  6. Intersections of downscaling, the ethics of climate services, and regional research grand challenges.

    NASA Astrophysics Data System (ADS)

    Hewitson, B.; Jack, C. D.; Gutowski, W. J., Jr.

    2014-12-01

    Possibly the leading complication for users of climate information for policy and adaptation is the confusing mix of contrasting data sets that offer widely differing (and often times fundamentally contradictory) indications of the magnitude and direction of past and future regional climate change. In this light, the most pressing scientific-societal challenge is the need to find new ways to understand the sources of conflicting messages from multi-model, multi-method and multi-scale disparities, to develop and implement new analytical methodologies to address this difficulty and so to advance the interpretation and communication of robust climate information to decision makers. Compounding this challenge is the growth of climate services which, in view of the confusing mix of climate change messages, raises serious concerns as to the ethics of communication and dissemination of regional climate change data.The Working Group on Regional Climate (WGRC) of the World Climate Research Program (WCRP) oversees the CORDEX downscaling program which offers a systematic approach to compare the CMIP5 GCMs alongside RCMs and Empirical-statistical (ESD) downscaling within a common experimental design, and which facilitates the evaluation and assessment of the relative information content and sources of error. Using results from the CORDEX RCM and ESD evaluation experiment, and set against the regional messages from the CMIP5 GCMs, we examine the differing messages that arise from each data source. These are then considered in terms of the implications of consequence if each data source were to be independently adopted in a real world use-case scenario. This is then cast in the context of the emerging developments on the distillation dilemma - where the pressing need is for multi-method integration - and how this relates to the WCRP regional research grand challenges.

  7. Prediction of protein-protein interaction network using a multi-objective optimization approach.

    PubMed

    Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit

    2016-06-01

    Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score.

  8. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  9. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu

    2018-01-05

    Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  10. Multi-Level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    ERIC Educational Resources Information Center

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-01-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective,…

  11. Parental Depressive Symptoms and Children's Sleep: The Role of Family Conflict

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Kelly, Ryan J.; Bagley, Erika J.; Wetter, Emily K.

    2012-01-01

    Background: We used a multi-method and multi-informant design to identify developmental pathways through which parental depressive symptoms contribute to children's sleep problems. Environmental factors including adult inter-partner conflict and parent-child conflict were considered as process variables of this relation. Methods: An ethnically and…

  12. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  13. Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms.

    PubMed

    Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael

    2014-10-01

    This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A prospective, multi-method, multi-disciplinary, multi-level, collaborative, social-organisational design for researching health sector accreditation [LP0560737

    PubMed Central

    Braithwaite, Jeffrey; Westbrook, Johanna; Pawsey, Marjorie; Greenfield, David; Naylor, Justine; Iedema, Rick; Runciman, Bill; Redman, Sally; Jorm, Christine; Robinson, Maureen; Nathan, Sally; Gibberd, Robert

    2006-01-01

    Background Accreditation has become ubiquitous across the international health care landscape. Award of full accreditation status in health care is viewed, as it is in other sectors, as a valid indicator of high quality organisational performance. However, few studies have empirically demonstrated this assertion. The value of accreditation, therefore, remains uncertain, and this persists as a central legitimacy problem for accreditation providers, policymakers and researchers. The question arises as to how best to research the validity, impact and value of accreditation processes in health care. Most health care organisations participate in some sort of accreditation process and thus it is not possible to study its merits using a randomised controlled strategy. Further, tools and processes for accreditation and organisational performance are multifaceted. Methods/design To understand the relationship between them a multi-method research approach is required which incorporates both quantitative and qualitative data. The generic nature of accreditation standard development and inspection within different sectors enhances the extent to which the findings of in-depth study of accreditation process in one industry can be generalised to other industries. This paper presents a research design which comprises a prospective, multi-method, multi-level, multi-disciplinary approach to assess the validity, impact and value of accreditation. Discussion The accreditation program which assesses over 1,000 health services in Australia is used as an exemplar for testing this design. The paper proposes this design as a framework suitable for application to future international research into accreditation. Our aim is to stimulate debate on the role of accreditation and how to research it. PMID:16968552

  15. A Control Law Design Method Facilitating Control Power, Robustness, Agility, and Flying Qualities Tradeoffs: CRAFT

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1998-01-01

    A multi-input, multi-output control law design methodology, named "CRAFT", is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The methodology makes use of control law design metrics from each of the four design objective areas. It combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, with a graphical approach for representing the metrics that captures numerous design goals in one composite illustration. Sensitivity of the metrics to eigenspace choice is clearly displayed, enabling the designer to assess the cost of design tradeoffs. This approach enhances the designer's ability to make informed design tradeoffs and to reach effective final designs. An example of the CRAFT methodology applied to an advanced experimental fighter and discussion of associated design issues are provided.

  16. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  17. Multi-state time-varying reliability evaluation of smart grid with flexible demand resources utilizing Lz transform

    NASA Astrophysics Data System (ADS)

    Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao

    2017-01-01

    With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.

  18. Multiview face detection based on position estimation over multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh

    2012-02-01

    In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.

  19. Hierarchical Multi-atlas Label Fusion with Multi-scale Feature Representation and Label-specific Patch Partition

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Sanroma, Gerard; Wang, Qian; Munsell, Brent C.; Shen, Dinggang

    2014-01-01

    Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images, after registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape appearance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that they often apply a fixed size image patch throughout the entire label fusion procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-art by adding three new label fusion contributions: First, each image patch now characterized by a multi-scale feature representation that encodes both local and semi-local image information. Doing so will increase the accuracy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity measurement being wrongly guided by the presence of multiple anatomical structures in the same image patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according to the existing labels. Since image information has now been semantically divided into different patterns, these new label-specific atlas patches make the label fusion process more specific and flexible. Lastly, in order to correct target points that are mislabeled during label fusion, a hierarchically approach is used to improve the label fusion results. In particular, a coarse-to-fine iterative label fusion approach is used that gradually reduces the patch size. To evaluate the accuracy of our label fusion approach, the proposed method was used to segment the hippocampus in the ADNI dataset and 7.0 tesla MR images, sub-cortical regions in LONI LBPA40 dataset, mid-brain regions in SATA dataset from MICCAI 2013 segmentation challenge, and a set of key internal gray matter structures in IXI dataset. In all experiments, the segmentation results of the proposed hierarchical label fusion method with multi-scale feature representations and label-specific atlas patches are more accurate than several well-known state-of-the-art label fusion methods. PMID:25463474

  20. Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.

    PubMed

    Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A

    2015-12-01

    We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Extended depth of field integral imaging using multi-focus fusion

    NASA Astrophysics Data System (ADS)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  2. Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang

    2016-03-01

    A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.

  3. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances inmore » bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.« less

  4. A multi-scale approach to designing therapeutics for tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje

    Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less

  5. A multi-scale approach to designing therapeutics for tuberculosis

    DOE PAGES

    Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje; ...

    2015-04-20

    Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less

  6. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    NASA Astrophysics Data System (ADS)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.

  7. Dynamic systems and inferential information processing in human communication.

    PubMed

    Grammer, Karl; Fink, Bernhard; Renninger, LeeAnn

    2002-12-01

    Research in human communication on an ethological basis is almost obsolete. The reasons for this are manifold and lie partially in methodological problems connected to the observation and description of behavior, as well as the nature of human behavior itself. In this chapter, we present a new, non-intrusive, technical approach to the analysis of human non-verbal behavior, which could help to solve the problem of categorization that plagues the traditional approaches. We utilize evolutionary theory to propose a new theory-driven methodological approach to the 'multi-unit multi-channel modulation' problem of human nonverbal communication. Within this concept, communication is seen as context-dependent (the meaning of a signal is adapted to the situation), as a multi-channel and a multi-unit process (a string of many events interrelated in 'communicative' space and time), and as related to the function it serves. Such an approach can be utilized to successfully bridge the gap between evolutionary psychological research, which focuses on social cognition adaptations, and human ethology, which describes every day behavior in an objective, systematic way.

  8. A Practice Approach of Multi-source Geospatial Data Integration for Web-based Geoinformation Services

    NASA Astrophysics Data System (ADS)

    Huang, W.; Jiang, J.; Zha, Z.; Zhang, H.; Wang, C.; Zhang, J.

    2014-04-01

    Geospatial data resources are the foundation of the construction of geo portal which is designed to provide online geoinformation services for the government, enterprise and public. It is vital to keep geospatial data fresh, accurate and comprehensive in order to satisfy the requirements of application and development of geographic location, route navigation, geo search and so on. One of the major problems we are facing is data acquisition. For us, integrating multi-sources geospatial data is the mainly means of data acquisition. This paper introduced a practice integration approach of multi-source geospatial data with different data model, structure and format, which provided the construction of National Geospatial Information Service Platform of China (NGISP) with effective technical supports. NGISP is the China's official geo portal which provides online geoinformation services based on internet, e-government network and classified network. Within the NGISP architecture, there are three kinds of nodes: national, provincial and municipal. Therefore, the geospatial data is from these nodes and the different datasets are heterogeneous. According to the results of analysis of the heterogeneous datasets, the first thing we do is to define the basic principles of data fusion, including following aspects: 1. location precision; 2.geometric representation; 3. up-to-date state; 4. attribute values; and 5. spatial relationship. Then the technical procedure is researched and the method that used to process different categories of features such as road, railway, boundary, river, settlement and building is proposed based on the principles. A case study in Jiangsu province demonstrated the applicability of the principle, procedure and method of multi-source geospatial data integration.

  9. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbitmore » coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.« less

  10. Cost-effectiveness Analysis in R Using a Multi-state Modeling Survival Analysis Framework: A Tutorial.

    PubMed

    Williams, Claire; Lewsey, James D; Briggs, Andrew H; Mackay, Daniel F

    2017-05-01

    This tutorial provides a step-by-step guide to performing cost-effectiveness analysis using a multi-state modeling approach. Alongside the tutorial, we provide easy-to-use functions in the statistics package R. We argue that this multi-state modeling approach using a package such as R has advantages over approaches where models are built in a spreadsheet package. In particular, using a syntax-based approach means there is a written record of what was done and the calculations are transparent. Reproducing the analysis is straightforward as the syntax just needs to be run again. The approach can be thought of as an alternative way to build a Markov decision-analytic model, which also has the option to use a state-arrival extended approach. In the state-arrival extended multi-state model, a covariate that represents patients' history is included, allowing the Markov property to be tested. We illustrate the building of multi-state survival models, making predictions from the models and assessing fits. We then proceed to perform a cost-effectiveness analysis, including deterministic and probabilistic sensitivity analyses. Finally, we show how to create 2 common methods of visualizing the results-namely, cost-effectiveness planes and cost-effectiveness acceptability curves. The analysis is implemented entirely within R. It is based on adaptions to functions in the existing R package mstate to accommodate parametric multi-state modeling that facilitates extrapolation of survival curves.

  11. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.

  12. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    NASA Astrophysics Data System (ADS)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  13. MultiSeq: unifying sequence and structure data for evolutionary analysis

    PubMed Central

    Roberts, Elijah; Eargle, John; Wright, Dan; Luthey-Schulten, Zaida

    2006-01-01

    Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: PMID:16914055

  14. Detecting experimental techniques and selecting relevant documents for protein-protein interactions from biomedical literature

    PubMed Central

    2011-01-01

    Background The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest’s Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. Results We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task’s development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew’s Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Conclusions Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance. PMID:22151769

  15. Multi-analytical Approaches Informing the Risk of Sepsis

    NASA Astrophysics Data System (ADS)

    Gwadry-Sridhar, Femida; Lewden, Benoit; Mequanint, Selam; Bauer, Michael

    Sepsis is a significant cause of mortality and morbidity and is often associated with increased hospital resource utilization, prolonged intensive care unit (ICU) and hospital stay. The economic burden associated with sepsis is huge. With advances in medicine, there are now aggressive goal oriented treatments that can be used to help these patients. If we were able to predict which patients may be at risk for sepsis we could start treatment early and potentially reduce the risk of mortality and morbidity. Analytic methods currently used in clinical research to determine the risk of a patient developing sepsis may be further enhanced by using multi-modal analytic methods that together could be used to provide greater precision. Researchers commonly use univariate and multivariate regressions to develop predictive models. We hypothesized that such models could be enhanced by using multiple analytic methods that together could be used to provide greater insight. In this paper, we analyze data about patients with and without sepsis using a decision tree approach and a cluster analysis approach. A comparison with a regression approach shows strong similarity among variables identified, though not an exact match. We compare the variables identified by the different approaches and draw conclusions about the respective predictive capabilities,while considering their clinical significance.

