NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-11-06
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-01-01
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971
New mode switching algorithm for the JPL 70-meter antenna servo controller
NASA Technical Reports Server (NTRS)
Nickerson, J. A.
1988-01-01
The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.
Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.
Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing
2016-08-01
In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.
Reverse-mode PSLC multi-plane optical see-through display for AR applications.
Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai
2018-02-05
In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.
Detection and characterization of multi-filament evolution during resistive switching
Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.
2014-08-05
We present resistive switching data in TaO x memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, wemore » discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.« less
Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide.
Tanaka, Daiki; Shoji, Yuya; Kuwahara, Masashi; Wang, Xiaomin; Kintaka, Kenji; Kawashima, Hitoshi; Toyosaki, Tatsuya; Ikuma, Yuichiro; Tsuda, Hiroyuki
2012-04-23
We report a multi-mode interference-based optical gate switch using a Ge(2)Sb(2)Te(5) thin film with a diameter of only 1 µm. The switching operation was demonstrated by laser pulse irradiation. This switch had a very wide operating wavelength range of 100 nm at around 1575 nm, with an average extinction ratio of 12.6 dB. Repetitive switching over 2,000 irradiation cycles was also successfully demonstrated. In addition, self-holding characteristics were confirmed by observing the dynamic responses, and the rise and fall times were 130 ns and 400 ns, respectively. © 2012 Optical Society of America
Mode selecting switch using multimode interference for on-chip optical interconnects.
Priti, Rubana B; Pishvai Bazargani, Hamed; Xiong, Yule; Liboiron-Ladouceur, Odile
2017-10-15
A novel mode selecting switch (MSS) is experimentally demonstrated for on-chip mode-division multiplexing (MDM) optical interconnects. The MSS consists of a Mach-Zehnder interferometer with tapered multi-mode interference couplers and TiN thermo-optic phase shifters for conversion and switching between the optical data encoded on the fundamental and first-order quasi-transverse electric (TE) modes. The C-band MSS exhibits a >25 dB switching extinction ratio and < -12 dB crosstalk. We validate the dynamic switching with a 25.8 kHz gating signal measuring switching times for both TE0 and TE1 modes of <10.9 μs. All channels exhibit less than 1.7 dB power penalty at a 10 -12 bit error rate, while switching the non-return-to-zero PRBS-31 data signals at 10 Gb/s.
Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions.
He, Weifan; Sun, Huajun; Zhou, Yaxiong; Lu, Ke; Xue, Kanhao; Miao, Xiangshui
2017-08-30
The memristor is a promising candidate for the next generation non-volatile memory, especially based on HfO 2-x , given its compatibility with advanced CMOS technologies. Although various resistive transitions were reported independently, customized binary and multi-level memristors in unified HfO 2-x material have not been studied. Here we report Pt/HfO 2-x /Ti memristors with double memristive modes, forming-free and low operation voltage, which were tuned by oxidation conditions of HfO 2-x films. As O/Hf ratios of HfO 2-x films increase, the forming voltages, SET voltages, and R off /R on windows increase regularly while their resistive transitions undergo from gradually to sharply in I/V sweep. Two memristors with typical resistive transitions were studied to customize binary and multi-level memristive modes, respectively. For binary mode, high-speed switching with 10 3 pulses (10 ns) and retention test at 85 °C (>10 4 s) were achieved. For multi-level mode, the 12-levels stable resistance states were confirmed by ongoing multi-window switching (ranging from 10 ns to 1 μs and completing 10 cycles of each pulse). Our customized binary and multi-level HfO 2-x -based memristors show high-speed switching, multi-level storage and excellent stability, which can be separately applied to logic computing and neuromorphic computing, further suitable for in-memory computing chip when deposition atmosphere may be fine-tuned.
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Multi-operational tuneable Q-switched mode-locking Er fibre laser
NASA Astrophysics Data System (ADS)
Qamar, F. Z.
2018-01-01
A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.
X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors
NASA Astrophysics Data System (ADS)
Park, Mingyo; Min, Byung-Wook
2018-03-01
This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.
NASA Astrophysics Data System (ADS)
Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian
2017-08-01
In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
Low voltage electrophoresis chip with multi-segments synchronized scanning
NASA Astrophysics Data System (ADS)
Gu, Wenwen; Wen, Zhiyu; Xu, Yi
2017-03-01
For low voltage electrophoresis chip, there is always a problem that the samples are truncated and peaks are broadened, as well as longer time for separation. In this paper, a low voltage electrophoresis separation model was established, and the separation conditions were discussed. A new driving mode was proposed for applying low voltage, which was called multi-segments synchronized scanning. By using this driving mode, the reversed electric field that existed between the multi-segments can enrich samples and shorten the sample zone. The low voltage electrophoresis experiments using multi-segments synchronized scanning were carried out by home-made silicon-PDMS-based chip. The fluorescein isothiocyanate (FITC) labeled lysine and phenylalanine mixed samples with the concentration of 10-4 mol/L were successfully separated under the optimal conditions of 10 mmol/L borax buffer (pH = 10.0), 200 V/cm separation electric field and electrode switch time of 2.5 s. The separation was completed with a resolution of 2.0, and the peak time for lysine and phenylalanine was 4 min and 6 min, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Wang; Yunjun Zhang; Aotuo Dong
2014-04-28
The active Q-switched and passive mode-locked Er{sup 3+}-doped all-fibre laser is presented. The fibre laser centre wavelength is located at 1563 nm and determined by the homemade singlemulti- single (SMS) in-line fibre filter. The laser spectrum width is nearly 0.1 nm. The active Q-switched mechanism relies on the polarisation state control using a piezoelectric to press a segment of passive fibre on the circular cavity. The nonlinear polarisation rotation technology is used to realise the passive self-started modelocked operation. In the passive mode-locked regimes, the output average power is 2.1 mW, repetition frequency is 11.96 MHz, and single pulse energymore » is 0.18 nJ. With the 100-Hz Q-switched regimes running, the output average power is 1.5 mW. The total Q-switched pulse width is 15 μs, and every Q-switched pulse is made up by several tens of mode-locked peak pulses. The calculated output pulse energy of the Q-switched fibre laser is about 15 μJ, and the energy of every mode-locked pulse is about 64–68 nJ during a Q-switched pulse taking into account the power fraction propagating between pulses. (lasers)« less
High-power diode-pumped solid-state lasers for optical space communications
NASA Technical Reports Server (NTRS)
Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan
1991-01-01
The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.
Microfluidic T-form mixer utilizing switching electroosmotic flow.
Lin, Che-Hsin; Fu, Lung-Ming; Chien, Yu-Sheng
2004-09-15
This paper presents a microfluidic T-form mixer utilizing alternatively switching electroosmotic flow. The microfluidic device is fabricated on low-cost glass slides using a simple and reliable fabrication process. A switching DC field is used to generate an electroosmotic force which simultaneously drives and mixes the fluid samples. The proposed design eliminates the requirements for moving parts within the microfluidic device and delicate external control systems. Two operation modes, namely, a conventional switching mode and a novel pinched switching mode, are presented. Computer simulation is employed to predict the mixing performance attainable in both operation modes. The simulation results are then compared to those obtained experimentally. It is shown that a mixing performance as high as 97% can be achieved within a mixing distance of 1 mm downstream from the T-junction when a 60 V/cm driving voltage and a 2-Hz switching frequency are applied in the pinched switching operation mode. This study demonstrates how the driving voltage and switching frequency can be optimized to yield an enhanced mixing performance. The novel methods presented in this study provide a simple solution to mixing problems in the micro-total-analysis-systems field.
A three-level support method for smooth switching of the micro-grid operation model
NASA Astrophysics Data System (ADS)
Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun
2018-01-01
Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.
Broadband terahertz-power extracting by using electron cyclotron maser.
Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun
2017-08-04
Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng
2014-08-01
Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.
Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman
2017-01-01
Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214
Borlase, Anna; Rudge, James W.
2017-01-01
Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples from both human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289259
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir
2010-02-01
We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.
NASA Astrophysics Data System (ADS)
Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong
2018-06-01
The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.
Experiences in the Application of Project-Based Learning in a Switching-Mode Power Supplies Course
ERIC Educational Resources Information Center
Lamar, D. G.; Miaja, P. F.; Arias, M.; Rodriguez, A.; Rodriguez, M.; Vazquez, A.; Hernando, M. M.; Sebastian, J.
2012-01-01
This paper presents the introduction of problem-based learning (PBL) in a power electronics course at the University of Oviedo, Gijon, Spain, by means of two practical projects: the design and construction of a switching-mode power supply (SMPS) prototype and the static study of a dc-dc converter topology. The goal of this innovation was for…
Multi-mode sliding mode control for precision linear stage based on fixed or floating stator.
Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei
2016-02-01
This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
NASA Astrophysics Data System (ADS)
Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe
2017-12-01
The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Kearney, Robert E.; Galiana, Henrietta L.
2005-01-01
A "Multimode" or "switched" system is one that switches between various modes of operation. When a switch occurs from one mode to another, a discontinuity may result followed by a smooth evolution under the new regime. Characterizing the switching behavior of these systems is not well understood and, therefore, identification of multimode systems typically requires a preprocessing step to classify the observed data according to a mode of operation. A further consequence of the switched nature of these systems is that data available for parameter estimation of any subsystem may be inadequate. As such, identification and parameter estimation of multimode systems remains an unresolved problem. In this paper, we 1) show that the NARMAX model structure can be used to describe the impulsive-smooth behavior of switched systems, 2) propose a modified extended least squares (MELS) algorithm to estimate the coefficients of such models, and 3) demonstrate its applicability to simulated and real data from the Vestibulo-Ocular Reflex (VOR). The approach will also allow the identification of other nonlinear bio-systems, suspected of containing "hard" nonlinearities.
A fast switch, combiner and narrow-band filter for high-power millimetre wave beams
NASA Astrophysics Data System (ADS)
Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF
2008-05-01
A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.
Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan
2016-03-01
This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Compact single mode tunable laser using a digital micromirror device.
Havermeyer, Frank; Ho, Lawrence; Moser, Christophe
2011-07-18
The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.
NASA Astrophysics Data System (ADS)
Jasim, A. A.; Ahmad, H.
2017-12-01
The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.
Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.
2011-01-01
We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.
Hybrid switched time-optimal control of underactuated spacecraft
NASA Astrophysics Data System (ADS)
Olivares, Alberto; Staffetti, Ernesto
2018-04-01
This paper studies the time-optimal control problem for an underactuated rigid spacecraft equipped with both reaction wheels and gas jet thrusters that generate control torques about two of the principal axes of the spacecraft. Since a spacecraft equipped with two reaction wheels is not controllable, whereas a spacecraft equipped with two gas jet thrusters is controllable, this mixed actuation ensures controllability in the case in which one of the control axes is unactuated. A novel control logic is proposed for this hybrid actuation in which the reaction wheels are the main actuators and the gas jet thrusters act only after saturation or anticipating future saturation of the reaction wheels. The presence of both reaction wheels and gas jet thrusters gives rise to two operating modes for each actuated axis and therefore the spacecraft can be regarded as a switched dynamical system. The time-optimal control problem for this system is reformulated using the so-called embedding technique and the resulting problem is a classical optimal control problem. The main advantages of this technique are that integer or binary variables do not have to be introduced to model switching decisions between modes and that assumptions about the number of switches are not necessary. It is shown in this paper that this general method for the solution of optimal control problems for switched dynamical systems can efficiently deal with time-optimal control of an underactuated rigid spacecraft in which bound constraints on the torque of the actuators and on the angular momentum of the reaction wheels are taken into account.
NASA Astrophysics Data System (ADS)
Chen, Haidong; Che, Wenquan; Zhang, Tianyu; Cao, Yue; Feng, Wenjie
2018-06-01
Half-mode substrate integrated waveguide (HMSIW) switchable unit, built by HMSIW section with loaded single or multi-microstrip shunt stub(s), was proposed in this work. Both shorted and opened stubs were studied, investigated and compared, bandwidth enhancement method for proposed switchable units was proposed and demonstrated. Based on these switchable units, narrowband and broadband HMSIW single-pole-single-through (SPST) switches, SIW SPST switch and SIW/HMSIW-based single-pole-double-through (SPDT) switch were designed, fabricated and measured. Good performances were observed experimentally for these proposed circuits, showing the advantages of proposed concept and an excellent candidate for switchable or reconfigurable SIW/HMSIW circuits or systems.
A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive
NASA Astrophysics Data System (ADS)
Kang, S.; Kim, H. C.; Chun, K.
2009-03-01
Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.
NASA Astrophysics Data System (ADS)
Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An
2012-12-01
This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.
Multi-mode multi-band power amplifier module with high low-power efficiency
NASA Astrophysics Data System (ADS)
Xuguang, Zhang; Jie, Jin
2015-10-01
Increasingly, mobile communications standards require high power efficiency and low currents in the low power mode. This paper proposes a fully-integrated multi-mode and multi-band power amplifier module (PAM) to meet these requirements. A dual-path PAM is designed for high-power mode (HPM), medium-power mode (MPM), and low-power mode (LPM) operations without any series switches for different mode selection. Good performance and significant current saving can be achieved by using an optimized load impedance design for each power mode. The PAM is tapeout with the InGaP/GaAs heterojunction bipolar transistor (HBT) process and the 0.18-μm complementary metal-oxide semiconductor (CMOS) process. The test results show that the PAM achieves a very low quiescent current of 3 mA in LPM. Meanwhile, across the 1.7-2.0 GHz frequency, the PAM performs well. In HPM, the output power is 28 dBm with at least 39.4% PAE and -40 dBc adjacent channel leakage ratio 1 (ACLR1). In MPM, the output power is 17 dBm, with at least 21.3% PAE and -43 dBc ACLR1. In LPM, the output power is 8 dBm, with at least 18.2% PAE and -40 dBc ACLR1. Project supported by the National Natural Science Foundation of China (No. 61201244).
MEMS micromirrors for optical switching in multichannel spectrophotometers
NASA Astrophysics Data System (ADS)
Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.
2004-04-01
This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.
A multi-ring optical packet and circuit integrated network with optical buffering.
Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya
2012-12-17
We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.
Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers
NASA Astrophysics Data System (ADS)
Zameroski, Nathan D.; Wanke, Michael; Bossert, David
2013-03-01
The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Three-Axis Time-Optimal Attitude Maneuvers of a Rigid-Body
NASA Astrophysics Data System (ADS)
Wang, Xijing; Li, Jisheng
With the development trends for modern satellites towards macro-scale and micro-scale, new demands are requested for its attitude adjustment. Precise pointing control and rapid maneuvering capabilities have long been part of many space missions. While the development of computer technology enables new optimal algorithms being used continuously, a powerful tool for solving problem is provided. Many papers about attitude adjustment have been published, the configurations of the spacecraft are considered rigid body with flexible parts or gyrostate-type systems. The object function always include minimum time or minimum fuel. During earlier satellite missions, the attitude acquisition was achieved by using the momentum ex change devices, performed by a sequential single-axis slewing strategy. Recently, the simultaneous three-axis minimum-time maneuver(reorientation) problems have been studied by many researchers. It is important to research the minimum-time maneuver of a rigid spacecraft within onboard power limits, because of potential space application such as surveying multiple targets in space and academic value. The minimum-time maneuver of a rigid spacecraft is a basic problem because the solutions for maneuvering flexible spacecraft are based on the solution to the rigid body slew problem. A new method for the open-loop solution for a rigid spacecraft maneuver is presented. Having neglected all perturbation torque, the necessary conditions of spacecraft from one state to another state can be determined. There is difference between single-axis with multi-axis. For single- axis analytical solution is possible and the switching line passing through the state-space origin belongs to parabolic. For multi-axis, it is impossible to get analytical solution due to the dynamic coupling between the axes and must be solved numerically. Proved by modern research, Euler axis rotations are quasi-time-optimal in general. On the basis of minimum value principles, a research for reorienting an inertial syrnmetric spacecraft with time cost function from an initial state of rest to a final state of rest is deduced. And the solution to it is stated below: Firstly, the essential condition for solving the problem is deduced with the minimum value principle. The necessary conditions for optimality yield a two point boundary-value problem (TPBVP), which, when solved, produces the control history that minimize time performance index. In the nonsingular control, the solution is the' bang-bang maneuver. The control profile is characterized by Saturated controls for the entire maneuver. The singular control maybe existed. It is only singular in mathematics. According to physical principle, the bigger the mode of the control torque is, the shorter the time is. So saturated controls are used in singular control. Secondly, the control parameters are always in maximum, so the key problem is to determine switch point thus original problem is changed to find the changing time. By the use of adjusting the switch on/off time, the genetic algorithm, which is a new robust method is optimized to determine the switch features without the gyroscopic coupling. There is improvement upon the traditional GA in this research. The homotopy method to find the nonlinear algebra is based on rigorous topology continuum theory. Based on the idea of the homotopy, the relaxation parameters are introduced, and the switch point is figured out with simulated annealing. Computer simulation results using a rigid body show that the new method is feasible and efficient. A practical method of computing approximate solutions to the time-optimal control- switch times for rigid body reorientation has been developed.