  16. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling.

    PubMed

    Grell, Gilbert; Bokarev, Sergey I; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6](2+) complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  17. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  18. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array.

    PubMed

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-12-08

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.

  19. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array

    PubMed Central

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  20. A Multi-faceted Approach to Promote Comprehension of Online Health Information Among Older Adults.

    PubMed

    Chin, Jessie; Moeller, Darcie D; Johnson, Jessica; Duwe, Elise A G; Graumlich, James F; Murray, Michael D; Morrow, Daniel G

    2017-03-10

    Older adults' self-care often depends on understanding and utilizing health information. Inadequate health literacy among older adults poses a barrier to self-care because it hampers comprehension of this information, particularly when the information is not well-designed. Our goal was to improve comprehension of online health information among older adults with hypertension who varied in health literacy abilities. We identified passages about hypertension self-care from credible websites (typical passages). We used a multi-faceted approach to redesign these passages, revising their content, language, organization and format (revised passages). Older participants read both versions of the passages at their own pace. After each passage, they summarized the passage and then answered questions about the passage. Participants better remembered the revised than the typical passages, summarizing the passages more accurately and uptaking information more efficiently (less reading time needed per unit of information remembered). The benefits for reading efficiency were greater for older adults with more health knowledge, suggesting knowledge facilitated comprehension of information in the revised passages. A systematic, multi-faceted approach to designing health documents can promote online learning among older adults with diverse health literacy abilities. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Participatory Planning, Monitoring and Evaluation of Multi-Stakeholder Platforms in Integrated Landscape Initiatives.

    PubMed

    Kusters, Koen; Buck, Louise; de Graaf, Maartje; Minang, Peter; van Oosten, Cora; Zagt, Roderick

    2018-07-01

    Integrated landscape initiatives typically aim to strengthen landscape governance by developing and facilitating multi-stakeholder platforms. These are institutional coordination mechanisms that enable discussions, negotiations, and joint planning between stakeholders from various sectors in a given landscape. Multi-stakeholder platforms tend to involve complex processes with diverse actors, whose objectives and focus may be subjected to periodic re-evaluation, revision or reform. In this article we propose a participatory method to aid planning, monitoring, and evaluation of such platforms, and we report on experiences from piloting the method in Ghana and Indonesia. The method is comprised of three components. The first can be used to look ahead, identifying priorities for future multi-stakeholder collaboration in the landscape. It is based on the identification of four aspirations that are common across multi-stakeholder platforms in integrated landscape initiatives. The second can be used to look inward. It focuses on the processes within an existing multi-stakeholder platform in order to identify areas for possible improvement. The third can be used to look back, identifying the main outcomes of an existing platform and comparing them to the original objectives. The three components can be implemented together or separately. They can be used to inform planning and adaptive management of the platform, as well as to demonstrate performance and inform the design of new interventions.

  2. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    PubMed Central

    Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang

    2016-01-01

    Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931

  3. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety.

    PubMed

    Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang

    2016-06-09

    Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  4. Localized prostate cancer treatment decision-making information online: improving its effectiveness and dissemination for nonprofit and government-supported organizations.

    PubMed

    Silk, Kami J; Perrault, Evan K; Nazione, Samantha; Pace, Kristin; Hager, Polly; Springer, Steven

    2013-12-01

    The current study reports findings from evaluation research conducted to identify how online prostate cancer treatment decision-making information can be both improved and more effectively disseminated to those who need it most. A multi-method, multi-target approach was used and guided by McGuire's Communication Matrix Model. Focus groups (n = 31) with prostate cancer patients and their family members, and in-depth interviews with physicians (n = 8), helped inform a web survey (n = 89). Results indicated that physicians remain a key information source for medical advice and the Internet is a primary channel used to help make informed prostate cancer treatment decisions. Participants reported a need for more accessible information related to treatment options and treatment side effects. Additionally, physicians indicated that the best way for agencies to reach them with new information to deliver to patients is by contacting them directly and meeting with them one-on-one. Advice for organizations to improve their current prostate cancer web offerings and further ways to improve information dissemination are discussed.

  5. Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation

    DTIC Science & Technology

    2012-03-28

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT...code) 29-12-2008 Final Technical Report From 29-12-2008 To 16-95-2011 (STTR PHASE II) DEVELOPMENT OF A RENORMALIZATION GROUP APPROACH TO MULTI-SCALE

  6. Estimation of future flow regime for a spatially varied Himalayan watershed using improved multi-site calibration method of SWAT model.

    NASA Astrophysics Data System (ADS)

    Pradhanang, S. M.; Hasan, M. A.; Booth, P.; Fallatah, O.

    2016-12-01

    The monsoon and snow driven regime in the Himalayan region has received increasing attention in the recent decade regarding the effects of climate change on hydrologic regimes. Modeling streamflow in such spatially varied catchment requires proper calibration and validation in hydrologic modeling. While calibration and validation are time consuming and computationally intensive, an effective regionalized approach with multi-site information is crucial for flow estimation, especially in daily scale. In this study, we adopted a multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Karnali river catchment, which is characterized as being the most vulnerable catchment to climate change in the Himalayan region. APHRODITE's (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) daily gridded precipitation data, one of the accurate and reliable weather date over this region were utilized in this study. The model evaluation of the entire catchment divided into four sub-catchments, utilizing discharge records from 1963 to 2010. In previous studies, multi-site calibration used only a single set of calibration parameters for all sub-catchment of a large watershed. In this study, we introduced a technique that can incorporate different sets of calibration parameters for each sub-basin, which eventually ameliorate the flow of the whole watershed. Results show that the calibrated model with new method can capture almost identical pattern of flow over the region. The predicted daily streamflow matched the observed values, with a Nash-Sutcliffe coefficient of 0.73 during calibration and 0.71 during validation period. The method perfumed better than existing multi-site calibration methods. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using precipitation and temperature changes for two Representative Concentration Pathways (RCPs) scenarios, RCP 4.5 and 8.5. Climate simulation for RCP scenarios were conducted from 1981-2100, where 1981-2005 was considered as baseline and 2006-2100 was considered as the future projection. The result shows that probability of flooding will eventually increase in future years due to increased flow in both scenarios.

  7. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation

    NASA Astrophysics Data System (ADS)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches, though accurate estimates across human-altered landscapes is challenging. Overall, this body of work supports the use of remote sensing imagery in species distribution models to strengthen the precision, and power of predictive models, and also draws attention to the need to consider a multi-temporal examination of species habitat requirements.

  8. Multi-Source Learning for Joint Analysis of Incomplete Multi-Modality Neuroimaging Data

    PubMed Central

    Yuan, Lei; Wang, Yalin; Thompson, Paul M.; Narayan, Vaibhav A.; Ye, Jieping

    2013-01-01

    Incomplete data present serious problems when integrating largescale brain imaging data sets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. We address this problem by proposing two novel learning methods where all the samples (with at least one available data source) can be used. In the first method, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. Our second method learns a base classifier for each data source independently, based on which we represent each source using a single column of prediction scores; we then estimate the missing prediction scores, which, combined with the existing prediction scores, are used to build a multi-source fusion model. To illustrate the proposed approaches, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 Normal), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithms. Comprehensive experiments show that our proposed methods yield stable and promising results. PMID:24014189

  9. Improving our understanding of multi-tasking in healthcare: Drawing together the cognitive psychology and healthcare literature.

    PubMed

    Douglas, Heather E; Raban, Magdalena Z; Walter, Scott R; Westbrook, Johanna I

    2017-03-01

    Multi-tasking is an important skill for clinical work which has received limited research attention. Its impacts on clinical work are poorly understood. In contrast, there is substantial multi-tasking research in cognitive psychology, driver distraction, and human-computer interaction. This review synthesises evidence of the extent and impacts of multi-tasking on efficiency and task performance from health and non-healthcare literature, to compare and contrast approaches, identify implications for clinical work, and to develop an evidence-informed framework for guiding the measurement of multi-tasking in future healthcare studies. The results showed healthcare studies using direct observation have focused on descriptive studies to quantify concurrent multi-tasking and its frequency in different contexts, with limited study of impact. In comparison, non-healthcare studies have applied predominantly experimental and simulation designs, focusing on interleaved and concurrent multi-tasking, and testing theories of the mechanisms by which multi-tasking impacts task efficiency and performance. We propose a framework to guide the measurement of multi-tasking in clinical settings that draws together lessons from these siloed research efforts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Active Learning by Querying Informative and Representative Examples.

    PubMed

    Huang, Sheng-Jun; Jin, Rong; Zhou, Zhi-Hua

    2014-10-01

    Active learning reduces the labeling cost by iteratively selecting the most valuable data to query their labels. It has attracted a lot of interests given the abundance of unlabeled data and the high cost of labeling. Most active learning approaches select either informative or representative unlabeled instances to query their labels, which could significantly limit their performance. Although several active learning algorithms were proposed to combine the two query selection criteria, they are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this limitation by developing a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance. Further, by incorporating the correlation among labels, we extend the QUIRE approach to multi-label learning by actively querying instance-label pairs. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of-the-art active learning approaches in both single-label and multi-label learning.

  11. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.

  12. Multi-beam laser heterodyne measurement with ultra-precision for Young modulus based on oscillating mirror modulation

    NASA Astrophysics Data System (ADS)

    Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2014-07-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.

  13. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less

  14. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    NASA Astrophysics Data System (ADS)

    Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang

    2016-06-01

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  15. Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui

    2017-02-06

    Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods.

  16. Multi Sensor Fusion Using Fitness Adaptive Differential Evolution

    NASA Astrophysics Data System (ADS)

    Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam

    The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).

  17. Multi-frame partially saturated images blind deconvolution

    NASA Astrophysics Data System (ADS)

    Ye, Pengzhao; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2016-12-01

    When blurred images have saturated or over-exposed pixels, conventional blind deconvolution approaches often fail to estimate accurate point spread function (PSF) and will introduce local ringing artifacts. In this paper, we propose a method to deal with the problem under the modified multi-frame blind deconvolution framework. First, in the kernel estimation step, a light streak detection scheme using multi-frame blurred images is incorporated into the regularization constraint. Second, we deal with image regions affected by the saturated pixels separately by modeling a weighted matrix during each multi-frame deconvolution iteration process. Both synthetic and real-world examples show that more accurate PSFs can be estimated and restored images have richer details and less negative effects compared to state of art methods.

  18. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.

    PubMed

    Xu, Zhoubing; Burke, Ryan P; Lee, Christopher P; Baucom, Rebeccah B; Poulose, Benjamin K; Abramson, Richard G; Landman, Bennett A

    2015-08-01

    Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Value of Molecular vs. Morphometric and Acoustic Information for Species Identification Using Sympatric Molossid Bats

    PubMed Central

    Gager, Yann; Tarland, Emilia; Lieckfeldt, Dietmar; Ménage, Matthieu; Botero-Castro, Fidel; Rossiter, Stephen J.; Kraus, Robert H. S.; Ludwig, Arne; Dechmann, Dina K. N.

    2016-01-01

    A fundamental condition for any work with free-ranging animals is correct species identification. However, in case of bats, information on local species assemblies is frequently limited especially in regions with high biodiversity such as the Neotropics. The bat genus Molossus is a typical example of this, with morphologically similar species often occurring in sympatry. We used a multi-method approach based on molecular, morphometric and acoustic information collected from 962 individuals of Molossus bondae, M. coibensis, and M. molossus captured in Panama. We distinguished M. bondae based on size and pelage coloration. We identified two robust species clusters composed of M. molossus and M. coibensis based on 18 microsatellite markers but also on a more stringently determined set of four markers. Phylogenetic reconstructions using the mitochondrial gene co1 (DNA barcode) were used to diagnose these microsatellite clusters as M. molossus and M. coibensis. To differentiate species, morphological information was only reliable when forearm length and body mass were combined in a linear discriminant function (95.9% correctly identified individuals). When looking in more detail at M. molossus and M. coibensis, only four out of 13 wing parameters were informative for species differentiation, with M. coibensis showing lower values for hand wing area and hand wing length and higher values for wing loading. Acoustic recordings after release required categorization of calls into types, yielding only two informative subsets: approach calls and two-toned search calls. Our data emphasizes the importance of combining morphological traits and independent genetic data to inform the best choice and combination of discriminatory information used in the field. Because parameters can vary geographically, the multi-method approach may need to be adjusted to local species assemblies and populations to be entirely informative. PMID:26943355

  20. [Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor].

    PubMed

    Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong

    2006-09-01

    Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.

  1. Object recognition through a multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun

    2017-04-01

    We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

  2. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    PubMed

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  3. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    PubMed Central

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  4. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    PubMed

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Equipment Selection by using Fuzzy TOPSIS Method

    NASA Astrophysics Data System (ADS)

    Yavuz, Mahmut

    2016-10-01

    In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.

  6. Development of the algorithm of measurement data and tomographic section reconstruction results processing for evaluating the respiratory activity of the lungs using the multi-angle electric impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    Continuous monitoring of the patient's breathing by the method of multi-angle electric impedance tomography allows to obtain images of conduction change in the chest cavity during the monitoring. Direct analysis of images is difficult due to the large amount of information and low resolution images obtained by multi-angle electrical impedance tomography. This work presents a method for obtaining a graph of respiratory activity of the lungs based on the results of continuous lung monitoring using the multi-angle electrical impedance tomography method. The method makes it possible to obtain a graph of the respiratory activity of the left and right lungs separately, as well as a summary graph, to which it is possible to apply methods of processing the results of spirography.

  7. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    PubMed

    Zeng, Ping; Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  8. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol

    PubMed Central

    Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on—all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications. PMID:28399157

  9. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  10. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z; Folkert, M; Wang, J

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less

  11. Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoa T. Nguyen; Stone, Daithi; E. Wes Bethel

    2016-01-01

    An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different casemore » studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.« less

  12. Transductive multi-view zero-shot learning.

    PubMed

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang

    2015-11-01

    Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.

  13. Time series modeling of human operator dynamics in manual control tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.

  14. Time Series Modeling of Human Operator Dynamics in Manual Control Tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.

  15. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  16. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  17. An improved multi-exposure approach for high quality holographic femtosecond laser patterning

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Ni, Jincheng; Chu, Jiaru; Huang, Wenhao; Wu, Dong

    2014-12-01

    High efficiency two photon polymerization through single exposure via spatial light modulator (SLM) has been used to decrease the fabrication time and rapidly realize various micro/nanostructures, but the surface quality remains a big problem due to the speckle noise of optical intensity distribution at the defocused plane. Here, a multi-exposure approach which used tens of computer generate holograms successively loaded on SLM is presented to significantly improve the optical uniformity without losing efficiency. By applying multi-exposure, we found that the uniformity at the defocused plane was increased from ˜0.02 to ˜0.6 according to our simulation. The fabricated two series of letters "HELLO" and "USTC" under single-and multi-exposure in our experiment also verified that the surface quality was greatly improved. Moreover, by this method, several kinds of beam splitters with high quality, e.g., 2 × 2, 5 × 5 Daman, and complex nonseperate 5 × 5, gratings were fabricated with both of high quality and short time (<1 min, 95% time-saving). This multi-exposure SLM-two-photon polymerization method showed the promising prospect in rapidly fabricating and integrating various binary optical devices and their systems.

  18. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    PubMed Central

    Yang, Shan; Yang, Zhengyi; Fischer, Karin; Zhong, Kai; Stadler, Jörg; Godenschweger, Frank; Steiner, Johann; Heinze, Hans-Jochen; Bernstein, Hans-Gert; Bogerts, Bernhard; Mawrin, Christian; Reutens, David C.; Speck, Oliver; Walter, Martin

    2013-01-01

    Ultra-high field magnetic resonance imaging (MRI) became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods can be effectively combined at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time) the feasibility and quality of ultra-high spatial resolution (150 μm isotopic) imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information. PMID:24098272

  19. A Visual Analytics Approach for Station-Based Air Quality Data

    PubMed Central

    Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui

    2016-01-01

    With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support. PMID:28029117

  20. A Visual Analytics Approach for Station-Based Air Quality Data.

    PubMed

    Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui

    2016-12-24

    With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support.

  1. Evidence for a Cyanine Link between Propargylamine Drugs and Monoamine Oxidase Clarifies the Inactivation Mechanism

    NASA Astrophysics Data System (ADS)

    Albreht, Alen; Vovk, Irena; Mavri, Janez; Marco-Contelles, Jose; Ramsay, Rona R.

    2018-05-01

    Successful propargylamine drugs such as deprenyl inactivate monoamine oxidase (MAO), a target in multi-faceted approaches to prevent neurodegeneration in the aging population, but the chemical structure and mechanism of the irreversible inhibition are still debated. We characterized the covalent cyanine structure linking the multi-target propargylamine inhibitor ASS234 and the flavin adenine dinucleotide in MAO-A using a combination of ultra-high performance liquid chromatography, spectroscopy, mass spectrometry, and computational methods. The partial double bond character of the cyanine chain gives rise to 4 interconverting geometric isomers of the adduct which were chromatographically separated at low temperatures. The configuration of the cyanine linker governs adduct stability with segments of much higher flexibility and rigidity than previously hypothesized. The findings indicate the importance of intramolecular electrostatic interactions in the MAO binding site and provide key information relevant to incorporation of the propargyl moiety into novel multi-target drugs. Based on the structure, we propose a mechanism of MAO inactivation applicable to all propargylamine inhibitors.

  2. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    NASA Astrophysics Data System (ADS)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  3. MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset.

    PubMed

    Mallik, Saurav; Maulik, Ujjwal

    2015-10-01

    Gene ranking is an important problem in bioinformatics. Here, we propose a new framework for ranking biomolecules (viz., miRNAs, transcription-factors/TFs and genes) in a multi-informative uterine leiomyoma dataset having both gene expression and methylation data using (statistical) eigenvector centrality based approach. At first, genes that are both differentially expressed and methylated, are identified using Limma statistical test. A network, comprising these genes, corresponding TFs from TRANSFAC and ITFP databases, and targeter miRNAs from miRWalk database, is then built. The biomolecules are then ranked based on eigenvector centrality. Our proposed method provides better average accuracy in hub gene and non-hub gene classifications than other methods. Furthermore, pre-ranked Gene set enrichment analysis is applied on the pathway database as well as GO-term databases of Molecular Signatures Database with providing a pre-ranked gene-list based on different centrality values for comparing among the ranking methods. Finally, top novel potential gene-markers for the uterine leiomyoma are provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  5. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  6. Assimilating the Future for Better Forecasts and Earlier Warnings

    NASA Astrophysics Data System (ADS)

    Du, H.; Wheatcroft, E.; Smith, L. A.

    2016-12-01

    Multi-model ensembles have become popular tools to account for some of the uncertainty due to model inadequacy in weather and climate simulation-based predictions. The current multi-model forecasts focus on combining single model ensemble forecasts by means of statistical post-processing. Assuming each model is developed independently or with different primary target variables, each is likely to contain different dynamical strengths and weaknesses. Using statistical post-processing, such information is only carried by the simulations under a single model ensemble: no advantage is taken to influence simulations under the other models. A novel methodology, named Multi-model Cross Pollination in Time, is proposed for multi-model ensemble scheme with the aim of integrating the dynamical information regarding the future from each individual model operationally. The proposed approach generates model states in time via applying data assimilation scheme(s) to yield truly "multi-model trajectories". It is demonstrated to outperform traditional statistical post-processing in the 40-dimensional Lorenz96 flow. Data assimilation approaches are originally designed to improve state estimation from the past to the current time. The aim of this talk is to introduce a framework that uses data assimilation to improve model forecasts at future time (not to argue for any one particular data assimilation scheme). Illustration of applying data assimilation "in the future" to provide early warning of future high-impact events is also presented.

  7. Networked Guidance and Control for Mobile Multi-Agent Systems: A Multi-terminal (Network) Information Theoretic Approach

    DTIC Science & Technology

    2012-01-19

    time , i.e., the state of the system is the input delayed by one time unit. In contrast with classical approaches, here the control action must be a...Transactions on Automatic Control , Vol. 56, No. 9, September 2011, Pages 2013-2025 Consider a first order linear time -invariant discrete time system driven by...1, January 2010, Pages 175-179 Consider a discrete- time networked control system , in which the controller has direct access to noisy

  8. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  9. Knowledge, Skills, and Abilities for Entry-Level Business Analytics Positions: A Multi-Method Study

    ERIC Educational Resources Information Center

    Cegielski, Casey G.; Jones-Farmer, L. Allison

    2016-01-01

    It is impossible to deny the significant impact from the emergence of big data and business analytics on the fields of Information Technology, Quantitative Methods, and the Decision Sciences. Both industry and academia seek to hire talent in these areas with the hope of developing organizational competencies. This article describes a multi-method…

  10. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.

  11. Show me the data: advances in multi-model benchmarking, assimilation, and forecasting

    NASA Astrophysics Data System (ADS)

    Dietze, M.; Raiho, A.; Fer, I.; Cowdery, E.; Kooper, R.; Kelly, R.; Shiklomanov, A. N.; Desai, A. R.; Simkins, J.; Gardella, A.; Serbin, S.

    2016-12-01

    Researchers want their data to inform carbon cycle predictions, but there are considerable bottlenecks between data collection and the use of data to calibrate and validate earth system models and inform predictions. This talk highlights recent advancements in the PEcAn project aimed at it making it easier for individual researchers to confront models with their own data: (1) The development of an easily extensible site-scale benchmarking system aimed at ensuring that models capture process rather than just reproducing pattern; (2) Efficient emulator-based Bayesian parameter data assimilation to constrain model parameters; (3) A novel, generalized approach to ensemble data assimilation to estimate carbon pools and fluxes and quantify process error; (4) automated processing and downscaling of CMIP climate scenarios to support forecasts that include driver uncertainty; (5) a large expansion in the number of models supported, with new tools for conducting multi-model and multi-site analyses; and (6) a network-based architecture that allows analyses to be shared with model developers and other collaborators. Application of these methods is illustrated with data across a wide range of time scales, from eddy-covariance to forest inventories to tree rings to paleoecological pollen proxies.

  12. Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.

    2016-02-01

    Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.

  13. A gantry-based tri-modality system for bioluminescence tomography

    PubMed Central

    Yan, Han; Lin, Yuting; Barber, William C.; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2012-01-01

    A gantry-based tri-modality system that combines bioluminescence (BLT), diffuse optical (DOT), and x-ray computed tomography (XCT) into the same setting is presented here. The purpose of this system is to perform bioluminescence tomography using a multi-modality imaging approach. As parts of this hybrid system, XCT and DOT provide anatomical information and background optical property maps. This structural and functional a priori information is used to guide and restrain bioluminescence reconstruction algorithm and ultimately improve the BLT results. The performance of the combined system is evaluated using multi-modality phantoms. In particular, a cylindrical heterogeneous multi-modality phantom that contains regions with higher optical absorption and x-ray attenuation is constructed. We showed that a 1.5 mm diameter bioluminescence inclusion can be localized accurately with the functional a priori information while its source strength can be recovered more accurately using both structural and the functional a priori information. PMID:22559540

  14. Massive Multi-Agent Systems Control

    NASA Technical Reports Server (NTRS)

    Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki

    2004-01-01

    In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.

  15. Shared worlds: multi-sited ethnography and nursing research.

    PubMed

    Molloy, Luke; Walker, Kim; Lakeman, Richard

    2017-03-22

    Background Ethnography, originally developed for the study of supposedly small-scale societies, is now faced with an increasingly mobile, changing and globalised world. Cultural identities can exist without reference to a specific location and extend beyond regional and national boundaries. It is therefore no longer imperative that the sole object of the ethnographer's practice should be a geographically bounded site. Aim To present a critical methodological review of multi-sited ethnography. Discussion Understanding that it can no longer be taken with any certainty that location alone determines culture, multi-sited ethnography provides a method of contextualising multi-sited social phenomena. The method enables researchers to examine social phenomena that are simultaneously produced in different locations. It has been used to undertake cultural analysis of diverse areas such as organ trafficking, global organisations, technologies and anorexia. Conclusion The authors contend that multi-sited ethnography is particularly suited to nursing research as it provides researchers with an ethnographic method that is more relevant to the interconnected world of health and healthcare services. Implications for practice Multi-sited ethnography provides nurse researchers with an approach to cultural analysis in areas such as the social determinants of health, healthcare services and the effects of health policies across multiple locations.

  16. Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik

    2015-06-01

    Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.

  17. Multi criteria evaluation for universal soil loss equation based on geographic information system

    NASA Astrophysics Data System (ADS)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  18. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  19. "I'm on it 24/7 at the moment": a qualitative examination of multi-screen viewing behaviours among UK 10-11 year olds.