Design, modeling and control of a novel multi functional translational-rotary micro ultrasonic motor
NASA Astrophysics Data System (ADS)
Tuncdemir, Safakcan
The major goal of this thesis was to design and develop an actuator, which is capable of producing translational and rotary output motions in a compact structure with simple driving conditions, for the needs of small-scale actuators for micro robotic systems. Piezoelectric ultrasonic motors were selected as the target actuator schemes because of their unbeatable characteristics in the meso-scale range, which covers the structure sizes from hundred micrometers to ten millimeters and with operating ranges from few nanometers to centimeters. In order to meet the objectives and the design constraints, a number of key research tasks had to be undertaken. The design constraints and objectives were so stringent and entangled that none of the existing methods in literature could solve the research problems individually. Therefore, several unique methods were established to accomplish the research objectives. The methods produced novel solutions at every stage of design, development and modeling of the multi functional micro ultrasonic motor. Specifically, an ultrasonic motor utilizing slanted ceramics on a brass rod was designed. Because of the unique slanted ceramics design, longitudinal and torsional mode vibration modes could be obtained on the same structure. A ring shaped mobile element was loosely fitted on the metal rod stator. The mobile element moved in translational or rotational, depending on whether the vibration mode was longitudinal or torsional. A new ultrasonic motor drive method was required because none of the existing ultrasonic motor drive techniques were able to provide both output modes in a compact and cylindrical structure with the use of single drive source. By making use of rectangular wave drive signals, saw-tooth shaped displacement profile could be obtained at longitudinal and torsional resonance modes. Thus, inheriting the operating principle of smooth impact drive method, a new resonance type inertial drive was introduced. This new technique combines the advantages of inertial method with resonance drive. The motor that combines inertial drive at resonance will be a new type of ultrasonic motor, according to the classification of vibration types. A method to analyze the stator vibration by incorporating the piezoelectric loss coefficients was developed. By using the model, natural frequencies of the operating modes were predicted and exact formulations of the vibration displacements in longitudinal and torsional modes were obtained. The vibration model was in perfect agreement with the ATILA finite element analysis simulations even for different design parameters. The model was also used in design optimization and for theoretical explanation of the newly introduced motor drive technique. The theoretical analysis of the operating principle was verified with finite element analysis simulations and by vibration measurements. Several prototypes of motor were built in order to realize the dual function output as the main objective of this research. Translational output was observed for rectangular wave input signals at the resonance frequency of the fundamental longitudinal mode.The output mode changed to the rotational mode when the operating frequency switched for the fundamental torsional mode. While the mode of motor could be switched by switching the operating frequency, the direction of motion could be reversed by switching the duty cycle of rectangular input signals from D % to (100-D) %. A prototype (5 mm diameter, 25 mm total length produced 55 mm/s (translational) and 3 rad/s (rotary) speed under 40 mN blocking force, when the input signal was 40 V pp rectangular with 33% duty cycle. The motor speed at translational mode was characterized for different input voltage and output force. The meso-scale ultrasonic motor which utilizes smooth impact drive method, provided a unique ability to produce dual function with prominent output characteristics in a compact structure by using simple drive conditions.
Demonstration of reconfigurable joint orbital angular momentum mode and space switching
Liu, Jun; Wang, Jian
2016-01-01
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications. PMID:27869133
Demonstration of reconfigurable joint orbital angular momentum mode and space switching
NASA Astrophysics Data System (ADS)
Liu, Jun; Wang, Jian
2016-11-01
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
Demonstration of reconfigurable joint orbital angular momentum mode and space switching.
Liu, Jun; Wang, Jian
2016-11-21
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
Perspective: Stochastic magnetic devices for cognitive computing
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sengupta, Abhronil; Shim, Yong
2018-06-01
Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.
Design of a modular digital computer system
NASA Technical Reports Server (NTRS)
1980-01-01
A Central Control Element (CCE) module which controls the Automatically Reconfigurable Modular System (ARMS) and allows both redundant processing and multi-computing in the same computer with real time mode switching, is discussed. The same hardware is used for either reliability enhancement, speed enhancement, or for a combination of both.
Variable Structure Control of a Hand-Launched Glider
NASA Technical Reports Server (NTRS)
Anderson, Mark R.; Waszak, Martin R.
2005-01-01
Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.
Mode competition and hopping in optomechanical nano-oscillators
NASA Astrophysics Data System (ADS)
Zhang, Xingwang; Lin, Tong; Tian, Feng; Du, Han; Zou, Yongchao; Chau, Fook Siong; Zhou, Guangya
2018-04-01
We investigate the inter-mode nonlinear interaction in the multi-mode optomechanical nano-oscillator which consists of coupled silicon nanocantilevers, where the integrated photonic crystal nanocavities provide the coupling between the optical and mechanical modes. Due to the self-saturation and cross-saturation of the mechanical gain, the inter-mode competition is observed, which leads to the bistable operation of the optomechanical nano-oscillator: only one of the mechanical modes can oscillate at any one time, and the oscillation of one mode extremely suppresses that of the other with a side mode suppression ratio (SMSR) up to 40 dB. In the meantime, mode hopping, i.e., the optomechanical oscillation switches from one mode to the other, is also observed and found to be able to be provoked by excitation laser fluctuations.
Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.
Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan
2014-12-15
Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3 GB/s.
NASA Astrophysics Data System (ADS)
Sui, Xin; Yang, Yongqing; Xu, Xianyun; Zhang, Shuai; Zhang, Lingzhong
2018-02-01
This paper investigates the consensus of multi-agent systems with probabilistic time-varying delays and packet losses via sampled-data control. On the one hand, a Bernoulli-distributed white sequence is employed to model random packet losses among agents. On the other hand, a switched system is used to describe packet dropouts in a deterministic way. Based on the special property of the Laplacian matrix, the consensus problem can be converted into a stabilization problem of a switched system with lower dimensions. Some mean square consensus criteria are derived in terms of constructing an appropriate Lyapunov function and using linear matrix inequalities (LMIs). Finally, two numerical examples are given to show the effectiveness of the proposed method.
Selective coherent perfect absorption in metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Guangyu; Shi, Quanchao; Zhu, Zheng
2014-11-17
We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.
B-1 Systems Approach to Training. Task Analysis Listings
1975-07-01
OFF FUEL VALVES AND PUMPS PHR-OFF FUEL VALVES AND PUMPS = AUTO ^FT TFR MODE LAND SELECTOR SWITCHES TQ *QFF...TFR MODE SWITCH-RIGHT «JFT L TFR MODE SELECT SWITCH TQ * TF1 CHECKLIST TFR MODE SWITCH-LEFT TFR MODE SWITCH-LEFT...DOOR HANDLE ENTRY LADDER CONTROL SWITCH ENTRY LADDER CONTROL SWITCH = DN* 16.1.1.001.OC* SET TANK FILL VALVE SWS ON
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
NASA Astrophysics Data System (ADS)
Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian
2018-03-01
This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Jasim, A. A.
2017-07-01
A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
Collaboration, Multi-Tasking and Problem Solving Performance in Shared Virtual Spaces
ERIC Educational Resources Information Center
Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk
2016-01-01
Collaborative problem-solving is often not a sequential process; instead, it can involve tasking switching or dual tasking (i.e., multitasking) activities in that the collaborators need to shift their attention between the targeted problems and the conversations they carry on with their collaborators. It is not known to what extent the…
Color enhancement for portable LCD displays in low-power mode
NASA Astrophysics Data System (ADS)
Shih, Kuang-Tsu; Huang, Tai-Hsiang; Chen, Homer H.
2011-09-01
Switching the backlight of handheld devices to low power mode saves energy but affects the color appearance of an image. In this paper, we consider the chroma degradation problem and propose an enhancement algorithm that incorporates the CIECAM02 appearance model to quantitatively characterize the problem. In the proposed algorithm, we enhance the color appearance of the image in low power mode by weighted linear superposition of the chroma of the image and that of the estimated dim-backlight image. Subjective tests are carried out to determine the perceptually optimal weighting and prove the effectiveness of our framework.
Global exponential stability for switched memristive neural networks with time-varying delays.
Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia
2016-08-01
This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Switchable multi-wavelength fiber laser based on modal interference
NASA Astrophysics Data System (ADS)
Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng
2015-08-01
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
Analysis and Design of Bridgeless Switched Mode Power Supply for Computers
NASA Astrophysics Data System (ADS)
Singh, S.; Bhuvaneswari, G.; Singh, B.
2014-09-01
Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
Selvaraj, P; Sakthivel, R; Kwon, O M
2018-06-07
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Practical and Portable Solids-State Electronic Terahertz Imaging System
Smart, Ken; Du, Jia; Li, Li; Wang, David; Leslie, Keith; Ji, Fan; Li, Xiang Dong; Zeng, Da Zhang
2016-01-01
A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode. PMID:27110791
Proposal of optical mode switch
NASA Astrophysics Data System (ADS)
Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi
2014-08-01
Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris
2016-12-01
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers
Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris
2016-01-01
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing. PMID:27991574
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Jens; Savage, Mark E.; Lucero, Diego Jose
Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable formore » future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.« less
Stable switching among high-order modes in polariton condensates
NASA Astrophysics Data System (ADS)
Sun, Yongbao; Yoon, Yoseob; Khan, Saeed; Ge, Li; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Türeci, Hakan E.; Snoke, David W.; Nelson, Keith A.
2018-01-01
We report multistate optical switching among high-order bouncing-ball modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Wang, Wanjun; Ng, Geok Ing; Zhang, Yu; Xu, Yingqiang; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2018-04-02
A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 μm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.
Shock/vortex interaction and vortex-breakdown modes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, H. A.; Liu, C. H.
1992-01-01
Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.
Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R
2017-08-09
Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Lee, K. K.
1993-01-01
The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.
Investigating Proenvironmental Behavior: The Case of Commuting Mode Choice
NASA Astrophysics Data System (ADS)
Trinh, Tu Anh; Phuong Linh Le, Thi
2018-04-01
The central aim of this article is to investigate mode choice behavior among commuters in Ho Chi Minh City using disaggregate mode choice model and norm activation theory. A better understanding of commuters’ choice of transport mode provide an opportunity to obtain valuable information on their travel behaviors which help to build a basic for proffering solutions stimulating commuters to switch to public transport, which in turn contribute to deal with traffic problems and environmental issues. Binary logistic regression was employed under disaggregate choice method. Key findings indicated that Demographic factors including Age (-0.308), Married (-9.089), Weather (-8.272); Trip factors including Travel cost (0.437), Travel distance (0.252), and Norm activation theory (Awareness of consequences: AC2 (-1.699), AC4 (2.951), AC6 (-3.523), AC7 (-2.092), AC9 (-3.045), AC11 (+ 2.939), and Personal norms: PN2 (-2.695)) had strong impact on the commuters’ mode choice. Although motorcycle was the major transport mode among commuters, they presented their willingness to switch to bus transport if it had less negative impacts on the environment and their daily living environment.
Zhou, Ting; Jia, Hao; Ding, Jianfeng; Zhang, Lei; Fu, Xin; Yang, Lin
2018-04-02
We present a silicon thermo-optic 2☓2 four-mode optical switch optimized for optical space switching plus local optical mode switching. Four asymmetric directional couplers are utilized for mode multiplexing and de-multiplexing. Sixteen 2☓2 single-mode optical switches based on balanced thermally tunable Mach-Zehnder interferometers are exploited for switching function. The measured insertion losses are 8.0~12.2 dB and the optical signal-to-noise ratios are larger than 11.2 dB in the wavelength range of 1525~1565 nm. The optical links in "all-bar" and "all-cross" states exhibit less than 2.0 dB and 1.4 dB power penalties respectively below 10 -9 bit error rates for 40 Gbps data transmission.
Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor
NASA Astrophysics Data System (ADS)
Liu, J.; Li, L.; Huang, X.; Jezequel, L.
2017-10-01
In this paper, we propose a method to suppress the vibration of the integral bladed disk ('blisk' for short) in aero-engines using synchronized switch damping based on negative capacitor (SSDNC). Different from the classical piezoelectric shunt damping, SSDNC is a type of nonlinear piezoelectric damping. A multi-harmonic balance method combined with the alternating frequency/time method (MHBM-AFT) is used to predict and further analyze the dynamic characteristics of the electromechanical system, and an arc-length continuation technique is used to improve the convergence of the method. In order to validate the algorithm as well as to recognize the characteristics of the system with SSDNC, a two degree-of-freedom (2-DOF) system with SSDNC is studied at first. The nonlinear complex modal information is calculated and compared with those of the corresponding system with a linear RL shunt circuit. The results indicate that the natural frequencies and modal damping ratio do not change with the modal amplitude, which means that SSDNC has the same modal damping corresponding to different system energy levels. In addition, SSDNC can improve the damping level of all the modes nearly without affecting the natural frequencies of the system. Then, the forced response of the blisk with SSDNC in the frequency domain is calculated and analyzed, including a tuned blisk, which is excited by the traveling wave excitation with a single harmonic and multi-harmonic, and a mistuned blisk, which is excited by traveling wave excitation with a single harmonic and multi-harmonic. We present two advantages of the SSDNC technique when compared with piezoelectric shunt damping. First, SSDNC can suppress the vibration of the blisk under a multi-harmonic wideband the traveling wave, and second, the vibration suppression performance of SSDNC is insensitive to the mistuning of mechanical parameters of the blisk. The results will be of great significance in overcoming the problem of the amplitude magnification induced by the inevitable mistuning of the blisk in aero-engines.
A variable-gain output feedback control design methodology
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.
1989-01-01
A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.
The Selection of Q-Switch for a 350mJ Air-borne 2-micron Wind Lidar
NASA Technical Reports Server (NTRS)
Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.
2008-01-01
In the process of designing a coherent, high energy 2micron, Doppler wind Lidar, various types of Q-Switch materials and configurations have been investigated for the oscillator. Designing an oscillator with a relatively low gain laser material, presents challenges related to the management high internal circulating fluence due to high reflective output coupler. This problem is compounded by the loss of hold-off. In addition, the selection has to take into account the round trip optical loss in the resonator and the loss of hold-off. For this application, a Brewster cut 5mm aperture, fused silica AO Q-switch is selected. Once the Q-switch is selected various rf frequencies were evaluated. Since the Lidar has to perform in single longitudinal and transverse mode with transform limited line width, in this paper, various seeding configurations are presented in the context of Q-Switch diffraction efficiency. The master oscillator power amplifier has demonstrated over 350mJ output when the amplifier is operated in double pass mode and higher than 250mJ when operated in single pass configuration. The repetition rate of the system is 10Hz and the pulse length 200ns.
A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks
NASA Astrophysics Data System (ADS)
Gong, Jie; Zhou, Sheng; Niu, Zhisheng
The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.
Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads
NASA Astrophysics Data System (ADS)
Xu, Jiqiang; Lu, Wenzhou; Wu, Lei
2017-05-01
There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.
Jia, Hao; Zhou, Ting; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin
2017-08-21
We propose a 2 × 2 multimode optical switch, which is composed of two mode de-multiplexers, n 2 × 2 single-mode optical switches where n is the number of the supported spatial modes, and two mode multiplexers. As a proof of concept, asymmetric directional couplers are employed to construct the mode multiplexers and de-multiplexers, balanced Mach-Zehnder interferometer is utilized to construct the 2 × 2 single-mode optical switches. The fabricated silicon 2 × 2 multimode optical switch has a broad optical bandwidth and can support four spatial modes. The link-crosstalk for all four modes is smaller than -18.8 dB. The inter-mode crosstalk for the same optical link is less than -22.1 dB. 40 Gbps data transmission is performed for all spatial modes and all optical links. The power penalties for the error-free switching (BER<10 -9 ) at 25 Gbps are less than 1.8 dB for all channels at the wavelength of 1550 nm. The power consumption of the device is 117.9 mW in the "cross" state and 116.2 mW in the "bar" state. The switching time is about 21 μs. This work enables large-capacity multimode photonic networks-on-chip.
Programmable multimode quantum networks
Armstrong, Seiji; Morizur, Jean-François; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A.
2012-01-01
Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N=2 up to N=8 entangled modes here, including N=2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement. PMID:22929783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixà, Xavier; Miranda, Enrique
2014-06-28
We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFsmore » allows revealing significant structural differences in the CF of these two types of devices and RS modes.« less
Fast simulation of packet loss rates in a shared buffer communications switch
NASA Technical Reports Server (NTRS)
Chang, Cheng-Shang; Heidelberger, Philip; Shahabuddin, Perwez
1993-01-01
This paper describes an efficient technique for estimating, via simulation, the probability of buffer overflows in a queueing model that arises in the analysis of ATM (Asynchronous Transfer Mode) communication switches. There are multiple streams of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each stream is designated as either being of high or low priority. When the queue length reaches a certain threshold, only high priority packets are admitted to the switch's buffer. The problem is to estimate the loss rate of high priority packets. An asymptotically optimal importance sampling approach is developed for this rare event simulation problem. In this approach, the importance sampling is done in two distinct phases. In the first phase, an importance sampling change of measure is used to bring the queue length up to the threshold at which low priority packets get rejected. In the second phase, a different importance sampling change of measure is used to move the queue length from the threshold to the buffer capacity.
Methods to Control EMI Noises Produced in Power Converter Systems
NASA Astrophysics Data System (ADS)
Mutoh, Nobuyoshi; Ogata, Mitukatu
A new method to control EMI noises produced in power converters (rectifier and inverter) composed of IPMs (Intelligent Power Modules) is studied especially focusing on differential mode noises. The differential mode noises are occurred due to switching operations of the PWM control. As they are diffused into the ground through stray capacitors distributed between the ground and the power transmission lines and machine frames, differential mode noises should be confined and suppressed within the smallest area where power converters are laid out. It is impossible to control differential mode noises easily occurring diffusion by the conventional methods like filtering techniques. So, a new EMI noise control method using a multi-power circuit technique is proposed. The proposed method of the effectiveness has been verified through simulations and experiments.
Resource-Competing Oscillator Network as a Model of Amoeba-Based Neurocomputer
NASA Astrophysics Data System (ADS)
Aono, Masashi; Hirata, Yoshito; Hara, Masahiko; Aihara, Kazuyuki
An amoeboid organism, Physarum, exhibits rich spatiotemporal oscillatory behavior and various computational capabilities. Previously, the authors created a recurrent neurocomputer incorporating the amoeba as a computing substrate to solve optimization problems. In this paper, considering the amoeba to be a network of oscillators coupled such that they compete for constant amounts of resources, we present a model of the amoeba-based neurocomputer. The model generates a number of oscillation modes and produces not only simple behavior to stabilize a single mode but also complex behavior to spontaneously switch among different modes, which reproduces well the experimentally observed behavior of the amoeba. To explore the significance of the complex behavior, we set a test problem used to compare computational performances of the oscillation modes. The problem is a kind of optimization problem of how to allocate a limited amount of resource to oscillators such that conflicts among them can be minimized. We show that the complex behavior enables to attain a wider variety of solutions to the problem and produces better performances compared with the simple behavior.
[The use of auto mode switching in patients with sick sinus syndrome].
Vlasínová, J
2005-01-01
At present the dual chamber pacing, originally developed for patients with AV blockades, is widely used also for patients with Sick sinus syndrome (tachycardic-bradycardic type). But these patients often cause therapeutical problems to their physicians. In these cases either antiarrhythmic therapy is necessary to prevent recurrent supraventricular tachycardias (which are cause of rapid ventricular pacing) or in the case of failure of AA therapy the pacing mode has to be changed to DDI/R, which excludes physiological VAT pacing. The Auto Mode Switching (AMS) function ensures adequate ventricular pacing rate in the time of SV arrhythmias. Effects of dual chamber pacemakers equipped with AMS were studied in a group of patients with paroxysmal atrial fibrilation and/or atrial flutter. Therapy brings effects in lower of expenses due to less frequent visits at the physician, lower rate of rehospitalizations and lower need for powerful AA therapy.
Liquid crystal true 3D displays for augmented reality applications
NASA Astrophysics Data System (ADS)
Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai
2018-02-01
Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.
Lv, Yong; Song, Gangbing
2018-01-01
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
Long, Lijun; Zhao, Jun
2017-07-01
In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.
Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals.
Dong, Jun; Ueda, Ken-ichi; Kaminskii, Alexander A
2008-04-14
Optical properties of Yb:Y(3)Sc(2)Al(3)O(12) crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y(3)Sc(2)Al(3)O(12) show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y(3)Sc(2)Al(3)O(12) lasers with Cr(4+):YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 microJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr(4+):YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y(3)Sc(2)Al(2)O(12) microchip lasers.
Multirate parallel distributed compensation of a cluster in wireless sensor and actor networks
NASA Astrophysics Data System (ADS)
Yang, Chun-xi; Huang, Ling-yun; Zhang, Hao; Hua, Wang
2016-01-01
The stabilisation problem for one of the clusters with bounded multiple random time delays and packet dropouts in wireless sensor and actor networks is investigated in this paper. A new multirate switching model is constructed to describe the feature of this single input multiple output linear system. According to the difficulty of controller design under multi-constraints in multirate switching model, this model can be converted to a Takagi-Sugeno fuzzy model. By designing a multirate parallel distributed compensation, a sufficient condition is established to ensure this closed-loop fuzzy control system to be globally exponentially stable. The solution of the multirate parallel distributed compensation gains can be obtained by solving an auxiliary convex optimisation problem. Finally, two numerical examples are given to show, compared with solving switching controller, multirate parallel distributed compensation can be obtained easily. Furthermore, it has stronger robust stability than arbitrary switching controller and single-rate parallel distributed compensation under the same conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.
A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching betweenmore » mode structures with various Q-factors are considered.« less
2011-02-25
fast method of predicting the number of iterations needed for converged results. A new hybrid technique is proposed to predict the convergence history...interchanging between the modes, whereas a smaller veering (or crossing) region shows fast mode switching. Then, the nonlinear vibration re- sponse of the...problems of interest involve dynamic ( fast ) crack propagation, then the nodes selected by the proposed approach at some time instant might not
ERIC Educational Resources Information Center
Hwang, SungWon
2009-01-01
In this commentary, I review Kellogg's comments on a recent editorial in the journal "Mind, Culture, and Activity" (Roth, 2008). Concerning Kellogg's code-switching model for learning language, I present and exemplify a dialectic problem of multi/cultural literacy: the first articulation that crosses the boundaries of cultures and languages…
Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried
2008-06-09
We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.
Mar, Alan [Albuquerque, NM; Zutavern, Fred J [Albuquerque, NM; Loubriel, Guillermo [Albuquerque, NM
2007-02-06
An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.
Adaptive tracking control of leader-following linear multi-agent systems with external disturbances
NASA Astrophysics Data System (ADS)
Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen
2016-10-01
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.
MEMS-Based Communications Systems for Space-Based Applications
NASA Technical Reports Server (NTRS)
DeLosSantos, Hector J.; Brunner, Robert A.; Lam, Juan F.; Hackett, Le Roy H.; Lohr, Ross F., Jr.; Larson, Lawrence E.; Loo, Robert Y.; Matloubian, Mehran; Tangonan, Gregory L.
1995-01-01
As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems.
NASA Astrophysics Data System (ADS)
Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.
In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.
NASA Astrophysics Data System (ADS)
Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.
2014-12-01
Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.
Multi-Gigabit Fiber Optic Wide Area Network Development.
1991-07-01
to propagate, no modal dispersion can occur. In multimode fiber , a parabolic index profile across the core is often used so that mode travel times are...In the fiber plant, such as connectors, splices couplers, splitters, switches, tunable filters , wavelength division multiplexers and demultiplexers...losses are much higher, at around 0.5 dB, and are usually avoided in long-haul systems. 30 Some fiber plant components have a filtering effect on the
Phase detector for three-phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.
Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.
Qiu, Huaxin; Duan, Haibin
2017-11-01
Unmanned aerial vehicle (UAV) flocking control is a serious and challenging problem due to local interactions and changing environments. In this paper, a pigeon flocking model and a pigeon coordinated obstacle-avoiding model are proposed based on a behavior that pigeon flocks will switch between hierarchical and egalitarian interaction mode at different flight phases. Owning to the similarity between bird flocks and UAV swarms in essence, a distributed flocking control algorithm based on the proposed pigeon flocking and coordinated obstacle-avoiding models is designed to coordinate a heterogeneous UAV swarm to fly though obstacle environments with few informed individuals. The comparative simulation results are elaborated to show the feasibility, validity and superiority of our proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wagner, James; Schroeder, Heather M.; Piskorowski, Andrew; Ursano, Robert J.; Stein, Murray B.; Heeringa, Steven G.; Colpe, Lisa J.
2017-01-01
Mixed-mode surveys need to determine a number of design parameters that may have a strong influence on costs and errors. In a sequential mixed-mode design with web followed by telephone, one of these decisions is when to switch modes. The web mode is relatively inexpensive but produces lower response rates. The telephone mode complements the web mode in that it is relatively expensive but produces higher response rates. Among the potential negative consequences, delaying the switch from web to telephone may lead to lower response rates if the effectiveness of the prenotification contact materials is reduced by longer time lags, or if the additional e-mail reminders to complete the web survey annoy the sampled person. On the positive side, delaying the switch may decrease the costs of the survey. We evaluate these costs and errors by experimentally testing four different timings (1, 2, 3, or 4 weeks) for the mode switch in a web–telephone survey. This experiment was conducted on the fourth wave of a longitudinal study of the mental health of soldiers in the U.S. Army. We find that the different timings of the switch in the range of 1–4 weeks do not produce differences in final response rates or key estimates but longer delays before switching do lead to lower costs. PMID:28943717
Multi-wavelength generation based on cascaded Raman scattering and self-frequency-doubling in KTA
NASA Astrophysics Data System (ADS)
Zhong, K.; Li, J. S.; Xu, D. G.; Ding, X.; Zhou, R.; Wen, W. Q.; Li, Z. Y.; Xu, X. Y.; Wang, P.; Yao, J. Q.
2010-04-01
A multi-wavelength laser is developed based on cascaded stimulated Raman scattering (SRS) and self-frequency-doubling in an x-cut KTA crystal pumped by an A-O Q-switched Nd:YAG laser. The generation of 1178 nm from cascaded SRS of 234 and 671 cm-1 Raman modes is observed. The six wavelengths, including the fundamental 1064 nm, four Stokes waves at 1091, 1120, 1146, 1178 nm, and the second harmonic generation (SHG) of 1146 nm, are tens to hundreds of millwatts for each at 10 kHz, corresponding to a total conversion efficiency of 8.72%.
Lysenko, Larisa V; Kim, Jeesun; Madamba, Francisco; Tyrtyshnaia, Anna A; Ruparelia, Aarti; Kleschevnikov, Alexander M
2018-07-01
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABA A agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS. Copyright © 2018 Elsevier Inc. All rights reserved.
Multi-focus image fusion based on window empirical mode decomposition
NASA Astrophysics Data System (ADS)
Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao
2017-09-01
In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.
Dijkman, E; Mooibroek, D; Hoogerbrugge, R; Hogendoorn, E; Sancho, J V; Pozo, O; Hernández, F
2001-08-10
This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested low level. The major observed effects were verified with statistical evaluation of the data employing backwards ordinary least-square regression. All tested column-switching modes hyphenated to ESI- or APCI-MS-MS allowed the on-line multi-residue analysis of acidic pesticides in the reference water down to a level of 0.1 microg/l in less than 10 min, emphasizing the feasibility of such an approach in this field of analysis.
Heterogeneous Multi-Robot Multi-Sensor Platform for Intruder Detection
2009-09-15
propagation model, with variance τi: si ~ N(b0i + b1i *logDi, τ i). The initial parameters (b0i, b1i, τ i ) of the model are unknown, and the training...that the advantage of MOO-learned mode would become more significant over time compared with the other mode. 1 2 3 4 5 6 7 0 0.05 0.1 0.15 0.2...nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Parallel Problem Solving from Nature (PPSN VI), M. Schoenauer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadzhiyev, I. M., E-mail: idris.intop@mail.ru; Buyalo, M. S.; Gubenko, A. E.
2016-06-15
The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section ofmore » the saturable absorber, which is sufficient for compensation of the applied bias.« less
The design and implementation of hydrographical information management system (HIMS)
NASA Astrophysics Data System (ADS)
Sui, Haigang; Hua, Li; Wang, Qi; Zhang, Anming
2005-10-01
With the development of hydrographical work and information techniques, the large variety of hydrographical information including electronic charts, documents and other materials are widely used, and the traditional management mode and techniques are unsuitable for the development of the Chinese Marine Safety Administration Bureau (CMSAB). How to manage all kinds of hydrographical information has become an important and urgent problem. A lot of advanced techniques including GIS, RS, spatial database management and VR techniques are introduced for solving these problems. Some design principles and key techniques of the HIMS including the mixed mode base on B/S, C/S and stand-alone computer mode, multi-source & multi-scale data organization and management, multi-source data integration and diverse visualization of digital chart, efficient security control strategies are illustrated in detail. Based on the above ideas and strategies, an integrated system named Hydrographical Information Management System (HIMS) was developed. And the HIMS has been applied in the Shanghai Marine Safety Administration Bureau and obtained good evaluation.
Variable Neural Adaptive Robust Control: A Switched System Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less
Three layers multi-granularity OCDM switching system based on learning-stateful PCE
NASA Astrophysics Data System (ADS)
Wang, Yubao; Liu, Yanfei; Sun, Hao
2017-10-01
In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.
An Approach to Average Modeling and Simulation of Switch-Mode Systems
ERIC Educational Resources Information Center
Abramovitz, A.
2011-01-01
This paper suggests a pedagogical approach to teaching the subject of average modeling of PWM switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The paper discusses the derivation of PSPICE/ORCAD-compatible average models of the switch-mode power stages, their software implementation, and…
1.9 μm square-wave passively Q-witched mode-locked fiber laser.
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin
2018-05-14
We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.
NASA Astrophysics Data System (ADS)
Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.
2017-05-01
We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
Finite-time output feedback control of uncertain switched systems via sliding mode design
NASA Astrophysics Data System (ADS)
Zhao, Haijuan; Niu, Yugang; Song, Jun
2018-04-01
The problem of sliding mode control (SMC) is investigated for a class of uncertain switched systems subject to unmeasurable state and assigned finite (possible short) time constraint. A key issue is how to ensure the finite-time boundedness (FTB) of system state during reaching phase and sliding motion phase. To this end, a state observer is constructed to estimate the unmeasured states. And then, a state estimate-based SMC law is designed such that the state trajectories can be driven onto the specified integral sliding surface during the assigned finite time interval. By means of partitioning strategy, the corresponding FTB over reaching phase and sliding motion phase are guaranteed and the sufficient conditions are derived via average dwell time technique. Finally, an illustrative example is given to illustrate the proposed method.