    PubMed

    Jago, Russell; Sebire, Simon J; Gorely, Trish; Cillero, Itziar Hoyos; Biddle, Stuart J H

    2011-08-03

    Screen-viewing has been associated with increased body mass, increased risk of metabolic syndrome and lower psychological well-being among children and adolescents. There is a shortage of information about the nature of contemporary screen-viewing amongst children especially given the rapid advances in screen-viewing equipment technology and their widespread availability. Anecdotal evidence suggests that large numbers of children embrace the multi-functionality of current devices to engage in multiple forms of screen-viewing at the same time. In this paper we used qualitative methods to assess the nature and extent of multiple forms of screen-viewing in UK children. Focus groups were conducted with 10-11 year old children (n = 63) who were recruited from five primary schools in Bristol, UK. Topics included the types of screen-viewing in which the participants engaged; whether the participants ever engaged in more than one form of screen-viewing at any time and if so the nature of this multiple viewing; reasons for engaging in multi-screen-viewing; the room within the house where multi-screen-viewing took place and the reasons for selecting that room. All focus groups were transcribed verbatim, anonymised and thematically analysed. Multi-screen viewing was a common behaviour. Although multi-screen viewing often involved watching TV, TV viewing was often the background behaviour with attention focussed towards a laptop, handheld device or smart-phone. There were three main reasons for engaging in multi-screen viewing: 1) tempering impatience that was associated with a programme loading; 2) multi-screen facilitated filtering out unwanted content such as advertisements; and 3) multi-screen viewing was perceived to be enjoyable. Multi-screen viewing occurred either in the child's bedroom or in the main living area of the home. There was considerable variability in the level and timing of viewing and this appeared to be a function of whether the participants attended after-school clubs. UK children regularly engage in two or more forms of screen-viewing at the same time. There are currently no means of assessing multi-screen viewing nor any interventions that specifically focus on reducing multi-screen viewing. To reduce children's overall screen-viewing we need to understand and then develop approaches to reduce multi-screen viewing among children.

  20. Prospects for direct social perception: a multi-theoretical integration to further the science of social cognition.

    PubMed

    Wiltshire, Travis J; Lobato, Emilio J C; McConnell, Daniel S; Fiore, Stephen M

    2014-01-01

    In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others' mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience.

  1. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  2. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.

  3. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  4. Measuring the sustainability of a natural system by using multi-criteria distance function methods: Some critical issues.

    PubMed

    Diaz-Balteiro, L; Belavenutti, P; Ezquerro, M; González-Pachón, J; Ribeiro Nobre, S; Romero, C

    2018-05-15

    There is an important body of literature using multi-criteria distance function methods for the aggregation of a battery of sustainability indicators in order to obtain a composite index. This index is considered to be a proxy of the sustainability goodness of a natural system. Although this approach has been profusely used in the literature, it is not exempt from difficulties and potential pitfalls. Thus, in this paper, a significant number of critical issues have been identified showing different procedures capable of avoiding, or at least of mitigating, the inherent potential pitfalls associated with each one. The recommendations made in the paper could increase the theoretical soundness of the multi-criteria distance function methods when this type of approach is applied in the sustainability field, thus increasing the accuracy and realism of the sustainability measurements obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  6. A multi-sensor scenario for coastal surveillance

    NASA Astrophysics Data System (ADS)

    van den Broek, A. C.; van den Broek, S. P.; van den Heuvel, J. C.; Schwering, P. B. W.; van Heijningen, A. W. P.

    2007-10-01

    Maritime borders and coastal zones are susceptible to threats such as drug trafficking, piracy, undermining economical activities. At TNO Defence, Security and Safety various studies aim at improving situational awareness in a coastal zone. In this study we focus on multi-sensor surveillance of the coastal environment. We present a study on improving classification results for small sea surface targets using an advanced sensor suite and a scenario in which a small boat is approaching the coast. A next generation sensor suite mounted on a tower has been defined consisting of a maritime surveillance and tracking radar system, capable of producing range profiles and ISAR imagery of ships, an advanced infrared camera and a laser range profiler. For this suite we have developed a multi-sensor classification procedure, which is used to evaluate the capabilities for recognizing and identifying non-cooperative ships in coastal waters. We have found that the different sensors give complementary information. Each sensor has its own specific distance range in which it contributes most. A multi-sensor approach reduces the number of misclassifications and reliable classification results are obtained earlier compared to a single sensor approach.

  7. A fuzzy MCDM approach for evaluating school performance based on linguistic information

    NASA Astrophysics Data System (ADS)

    Musani, Suhaina; Jemain, Abdul Aziz

    2013-11-01

    Decision making is the process of finding the best option among the feasible alternatives. This process should consider a variety of criteria, but this study only focus on academic achievement. The data used is the percentage of candidates who obtained Malaysian Certificate of Education (SPM) in Melaka based on school academic achievement for each subject. 57 secondary schools in Melaka as listed by the Ministry of Education involved in this study. Therefore the school ranking can be done using MCDM (Multi Criteria Decision Making) methods. The objective of this study is to develop a rational method for evaluating school performance based on linguistic information. Since the information or level of academic achievement provided in linguistic manner, there is a possible chance of getting incomplete or uncertain problems. So in order to overcome the situation, the information could be provided as fuzzy numbers. Since fuzzy set represents the uncertainty in human perceptions. In this research, VIKOR (Multi Criteria Optimization and Compromise Solution) has been used as a MCDM tool for the school ranking process in fuzzy environment. Results showed that fuzzy set theory can solve the limitations of using MCDM when there is uncertainty problems exist in the data.

  8. Automatic registration of optical imagery with 3d lidar data using local combined mutual information

    NASA Astrophysics Data System (ADS)

    Parmehr, E. G.; Fraser, C. S.; Zhang, C.; Leach, J.

    2013-10-01

    Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The effectiveness of intensity-based methods such as Mutual Information (MI) for automated registration of multi-sensor image has been previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 3D probability density function (pdf). In addition, a local similarity measure is introduced to decrease the complexity of optimisation at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in urban and rural areas is experimentally evaluated and the results obtained are discussed.

  9. A detail-preserved and luminance-consistent multi-exposure image fusion algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Guanquan; Zhou, Yue

    2018-04-01

    When irradiance across a scene varies greatly, we can hardly get an image of the scene without over- or underexposure area, because of the constraints of cameras. Multi-exposure image fusion (MEF) is an effective method to deal with this problem by fusing multi-exposure images of a static scene. A novel MEF method is described in this paper. In the proposed algorithm, coarser-scale luminance consistency is preserved by contribution adjustment using the luminance information between blocks; detail-preserved smoothing filter can stitch blocks smoothly without losing details. Experiment results show that the proposed method performs well in preserving luminance consistency and details.

  10. Targeting community-dwelling urinary incontinence sufferers: a multi-disciplinary community based model for conservative continence services.

    PubMed

    St John, Winsome; Wallis, Marianne; James, Heather; McKenzie, Shona; Guyatt, Sheridan

    2004-10-01

    This paper presents an argument that there is a need to provide services that target community-dwelling incontinence sufferers, and presents a demonstration case study of a multi-disciplinary, community-based conservative model of service delivery: The Waterworx Model. Rationale for approaches taken, implementation of the model, evaluation and lessons learned are discussed. In this paper community-dwelling sufferers of urinary incontinence are identified as an underserved group, and useful information is provided for those wishing to establish services for them. The Waterworx Model of continence service delivery incorporates three interrelated approaches. Firstly, client access is achieved by using community-based services via clinic and home visits, creating referral pathways and active promotion of services. Secondly, multi-disciplinary client care is provided by targeting a specific client group, multi-disciplinary assessment, promoting client self-management and developing client knowledge and health literacy. Finally, interdisciplinary collaboration and linkages is facilitated by developing multidisciplinary assessment tools, using interdisciplinary referrals, staff development, multi-disciplinary management and providing professional education. Implementation of the model achieved greater client access, improvement in urinary incontinence and client satisfaction. Our experiences suggest that those suffering urinary incontinence and living in the community are an underserved group and that continence services should be community focussed, multi-disciplinary, generalist in nature.

  11. Multi-Attribute Consensus Building Tool

    ERIC Educational Resources Information Center

    Shyyan, Vitaliy; Christensen, Laurene; Thurlow, Martha; Lazarus, Sheryl

    2013-01-01

    The Multi-Attribute Consensus Building (MACB) method is a quantitative approach for determining a group's opinion about the importance of each item (strategy, decision, recommendation, policy, priority, etc.) on a list (Vanderwood, & Erickson, 1994). This process enables a small or large group of participants to generate and discuss a set…

  12. A Multi-Faceted Approach to Successful Transition for Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Dubberly, Russell G.

    2011-01-01

    This report summarizes the multi-faceted, dynamic instructional model implemented to increase positive transition outcomes for high school students with intellectual disabilities. This report is based on the programmatic methods implemented within a secondary-level school in an urban setting. This pedagogical model facilitates the use of…

  13. Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    PubMed Central

    Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang

    2014-01-01

    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness. PMID:24489639

  14. Enhanced Imaging of Specific Cell-Surface Glycosylation Based on Multi-FRET.

    PubMed

    Yuan, Baoyin; Chen, Yuanyuan; Sun, Yuqiong; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Meng, Xiangxian; Yang, Xiaohai; Wen, Xiaohong; Li, Zenghui; Li, Lie; Wang, Kemin

    2018-05-15

    Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.

  15. Convolutional Neural Network for Multi-Source Deep Learning Crop Classification in Ukraine

    NASA Astrophysics Data System (ADS)

    Lavreniuk, M. S.

    2016-12-01

    Land cover and crop type maps are one of the most essential inputs when dealing with environmental and agriculture monitoring tasks [1]. During long time neural network (NN) approach was one of the most efficient and popular approach for most applications, including crop classification using remote sensing data, with high an overall accuracy (OA) [2]. In the last years the most popular and efficient method for multi-sensor and multi-temporal land cover classification is convolution neural networks (CNNs). Taking into account presence clouds in optical data, self-organizing Kohonen maps (SOMs) are used to restore missing pixel values in a time series of optical imagery from Landsat-8 satellite. After missing data restoration, optical data from Landsat-8 was merged with Sentinel-1A radar data for better crop types discrimination [3]. An ensemble of CNNs is proposed for multi-temporal satellite images supervised classification. Each CNN in the corresponding ensemble is a 1-d CNN with 4 layers implemented using the Google's library TensorFlow. The efficiency of the proposed approach was tested on a time-series of Landsat-8 and Sentinel-1A images over the JECAM test site (Kyiv region) in Ukraine in 2015. Overall classification accuracy for ensemble of CNNs was 93.5% that outperformed an ensemble of multi-layer perceptrons (MLPs) by +0.8% and allowed us to better discriminate summer crops, in particular maize and soybeans. For 2016 we would like to validate this method using Sentinel-1 and Sentinel-2 data for Ukraine territory within ESA project on country level demonstration Sen2Agri. 1. A. Kolotii et al., "Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine," The Int. Arch. of Photogram., Rem. Sens. and Spatial Inform. Scie., vol. 40, no. 7, pp. 39-44, 2015. 2. F. Waldner et al., "Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity," Int. Journal of Rem. Sens. vol. 37, no. 14, pp 3196-3231, 2016. 3. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297.

  16. Impact of user influence on information multi-step communication in a micro-blog

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Hu, Yong; He, Xiao-Hai; Deng, Ken

    2014-06-01

    User influence is generally considered as one of the most critical factors that affect information cascading spreading. Based on this common assumption, this paper proposes a theoretical model to examine user influence on the information multi-step communication in a micro-blog. The multi-steps of information communication are divided into first-step and non-first-step, and user influence is classified into five dimensions. Actual data from the Sina micro-blog is collected to construct the model by means of an approach based on structural equations that uses the Partial Least Squares (PLS) technique. Our experimental results indicate that the dimensions of the number of fans and their authority significantly impact the information of first-step communication. Leader rank has a positive impact on both first-step and non-first-step communication. Moreover, global centrality and weight of friends are positively related to the information non-first-step communication, but authority is found to have much less relation to it.

  17. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E.

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less

  18. Towards an eco-phylogenetic framework for infectious disease ecology.

    PubMed

    Fountain-Jones, Nicholas M; Pearse, William D; Escobar, Luis E; Alba-Casals, Ana; Carver, Scott; Davies, T Jonathan; Kraberger, Simona; Papeş, Monica; Vandegrift, Kurt; Worsley-Tonks, Katherine; Craft, Meggan E

    2018-05-01

    Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats. © 2017 Cambridge Philosophical Society.

  19. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  20. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method.

    PubMed

    Shimazaki, Kei-ichi; Kushida, Tatsuya

    2010-06-01

    Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.

  1. Multi-resolution statistical image reconstruction for mitigation of truncation effects: application to cone-beam CT of the head

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-01-01

    A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.

  2. A multi-objective framework to predict flows of ungauged rivers within regions of sparse hydrometeorologic observation

    NASA Astrophysics Data System (ADS)

    Alipour, M.; Kibler, K. M.

    2017-12-01

    Despite advances in flow prediction, managers of ungauged rivers located within broad regions of sparse hydrometeorologic observation still lack prescriptive methods robust to the data challenges of such regions. We propose a multi-objective streamflow prediction framework for regions of minimum observation to select models that balance runoff efficiency with choice of accurate parameter values. We supplement sparse observed data with uncertain or low-resolution information incorporated as `soft' a priori parameter estimates. The performance of the proposed framework is tested against traditional single-objective and constrained single-objective calibrations in two catchments in a remote area of southwestern China. We find that the multi-objective approach performs well with respect to runoff efficiency in both catchments (NSE = 0.74 and 0.72), within the range of efficiencies returned by other models (NSE = 0.67 - 0.78). However, soil moisture capacity estimated by the multi-objective model resonates with a priori estimates (parameter residuals of 61 cm versus 289 and 518 cm for maximum soil moisture capacity in one catchment, and 20 cm versus 246 and 475 cm in the other; parameter residuals of 0.48 versus 0.65 and 0.7 for soil moisture distribution shape factor in one catchment, and 0.91 versus 0.79 and 1.24 in the other). Thus, optimization to a multi-criteria objective function led to very different representations of soil moisture capacity as compared to models selected by single-objective calibration, without compromising runoff efficiency. These different soil moisture representations may translate into considerably different hydrological behaviors. The proposed approach thus offers a preliminary step towards greater process understanding in regions of severe data limitations. For instance, the multi-objective framework may be an adept tool to discern between models of similar efficiency to select models that provide the "right answers for the right reasons". Managers may feel more confident to utilize such models to predict flows in fully ungauged areas.

  3. Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.

    2018-04-01

    It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.

  4. Two-layer symbolic representation for stochastic models with phase-type distributed events

    NASA Astrophysics Data System (ADS)

    Longo, Francesco; Scarpa, Marco

    2015-07-01

    Among the techniques that have been proposed for the analysis of non-Markovian models, the state space expansion approach showed great flexibility in terms of modelling capacities.The principal drawback is the explosion of the state space. This paper proposes a two-layer symbolic method for efficiently storing the expanded reachability graph of a non-Markovian model in the case in which continuous phase-type distributions are associated with the firing times of system events, and different memory policies are considered. At the lower layer, the reachability graph is symbolically represented in the form of a set of Kronecker matrices, while, at the higher layer, all the information needed to correctly manage event memory is stored in a multi-terminal multi-valued decision diagram. Such an information is collected by applying a symbolic algorithm, which is based on a couple of theorems. The efficiency of the proposed approach, in terms of memory occupation and execution time, is shown by applying it to a set of non-Markovian stochastic Petri nets and comparing it with a classical explicit expansion algorithm. Moreover, a comparison with a classical symbolic approach is performed whenever possible.

  5. Negotiating designs of multi-purpose reservoir systems in international basins

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  6. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where uncertainty is added to the system through noise in the measurements.« less

  7. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    NASA Astrophysics Data System (ADS)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  8. Recommendations for level-determined sampling in wells

    NASA Astrophysics Data System (ADS)

    Lerner, David N.; Teutsch, Georg

    1995-10-01

    Level-determined samples of groundwater are increasingly important for hydrogeological studies. The techniques for collecting them range from the use of purpose drilled wells, sometimes with sophisticated dedicated multi-level samplers in them, to a variety of methods used in open wells. Open, often existing, wells are frequently used on cost grounds, but there are risks of obtaining poor and unrepresentative samples. Alternative approaches to level-determined sampling incorporate seven concepts: depth sampling; packer systems; individual wells; dedicated multi-level systems; separation pumping; baffle systems; multi-port sock samplers. These are outlined and evaluated in terms of the environment to be sampled, and the features and performance of the methods. Recommendations are offered to match methods to sampling problems.

  9. Perturbative universal state-selective correction for state-specific multi-reference coupled cluster methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Banik, Subrata; Kowalski, Karol

    2016-10-28

    The implementation details of the universal state-selective (USS) multi-reference coupled cluster (MRCC) formalism with singles and doubles (USS(2)) are discussed on the example of several benchmark systems. We demonstrate that the USS(2) formalism is capable of improving accuracies of state specific multi-reference coupled-cluster (MRCC) methods based on the Brillouin-Wigner and Mukherjee’s sufficiency conditions. Additionally, it is shown that the USS(2) approach significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals. We also discuss the perturbative USS(2) formulations that significantly reduce numerical overhead of the full USS(2) method.

  10. Cat swarm optimization based evolutionary framework for multi document summarization

    NASA Astrophysics Data System (ADS)

    Rautray, Rasmita; Balabantaray, Rakesh Chandra

    2017-07-01

    Today, World Wide Web has brought us enormous quantity of on-line information. As a result, extracting relevant information from massive data has become a challenging issue. In recent past text summarization is recognized as one of the solution to extract useful information from vast amount documents. Based on number of documents considered for summarization, it is categorized as single document or multi document summarization. Rather than single document, multi document summarization is more challenging for the researchers to find accurate summary from multiple documents. Hence in this study, a novel Cat Swarm Optimization (CSO) based multi document summarizer is proposed to address the problem of multi document summarization. The proposed CSO based model is also compared with two other nature inspired based summarizer such as Harmony Search (HS) based summarizer and Particle Swarm Optimization (PSO) based summarizer. With respect to the benchmark Document Understanding Conference (DUC) datasets, the performance of all algorithms are compared in terms of different evaluation metrics such as ROUGE score, F score, sensitivity, positive predicate value, summary accuracy, inter sentence similarity and readability metric to validate non-redundancy, cohesiveness and readability of the summary respectively. The experimental analysis clearly reveals that the proposed approach outperforms the other summarizers included in the study.

  11. Decision Making Under Uncertainty and Complexity: A Model-Based Scenario Approach to Supporting Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.

    2007-12-01

    Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.

  12. Multi-objective optimization of laser-scribed micro grooves on AZO conductive thin film using Data Envelopment Analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Feng Jeffrey; Quang Vu, Huy; Gunawan, Dewantoro; Lan, Wei-Luen

    2012-09-01

    Laser scribing process has been considered as an effective approach for surface texturization on thin film solar cell. In this study, a systematic method for optimizing multi-objective process parameters of fiber laser system was proposed to achieve excellent quality characteristics, such as the minimum scribing line width, the flattest trough bottom, and the least processing edge surface bumps for increasing incident light absorption of thin film solar cell. First, the Taguchi method (TM) obtained useful statistical information through the orthogonal array with relatively fewer experiments. However, TM is only appropriate to optimize single-objective problems and has to rely on engineering judgment for solving multi-objective problems that can cause uncertainty to some degree. The back-propagation neural network (BPNN) and data envelopment analysis (DEA) were utilized to estimate the incomplete data and derive the optimal process parameters of laser scribing system. In addition, analysis of variance (ANOVA) method was also applied to identify the significant factors which have the greatest effects on the quality of scribing process; in other words, by putting more emphasis on these controllable and profound factors, the quality characteristics of the scribed thin film could be effectively enhanced. The experiments were carried out on ZnO:Al (AZO) transparent conductive thin film with a thickness of 500 nm and the results proved that the proposed approach yields better anticipated improvements than that of the TM which is only superior in improving one quality while sacrificing the other qualities. The results of confirmation experiments have showed the reliability of the proposed method.

  13. Exponential stability of stochastic complex networks with multi-weights based on graph theory

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Chen, Tianrui

    2018-04-01

    In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.

  14. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223

  15. Periodical capacity setting methods for make-to-order multi-machine production systems

    PubMed Central

    Altendorfer, Klaus; Hübl, Alexander; Jodlbauer, Herbert

    2014-01-01

    The paper presents different periodical capacity setting methods for make-to-order, multi-machine production systems with stochastic customer required lead times and stochastic processing times to improve service level and tardiness. These methods are developed as decision support when capacity flexibility exists, such as, a certain range of possible working hours a week for example. The methods differ in the amount of information used whereby all are based on the cumulated capacity demand at each machine. In a simulation study the methods’ impact on service level and tardiness is compared to a constant provided capacity for a single and a multi-machine setting. It is shown that the tested capacity setting methods can lead to an increase in service level and a decrease in average tardiness in comparison to a constant provided capacity. The methods using information on processing time and customer required lead time distribution perform best. The results found in this paper can help practitioners to make efficient use of their flexible capacity. PMID:27226649

  16. TRIAD: The Translational Research Informatics and Data Management Grid

    PubMed Central

    Payne, P.; Ervin, D.; Dhaval, R.; Borlawsky, T.; Lai, A.

    2011-01-01

    Objective Multi-disciplinary and multi-site biomedical research programs frequently require infrastructures capable of enabling the collection, management, analysis, and dissemination of heterogeneous, multi-dimensional, and distributed data and knowledge collections spanning organizational boundaries. We report on the design and initial deployment of an extensible biomedical informatics platform that is intended to address such requirements. Methods A common approach to distributed data, information, and knowledge management needs in the healthcare and life science settings is the deployment and use of a service-oriented architecture (SOA). Such SOA technologies provide for strongly-typed, semantically annotated, and stateful data and analytical services that can be combined into data and knowledge integration and analysis “pipelines.” Using this overall design pattern, we have implemented and evaluated an extensible SOA platform for clinical and translational science applications known as the Translational Research Informatics and Data-management grid (TRIAD). TRIAD is a derivative and extension of the caGrid middleware and has an emphasis on supporting agile “working interoperability” between data, information, and knowledge resources. Results Based upon initial verification and validation studies conducted in the context of a collection of driving clinical and translational research problems, we have been able to demonstrate that TRIAD achieves agile “working interoperability” between distributed data and knowledge sources. Conclusion Informed by our initial verification and validation studies, we believe TRIAD provides an example instance of a lightweight and readily adoptable approach to the use of SOA technologies in the clinical and translational research setting. Furthermore, our initial use cases illustrate the importance and efficacy of enabling “working interoperability” in heterogeneous biomedical environments. PMID:23616879

  17. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

    PubMed Central

    Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2017-01-01

    Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731

  18. Constraint Based Modeling Going Multicellular.

    PubMed

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.

  19. Partnering with Youth to Map Their Neighborhood Environments: A Multi-Layered GIS Approach

    PubMed Central

    Topmiller, Michael; Jacquez, Farrah; Vissman, Aaron T.; Raleigh, Kevin; Miller-Francis, Jenni

    2014-01-01

    Mapping approaches offer great potential for community-based participatory researchers interested in displaying youth perceptions and advocating for change. We describe a multi-layered approach for gaining local knowledge of neighborhood environments that engages youth as co-researchers and active knowledge producers. By integrating geographic information systems (GIS) with environmental audits, an interactive focus group, and sketch mapping, the approach provides a place-based understanding of physical activity resources from the situated experience of youth. Youth report safety and a lack of recreational resources as inhibiting physical activity. Maps reflecting youth perceptions aid policy-makers in making place-based improvements for youth neighborhood environments. PMID:25423245

  20. Earth's rotation irregularities derived from UTIBLI by method of multi-composing of ordinates

    NASA Astrophysics Data System (ADS)

    Segan, S.; Damjanov, I.; Surlan, B.

    Using the method of multi-composing of ordinates we have identified in Earth's rotation a long-periodic term with a period similar to the relaxation time of Chandler nutation. There was not enough information to assess its origin. We demonstrate that the method can be used even in the case when the data time span is comparable to the period of harmonic component.

  1. A calibrated iterative reconstruction for quantitative photoacoustic tomography using multi-angle light-sheet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.

  2. Detection of gene communities in multi-networks reveals cancer drivers

    NASA Astrophysics Data System (ADS)

    Cantini, Laura; Medico, Enzo; Fortunato, Santo; Caselle, Michele

    2015-12-01

    We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.

  3. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  4. A multi-domain trust management model for supporting RFID applications of IoT

    PubMed Central

    Li, Feng

    2017-01-01

    The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate. PMID:28708855

  5. A multi-domain trust management model for supporting RFID applications of IoT.

    PubMed

    Wu, Xu; Li, Feng

    2017-01-01

    The use of RFID technology in complex and distributed environments often leads to a multi-domain RFID system, in which trust establishment among entities from heterogeneous domains without past interaction or prior agreed policy, is a challenge. The current trust management mechanisms in the literature do not meet the specific requirements in multi-domain RFID systems. Therefore, this paper analyzes the special challenges on trust management in multi-domain RFID systems, and identifies the implications and the requirements of the challenges on the solutions to the trust management of multi-domain RFID systems. A multi-domain trust management model is proposed, which provides a hierarchical trust management framework include a diversity of trust evaluation and establishment approaches. The simulation results and analysis show that the proposed method has excellent ability to deal with the trust relationships, better security, and higher accuracy rate.