PRF Ambiguity Detrmination for Radarsat ScanSAR System
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1998-01-01
PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
NASA Astrophysics Data System (ADS)
Zhang, Gang; Wang, Yonggang; Chen, Zhendong; Jiao, Zhiyong
2018-05-01
A reflective graphene oxide saturable absorber is fabricated and used in a Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 laser. Stable Q-switched and mode-locked pulses with a repetition rate of 8 MHz can be obtained at a pump power of 9 W by using an X-type resonator. Pulses obtained in an X-type resonator possess higher stability, output power, and repetition rate, compared with those in a Z-type resonator. The pulse width and the repetition rate of the Q-switched envelop in an X-type resonator are superior to those in the reported Q-switched and mode-locked lasers with graphene oxide.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571
NASA Astrophysics Data System (ADS)
Dong, Jun; He, Yu; Bai, Sheng-Chuang; Ueda, Ken-ichi; Kaminskii, Alexander A.
2016-09-01
A nanosecond, high peak power, passively Q-switched laser for controllable Hermite-Gaussian (HG) modes has been achieved by manipulating the saturated inversion population inside the gain medium. The stable HG modes are generated in a Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser by applying a tilted pump beam. The asymmetrical saturated inversion population distribution inside the Nd:YVO4 crystal for desirable HG modes is manipulated by choosing the proper pump beam diameter and varying pump power. A HG9,8 mode passively Q-switched Nd:YVO4 microchip laser with average output power of 265 mW has been obtained. Laser pulses with a pulse width of 7.3 ns and peak power of over 1.7 kW working at 21 kHz have been generated in the passively Q-switched Nd:YVO4 microchip laser.
NASA Astrophysics Data System (ADS)
Brinkman-Traverse, Casey; Rankin, Joanna M.; Mitra, Dipanjan
2017-01-01
In this paper, we analyze the quirky polarization behavior across different profile modes for the pulsar B0329+54. We have multi-frequency observations in both the normal and abnormal profile modes, and have identified a non-RVM polarization kink in the core component of the emission. Mitra et al initially identified this kink in the normal profile mode of the pulsar in 2007, and a mirror analysis has been done here for abnormal profile modes at three different frequencies. This kink is intensity dependent, showing up only in the abberated/retarded high intensity pulses, and is frequency independent. This parallel between profile modes shows that the same geometric phenomenon—a height dependent amplifier—is responsible for the non-RVM polarization behavior in each. The question then arises: what can be the source of the profile change, which does not change the polarization characteristics of the pulsar. This pulsar gives us a unique opportunity to study the process of pulsar emission by showing what cannot be responsible for switches in profile mode, and thus profile shape.
Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D
2015-05-08
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.
2015-01-01
A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714
Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.
2014-12-22
In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunes, A.; Zanetti, F.M.; Lyra, M.L., E-mail: marcelo@fis.ufal.br
2016-10-15
In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations.more » - Highlights: • The switching performance of a coupled waveguide device is studied via the boundary wall method. • The method efficiently identifies all resonant transmission modes. • Energy switching is controlled and optimized as a function of the device geometry.« less
Song, Hajun; Hwang, Sejin; Song, Jong-In
2017-05-15
This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.
Electrostatic twisted modes in multi-component dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less
Wang, Xingliang; Zhang, Youan; Wu, Huali
2016-03-01
The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Anabtawi, Nijad; Ferzli, Rony; Harmanani, Haidar M.
2017-01-01
This paper presents a step down, switched mode power converter for use in multi-standard envelope tracking radio frequency power amplifiers (RFPA). The converter is based on a programmable order sigma delta modulator that can be configured to operate with either 1st, 2nd, 3rd or 4th order loop filters, eliminating the need for a bulky passive output filter. Output ripple, sideband noise and spectral emission requirements of different wireless standards can be met by configuring the modulator’s filter order and converter’s sampling frequency. The proposed converter is entirely digital and is implemented in 14nm bulk CMOS process for post layout verification. For an input voltage of 3.3V, the converter’s output can be regulated to any voltage level from 0.5V to 2.5V, at a nominal switching frequency of 150MHz. It achieves a maximum efficiency of 94% at 1.5 W output power. PMID:28919657
Resonant Mode-hopping Micromixing
Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.
2009-01-01
A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159
Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey
NASA Technical Reports Server (NTRS)
Berry, Noemi
1995-01-01
Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.
Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa
2018-04-15
This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.
Integration of planar transformer and/or planar inductor with power switches in power converter
Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi
2007-10-30
A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.
Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure.
Wu, Hong-Wei; Chen, Hua-Jun; Xu, Hua-Feng; Fan, Ren-Hao; Li, Yang
2018-06-11
We demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing wavelength of the incident light as well as tailoring the geometric parameters of the structure. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering is realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is suitable for microwave to terahertz region and can be applied to various advanced optical devices, such as antenna, metamaterial and metasurface.
Hatch, G.L.; Brummond, W.A.; Barrus, D.M.
1984-04-05
The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.
NASA Astrophysics Data System (ADS)
Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar
2016-12-01
We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D2 transition of 87Rb, i.e., F =2 →F' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F =2 →F'=2 while the pump is scanned from F =2 →F' . EIA is observed for the open transition (F =2 →F'=2 ) whereas EIT is observed in the closed transition (F =2 →F'=3 ). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.
Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar
2016-12-14
We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D 2 transition of Rb87, i.e., F=2→F ' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F=2→F ' =2 while the pump is scanned from F=2→F ' . EIA is observed for the open transition (F=2→F ' =2) whereas EIT is observed in the closed transition (F=2→F ' =3). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.
Advances in integrated photonic circuits for packet-switched interconnection
NASA Astrophysics Data System (ADS)
Williams, Kevin A.; Stabile, Ripalta
2014-03-01
Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.
Theory and computation of optimal low- and medium-thrust transfers
NASA Technical Reports Server (NTRS)
Chuang, C.-H.
1993-01-01
This report presents the formulation of the optimal low- and medium-thrust orbit transfer control problem and methods for numerical solution of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup some examples to demonstrate the ability of two indirect methods to solve the resulting TPBVP's. The methods demonstrated are the multiple-point shooting method as formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are trade-offs to using either method. BOUNDSCO has very poor convergence for guesses that do not exhibit the correct switching structure. MBCM, however, converges for a wider range of guesses. However, BOUNDSCO's multi-point structure allows more freedom in quesses by increasing the node points as opposed to only quessing the initial state in MBCM. Finally, we note an additional drawback for BOUNDSCO: the routine does not supply information to the users routines for switching function polarity but only the location of a preset number of switching points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Surhud; Somasekhar, Dinesh; More, Ankit
Described is an apparatus which comprises: a Network-On-Chip fabric using crossbar switches, having distributed ingress and egress ports; and a dual-mode network interface coupled to at least one crossbar switch, the dual-mode network interface is to include: a dual-mode circuitry; a controller operable to: configure the dual-mode circuitry to transmit and receive differential signals via the egress and ingress ports, respectively, and configure the dual-mode circuitry to transmit and receive signal-ended signals via the egress and ingress ports, respectively.
Relay tracking control for second-order multi-agent systems with damaged agents.
Dong, Lijing; Li, Jing; Liu, Qin
2017-11-01
This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
NASA Astrophysics Data System (ADS)
Greiner, Benjamin; Lammen, Yannick; Reinacher, Andreas; Krabbe, Alfred; Wagner, Jörg
2016-07-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) uses its compact and highly integrated Secondary Mirror Mechanism (SMM) to switch between target positions on the sky in a square wave pattern. This chopping motion excites eigenmodes of the mechanism structure, which limit controller and observatory performance. We present the setup and results of experimental modal tests performed on different building stages of a test-bench model as well as on the original flight hardware. Test results were correlated to simulations employing a finite element model in order to identify excited mode shapes and contributing flexible components of the Secondary Mirror Mechanism. It was possible to isolate the motion of the compensation ring and its elastic mounts as the vibration mode inducing the main disturbance at about 300 Hz, which is currently the main mode shape limiting the performance of the chopping controller.
Prognostic health monitoring in switch-mode power supplies with voltage regulation
NASA Technical Reports Server (NTRS)
Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)
2009-01-01
The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.
Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira
2018-08-24
Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.
Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faehnle, Christopher R.; Walleshauser, Jack; Joshua-Tor, Leemor
2017-07-03
The uridyl transferases TUT4 and TUT7 (collectively called TUT4(7)) switch between two modes of activity, either promoting expression of let-7 microRNA (monoU) or marking it for degradation (oligoU). Lin28 modulates the switch via recruitment of TUT4(7) to the precursor pre-let-7 in stem cells and human cancers. We found that TUT4(7) utilize two multidomain functional modules during the switch from monoU to oligoU. The catalytic module (CM) is essential for both activities, while the Lin28-interacting module (LIM) is indispensable for oligoU. A TUT7 CM structure trapped in the monoU activity staterevealed a duplex-RNA-binding pocket that orients group II pre-let-7 hairpins tomore » favor monoU addition. Conversely, the switch to oligoU requires the ZK domain of Lin28 to drive the formation of a stable ternary complex between pre-let-7 and the inactive LIM. Finally, ZK2 of TUT4(7) aids oligoU addition by engaging the growing oligoU tail through uracil-specific interactions.« less
Fuzzy fractional order sliding mode controller for nonlinear systems
NASA Astrophysics Data System (ADS)
Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.
2010-04-01
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.
NASA Astrophysics Data System (ADS)
Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua
2018-02-01
The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.
Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2015-02-01
Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.
Control system of an excitation power supply for fast axial flow CO2 lasersupda
NASA Astrophysics Data System (ADS)
Li, Bo; Jia, Xinting; Yuan, Hao; Gao, Yuhu; Wang, Youqing
2009-08-01
A switching power control system of fast axial flow CO2 lasers based on DSP is presented. The key techniques are described in detail, include the control principle, realization method and program design. The experiment showed that the system make the laser discharge stably and work in multi-mode. The discharge current can be adjusted from 3mA to 85mA continuously. 20-2000Hz frequency, 0-100% duty cycle laser pulse is achieved. The power supply can improve the processing efficiency and quality.
Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter
NASA Astrophysics Data System (ADS)
Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji
This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.
Characterising switching behaviour in perceptual multi-stability.
Denham, Susan; Bendixen, Alexandra; Mill, Robert; Tóth, Dénes; Wennekers, Thomas; Coath, Martin; Bőhm, Tamás; Szalardy, Orsolya; Winkler, István
2012-09-15
When people experience an unchanging sensory input for a long period of time, their perception tends to switch stochastically and unavoidably between alternative interpretations of the sensation; a phenomenon known as perceptual bi-stability or multi-stability. The huge variability in the experimental data obtained in such paradigms makes it difficult to distinguish typical patterns of behaviour, or to identify differences between switching patterns. Here we propose a new approach to characterising switching behaviour based upon the extraction of transition matrices from the data, which provide a compact representation that is well-understood mathematically. On the basis of this representation we can characterise patterns of perceptual switching, visualise and simulate typical switching patterns, and calculate the likelihood of observing a particular switching pattern. The proposed method can support comparisons between different observers, experimental conditions and even experiments. We demonstrate the insights offered by this approach using examples from our experiments investigating multi-stability in auditory streaming. However, the methodology is generic and thus widely applicable in studies of multi-stability in any domain. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
The collective and quantum nature of proton transfer in the cyclic water tetramer on NaCl(001)
NASA Astrophysics Data System (ADS)
Feng, Yexin; Wang, Zhichang; Guo, Jing; Chen, Ji; Wang, En-Ge; Jiang, Ying; Li, Xin-Zheng
2018-03-01
Proton tunneling is an elementary process in the dynamics of hydrogen-bonded systems. Collective tunneling is known to exist for a long time. Atomistic investigations of this mechanism in realistic systems, however, are scarce. Using a combination of ab initio theoretical and high-resolution experimental methods, we investigate the role played by the protons on the chirality switching of a water tetramer on NaCl(001). Our scanning tunneling spectroscopies show that partial deuteration of the H2O tetramer with only one D2O leads to a significant suppression of the chirality switching rate at a cryogenic temperature (T), indicating that the chirality switches by tunneling in a concerted manner. Theoretical simulations, in the meantime, support this picture by presenting a much smaller free-energy barrier for the translational collective proton tunneling mode than other chirality switching modes at low T. During this analysis, the virial energy provides a reasonable estimator for the description of the nuclear quantum effects when a traditional thermodynamic integration method cannot be used, which could be employed in future studies of similar problems. Given the high-dimensional nature of realistic systems and the topology of the hydrogen-bonded network, collective proton tunneling may exist more ubiquitously than expected. Systems of this kind can serve as ideal platforms for studies of this mechanism, easily accessible to high-resolution experimental measurements.
Tectonic mode switches and the nature of orogenesis
NASA Astrophysics Data System (ADS)
Lister, Gordon; Forster, Marnie
2009-12-01
The birth and death of many mountain belts occurs in lithosphere that over-rides major subduction zones. Here the tectonic mode (shortening versus extension) can abruptly switch, even during continuous and otherwise smooth convergence. If the hinge line of the foundering slab rapidly retreats (i.e. rolls back), the foundering slab creates a gravitational potential well into which the orogen collapses. This motion, coupled with stress guides, can "pull" the orogen apart. A slowing of roll-back (or of hinge retreat) means that the subduction flexure may subsequently begin to be "pushed back" or be "pushed over" by the advancing orogen. The consequence of such changes in relative motion is that orogenic belts are affected by abrupt tectonic mode switches. The change from "push" to "pull" leads to a sudden change from horizontal extension to horizontal shortening, potentially throughout the entire mass of the orogenic lithosphere that over-rides the subducting slab. The sequencing of these tectonic mode switches affects the thermal evolution of the orogen, and thus fundamentally determines the nature of orogenesis. This insight led to us to our quite different views as to how orogens work. It is evident that orogens affected by abrupt "push-pull" mode switches are characterized by high-pressure metamorphism, whereas orogens affected by abrupt "pull-push" mode switches are characterized by high-temperature metamorphism, magmatism and anatexis.
NASA Technical Reports Server (NTRS)
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors
NASA Astrophysics Data System (ADS)
Yang, J.
2017-12-01
GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.
On-chip switch for reconfigurable mode-multiplexing optical network.
Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang
2016-09-19
The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.
Integration of geospatial multi-mode transportation Systems in Kuala Lumpur
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Said, M. N.
2014-06-01
Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.
Spatial Linear Instability of Confluent Wake/Boundary Layers
NASA Technical Reports Server (NTRS)
Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)
2001-01-01
The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.
A Hybrid Converter for Improving Light Load Efficiency
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi
In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.
Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX
NASA Astrophysics Data System (ADS)
Ren, Fang; Yu, Jinyi; Wang, Jianping
2018-05-01
We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.
Street Viewer: An Autonomous Vision Based Traffic Tracking System.
Bottino, Andrea; Garbo, Alessandro; Loiacono, Carmelo; Quer, Stefano
2016-06-03
The development of intelligent transportation systems requires the availability of both accurate traffic information in real time and a cost-effective solution. In this paper, we describe Street Viewer, a system capable of analyzing the traffic behavior in different scenarios from images taken with an off-the-shelf optical camera. Street Viewer operates in real time on embedded hardware architectures with limited computational resources. The system features a pipelined architecture that, on one side, allows one to exploit multi-threading intensively and, on the other side, allows one to improve the overall accuracy and robustness of the system, since each layer is aimed at refining for the following layers the information it receives as input. Another relevant feature of our approach is that it is self-adaptive. During an initial setup, the application runs in learning mode to build a model of the flow patterns in the observed area. Once the model is stable, the system switches to the on-line mode where the flow model is used to count vehicles traveling on each lane and to produce a traffic information summary. If changes in the flow model are detected, the system switches back autonomously to the learning mode. The accuracy and the robustness of the system are analyzed in the paper through experimental results obtained on several different scenarios and running the system for long periods of time.