  6. Reconstruction of ECG signals in presence of corruption.

    PubMed

    Ganeshapillai, Gartheeban; Liu, Jessica F; Guttag, John

    2011-01-01

    We present an approach to identifying and reconstructing corrupted regions in a multi-parameter physiological signal. The method, which uses information in correlated signals, is specifically designed to preserve clinically significant aspects of the signals. We use template matching to jointly segment the multi-parameter signal, morphological dissimilarity to estimate the quality of the signal segment, similarity search using features on a database of templates to find the closest match, and time-warping to reconstruct the corrupted segment with the matching template. In experiments carried out on the MIT-BIH Arrhythmia Database, a two-parameter database with many clinically significant arrhythmias, our method improved the classification accuracy of the beat type by more than 7 times on a signal corrupted with white Gaussian noise, and increased the similarity to the original signal, as measured by the normalized residual distance, by more than 2.5 times.

  7. Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis

    PubMed Central

    Fehl, Charlie

    2016-01-01

    Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are not yet in a position to fully mimic or exploit such systems. With the advent of copious, relevant structural information, judicious mechanistic studies and the use of accessible computational methods in protein design coupled with new synthetic methods for building biomacromolecules, we can envisage a ‘new dawn’ that will allow us to build de novo metalloenzymes that move beyond mono-metal centres. In particular, we highlight the need for systems that approach the multi-centred clusters that have evolved to couple electron shuttling with catalysis. Such hybrids may be viewed as exciting mid-points between homogeneous and heterogeneous catalysts which also exploit the primary benefits of biocatalysis. PMID:27279776

  8. A new iterative approach for multi-objective fault detection observer design and its application to a hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Di; Duan, Zhisheng

    2018-03-01

    This paper addresses the multi-objective fault detection observer design problems for a hypersonic vehicle. Owing to the fact that parameters' variations, modelling errors and disturbances are inevitable in practical situations, system uncertainty is considered in this study. By fully utilising the orthogonal space information of output matrix, some new understandings are proposed for the construction of Lyapunov matrix. Sufficient conditions for the existence of observers to guarantee the fault sensitivity and disturbance robustness in infinite frequency domain are presented. In order to further relax the conservativeness, slack matrices are introduced to fully decouple the observer gain with the Lyapunov matrices in finite frequency range. Iterative linear matrix inequality algorithms are proposed to obtain the solutions. The simulation examples which contain a Monte Carlo campaign illustrate that the new methods can effectively reduce the design conservativeness compared with the existing methods.

  9. Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang

    2016-04-01

    This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.

  10. The development of estimated methodology for interfacial adhesion of semiconductor coatings having an enormous mismatch extent

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Chun; Huang, Pei-Chen

    2018-05-01

    The long-term reliability of multi-stacked coatings suffering the bending or rolling load was a severe challenge to extend the lifespan of foregoing structure. In addition, the adhesive strength of dissimilar materials was regarded as the major mechanical reliability concerns among multi-stacked films. However, the significant scale-mismatch from several nano-meter to micro-meter among the multi-stacked coatings causing the numerical accuracy and converged capability issues on fracture-based simulation approach. For those reasons, this study proposed the FEA-based multi-level submodeling and multi-point constraint (MPC) technique to conquer the foregoing scale-mismatch issue. The results indicated that the decent region of first and second-order submodeling can achieve the small error of 1.27% compared with the experimental result and significantly reduced the mesh density and computing time. Moreover, the MPC method adopted in FEA simulation also shown only 0.54% error when the boundary of selected local region was away the concerned critical region following the Saint-Venant principle. In this investigation, two FEA-based approaches were used to conquer the evidently scale mismatch issue when the adhesive strengths of micro and nano-scale multi-stacked coating were taken into account.

  11. Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures.

    PubMed

    Stamatakis, Alexandros; Ott, Michael

    2008-12-27

    The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and emerging multi-core processor architectures that face problems of cache congestion, poses new challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML) function. Here, we propose two approaches that can significantly speed up likelihood computations that typically represent over 95 per cent of the computational effort conducted by current ML or Bayesian inference programs. Initially, we present a method and an appropriate data structure to efficiently compute the likelihood score on 'gappy' multi-gene alignments. By 'gappy' we denote sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can accelerate inferences on large and gappy alignments by approximately one order of magnitude. Moreover, we present insights and initial performance results on multi-core architectures obtained during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the ML function.

  12. Multi-group acculturation orientations in a changing context: Palestinian Christian Arab adolescents in Israel after the lost decade.

    PubMed

    Munayer, Salim J; Horenczyk, Gabriel

    2014-10-01

    Grounded in a contextual approach to acculturation of minorities, this study examines changes in acculturation orientations among Palestinian Christian Arab adolescents in Israel following the "lost decade of Arab-Jewish coexistence." Multi-group acculturation orientations among 237 respondents were assessed vis-à-vis two majorities--Muslim Arabs and Israeli Jews--and compared to 1998 data. Separation was the strongest endorsed orientation towards both majority groups. Comparisons with the 1998 data also show a weakening of the Integration attitude towards Israeli Jews, and also distancing from Muslim Arabs. For the examination of the "Westernisation" hypothesis, multi-dimensional scaling (MDS) analyses of perceptions of Self and group values clearly showed that, after 10 years, Palestinian Christian Arabs perceive Israeli Jewish culture as less close to Western culture, and that Self and the Christian Arab group have become much closer, suggesting an increasing identification of Palestinian Christian Arab adolescents with their ethnoreligious culture. We discuss the value of a multi-group, multi-method, and multi-wave approach to the examination of the role of the political context in acculturation processes. © 2014 International Union of Psychological Science.

  13. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show the results and discuss the accuracy of the algorithm for various surface types. Our future work is to extend the algorithm for analysis of GOSAT-2/TANSO-CAI-2 and GCOM/C-SGLI data.

  14. Large Scale Document Inversion using a Multi-threaded Computing System

    PubMed Central

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2018-01-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations. PMID:29861701

  15. Large Scale Document Inversion using a Multi-threaded Computing System.

    PubMed

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2017-06-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.

  16. Identifying emotional and behavioral risk among gifted and nongifted children: A multi-gate, multi-informant approach.

    PubMed

    Eklund, Katie; Tanner, Nick; Stoll, Katie; Anway, Leslie

    2015-06-01

    The purpose of the current investigation was to compare 1,206 gifted and nongifted elementary students on the identification of emotional and behavioral risk (EBR) as rated by teachers and parents using a multigate, multi-informant approach to assessment. The Parent and Teacher Behavioral Assessment System for Children, Second Edition (BASC-2) and the Behavioral and Emotional Screening System were used to assess behavioral functioning as rated by teachers and parents. There were significant differences between the number of gifted and nongifted children demonstrating emotional and behavioral risk, with parents and teachers identifying a higher number of boys and nongifted children as at risk. Among children demonstrating EBR, gifted children demonstrated elevated internalizing behaviors as rated by parents. Gifted students demonstrated higher academic performance regardless of risk level, suggesting higher cognitive abilities may be one of several protective factors that serve to attenuate the development of other social, emotional, or behavioral concerns. Implications for practice and future research needs are discussed. (c) 2015 APA, all rights reserved).

  17. Multi-sensor image registration based on algebraic projective invariants.

    PubMed

    Li, Bin; Wang, Wei; Ye, Hao

    2013-04-22

    A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.

  18. A multi-method approach toward de novo glycan characterization: a Man-5 case study.

    PubMed

    Prien, Justin M; Prater, Bradley D; Cockrill, Steven L

    2010-05-01

    Regulatory agencies' expectations for biotherapeutic approval are becoming more stringent with regard to product characterization, where minor species as low as 0.1% of a given profile are typically identified. The mission of this manuscript is to demonstrate a multi-method approach toward de novo glycan characterization and quantitation, including minor species at or approaching the 0.1% benchmark. Recently, unexpected isomers of the Man(5)GlcNAc(2) (M(5)) were reported (Prien JM, Ashline DJ, Lapadula AJ, Zhang H, Reinhold VN. 2009. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap mass spectrometry (MS). J Am Soc Mass Spectrom. 20:539-556). In the current study, quantitative analysis of these isomers found in commercial M(5) standard demonstrated that they are in low abundance (<1% of the total) and therefore an exemplary "litmus test" for minor species characterization. A simple workflow devised around three core well-established analytical procedures: (1) fluorescence derivatization; (2) online rapid resolution reversed-phase separation coupled with negative-mode sequential mass spectrometry (RRRP-(-)-MS(n)); and (3) permethylation derivatization with nanospray sequential mass spectrometry (NSI-MS(n)) provides comprehensive glycan structural determination. All methods have limitations; however, a multi-method workflow is an at-line stopgap/solution which mitigates each method's individual shortcoming(s) providing greater opportunity for more comprehensive characterization. This manuscript is the first to demonstrate quantitative chromatographic separation of the M(5) isomers and the use of a commercially available stable isotope variant of 2-aminobenzoic acid to detect and chromatographically resolve multiple M(5) isomers in bovine ribonuclease B. With this multi-method approach, we have the capabilities to comprehensively characterize a biotherapeutic's glycan array in a de novo manner, including structural isomers at >/=0.1% of the total chromatographic peak area.

  19. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    NASA Astrophysics Data System (ADS)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  20. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Huaying, E-mail: zhaoh3@mail.nih.gov; Schuck, Peter, E-mail: zhaoh3@mail.nih.gov

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysicalmore » techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.« less

  1. Applying micro-costing methods to estimate the costs of pharmacy interventions: an illustration using multi-professional clinical medication reviews in care homes for older people.

    PubMed

    Sach, Tracey H; Desborough, James; Houghton, Julie; Holland, Richard

    2014-11-06

    Economic methods are underutilised within pharmacy research resulting in a lack of quality evidence to support funding decisions for pharmacy interventions. The aim of this study is to illustrate the methods of micro-costing within the pharmacy context in order to raise awareness and use of this approach in pharmacy research. Micro-costing methods are particularly useful where a new service or intervention is being evaluated and for which no previous estimates of the costs of providing the service exist. This paper describes the rationale for undertaking a micro-costing study before detailing and illustrating the process involved. The illustration relates to a recently completed trial of multi-professional medication reviews as an intervention provided in care homes. All costs are presented in UK£2012. In general, costing methods involve three broad steps (identification, measurement and valuation); when using micro-costing, closer attention to detail is required within all three stages of this process. The mean (standard deviation; 95% confidence interval (CI) ) cost per resident of the multi-professional medication review intervention was £104.80 (50.91; 98.72 to 109.45), such that the overall cost of providing the intervention to all intervention home residents was £36,221.29 (95% CI, 32 810.81 to 39 631.77). This study has demonstrated that micro-costing can be a useful method, not only for estimating the cost of a pharmacy intervention to feed into a pharmacy economic evaluation, but also as a source of information to help inform those designing pharmacy services about the potential time and costs involved in delivering such services. © 2014 Royal Pharmaceutical Society.

  2. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.

    PubMed

    Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David

    2016-04-01

    Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.

  3. Multi-focus image fusion based on window empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao

    2017-09-01

    In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.

  4. Multi-Scale Computational Models for Electrical Brain Stimulation

    PubMed Central

    Seo, Hyeon; Jun, Sung C.

    2017-01-01

    Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476

  5. Multiscale Modeling in the Clinic: Drug Design and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, Colleen E.; An, Gary; Cannon, William R.