On the asymptotic stability of nonlinear mechanical switched systems
NASA Astrophysics Data System (ADS)
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
van Dongen, Marijn N.; Hoebeek, Freek E.; Koekkoek, S. K. E.; De Zeeuw, Chris I.; Serdijn, Wouter A.
2015-01-01
This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100 kHz) duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation. These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency. PMID:25798105
Development of longitudinally excited CO2 laser
NASA Astrophysics Data System (ADS)
Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.
2018-05-01
Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.
Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks
NASA Astrophysics Data System (ADS)
Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi
2016-03-01
Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.
InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index
NASA Astrophysics Data System (ADS)
Mikami, O.; Nakagome, H.
1985-11-01
Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.
Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donin, V I; Yakovin, D V; Gribanov, A V
2015-12-31
The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the lasermore » field while the train contains single picosecond pulses. (control of laser radiation parameters)« less
Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki
2014-01-13
25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.
All-optical switch using optically controlled two mode interference coupler.
Sahu, Partha Pratim
2012-05-10
In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.
China Report, Science and Technology.
1987-05-06
86) 96 Slip-Line Field Problems Solved by Method of Approach (Hu Zhong , et al.; QINGHUA DAXUE XUEBAO, No 5, Oct 86) 97 Technical Development...SWITCHING-MODE REGULATOR Beijing QINGHUA DAXUE XUEBAO (ZIRAN KEXUE BAN) [JOURNAL OF TSINGHUA UNIVERSITY (NATURAL SCIENCE)] in Chinese Vol 26 No 5, Oct... Beijing QINGHUA DAXUE XUEBAO (ZIRAN KEXUE BAN) [JOURNAL OF TSINGHUA UNIVERSITY (NATURAL SCIENCE)] in Chinese Vol 26 No 5, Oct 86 pp 10-21 [English
Design and Implement of Low Ripple and Quasi-digital Power Supply
NASA Astrophysics Data System (ADS)
Xiangli, Li; Yanjun, Wei; Hanhong, Qi; Yan, Ma
A switch linearity hybrid power supply based on single chip microcomputer is designed which merged the merits of the switching and linear power supply. Main circuit includes pre-regulator which works in switching mode and series regulator which works in linear mode. Two-stage regulation mode was adopted in the main circuit of the power. A single chip computer (SCM) and high resolution of series D/A and A/D converters are applied to control and measurement which achieved continuous adjustable and low ripple constant current or voltage power supply
Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.
Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric
2017-06-01
This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.
Étude des perturbations conduites et rayonnées dans une cellule de commutation
NASA Astrophysics Data System (ADS)
Costa, F.; Forest, F.; Puzo, A.; Rojat, G.
1993-12-01
The principles used in static conversion and the rise of the performances of the new switching devices contribue to increase the level of electromagnetic noises emitted by electronic converters. We have studied the way how these perturbations are created and coupled through their environment in conducted and radiated mode by a switching cell. This one can work in hard switching, zero current or voltage switching modes. We first outline the general problems of electromagnetic pollution and their metrology in converters. Then we describe the experimental environment. We analyse the mechanisms of generation of parasitic signals in a switching cell related to the electrical constraints and its switching mode. The simulated results, issued of the analytical models obtained, are confronted with the experimental ones. Then we show a method to calculate analytically the E and H near fields. It has been confirmed by experimental results. At last, we present, in a synthetic manner, the main results obtained, relative to the switching mode and the electrical constraints, using a new characterizing method. Theses results will allow the designer to incorporate the electromagnetic considerations in the conception of a converter. Les principes de commutation employés en conversion statique, l'évolution des performances statiques et dynamiques des composants, contribuent à faire des dispositifs de conversion statique de puissants générateurs de perturbations conduites et rayonnées. Nous nous sommes attachés à étudier les mécanismes de génération et de couplage des perturbations, tant en mode conduit que rayonné dans des structures à une seule cellule de commutation et fonctionnant selon les trois principaux modes de commutation : commutation forcée, à zéro de courant (ZCS), et à zéro de tension (ZVS). Après la mise en évidence de la problématique de pollution électromagnétique dans les structures et leur métrologie, nous décrivons l'environnement expérimental étudié. Nous analysons ensuite les principaux mécanismes produisant les perturbations au sein d'une cellule de commutation en introduisant un certain nombre de composants parasites. Les modèles sont simulés et confrontés aux résultats expérimentaux. Nous décrivons alors une méthode, validée expérimentalement et permettant de calculer les intensités des champs E et H proches émis. Enfin, nous présentons de façon synthétique les résultats observés selon les régimes de fonctionnement de la cellule de commutation et les contraintes électriques et dynamiques qu'elle subit. Nous avons, pour ce faire, développé une méthode originale de quantification des signaux perturbateurs. Les résultats obtenus doivent permettre d'intégrer les problèmes de pollution électromagnétique au stade de la conception d'un dispositif.
Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure
NASA Astrophysics Data System (ADS)
Ji, Hongyu; Zhang, Bo; Wang, Guocui; Wang, Wei; Shen, Jingling
2018-04-01
We propose a photo-excited tunable multi-frequency metamaterial (MM) switch that can be used in the terahertz region. This metamaterial switch is composed of a polyimide substrate and a hybrid metal-semiconductor square split-ring resonator (SRR) with two gaps, with various semiconductors placed in critical regions of the metallic resonator. By changing the incident pump power, we were able to tune the conductivity of the diverse semiconductors filling the gaps of the SRR, and by using an external exciting beam, we were able to modulate the resonant absorption properties of the composite metamaterial structure. We demonstrated the tunable multi-frequency metamaterial switch by irradiating the composite metamaterial structure with a pump laser. In addition, we proposed a tunable metamaterial switch based on a circular metallic split-ring resonator.
? stability of wind turbine switching control
NASA Astrophysics Data System (ADS)
Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei
2015-01-01
In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.
A free-piston Stirling engine/linear alternator controls and load interaction test facility
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.
1992-01-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
Chen, Bo; Chen, Chen; Wang, Jianhui; ...
2017-07-07
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Chen, Chen; Wang, Jianhui
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less
1982-08-01
19 3.2 Diesel Engine Speed Transducer 20 3.3 Pressure Transducer 20 3.4 Temperature Transducer 22 3.5 Differential Pressure Switch 22 3.6 Differential... Pressure Switch , Multi-Point 22 3.7 Current Measurement Transducer 23 - 3.8 Electrolyte Level Probes 23 3.9 Diagnostic Connector 24 3.10 Harness...12258933 Differential Pressure Switch - Multi-point 12258934 K -. Differential Pressure Switch 12258938 Electrolyte Level Sensor 12258935 Shunt 1000
NASA Astrophysics Data System (ADS)
Vorhaus, J. L.; Fabian, W.; Ng, P. B.; Tajima, Y.
1981-02-01
A set of multi-pole, multi-throw switch devices consisting of dual-gate GaAs FET's is described. Included are single-pole, single-throw (SPST), double-pole, double-throw (DPDT), and single-pole four-throw (SP4T) switches. Device fabrication and measurement techniques are discussed. The device models for these switches were based on an equivalent circuit of a dual-gate FET. The devices were found to have substantial gain in X-band and low Ku-band.
Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.
Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B
1997-03-10
We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.
Multiple switching modes and multiple level states in memristive devices
NASA Astrophysics Data System (ADS)
Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2011-03-01
As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.
Fast Switching Magnet for Heavy Ion Beam Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzell, Josiah
2017-10-03
Fast magnets for multiplexing ion beams between different beamlines are technologically challenging and expensive, but there is an ever-growing need to develop such systems for beam separation at research and industrial facilities. For example, The Argonne Tandem Linac Accelerator System (ATLAS) is planning to expand its operations as a multi-user facility and there is a clear need, presently unmet by the industry, for a switching magnet system with the sub-millisecond transient times.In response to this problem, RadiaBeam Technologies is developing a novel pulsed switching magnet system capable of producing a 1.1T peak field over 45 cm length with a shortmore » (<1 ms) rise and fall time. The key enabling innovation in this project is an introduction of a solid-state interposed modulator architecture, which enables to improve magnet performance and reliability and reduce the cost to a practical level.« less
Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.
Cheng, Ying; Dong, Jun; Ren, Yingying
2012-10-22
Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.
Ships/Trains/Planes/Automobiles: A Renaissance of their Interface
NASA Technical Reports Server (NTRS)
Allan, Stanley N.
1974-01-01
This paper highlights some of the major multi-modal interface problems created by technological advances, socio-political individualism and the flexibility of choices we expect from our transportation modes. The emphasis is on the need for a comprehensive national network of multi-modal priorities to enhance the movement of people and goods within the changing physical shape of our cities.
Chakrabarti, Somsubhra; Ginnaram, Sreekanth; Jana, Surajit; Wu, Zong-Yi; Singh, Kanishk; Roy, Anisha; Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Yang, Jer-Ren
2017-07-05
Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiO x /TiN structure have been investigated for the first time. The as-deposited amorphous BaTiO x film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba + and Ba 2+ through measuring H 2 O 2 with a low concentration of 1 nM in electrolyte/BaTiO x /SiO 2 /p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (<5 nm) switching material. By considering oxidation-reduction of the conducting filaments, the current-voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiO x /TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Computational Study of Near-limit Propagation of Detonation in Hydrogen-air Mixtures
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.
2002-01-01
A computational investigation of the near-limit propagation of detonation in lean and rich hydrogen-air mixtures is presented. The calculations were carried out over an equivalence ratio range of 0.4 to 5.0, pressures ranging from 0.2 bar to 1.0 bar and ambient initial temperature. The computations involved solution of the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing (TVD) scheme, and a point implicit, first-order-accurate, time marching algorithm. The hydrogen-air combustion was modeled with a 9-species, 19-step reaction mechanism. A multi-level, dynamically adaptive grid was utilized in order to resolve the structure of the detonation. The results of the computations indicate that when hydrogen concentrations are reduced below certain levels, the detonation wave switches from a high-frequency, low amplitude oscillation mode to a low frequency mode exhibiting large fluctuations in the detonation wave speed; that is, a 'galloping' propagation mode is established.
Voltage controlled Bi-mode resistive switching effects in MnO2 based devices
NASA Astrophysics Data System (ADS)
Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.
2018-01-01
In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.
Switch for serial or parallel communication networks
Crosette, D.B.
1994-07-19
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.
Switch for serial or parallel communication networks
Crosette, Dario B.
1994-01-01
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.
Pulse power switch development
NASA Astrophysics Data System (ADS)
Harvey, R.; Gallagher, H.; Hansen, S.
1980-01-01
The objective of this study program has been to define an optimum technical approach to the longer range goal of achieving practical high repetition rate high power spark gap switches. Requirements and possible means of extending the state of the art of crossed field closing switches, vacuum spark gaps, and pressurized spark gaps are presented with emphasis on reliable, efficient and compact devices operable in burst mode at 250-300 kV, 40-60 kA, =1 kHz with approximately 50 nsec pulses rising in approximately 3 ns. Models of these devices are discussed which are based upon published and generated design data and on underlying physical principles. Based upon its relative advantages, limitations and tradeoffs we conclude that the Hughes Crossatron switch is the nearest term approach to reach the switch goal levels. Theoretical, experimental, and computer simulation models of the plasma show a collective ion acceleration mechanism to be active which is predicted to result in current rise times approaching 10 nsec. A preliminary design concept is presented. For faster rise times we have shown a vacuum surface flashover switch to be an interesting candidate. This device is limited by trigger instabilities and will require further basic development. The problem areas relevant to high pressure spark gaps are reviewed.
A 600 VOLT MULTI-STAGE, HIGH REPETITION RATE GAN FET SWITCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, D.; Pfeffer, H.; Saewert, G.
Using recently available GaN FETs, a 600 Volt three- stage, multi-FET switch has been developed having 2 nanosecond rise time driving a 200 Ohm load with the potential of approaching 30 MHz average switching rates. Possible applications include driving particle beam choppers kicking bunch-by-bunch and beam deflectors where the rise time needs to be custom tailored. This paper reports on the engineering issues addressed, the design approach taken and some performance results of this switch.
Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.
2016-07-01
Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.
Thermal energy and charge currents in multi-terminal nanorings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Tobias; Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin; Kreisbeck, Christoph
2016-06-15
We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approachmore » and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.« less
Study of switching behavior of exchange-coupled nanomagnets by transverse magnetization metrology
NASA Astrophysics Data System (ADS)
Dey, Himadri S.; Csaba, Gyorgy; Bernstein, Gary H.; Porod, Wolfgang
2017-05-01
We investigate the static switching modes of nanomagnets patterned from antiferromagnetically exchange-coupled magnetic multilayers, and compare them to nanomagnets having only dipole coupling between the ferromagnetic layers. Vibrating sample magnetometry experiments, supported by micromagnetic simulations, reveal two distinct switching mechanisms between the exchange-coupled and only dipole-coupled nanomagnets. The exchange-coupled nanomagnets exhibit gradual switching of the layers, dictated by the strong antiferromagnetic exchange coupling present between the layers. However, the layers of the only dipole-coupled nanomagnets show abrupt nucleation/growth type switching. A comprehensive understanding of the switching modes of such layered and patterned systems can add new insight into the reversal mechanisms of similar systems employed for spintronic and magneto-logic device applications.
Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant
NASA Astrophysics Data System (ADS)
Alsova, O. K.; Artamonova, A. V.
2018-05-01
This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-08-01
The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.
Interactive multi-mode blade impact analysis
NASA Technical Reports Server (NTRS)
Alexander, A.; Cornell, R. W.
1978-01-01
The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.
Combustion mode switching with a turbocharged/supercharged engine
Mond, Alan; Jiang, Li
2015-09-22
A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.
Research on multi-switch synchronization based on single trigger generator
NASA Astrophysics Data System (ADS)
Geng, Jiuyuan; Cheng, Xinbing; Yang, Jianhua; Yang, Xiao; Chen, Rong
2018-05-01
Multi-switch synchronous operation is an effective approach to provide high-voltage high-current for a high-power device. In this paper, we present a synchronization system with a corona stabilized triggered switch (CSTS) as main switch and an all-solid modularized quasi-square pulse forming system. In addition, this paper provides explanations of low jitter and accurate triggering of CSTS based on streamer theory. Different switches of the module are triggered by an electrical pulse created by a trigger generator, a quasi-square pulse can be created on the load. The experimental results show that it is able to switch voltages in excess of 40kV with nanosecond system jitter for three-module synchronous operation.
A 66pW Discontinuous Switch-Capacitor Energy Harvester for Self-Sustaining Sensor Applications
Wu, Xiao; Shi, Yao; Jeloka, Supreet; Yang, Kaiyuan; Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-01-01
We present a discontinuous harvesting approach for switch capacitor DC-DC converters that enables ultra-low power energy harvesting. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst-mode, switching and leakage losses in the DC-DC converter can be optimally traded-off with the loss due to non-ideal MPPT operation. The harvester uses a 15pW mode controller, an automatic conversion ratio modulator, and a moving sum charge pump for low startup energy upon a mode switch. In 180nm CMOS, the harvester achieves >40% end-to-end efficiency from 113pW to 1.5μW with 66pW minimum input power, marking a >10× improvement over prior ultra-low power harvesters. PMID:28392977
A 66pW Discontinuous Switch-Capacitor Energy Harvester for Self-Sustaining Sensor Applications.
Wu, Xiao; Shi, Yao; Jeloka, Supreet; Yang, Kaiyuan; Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-06-01
We present a discontinuous harvesting approach for switch capacitor DC-DC converters that enables ultra-low power energy harvesting. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst-mode, switching and leakage losses in the DC-DC converter can be optimally traded-off with the loss due to non-ideal MPPT operation. The harvester uses a 15pW mode controller, an automatic conversion ratio modulator, and a moving sum charge pump for low startup energy upon a mode switch. In 180nm CMOS, the harvester achieves >40% end-to-end efficiency from 113pW to 1.5μW with 66pW minimum input power, marking a >10× improvement over prior ultra-low power harvesters.