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less

  6. An improved multi-exposure approach for high quality holographic femtosecond laser patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chenchu; Hu, Yanlei, E-mail: huyl@ustc.edu.cn, E-mail: jwl@ustc.edu.cn; Li, Jiawen, E-mail: huyl@ustc.edu.cn, E-mail: jwl@ustc.edu.cn

    High efficiency two photon polymerization through single exposure via spatial light modulator (SLM) has been used to decrease the fabrication time and rapidly realize various micro/nanostructures, but the surface quality remains a big problem due to the speckle noise of optical intensity distribution at the defocused plane. Here, a multi-exposure approach which used tens of computer generate holograms successively loaded on SLM is presented to significantly improve the optical uniformity without losing efficiency. By applying multi-exposure, we found that the uniformity at the defocused plane was increased from ∼0.02 to ∼0.6 according to our simulation. The fabricated two series ofmore » letters “HELLO” and “USTC” under single-and multi-exposure in our experiment also verified that the surface quality was greatly improved. Moreover, by this method, several kinds of beam splitters with high quality, e.g., 2 × 2, 5 × 5 Daman, and complex nonseperate 5 × 5, gratings were fabricated with both of high quality and short time (<1 min, 95% time-saving). This multi-exposure SLM-two-photon polymerization method showed the promising prospect in rapidly fabricating and integrating various binary optical devices and their systems.« less

  7. Multi-Sensory, Multi-Modal Concepts for Information Understanding

    DTIC Science & Technology

    2004-04-01

    September 20022-2 Outline • The modern dilemma of knowledge acquisition • A vision for information access and understanding • Emerging concepts for...Multi-Sensory, Multi-Modal Concepts for Information Understanding David L. Hall, Ph.D. School of Information Sciences and Technology The... understanding . INTRODUCTION Historically, information displays for display and understanding of data fusion products have focused on the use of vision

  8. Near-Earth object hazardous impact: A Multi-Criteria Decision Making approach.

    PubMed

    Sánchez-Lozano, J M; Fernández-Martínez, M

    2016-11-16

    The impact of a near-Earth object (NEO) may release large amounts of energy and cause serious damage. Several NEO hazard studies conducted over the past few years provide forecasts, impact probabilities and assessment ratings, such as the Torino and Palermo scales. These high-risk NEO assessments involve several criteria, including impact energy, mass, and absolute magnitude. The main objective of this paper is to provide the first Multi-Criteria Decision Making (MCDM) approach to classify hazardous NEOs. Our approach applies a combination of two methods from a widely utilized decision making theory. Specifically, the Analytic Hierarchy Process (AHP) methodology is employed to determine the criteria weights, which influence the decision making, and the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) is used to obtain a ranking of alternatives (potentially hazardous NEOs). In addition, NEO datasets provided by the NASA Near-Earth Object Program are utilized. This approach allows the classification of NEOs by descending order of their TOPSIS ratio, a single quantity that contains all of the relevant information for each object.

  9. Variance approach for multi-objective linear programming with fuzzy random of objective function coefficients

    NASA Astrophysics Data System (ADS)

    Indarsih, Indrati, Ch. Rini

    2016-02-01

    In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.

  10. A deep learning-based multi-model ensemble method for cancer prediction.

    PubMed

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Establishing and performing targeted multi-residue analysis for lipid mediators and fatty acids in small clinical plasma samples.

    USDA-ARS?s Scientific Manuscript database

    LC-MS/MS and GC-MS based targeted metabolomics is typically conducted by analyzing and quantifying a cascade of metabolites with methods specifically developed for the metabolite class. Here we describe an approach for the development of multi-residue analytical profiles, calibration standards, and ...

  12. Visualizing the Intersection of the Personal and the Social Context--The Use of Multi-Layered Chronological Charts in Biographical Studies

    ERIC Educational Resources Information Center

    Hiller, Patrick T.

    2011-01-01

    This paper outlines the theoretical reasoning and technical implementation of a particular approach to creating multi-layered chronological charts in qualitative biographical studies. The discussed method elucidates the interpretation of traditional life chronologies where the individual's "objective" life facts are reconstructed free from…

  13. Multi-Tier Mental Health Program for Refugee Youth

    ERIC Educational Resources Information Center

    Ellis, B. Heidi; Miller, Alisa B.; Abdi, Saida; Barrett, Colleen; Blood, Emily A.; Betancourt, Theresa S.

    2013-01-01

    Objective: We sought to establish that refugee youths who receive a multi-tiered approach to services, Project SHIFA, would show high levels of engagement in treatment appropriate to their level of mental health distress, improvements in mental health symptoms, and a decrease in resource hardships. Method: Study participants were 30 Somali and…

  14. A Multi-Method Multi-Analytic Approach to Establishing Internal Construct Validity Evidence: The Sport Multidimensional Perfectionism Scale 2

    ERIC Educational Resources Information Center

    Gotwals, John K.; Dunn, John G. H.

    2009-01-01

    This article presents a chronology of three empirical studies that outline the measurement process by which two new subscales ("Doubts about Actions" and "Organization") were developed and integrated into a revised version of Dunn, Causgrove Dunn, and Syrotuik's (2002) "Sport Multidimensional Perfectionism Scale"…

  15. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.

    PubMed

    Li, Min; Sareh, Sina; Xu, Guanghua; Ridzuan, Maisarah Binti; Luo, Shan; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2016-01-01

    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user.

  16. Bayesian Multi-Trait Analysis Reveals a Useful Tool to Increase Oil Concentration and to Decrease Toxicity in Jatropha curcas L.

    PubMed Central

    Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar

    2016-01-01

    The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340

  17. Changing paradigm from one target one ligand towards multi target directed ligand design for key drug targets of Alzheimer disease: An important role of Insilco methods in multi target directed ligands design.

    PubMed

    Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok

    2018-03-15

    Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug discovery and play an important role in optimizing multi-target drug discovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  19. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks

    NASA Astrophysics Data System (ADS)

    Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien

    2018-06-01

    In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.

  20. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations.

    PubMed

    Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping

    2017-03-19

    The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.

  1. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations

    PubMed Central

    Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping

    2017-01-01

    The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity. PMID:28335492

  2. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    PubMed

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.

  3. A map of community-based obesity prevention initiatives in Australia following obesity funding 2009–2013

    PubMed Central

    Whelan, Jillian; Love, Penny; Romanus, Anne; Pettman, Tahna; Bolton, Kristy; Smith, Erin; Gill, Tim; Coveney, John; Waters, Elizabeth; Allender, Steve

    2015-01-01

    Abstract Objective: Obesity is the single biggest public health threat to developed and developing economies. In concert with healthy public policy, multi-strategy, multi-level community-based initiatives appear promising in preventing obesity, with several countries trialling this approach. In Australia, multiple levels of government have funded and facilitated a range of community-based obesity prevention initiatives (CBI), heterogeneous in their funding, timing, target audience and structure. This paper aims to present a central repository of CBI operating in Australia during 2013, to facilitate knowledge exchange and shared opportunities for learning, and to guide professional development towards best practice for CBI practitioners. Methods: A comprehensive search of government, non-government and community websites was undertaken to identify CBI in Australia in 2013. This was supplemented with data drawn from available reports, personal communication and key informant interviews. The data was translated into an interactive map for use by preventive health practitioners and other parties. Results: We identified 259 CBI; with the majority (84%) having a dual focus on physical activity and healthy eating. Few initiatives, (n=37) adopted a four-pronged multi-strategy approach implementing policy, built environment, social marketing and/or partnership building. Conclusion: This comprehensive overview of Australian CBI has the potential to facilitate engagement and collaboration through knowledge exchange and information sharing amongst CBI practitioners, funders, communities and researchers. Implications: An enhanced understanding of current practice highlights areas of strengths and opportunities for improvement to maximise the impact of obesity prevention initiatives. PMID:25561083

  4. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.

  5. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  6. Study on the multi-sensors monitoring and information fusion technology of dangerous cargo container

    NASA Astrophysics Data System (ADS)

    Xu, Shibo; Zhang, Shuhui; Cao, Wensheng

    2017-10-01

    In this paper, monitoring system of dangerous cargo container based on multi-sensors is presented. In order to improve monitoring accuracy, multi-sensors will be applied inside of dangerous cargo container. Multi-sensors information fusion solution of monitoring dangerous cargo container is put forward, and information pre-processing, the fusion algorithm of homogenous sensors and information fusion based on BP neural network are illustrated, applying multi-sensors in the field of container monitoring has some novelty.

  7. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284

  8. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.

    PubMed

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio

    2016-03-01

    This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Preparation of balanced trichromatic white phosphors for solid-state white lighting.

    PubMed

    Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-08-01

    High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less

  11. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  12. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  13. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review

    DOE PAGES

    Zuo, Chao; Huang, Lei; Zhang, Minliang; ...

    2016-05-06

    In fringe projection pro lometry (FPP), temporal phase unwrapping is an essential procedure to recover an unambiguous absolute phase even in the presence of large discontinuities or spatially isolated surfaces. So far, there are typically three groups of temporal phase unwrapping algorithms proposed in the literature: multi-frequency (hierarchical) approach, multi-wavelength (heterodyne) approach, and number-theoretical approach. In this paper, the three methods are investigated and compared in details by analytical, numerical, and experimental means. The basic principles and recent developments of the three kind of algorithms are firstly reviewed. Then, the reliability of different phase unwrapping algorithms is compared based onmore » a rigorous stochastic noise model. Moreover, this noise model is used to predict the optimum fringe period for each unwrapping approach, which is a key factor governing the phase measurement accuracy in FPP. Simulations and experimental results verified the correctness and validity of the proposed noise model as well as the prediction scheme. The results show that the multi-frequency temporal phase unwrapping provides the best unwrapping reliability, while the multi-wavelength approach is the most susceptible to noise-induced unwrapping errors.« less

  14. Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models.

    PubMed

    Papanikolaou, Yannis; Tsoumakas, Grigorios; Laliotis, Manos; Markantonatos, Nikos; Vlahavas, Ioannis

    2017-09-22

    In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.

  15. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64.

    PubMed

    Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C

    2009-04-01

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.

  16. Path synthesis of four-bar mechanisms using synergy of polynomial neural network and Stackelberg game theory

    NASA Astrophysics Data System (ADS)

    Ahmadi, Bahman; Nariman-zadeh, Nader; Jamali, Ali

    2017-06-01

    In this article, a novel approach based on game theory is presented for multi-objective optimal synthesis of four-bar mechanisms. The multi-objective optimization problem is modelled as a Stackelberg game. The more important objective function, tracking error, is considered as the leader, and the other objective function, deviation of the transmission angle from 90° (TA), is considered as the follower. In a new approach, a group method of data handling (GMDH)-type neural network is also utilized to construct an approximate model for the rational reaction set (RRS) of the follower. Using the proposed game-theoretic approach, the multi-objective optimal synthesis of a four-bar mechanism is then cast into a single-objective optimal synthesis using the leader variables and the obtained RRS of the follower. The superiority of using the synergy game-theoretic method of Stackelberg with a GMDH-type neural network is demonstrated for two case studies on the synthesis of four-bar mechanisms.

  17. Secure information transmission in filter bank multi-carrier spread spectrum systems

    DOE PAGES

    Majid, Arslan; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    2015-12-17

    This report discusses the issue of secure information transmission for a spread-spectrum system, which in our case is Filter-Bank Multi-Carrier spread spectrum (FB-MC SS). We develop a novel method for generating a secret key to augment the security of the spread spectrum system. The proposed key generation takes advantage of the channel reciprocity exhibited between two communicating parties.We validate the key generation aspect of our system by using real-world measurements. It is found that our augmentation of strongest path cancellation (SPC) is shown to be highly effective in our measurement scenarios where the adversary’s key would otherwise be significantly correlatedmore » with the legitimate nodes. Our approach in using the proposed key generation method as a part of FB-MC SS allows for it to be fault tolerant and it is not necessarily limited to FB-MC SS or spread-spectrum system in general. However, the advantage that our approach has in the domain of spread-spectrum security is that it significantly decorrelates the adversary’s key from the authentic parties. This aspect is crucial because if the adversary’s key is similar to the legitamate parties, then the adversary obtains a sizable advantage due to the fault tolerance nature of the developed spread spectrum key.« less

  18. Secure information transmission in filter bank multi-carrier spread spectrum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majid, Arslan; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    This report discusses the issue of secure information transmission for a spread-spectrum system, which in our case is Filter-Bank Multi-Carrier spread spectrum (FB-MC SS). We develop a novel method for generating a secret key to augment the security of the spread spectrum system. The proposed key generation takes advantage of the channel reciprocity exhibited between two communicating parties.We validate the key generation aspect of our system by using real-world measurements. It is found that our augmentation of strongest path cancellation (SPC) is shown to be highly effective in our measurement scenarios where the adversary’s key would otherwise be significantly correlatedmore » with the legitimate nodes. Our approach in using the proposed key generation method as a part of FB-MC SS allows for it to be fault tolerant and it is not necessarily limited to FB-MC SS or spread-spectrum system in general. However, the advantage that our approach has in the domain of spread-spectrum security is that it significantly decorrelates the adversary’s key from the authentic parties. This aspect is crucial because if the adversary’s key is similar to the legitamate parties, then the adversary obtains a sizable advantage due to the fault tolerance nature of the developed spread spectrum key.« less

  19. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    PubMed

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  20. Estimating carnivore community structures

    PubMed Central

    Jiménez, José; Nuñez-Arjona, Juan Carlos; Rueda, Carmen; González, Luis Mariano; García-Domínguez, Francisco; Muñoz-Igualada, Jaime; López-Bao, José Vicente

    2017-01-01

    Obtaining reliable estimates of the structure of carnivore communities is of paramount importance because of their ecological roles, ecosystem services and impact on biodiversity conservation, but they are still scarce. This information is key for carnivore management: to build support for and acceptance of management decisions and policies it is crucial that those decisions are based on robust and high quality information. Here, we combined camera and live-trapping surveys, as well as telemetry data, with spatially-explicit Bayesian models to show the usefulness of an integrated multi-method and multi-model approach to monitor carnivore community structures. Our methods account for imperfect detection and effectively deal with species with non-recognizable individuals. In our Mediterranean study system, the terrestrial carnivore community was dominated by red foxes (0.410 individuals/km2); Egyptian mongooses, feral cats and stone martens were similarly abundant (0.252, 0.249 and 0.240 individuals/km2, respectively), whereas badgers and common genets were the least common (0.130 and 0.087 individuals/km2, respectively). The precision of density estimates improved by incorporating multiple covariates, device operation, and accounting for the removal of individuals. The approach presented here has substantial implications for decision-making since it allows, for instance, the evaluation, in a standard and comparable way, of community responses to interventions. PMID:28120871

  1. Two-dimensional fingerprinting approach for comparison of complex substances analysed by HPLC-UV and fluorescence detection.