Improvement of SET variability in TaO x based resistive RAM devices
NASA Astrophysics Data System (ADS)
Schönhals, Alexander; Waser, Rainer; Wouters, Dirk J.
2017-11-01
Improvement or at least control of variability is one of the key challenges for Redox based resistive switching memory technology. In this paper, we investigate the impact of a serial resistor as a voltage divider on the SET variability in Pt/Ta2O5/Ta/Pt nano crossbar devices. A partial RESET in a competing complementary switching (CS) mode is identified as a possible failure mechanism of bipolar switching SET in our devices. Due to a voltage divider effect, serial resistance value shows unequal impact on switching voltages of both modes which allows for a selective suppression of the CS mode. The impact of voltage divider on SET variability is demonstrated. A combination of appropriate write voltage and serial resistance allows for a significant improvement of the SET variability.
Digital optical signal processing with polarization-bistable semiconductor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jai-Ming Liu,; Ying-Chin Chen,
1985-04-01
The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked optical S-R, D, J-K, and T flip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarizationswitchable mode, the output of the laser can be directly switched between the TM00 and TE00 modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved powermore » versus current characteristics. When the laser is biased in the middle of the hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarizationbistable laser to <1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.« less
Optimizing communication satellites payload configuration with exact approaches
NASA Astrophysics Data System (ADS)
Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi
2015-12-01
The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.
Dual-mode nested search method for categorical uncertain multi-objective optimization
NASA Astrophysics Data System (ADS)
Tang, Long; Wang, Hu
2016-10-01
Categorical multi-objective optimization is an important issue involved in many matching design problems. Non-numerical variables and their uncertainty are the major challenges of such optimizations. Therefore, this article proposes a dual-mode nested search (DMNS) method. In the outer layer, kriging metamodels are established using standard regular simplex mapping (SRSM) from categorical candidates to numerical values. Assisted by the metamodels, a k-cluster-based intelligent sampling strategy is developed to search Pareto frontier points. The inner layer uses an interval number method to model the uncertainty of categorical candidates. To improve the efficiency, a multi-feature convergent optimization via most-promising-area stochastic search (MFCOMPASS) is proposed to determine the bounds of objectives. Finally, typical numerical examples are employed to demonstrate the effectiveness of the proposed DMNS method.
NASA Astrophysics Data System (ADS)
Capell, Joyce; Deeth, David
1996-01-01
This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2017-01-01
In this letter, we compare three different types of reset switching behavior in a bipolar resistive random-access memory (RRAM) system that is housed in a Ni/Si3N4/Si structure. The abrupt, step-like gradual and continuous gradual reset transitions are largely determined by the low-resistance state (LRS). For abrupt reset switching, the large conducting path shows ohmic behavior or has a weak nonlinear current-voltage (I-V) characteristics in the LRS. For gradual switching, including both the step-like and continuous reset types, trap-assisted direct tunneling is dominant in the low-voltage regime, while trap-assisted Fowler-Nordheim tunneling is dominant in the high-voltage regime, thus causing nonlinear I-V characteristics. More importantly, we evaluate the multi-level capabilities of the two different gradual switching types, including both step-like and continuous reset behavior, using identical and incremental voltage conditions. Finer control of the conductance level with good uniformity is achieved in continuous gradual reset switching when compared to that in step-like gradual reset switching. For continuous reset switching, a single conducting path, which initially has a tunneling gap, gradually responds to pulses with even and identical amplitudes, while for step-like reset switching, the multiple conducting paths only respond to incremental pulses to obtain effective multi-level states.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun
2016-11-01
The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.
Real options and asset valuation in competitive energy markets
NASA Astrophysics Data System (ADS)
Oduntan, Adekunle Richard
The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.
Pashaei, Shabnam; Badamchizadeh, Mohammadali
2016-07-01
This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Switched-capacitor isolated LED driver
Sanders, Seth R.; Kline, Mitchell
2016-03-22
A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.
Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng
2015-10-15
We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization).
NASA Astrophysics Data System (ADS)
Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun
2015-11-01
A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.
Controllability of multi-agent systems with periodically switching topologies and switching leaders
NASA Astrophysics Data System (ADS)
Tian, Lingling; Zhao, Bin; Wang, Long
2018-05-01
This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.
NASA Astrophysics Data System (ADS)
Lott, J. A.; Shchukin, V. A.; Ledentsov, N. N.; Stinz, A.; Hopfer, F.; Mutig, A.; Fiol, G.; Bimberg, D.; Blokhin, S. A.; Karachinsky, L. Y.; Novikov, I. I.; Maximov, M. V.; Zakharov, N. D.; Werner, P.
2009-02-01
We report on the modeling, epitaxial growth, fabrication, and characterization of 830-845 nm vertical cavity surface emitting lasers (VCSELs) that employ InAs-GaAs quantum dot (QD) gain elements. The GaAs-based VCSELs are essentially conventional in design, grown by solid-source molecular beam epitaxy, and include top and bottom gradedheterointerface AlGaAs distributed Bragg reflectors, a single selectively-oxidized AlAs waveguiding/current funneling aperture layer, and a quasi-antiwaveguiding microcavity. The active region consists of three sheets of InAs-GaAs submonolayer insertions separated by AlGaAs matrix layers. Compared to QWs the InAs-GaAs insertions are expected to offer higher exciton-dominated modal gain and improved carrier capture and retention, thus resulting in superior temperature stability and resilience to degradation caused by operating at the larger switching currents commonly employed to increase the data rates of modern optical communication systems. We investigate the robustness and temperature performance of our QD VCSEL design by fabricating prototype devices in a high-frequency ground-sourceground contact pad configuration suitable for on-wafer probing. Arrays of VCSELs are produced with precise variations in top mesa diameter from 24 to 36 μm and oxide aperture diameter from 1 to 12 μm resulting in VCSELs that operate in full single-mode, single-mode to multi-mode, and full multi-mode regimes. The single-mode QD VCSELs have room temperature threshold currents below 0.5 mA and peak output powers near 1 mW, whereas the corresponding values for full multi-mode devices range from about 0.5 to 1.5 mA and 2.5 to 5 mW. At 20°C we observe optical transmission at 20 Gb/s through 150 m of OM3 fiber with a bit error ratio better than 10-12, thus demonstrating the great potential of our QD VCSELs for applications in next-generation short-distance optical data communications and interconnect systems.
Hohimer, John P.
1994-01-01
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.
Hohimer, J.P.
1994-06-07
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.
NASA Astrophysics Data System (ADS)
Cloonan, Thomas J.; Richards, Gaylord W.; Lentine, Anthony L.
1996-03-01
Asynchronous transfer mode (ATM) is rapidly becoming the transport mechanism of choice for the information superhighway, because it promises the bandwidth and flexibility needed for many voice, video and data service offerings. Some industry experts project that the required sizes for ATM switching equipment in the public-switched environment will reach the Tbps range by the beginning of the next decade. This paper analyzes the problems associated with controlling the flow of packets within a broadband ATM switch of this size. The analysis is based on the requirements of the growable packet switch architecture. The paper proposes a novel solution to the problem of hunting paths within an ATM packet switch network. The resulting control scheme is unconventional in two ways. First, it uses an out-of-band control algorithm instead of the more common self-routing approach. In particular, we explore the benefits of using a parallel processor as an out-of-band controller for a growable packet switch distribution network. The processor permits additional levels of parallelism to be added to the out-of-band control function so that path hunts can be performed for all N of the input ports within a single cell interval. The proposed approach is also unconventional because it uses free-space digital optics to guide signals between successive stages of the controller. The paper describes the underlying motivations for implementing an optical out-of-band controller for an ATM switch, and it also describes the logic within a controller node that has been fabricated using a hybrid Si CMOS/GaAs SEED technology. The node uses optical detectors (in GaAs), amplifiers and digital control logic (in Si), and optical modulators (in GaAs). Free-space optical connections between successive device arrays can be provided using either bulk optical elements or micro-optics, but the optical interconnects must provide massive fanout capability. An architectural analysis studying the feasibility of applying free-space optics in this proposed ATM switch controller also is presented.
MultiNest: Efficient and Robust Bayesian Inference
NASA Astrophysics Data System (ADS)
Feroz, F.; Hobson, M. P.; Bridges, M.
2011-09-01
We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla LambdaCDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL.
A multi-channel isolated power supply in non-equipotential circuit
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da
2018-04-01
A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.
Kurashige, Hiroki; Câteau, Hideyuki
2011-01-01
Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability. PMID:21931635
den Dulk, K; Dijkman, B; Pieterse, M; Wellens, H
1994-11-01
Mode switching algorithms have been developed to avoid tracking of atrial fibrillation (AF) or flutter (AFL) during DDD(R) pacing. Upon recognition of AF or AFL, the mode is switched to a nontracking, sensor driven mode. The Vitatron Diamond model 800 pacemaker does this on a beat-to-beat basis. Atrial events occurring within a "physiological range" (+/- 15 beats/min) calculated from a running average of the atrial rate are tracked. When atrial events are not tracked the escape interval is either determined by the sensor(s) or by a fallback algorithm thereby preventing large increases in V-V interval during mode switching. Loss of atrioventricular (AV) synchrony by atrial premature beats and after an episode of AF or AFL is prevented by atrial synchronization pulses (ASP), which are delivered after a safe interval (timed out from the sensed premature atrial event) has expired and before delivery of the next ventricular stimulus. We implanted 26 such devices in 18 men and 8 women with symptomatic second- or third-degree AV block and paroxysmal AF or AFL. Their ages ranged from 18-84 years (mean 60), and the follow-up ranged from 2-13 months (mean 8). During pacemaker check-up, exercise testing or 24-hour Holter monitoring one or more episodes of mode switching was documented in 8 patients. In these 8 patients a smooth transition (ventricular rate) from sinus rhythm to AF or AFL was documented on one or more occasions, without inappropriate increase in ventricular rate in the DDDR mode. None of the patients complained of palpitations.(ABSTRACT TRUNCATED AT 250 WORDS)
Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model
NASA Astrophysics Data System (ADS)
Arioli, Gianni; Koch, Hans; Terracini, Susanna
2005-04-01
We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.
Landsat-5 bumper-mode geometric correction
Storey, James C.; Choate, Michael J.
2004-01-01
The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.
NASA Astrophysics Data System (ADS)
Priya Darshini, B.; Ranjit, M.; Babu, V. Ramesh
2018-04-01
In this paper different Multicarrier PWM (MCPWM) techniques are proposed for dual inverter fed open end induction motor (IM) drive to achieve multilevel operation. To generate the switching pulses for the dual inverter sinusoidal modulating signal is compared with multi carrier signals. A common mode voltage (CMV) has been analyzed in the proposed open end winding induction motor drive. All the proposed techniques mitigate the CMV along with the harmonic distortion in the phase voltage. To authenticate the proposed work several simulation techniques have been carried out using MATLAB/SIMULINK and the corresponding results are presented and compared.
Tire Force Estimation using a Proportional Integral Observer
NASA Astrophysics Data System (ADS)
Farhat, Ahmad; Koenig, Damien; Hernandez-Alcantara, Diana; Morales-Menendez, Ruben
2017-01-01
This paper addresses a method for detecting critical stability situations in the lateral vehicle dynamics by estimating the non-linear part of the tire forces. These forces indicate the road holding performance of the vehicle. The estimation method is based on a robust fault detection and estimation approach which minimize the disturbance and uncertainties to residual sensitivity. It consists in the design of a Proportional Integral Observer (PIO), while minimizing the well known H ∞ norm for the worst case uncertainties and disturbance attenuation, and combining a transient response specification. This multi-objective problem is formulated as a Linear Matrix Inequalities (LMI) feasibility problem where a cost function subject to LMI constraints is minimized. This approach is employed to generate a set of switched robust observers for uncertain switched systems, where the convergence of the observer is ensured using a Multiple Lyapunov Function (MLF). Whilst the forces to be estimated can not be physically measured, a simulation scenario with CarSimTM is presented to illustrate the developed method.
A novel multi-actuation CMOS RF MEMS switch
NASA Astrophysics Data System (ADS)
Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che
2008-12-01
This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.
The automated multi-stage substructuring system for NASTRAN
NASA Technical Reports Server (NTRS)
Field, E. I.; Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.
1975-01-01
The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input.
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-01-01
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443
Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell
NASA Technical Reports Server (NTRS)
Keys, Denney; Rao, Gopalakrishna M.; Sullivan, David; Wannemacher, Harry
2001-01-01
The nominal performance of AEA CBPD under simulated EOS-Aqua/Aura flight hardware configuration has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). Inadvertent CBPD switch activation with a charged cell (low impedance path) intermittently closes and opens up the switch, therefore the device may or may not provide protection against future open-circuit cell failure. Further testing with switches F01 and F02 may provide clarification. The formation of a continuous low impedance path (a homogeneous low melting point alloy), has been confirmed - which is the expected mode of operation.
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-12-10
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.
An actively Q-switched fiber laser with cylindrical vector beam generation
NASA Astrophysics Data System (ADS)
Zhang, Jiaojiao; Zhang, Zuxing; Cai, Yu; Wan, Hongdan; Wang, Zhiqiang; Zhang, Lin
2018-03-01
We demonstrate an actively Q-switched fiber laser with cylindrical vector beam (CVB) emission using a few-mode fiber Bragg grating as the mode selection component and an acousto-optic modulator to achieve Q-switching. To the best of our knowledge, this is the first such demonstration. Using a linear cavity configuration, an actively Q-switched CVB with a pulse width of about 64 ns, a pulse energy of 4.25 µJ and a repetition rate of 20 kHz has been obtained. Moreover, by tuning the polarization controllers radially and azimuthally, polarized Q-switched beams can be excited separately with a polarization purity of >94.5%. This compact Q-switched fiber laser with ns CVB pulse output could find potential applications in the field of material processing, nonlinear optics and so on.
[Multi-channel data collection and visualization system for intramyocardial electrograms].
Kastner, P; Wimmer, W; Hutten, H
2000-11-01
The aim of the project was to develop a multichannel data acquisition system for the recording and visualisation of intramyocardial electrograms (IEGM) from both the spontaneously beating and the artificially paced heart. Signal processing comprises multi-step amplification, filtering (0.05-800 Hz), and AD conversion (12 Bit max. 6.25 kHz). IEGMs can be obtained either in unipolar or bipolar mode. Stimulation of the heart is achieved by an incorporated programmable dual-chamber pacemaker that can be selectively switched to the input channels. A LabView-based graphical user interface permits the programming of all system parameters via a microcontroller, and supports data acquisition and visualisation. The system can be used in animal experiments to monitor the spread of excitation across the heart, to measure propagation velocity, or to measure the impact of drugs and pathological changes on the morphology of IEGMs.
Why Clothes Don't Fall Apart: Tension Transmission in Staple Yarns
NASA Astrophysics Data System (ADS)
Warren, Patrick B.; Ball, Robin C.; Goldstein, Raymond E.
2018-04-01
The problem of how staple yarns transmit tension is addressed within abstract models in which the Amontons-Coulomb friction laws yield a linear programing (LP) problem for the tensions in the fiber elements. We find there is a percolation transition such that above the percolation threshold the transmitted tension is in principle unbounded. We determine that the mean slack in the LP constraints is a suitable order parameter to characterize this supercritical state. We argue the mechanism is generic, and in practical terms, it corresponds to a switch from a ductile to a brittle failure mode accompanied by a significant increase in mechanical strength.
NASA Astrophysics Data System (ADS)
Li, Yan; Collier, Martin
2007-11-01
Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.
State-plane analysis of zero-voltage-switching resonant dc/dc power converters
NASA Astrophysics Data System (ADS)
Kazimierczuk, Marian K.; Morse, William D.
The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.
Goffeau, Jacques R.
1979-01-01
An improved Up-and-Down Chopper Circuit is provided which is useful for voltage regulation in a bi-directional DC power system. In the down mode, power is switched from a DC power source to a lower voltage energy storing load while in the up mode stored energy in the load is transferred to the higher voltage source. The system uses Darlington transistor switches in a conventional connection. The improvement relates to circuit additions to eliminate the effects of inter-electrode capacitance inherent with this Darlington transistor switching arrangement.
NASA Astrophysics Data System (ADS)
Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Zhang, Haijuan
2014-03-01
By using neodymium-doped gadolinium gallium garnet (Nd:GGG) as a laser medium, a simultaneously passively Q-switched and mode-locked (QML) dual-wavelength laser with Cr4+:YAG as a saturable absorber is presented. The laser simultaneously oscillated at 1061 nm and 1063 nm, corresponding to a frequency difference of 0.53 THz. QML pulses with nearly 100% modulation depth were observed. The mode-locked pulse duration underneath the Q-switched envelope was estimated to be about 908 ps. The experimental results indicated that the dual-wavelength QML Nd:GGG laser can be an excellent candidate for the generation of THz waves.
Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi
2015-09-07
A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.
Safety Assessment of TACOM’s Crew Station/Turret Motion Base Simulator
1992-04-01
mode. The power ON switch is interlocked with the system hydraulic pressure switch so that the electronics can not be turned off while the system...analog) "o Oil Temperature Transducer (analog) "o Facility Pressure Switch o Pressure Critical Switch "o Six Supply Solenoid Valves "O Three Accumulator...Relief Solenoid Valves o Return Pressure Switch o Return Valve Switch o Six Filter Clogged Switches (one per filter) The Facility Pressure switch detects
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Zahiripour, Seyed Ali; Jalali, Ali Akbar
2014-09-01
A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.; Miki, K.; Uzawa, K.
2006-11-30
During the past years the understanding of the multi scale interaction problems have increased significantly. However, at present there exists a flora of different analytical models for investigating multi scale interactions and hardly any specific comparisons have been performed among these models. In this work two different models for the generation of zonal flows from ion-temperature-gradient (ITG) background turbulence are discussed and compared. The methods used are the coherent mode coupling model and the wave kinetic equation model (WKE). It is shown that the two models give qualitatively the same results even though the assumption on the spectral difference ismore » used in the (WKE) approach.« less
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
Generation of double giant pulses in actively Q-switched lasers
NASA Astrophysics Data System (ADS)
Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.
2018-04-01
Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.
Energy efficient data center liquid cooling with geothermal enhancement
Chainer, Timothy J.; Parida, Pritish R.
2017-11-07
A data center cooling system is operated in a first mode, and has an indoor portion wherein heat is absorbed from components in the data center by a heat transfer fluid, and an outdoor heat exchanger portion and a geothermal heat exchanger portion. The first mode includes ambient air cooling of the heat transfer fluid in the outdoor heat exchanger portion and/or geothermal cooling of the heat transfer fluid in the geothermal heat exchanger portion. Based on an appropriate metric, a determination is made that a switch should be made from the first mode to a second mode; and, in response, the data center cooling system is switched to the second mode. The second mode is different than the first mode.
NASA Technical Reports Server (NTRS)
Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.
1966-01-01
Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan
2003-09-01
We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
Transient-Switch-Signal Suppressor
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.
Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition
NASA Astrophysics Data System (ADS)
Leymann, H. A. M.; Hopfmann, C.; Albert, F.; Foerster, A.; Khanbekyan, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S.
2013-05-01
We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic S-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon autocorrelation function g(2)(τ) of the light emission confirms the onset of lasing in the first mode with g(2)(0) approaching unity above threshold. In contrast, strong photon bunching associated with superthermal values of g(2)(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon cross-correlation measurements revealing a clear anticorrelation between emission events of the two modes. The experimental studies are in qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by a phenomenological birth-death model extended to two interacting modes, which reveals that the photon probability distribution of each mode has a double-peak structure, indicating switching behavior of the modes for pump rates around threshold.
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Alan, Irfan
1991-01-01
Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the addition of extra energy storage elements to the HF link are described. The importance of the source voltage level to achieve a better current regulation for the source side PDMC is also briefly discussed. The power levels achieved in the motoring mode of operation show that the proposed power levels achieved in the generating mode of operation can also be easily achieved provided that no mechanical speed limitation were present to drive the induction machine at the proposed power level.
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira
2016-09-01
In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raju, M.; Chaudhary, Sujeet; Pandya, D. K.
2013-08-07
Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the filmsmore » are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.« less
A Three-Perspective Theory of Cyber Sovereignty
2017-12-21
logic, one-way thinking, and viewing problems from a single perspective. When seeing things from one point of view , while ignoring the other two ...by state sovereignty) and multi -party governance modes. In fact, the two modes do not conflict; they have different appli- cability in different...focusing only on one’s own interests, each actor ignores the interests of the other two , resulting in the current situation in which each sticks to its
NASA Astrophysics Data System (ADS)
Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.
2018-01-01
In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer
Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue
2017-01-01
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.
Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue
2017-08-18
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.
NASA Astrophysics Data System (ADS)
Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.
2018-06-01
The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Three-tier multi-granularity switching system based on PCE
NASA Astrophysics Data System (ADS)
Wang, Yubao; Sun, Hao; Liu, Yanfei
2017-10-01
With the growing demand for business communications, electrical signal processing optical path switching can't meet the demand. The multi-granularity switch system that can improve node routing and switching capabilities came into being. In the traditional network, each node is responsible for calculating the path; synchronize the whole network state, which will increase the burden on the network, so the concept of path calculation element (PCE) is proposed. The PCE is responsible for routing and allocating resources in the network1. In the traditional band-switched optical network, the wavelength is used as the basic routing unit, resulting in relatively low wavelength utilization. Due to the limitation of wavelength continuity, the routing design of the band technology becomes complicated, which directly affects the utilization of the system. In this paper, optical code granularity is adopted. There is no continuity of the optical code, and the number of optical codes is more flexible than the wavelength. For the introduction of optical code switching, we propose a Code Group Routing Entity (CGRE) algorithm. In short, the combination of three-tier multi-granularity optical switching system and PCE can simplify the network structure, reduce the node load, and enhance the network scalability and survivability. Realize the intelligentization of optical network.
Inhibition in motor imagery: a novel action mode switching paradigm.
Rieger, Martina; Dahm, Stephan F; Koch, Iring
2017-04-01
Motor imagery requires that actual movements are prevented (i.e., inhibited) from execution. To investigate at what level inhibition takes place in motor imagery, we developed a novel action mode switching paradigm. Participants imagined (indicating only start and end) and executed movements from start buttons to target buttons, and we analyzed trial sequence effects. Trial sequences depended on current action mode (imagination or execution), previous action mode (pure blocks/same mode, mixed blocks/same mode, or mixed blocks/other mode), and movement sequence (action repetition, hand repetition, or hand alternation). Results provided evidence for global inhibition (indicated by switch benefits in execution-imagination (E-I)-sequences in comparison to I-I-sequences), effector-specific inhibition (indicated by hand repetition costs after an imagination trial), and target inhibition (indicated by target repetition benefits in I-I-sequences). No evidence for subthreshold motor activation or action-specific inhibition (inhibition of the movement of an effector to a specific target) was obtained. Two (global inhibition and effector-specific inhibition) of the three observed mechanisms are active inhibition mechanisms. In conclusion, motor imagery is not simply a weaker form of execution, which often is implied in views focusing on similarities between imagination and execution.
Transverse Mode Dynamics of VCSELs Undergoing Current Modulation
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind
2000-01-01
Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling
Generalized Simulation Model for a Switched-Mode Power Supply Design Course Using MATLAB/SIMULINK
ERIC Educational Resources Information Center
Liao, Wei-Hsin; Wang, Shun-Chung; Liu, Yi-Hua
2012-01-01
Switched-mode power supplies (SMPS) are becoming an essential part of many electronic systems as the industry drives toward miniaturization and energy efficiency. However, practical SMPS design courses are seldom offered. In this paper, a generalized MATLAB/SIMULINK modeling technique is first presented. A proposed practical SMPS design course at…
High pressure flow-rate switch
NASA Technical Reports Server (NTRS)
Gale, G. P.
1970-01-01
Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.
NASA Astrophysics Data System (ADS)
Tian, Chunlei; Yin, Yawei; Wu, Jian; Lin, Jintong
2008-11-01
The interworking network of Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) is attractive network architecture for the future IP/DWDM network nowadays. In this paper, OSPF-TE extensions for multi-domain Optical Burst Switching networks connected by GMPLS controlled WDM network are proposed, the corresponding experimental results such as the advertising latency are also presented by using an OBS network testbed. The experimental results show that it works effectively on the OBS/GMPLS networks.
NASA Astrophysics Data System (ADS)
Ashenafi, Emeshaw
Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse-with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on-ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.
Erhart, Michael; Wetzel, Ralf M; Krügel, André; Ravens-Sieberer, Ulrike
2009-12-30
Telephone interviews have become established as an alternative to traditional mail surveys for collecting epidemiological data in public health research. However, the use of telephone and mail surveys raises the question of to what extent the results of different data collection methods deviate from one another. We therefore set out to study possible differences in using telephone and mail survey methods to measure health-related quality of life and emotional and behavioural problems in children and adolescents. A total of 1700 German children aged 8-18 years and their parents were interviewed randomly either by telephone or by mail. Health-related Quality of Life (HRQoL) and mental health problems (MHP) were assessed using the KINDL-R Quality of Life instrument and the Strengths and Difficulties Questionnaire (SDQ) children's self-report and parent proxy report versions. Mean Differences ("d" effect size) and differences in Cronbach alpha were examined across modes of administration. Pearson correlation between children's and parents' scores was calculated within a multi-trait-multi-method (MTMM) analysis and compared across survey modes using Fisher-Z transformation. Telephone and mail survey methods resulted in similar completion rates and similar socio-demographic and socio-economic makeups of the samples. Telephone methods resulted in more positive self- and parent proxy reports of children's HRQoL (SMD < or = 0.27) and MHP (SMD < or = 0.32) on many scales. For the phone administered KINDL, lower Cronbach alpha values (self/proxy Total: 0.79/0.84) were observed (mail survey self/proxy Total: 0.84/0.87). KINDL MTMM results were weaker for the phone surveys: mono-trait-multi-method mean r = 0.31 (mail: r = 0.45); multi-trait-mono-method mean (self/parents) r = 0.29/0.36 (mail: r = 0.34/0.40); multi-trait-multi-method mean r = 0.14 (mail: r = 0.21). Weaker MTMM results were also observed for the phone administered SDQ: mono-trait-multi-method mean r = 0.32 (mail: r = 0.40); multi-trait-mono-method mean (self/parents) r = 0.24/0.30 (mail: r = 0.20/0.32); multi-trait-multi-method mean r = 0.14 (mail = 0.14). The SDQ classification into borderline and abnormal for some scales was affected by the method (OR = 0.36-1.55). The observed differences between phone and mail surveys are small but should be regarded as relevant in certain settings. Therefore, while both methods are valid, some changes are necessary. The weaker reliability and MTMM validity associated with phone methods necessitates improved phone adaptations of paper and pencil questionnaires. The effects of phone versus mail survey modes are partly different across constructs/measures.
Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.; Yan, K.; Zhou, Y.
2015-11-09
We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.
Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I
2013-04-08
We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.
2010-04-01
Characteristics associated with “Free Flight” Shroud and Stage Separation and Mode Switching in LENS II Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee...ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...switching and inlet-starting validation • Validation to CFD community ( CUBRC /UM) Figure 32: Numerical Simulation of the Unsteady Flow Dynamics during
Reedy, R.P.
1985-01-18
An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.
Reedy, R.P.
1987-11-10
An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.
Spontaneous mode switching in coupled oscillators competing for constant amounts of resources
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki
2010-03-01
We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.
Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams
1987-07-30
The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2015-05-01
This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-disciplinary decision making in general practice.
Kirby, Ann; Murphy, Aileen; Bradley, Colin
2018-04-09
Purpose Internationally, healthcare systems are moving towards delivering care in an integrated manner which advocates a multi-disciplinary approach to decision making. Such an approach is formally encouraged in the management of Atrial Fibrillation patients through the European Society of Cardiology guidelines. Since the emergence of new oral anticoagulants switching between oral anticoagulants (OACs) has become prevalent. This case study considers the role of multi-disciplinary decision making, given the complex nature of the agents. The purpose of this paper is to explore Irish General Practitioners' (GPs) experience of switching between all OACs for Arial Fibrillation (AF) patients; prevalence of multi-disciplinary decision making in OAC switching decisions and seeks to determine the GP characteristics that appear to influence the likelihood of multi-disciplinary decision making. Design/methodology/approach A probit model is used to determine the factors influencing multi-disciplinary decision making and a multinomial logit is used to examine the factors influencing who is involved in the multi-disciplinary decisions. Findings Results reveal that while some multi-disciplinary decision-making is occurring (64 per cent), it is not standard practice despite international guidelines on integrated care. Moreover, there is a lack of patient participation in the decision-making process. Female GPs and GPs who have initiated prescriptions for OACs are more likely to engage in multi-disciplinary decision-making surrounding switching OACs amongst AF patients. GPs with training practices were less likely to engage with cardiac consultants and those in urban areas were more likely to engage with other (non-cardiac) consultants. Originality/value For optimal decision making under uncertainty multi-disciplinary decision-making is needed to make a more informed judgement and to improve treatment decisions and reduce the opportunity cost of making the wrong decision.
Jang, Hee Won; Chun, Seung Hyun; Park, Hae Chul; Ryu, Hwa Jung; Kim, Il-Hwan
2017-04-01
Recently dual-pulsed low-fluence 1064-nm Q-switched Nd:YAG (QSNY) laser has been developed for reducing complication during melasma treatment. Comparison of the efficacy and safety between dual-pulsed mode and single-pulsed mode for the treatment of melasma. In preclinical study, adult zebrafish were irradiated with dual-pulsed and single-pulsed mode. Changes of melanophore and cell death were assessed. In split-face clinical study, dual-pulsed and single-pulsed mode were irradiated on the left and right side of the face, respectively. L* value, clinical digital photos, modified Melasma Area and Severity Index (MASI) scores, and side effects were measured. As compared to single-pulsed mode and dual-pulsed mode with longer intervals, zebrafish melanophore was cleared quickly at dual-pulsed mode with 80-μsec interval and 0.3 J/cm 2 fluence. Dual-pulsed mode showed the least regeneration of melanophore at 4 weeks after irradiation and no cell death was observed with 80-μsec interval. Both pulse modes improved melasma significantly but modified MASI score and L* value were not significantly different between each other. Lesser pain and shorter duration of post-laser erythema were observed with dual-pulsed mode. Dual-pulsed mode was as effective as single-pulsed mode for the treatment of melasma and revealed less side effects.
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Solid state remote circuit selector switch
NASA Technical Reports Server (NTRS)
Peterson, V. S.
1970-01-01
Remote switching circuit utilizes voltage logic to switch on desired circuit. Circuit controls rotating multi-range pressure transducers in jet engine testing and can be used in coded remote circuit activator where sequence of switching has to occur in defined length of time to prevent false or undesired circuit activation.