    PubMed

    Ni, Yongnian; Liu, Ying; Kokot, Serge

    2011-02-07

    This work is concerned with the research and development of methodology for analysis of complex mixtures such as pharmaceutical or food samples, which contain many analytes. Variously treated samples (swill washed, fried and scorched) of the Rhizoma atractylodis macrocephalae (RAM) traditional Chinese medicine (TCM) as well as the common substitute, Rhizoma atractylodis (RA) TCM were chosen as examples for analysis. A combined data matrix of chromatographic 2-D HPLC-DAD-FLD (two-dimensional high performance liquid chromatography with diode array and fluorescence detectors) fingerprint profiles was constructed with the use of the HPLC-DAD and HPLC-FLD individual data matrices; the purpose was to collect maximum information and to interpret this complex data with the use of various chemometrics methods e.g. the rank-ordering multi-criteria decision making (MCDM) PROMETHEE and GAIA, K-nearest neighbours (KNN), partial least squares (PLS), back propagation-artificial neural networks (BP-ANN) methods. The chemometrics analysis demonstrated that the combined 2-D HPLC-DAD-FLD data matrix does indeed provide more information and facilitates better performing classification/prediction models for the analysis of such complex samples as the RAM and RA ones noted above. It is suggested that this fingerprint approach is suitable for analysis of other complex, multi-analyte substances.

  2. Parent and Self-Report Ratings on the Perceived Levels of Social Vulnerability of Adults with Williams Syndrome.

    PubMed

    Lough, Emma; Fisher, Marisa H

    2016-11-01

    The current study took a multi-informant approach to compare parent to self-report ratings of social vulnerability of adults with Williams syndrome (WS). Participants included 102 pairs of adults with WS and their parents. Parents completed the Social Vulnerability Questionnaire and adults with WS completed an adapted version of the questionnaire. Parents consistently reported higher levels of social vulnerability for their son/daughter than the individual with WS reported, with the exception of emotional abuse. The lower ratings of social vulnerability by adults with WS, compared to their parents, offer new information about their insight into their own vulnerability. These findings highlight the importance of teaching self-awareness as a part of a multi-informant approach to interventions designed to target social vulnerability.

  3. A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.

    PubMed

    Khelifi, Lazhar; Mignotte, Max

    2017-08-01

    Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.

  4. Multi-Disciplinary, Multi-Fidelity Discrete Data Transfer Using Degenerate Geometry Forms

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    In a typical multi-fidelity design process, different levels of geometric abstraction are used for different analysis methods, and transitioning from one phase of design to the next often requires a complete re-creation of the geometry. To maintain consistency between lower-order and higher-order analysis results, Vehicle Sketch Pad (OpenVSP) recently introduced the ability to generate and export several degenerate forms of the geometry, representing the type of abstraction required to perform low- to medium-order analysis for a range of aeronautical disciplines. In this research, the functionality of these degenerate models was extended, so that in addition to serving as repositories for the geometric information that is required as input to an analysis, the degenerate models can also store the results of that analysis mapped back onto the geometric nodes. At the same time, the results are also mapped indirectly onto the nodes of lower-order degenerate models using a process called aggregation, and onto higher-order models using a process called disaggregation. The mapped analysis results are available for use by any subsequent analysis in an integrated design and analysis process. A simple multi-fidelity analysis process for a single-aisle subsonic transport aircraft is used as an example case to demonstrate the value of the approach.

  5. A computational intelligent approach to multi-factor analysis of violent crime information system

    NASA Astrophysics Data System (ADS)

    Liu, Hongbo; Yang, Chao; Zhang, Meng; McLoone, Seán; Sun, Yeqing

    2017-02-01

    Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.

  6. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  7. Prospects for direct social perception: a multi-theoretical integration to further the science of social cognition

    PubMed Central

    Wiltshire, Travis J.; Lobato, Emilio J. C.; McConnell, Daniel S.; Fiore, Stephen M.

    2015-01-01

    In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others’ mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience. PMID:25709572

  8. The role of economics in the QUERI program: QUERI Series

    PubMed Central

    Smith, Mark W; Barnett, Paul G

    2008-01-01

    Background The United States (U.S.) Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) has implemented economic analyses in single-site and multi-site clinical trials. To date, no one has reviewed whether the QUERI Centers are taking an optimal approach to doing so. Consistent with the continuous learning culture of the QUERI Program, this paper provides such a reflection. Methods We present a case study of QUERI as an example of how economic considerations can and should be integrated into implementation research within both single and multi-site studies. We review theoretical and applied cost research in implementation studies outside and within VA. We also present a critique of the use of economic research within the QUERI program. Results Economic evaluation is a key element of implementation research. QUERI has contributed many developments in the field of implementation but has only recently begun multi-site implementation trials across multiple regions within the national VA healthcare system. These trials are unusual in their emphasis on developing detailed costs of implementation, as well as in the use of business case analyses (budget impact analyses). Conclusion Economics appears to play an important role in QUERI implementation studies, only after implementation has reached the stage of multi-site trials. Economic analysis could better inform the choice of which clinical best practices to implement and the choice of implementation interventions to employ. QUERI economics also would benefit from research on costing methods and development of widely accepted international standards for implementation economics. PMID:18430199

  9. A multi-scale spatial approach to address environmental effects of small hydropower development.

    PubMed

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  10. NMR approaches in structure-based lead discovery: Recent developments and new frontiers for targeting multi-protein complexes

    PubMed Central

    Dias, David M.; Ciulli, Alessio

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. PMID:25175337

  11. Methodology for quantitative rapid multi-tracer PET tumor characterizations.

    PubMed

    Kadrmas, Dan J; Hoffman, John M

    2013-10-04

    Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted.

  12. Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations

    PubMed Central

    Kadrmas, Dan J.; Hoffman, John M.

    2013-01-01

    Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted. PMID:24312149

  13. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    PubMed

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  14. Joint modality fusion and temporal context exploitation for semantic video analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Georgios Th; Mezaris, Vasileios; Kompatsiaris, Ioannis; Strintzis, Michael G.

    2011-12-01

    In this paper, a multi-modal context-aware approach to semantic video analysis is presented. Overall, the examined video sequence is initially segmented into shots and for every resulting shot appropriate color, motion and audio features are extracted. Then, Hidden Markov Models (HMMs) are employed for performing an initial association of each shot with the semantic classes that are of interest separately for each modality. Subsequently, a graphical modeling-based approach is proposed for jointly performing modality fusion and temporal context exploitation. Novelties of this work include the combined use of contextual information and multi-modal fusion, and the development of a new representation for providing motion distribution information to HMMs. Specifically, an integrated Bayesian Network is introduced for simultaneously performing information fusion of the individual modality analysis results and exploitation of temporal context, contrary to the usual practice of performing each task separately. Contextual information is in the form of temporal relations among the supported classes. Additionally, a new computationally efficient method for providing motion energy distribution-related information to HMMs, which supports the incorporation of motion characteristics from previous frames to the currently examined one, is presented. The final outcome of this overall video analysis framework is the association of a semantic class with every shot. Experimental results as well as comparative evaluation from the application of the proposed approach to four datasets belonging to the domains of tennis, news and volleyball broadcast video are presented.

  15. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  16. A multi-resolution strategy for a multi-objective deformable image registration framework that accommodates large anatomical differences

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Bosman, Peter A. N.; Sonke, Jan-Jakob; Bel, Arjan

    2014-03-01

    Currently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is one of the reasons why, despite significant progress, clinical implementation of such techniques has proven to be difficult. The second challenge is to account for large anatomical differences (e.g. large deformations, (dis)appearing structures) that occurred between image acquisitions. In this paper, we study a framework based on multi-objective optimization to improve registration robustness and to simplify tuning for specific applications. Within this framework we specifically consider the use of an advanced model-based evolutionary algorithm for optimization and a dual-dynamic transformation model (i.e. two "non-fixed" grids: one for the source- and one for the target image) to accommodate for large anatomical differences. The framework computes and presents multiple outcomes that represent efficient trade-offs between the different objectives (a so-called Pareto front). In image processing it is common practice, for reasons of robustness and accuracy, to use a multi-resolution strategy. This is, however, only well-established for single-objective registration methods. Here we describe how such a strategy can be realized for our multi-objective approach and compare its results with a single-resolution strategy. For this study we selected the case of prone-supine breast MRI registration. Results show that the well-known advantages of a multi-resolution strategy are successfully transferred to our multi-objective approach, resulting in superior (i.e. Pareto-dominating) outcomes.

  17. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    NASA Astrophysics Data System (ADS)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from the parametric uncertainty. To quantify the conceptual uncertainty from a given site, we combine the outputs from the different conceptual models using Bayesian model averaging. The weight for each model is obtained by integrating available data and expert knowledge using Bayesian belief networks. The multi-model approach is applied to a contaminated site. At the site a DNAPL (dense non aqueous phase liquid) spill consisting of PCE (perchloroethylene) has contaminated a fractured clay till aquitard overlaying a limestone aquifer. The exact shape and nature of the source is unknown and so is the importance of transport in the fractures. The result of the multi-model approach is a visual representation of the uncertainty of the mass discharge estimates for the site which can be used to support the management options.

  18. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  19. Sensitivity Analysis Based Approaches for Mitigating the Effects of Reducible Interval Input Uncertainty on Single- and Multi-Disciplinary Systems Using Multi-Objective Optimization

    DTIC Science & Technology

    2010-01-01

    Multi-Disciplinary, Multi-Output Sensitivity Analysis ( MIMOSA ) .........29 3.1 Introduction to Research Thrust 1...39 3.3 MIMOSA Approach ..........................................................................................41 3.3.1...Collaborative Consistency of MIMOSA .......................................................41 3.3.2 Formulation of MIMOSA

  20. [Multiple chronic conditions and morbidity burden: challenges and considerations for an organizational strategy].

    PubMed

    Balicer, Ran; Bitterman, Haim; Shadmi, Efrat

    2012-07-01

    Technological advances combined with the aging of the population bring about an increasingly growing number of patients with chronic conditions and multi-morbidity. Multi-morbidity, the co-occurrence of chronic and/or non-chronic conditions in an individual, is the norm among elderly patients, and is becoming increasingly common among younger adults. The Israeli health system, like other systems worldwide, is faced with the challenges posed by the increase in complex multi-morbidity, in an era of growing fiscal constraints, a situation that can induce financial and organizational crises. To effectively cope with such circumstances, a paradigm shift is needed. Health systems need to focus on overall morbidity burden and multi-morbidity (rather than the prevailing one disease at a time approach) and on better care integration. The Israeli health system entails many of the essential elements for addressing the challenges of integrated care, including universal health coverage and advanced health information technology systems. Yet, like other health systems, there is a need for care management support mechanisms that are more effectively tailored to meet the needs of the highly multimorbid patients. This review outlines the organizational approach required to better align care for the main customers of health care in the 21st century: patients with multi-morbidity. We focus on four domains: assessment of morbidity burden according to measures that account for the interaction and synergism amongst conditions; integration across the care continuum; enhancement of primary care and self-management support approaches; and provision of uniquely tailored care management solutions for the highest risk multi-morbid patients.

Top