Arribas, Jose R; DeJesus, Edwin; van Lunzen, Jan; Zurawski, Christine; Doroana, Manuela; Towner, William; Lazzarin, Adriano; Nelson, Mark; McColl, Damian; Andreatta, Kristen; Swamy, Raji; Szwarcberg, Javier; Nguyen, Thai
2017-05-01
Antiretroviral therapy (ART) simplification to a single-tablet regimen can benefit HIV-1-infected, virologically suppressed, individuals on ART composed of multiple pills. We assessed long-term efficacy and safety of switching to co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate (E/C/F/TDF) from multi-tablet ritonavir-boosted protease inhibitor (PI + RTV) plus F/TDF (TVD) regimens. STRATEGY-PI was a 96-week, phase 3b, randomized (2:1), open-label, non-inferiority study examining the efficacy, safety, and tolerability of switching to E/C/F/TDF from PI + RTV + TVD regimens in virologically suppressed individuals (HIV-1 RNA <50 copies/mL). Participants were randomized to switch to E/C/F/TDF (switch group) or to continue their PI + RTV + TVD regimens (no-switch group). Eligibility criteria included no resistance to F/TDF or history of virologic failure, and estimated creatinine clearance ≥70 mL/min. At week 96, 87% (252/290) of switch and 70% (97/139) of no-switch participants maintained HIV-1 RNA <50 copies/mL (difference: 17%, 95% CI 8.7-26.0%, p < 0.001). Superiority of the switch to E/C/F/TDF vs. no-switch was due to a smaller proportion of both virologic failures (switch, 1% [3/290]; no-switch, 6% [8/139]) and discontinuations for non-virologic reasons (switch, 11% [31/290]; no-switch, 24% [33/139]). No treatment-emergent resistance was observed in switch subjects with virologic failure. Discontinuation rates from adverse events were 3% in both groups (9/293, switch; 4/140, no-switch). Switching from PI + RTV + TVD to E/C/F/TDF was associated with significant improvements in patient-reported outcomes related to gastrointestinal symptoms (nausea and bloating). E/C/F/TDF is a safe, effective long-term alternative to multi-tablet PI + RTV + TVD-based regimens in virologically suppressed, HIV-1-infected adults, and improves patient-reported gastrointestinal symptoms.
NASA Astrophysics Data System (ADS)
Sajjadi, S. Maryam; Abdollahi, Hamid; Rahmanian, Reza; Bagheri, Leila
2016-03-01
A rapid, simple and inexpensive method using fluorescence spectroscopy coupled with multi-way methods for the determination of aflatoxins B1 and B2 in peanuts has been developed. In this method, aflatoxins are extracted with a mixture of water and methanol (90:10), and then monitored by fluorescence spectroscopy producing EEMs. Although the combination of EEMs and multi-way methods is commonly used to determine analytes in complex chemical systems with unknown interference(s), rank overlap problem in excitation and emission profiles may restrain the application of this strategy. If there is rank overlap in one mode, there are several three-way algorithms such as PARAFAC under some constraints that can resolve this kind of data successfully. However, the analysis of EEM data is impossible when some species have rank overlap in both modes because the information of the data matrix is equivalent to a zero-order data for that species, which is the case in our study. Aflatoxins B1 and B2 have the same shape of spectral profiles in both excitation and emission modes and we propose creating a third order data for each sample using solvent as a new additional selectivity mode. This third order data, in turn, converted to the second order data by augmentation, a fact which resurrects the second order advantage in original EEMs. The three-way data is constructed by stacking augmented data in the third way, and then analyzed by two powerful second order calibration methods (BLLS-RBL and PARAFAC) to quantify the analytes in four kinds of peanut samples. The results of both methods are in good agreement and reasonable recoveries are obtained.
Path planning during combustion mode switch
Jiang, Li; Ravi, Nikhil
2015-12-29
Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
NASA Astrophysics Data System (ADS)
Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge
2017-12-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
Xi, Yan; Cong, Wenxiang; Harrison, Daniel
2017-01-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113
Crunteanu, Aurelian; Givernaud, Julien; Leroy, Jonathan; Mardivirin, David; Champeaux, Corinne; Orlianges, Jean-Christophe; Catherinot, Alain; Blondy, Pierre
2010-12-01
Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO 2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO 2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO 2 -based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO 2 -based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition
NASA Astrophysics Data System (ADS)
Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen
2017-04-01
Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.
Charging system with galvanic isolation and multiple operating modes
Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.
2013-01-08
Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.
Passive Q switching and mode-locking of Er:glass lasers using VO2 mirrors
NASA Astrophysics Data System (ADS)
Pollack, S. A.; Chang, D. B.; Chudnovky, F. A.; Khakhaev, I. A.
1995-09-01
Passive Q switching of an Er:glass laser with the pulse width varying between 14 and 80 ns has been demonstrated, using three resonator vanadium-dioxide-coated (VO2) mirror samples with temperature-dependent reflectivity and differing in the reflectivity contrast. The reflectivity changes because of a phase transition from a semiconductor to a metallic state. Broad band operating characteristics of VO2 mirrors provide Q switching over a wide range of wavelengths. In addition, mode-locked pulses with much shorter time scales have been observed, due to exciton formation and recombination. A simple criterion is derived for the allowable ambient temperatures at which the Q switching operates effectively. A simple relation has also been found relating the duration of the Q-switched pulse to the contrast in reflectivities of the two mirror phases.
Experimental study of electro-optical Q-switched pulsed Nd:YAG laser
NASA Astrophysics Data System (ADS)
A, Maleki; M Kavosh, Tehrani; H, Saghafifar; M, H. Moghtader Dindarlu
2016-03-01
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages
Su, Gui-Jia [Knoxville, TN
2005-11-29
A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.
A Switching-Mode Power Supply Design Tool to Improve Learning in a Power Electronics Course
ERIC Educational Resources Information Center
Miaja, P. F.; Lamar, D. G.; de Azpeitia, M.; Rodriguez, A.; Rodriguez, M.; Hernando, M. M.
2011-01-01
The static design of ac/dc and dc/dc switching-mode power supplies (SMPS) relies on a simple but repetitive process. Although specific spreadsheets, available in various computer-aided design (CAD) programs, are widely used, they are difficult to use in educational applications. In this paper, a graphic tool programmed in MATLAB is presented,…
Separate Poles Mode for Large-Capacity HVDC System
NASA Astrophysics Data System (ADS)
Zhu, Lin; Gao, Qin
2017-05-01
This paper proposes a novel connection mode, separate poles mode (SPM), for large-capacity HVDC systems. The proposed mode focuses on the core issues of HVDC connection in interconnected power grids and principally aims at increasing effective electric distance between poles, which helps to mitigate the interaction problems between AC system and DC system. Receiving end of bipolar HVDC has been divided into different inverter stations under the mode, and thus significantly alleviates difficulties in power transmission and consumption of receiving-end AC grids. By investigating the changes of multi-feed short-circuit ratio (MISCR), finding that HVDC with SPM shows critical impacts upon itself and other HVDC systems with conventional connection mode, which demonstrates that SPM can make balance between MISCR increase and short-circuit current limit.
NASA Astrophysics Data System (ADS)
Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.
2012-04-01
As the demand for high power fiber-coupled violet laser systems increases existing problems remain. The typical power of commercially available diode lasers around 400 nm is in the order of 100 to 300 mW, depending on the type of laser. But in combination with the small core of single-mode fibers reduced spot sizes are needed for good coupling efficiencies, leading to power densities in the MW/cm2 range. We investigated the influence of 405 nm laser light irradiation on different fused silica fibers and differently treated end-faces. The effect of glued-and-polished, cleaved-and-clamped and of cleaved-and-fusion-arc-treated fiber end-faces on the damage rate and behavior are presented. In addition, effects in the deep ultra-violet were determined spectrally using newest spectrometer technology, allowing the measurement of color centers around 200 nm in small core fibers. Periodic surface structures were found on the proximal end-faces and were investigated concerning generation control parameters and composition. The used fiber types range from low-mode fiber to single-mode and polarization-maintaining fiber. For this investigation 405 nm single-mode or multi-mode diode lasers with 150 mW or 300 mW, respectively, were employed.
[Usefulness of Bolus Administration Using the FLEX Mode(Bolus Infusion Mode)for Baclofen Tolerance].
Tanaka, Kazunori
2017-02-01
Intrathecal baclofen(ITB)is used to treat intractable spasticity of various etiologies and can provide better control of spasticity through the adjustment of the dose administered through the pump. However, in patients who develop tolerance to baclofen with the standard simple continuous mode, a sharp increase in dose becomes necessary, and spasticity can become harder to control. We investigated whether switching from the simple continuous mode to the bolus infusion mode was effective in controlling spasticity in patients with baclofen tolerance. We reported four patients undergoing ITB therapy at our facility who were considered to have developed baclofen tolerance. We observed the number of bolus infusions and total dose suitable for maintaining spasticity control after switching from the simple continuous mode to the bolus infusion mode. After switching to the bolus infusion mode, the total dose could be reduced in the short term; however, in the long term, the frequency of bolus infusions had to be increased to maintain spasticity control. Two years after changing to bolus infusion six times a day, the total dose was higher than that in the simple continuous mode for two of the four patients, and was the same level in the other two patients. Our four cases suggest that bolus infusion is effective in patients with baclofen tolerance during ITB therapy. Therefore, the conditions of bolus infusion should be further investigated.
Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M.; Latash, Mark L.
2017-01-01
Background Postural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of postural stability. Objectives We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson’s disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. Methods Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. Results Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. Conclusions Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson’s disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy. PMID:28110044
Microsecond reconfigurable NxN data-communication switch using DMD
NASA Astrophysics Data System (ADS)
Blanche, Pierre-Alexandre; Miles, Alexander; Lynn, Brittany; Wissinger, John; Carothers, Daniel; Norwood, Robert A.; Peyghambarian, Nasser
2014-03-01
We present here the use the DMD as a diffraction-based optical switch, where Fourier diffraction patterns are used to steer the incoming beams to any output configuration. We have implemented a single-mode fiber coupled N X N switch and demonstrated its ability to operate over the entire telecommunication C-band centered at 1550 nm. The all-optical switch was built primarily with off-the-shelf components and a Texas Instruments DLP7000™with an array of 1024 X 768 micromirrors. This DMD is capable of switching 100 times faster than currently available technology (3D MOEMS). The switch is robust to typical failure modes, protocol and bit-rate agnostic, and permits full reconfigurable optical add drop multiplexing (ROADM). The switch demonstrator was inserted into a networking testbed for the majority of the measurements. The testbed assembled under the Center for Integrated Access Networks (ClAN), a National Science Foundation (NSF) Engineering Research Center (ERC), provided an environment in which to simulate and test the data routing functionality of the switch. A Fujitsu Flashwave 9500 PS was used to provide the data signal, which was sent through the switch and received by a second Flashwave node. We successfully transmitted an HD video stream through a switched channel without any measurable data loss.
NASA Technical Reports Server (NTRS)
Jah, Muzar; Simon, Eric; Sharma, Ashok
2003-01-01
Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x < 500 mW) applications. Although the electrical characteristics of RF MEMS switches far surpass any existing technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Jacek; Jabczynski, Jan K.; Zendzian, Waldemar
2005-03-01
The saturable absorbers (Cr4+:YAG, GaAs and LiF crystals for 1064-nm wavelength, V3+:YAG crystals for 1340-nm respectively) were examined as passive Mode Lockers and Q-switches in diode pumped Nd:YVO4 lasers in the Z-type resonators. In each case, partially modulated long trains of QML pulses were observed. As a rule, envelopes with about 1 μs duration and more than 50% depth of modulation were observed. For stabilization of the mode locking trains nonlinear crystals (KTP or LBO) as negative feedback elements were inserted. The fully modulated QML trains for intracavity II harmonic conversion at 670-nm wavelength in V3+:YAG Q-switched Nd:YVO4 laser with LBO crystal were demonstrated.
Experimental demonstration of time- and mode-division multiplexed passive optical network
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-07-01
A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.
Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; Magee, James R.
1991-01-01
Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.
NASA Astrophysics Data System (ADS)
Yang, Zhenyin
Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact resistance. Our work also contributes to the field of general nano-science and technology by resolving the transfer directionality of field evaporation of gold in atomic force microscope (AFM)/scanning tunneling microscope (STM).
Compact low crosstalk 1x2 wavelength selective switch architectures
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Chaitavon, Khunat
2005-02-01
Thin film filter (TF)-based 1x2 wavelength selective switch (WSS) architectures are introduced. Our key idea is to locate a movable mirror orientated at a desired angle close to the TF to switch the desired wavelength optical beams to the wanted switch ports. Our first proposed WSS is in the transmissive mode where the surfaces of the TF and the movable mirror are parallel to each other and it provides a moderate optical isolation. Another WSS structure is in reflective configuration in which the movable mirror is tilted with respect to the surface of the TF and when combined with the optical circulator leads to a very low optical coherent crosstalk. Our experiment using a commercially available TF and a movable mirror shows that our transmissive-mode WSS provides a -18.87 dB optical coherent crosstalk while a much improved < -53 dB optical coherent crosstalk can be obtained between the two switching ports in our reflective-mode WSS structure. Our reflective 1x2 WSS also gives a higher optical loss due to the use of an optical circulator. Low polarization dependent loss of < 0.1 dB is determined for both WSS structures.
Streamwise Vorticity Generation in Laminar and Turbulent Jets
NASA Technical Reports Server (NTRS)
Demuren, Aodeji O.; Wilson, Robert V.
1999-01-01
Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.
Optical properties of new wide heterogeneous waveguides with thermo optical shifters.
De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M
2008-12-22
We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).
Detecting and isolating abrupt changes in linear switching systems
NASA Astrophysics Data System (ADS)
Nazari, Sohail; Zhao, Qing; Huang, Biao
2015-04-01
In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.
Kim, Jee Young; Choi, Misoo; Nam, Chan Hee; Kim, Ji Seok; Kim, Myung Hwa; Park, Byung Cheol; Hong, Seung Phil
2016-06-01
Low-fluence 1,064 nm Q-switched Nd:YAG laser has been widely used for the treatment of melasma. Although new Q-switched Nd:YAG lasers with photoacoustic twin pulse (PTP) mode have been recently developed for high-efficiency, there is limited information available for the new technique. This study was designed to investigate the efficacy and adverse effects after few sessions of repeated low fluence 1,064 nm Q-switched Nd:YAG laser treatment with PTP mode in Asian women with melasma. Twenty-two Korean women were treated with a total of five sessions of low-fluence PTP mode Nd:YAG laser treatment (Pastelle®) at 2 weeks interval. Responses to treatments were evaluated by using Melasma Area and Severity Index (MASI) scoring, colorimeter measurement, and the investigators' and patients' overall assessments. Adverse events were recorded at each visit. Investigators' and patients' overall assessment showed that 'significantly improved' was assessed by 13 (59.1%) and 19 of 22 patients (86.4%), respectively. MASI scores were significantly reduced by 20.4%. The lightness, measured by using a colorimeter, was significantly increased by 1.3 point. Notable adverse events were not observed. After 5 sessions of laser therapy alone, about 60% of the subjects showed significant improvement. Few sessions of repeated laser toning treatment using the PTP mode is a safe and effective way to treat facial melasma.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment
NASA Astrophysics Data System (ADS)
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
A tri-state optical switch for local area network communications
NASA Technical Reports Server (NTRS)
Simms, Garfield
1993-01-01
This novel structure is a heterojunction phototransistor which can be used as an emitter-detector, and when placed in a quiescent mode, the device becomes a passive transmitter. By varying the voltage bias, this novel device will switch between all three modes of operation. Such a device has broad application in network environments with operation speeds of less than 50 MHz and distances of less than 1 km, e.g. automobiles, airplanes, and intra-instrumentation. During this period, the emission mode for this device was studied and mathematically modeled.
NASA Astrophysics Data System (ADS)
Takabatake, Fumi; Magome, Nobuyuki; Ichikawa, Masatoshi; Yoshikawa, Kenichi
2011-03-01
Spontaneous motion of a solid/liquid composite induced by a chemical Marangoni effect, where an oil droplet attached to a solid soap is placed on a water phase, was investigated. The composite exhibits various characteristic motions, such as revolution (orbital motion) and translational motion. The results showed that the mode of this spontaneous motion switches with a change in the size of the solid scrap. The essential features of this mode-switching were reproduced by ordinary differential equations by considering nonlinear friction with proper symmetry.
Screech tones from free and ducted supersonic jets
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III
1993-01-01
The dependence of the instability wave spectrum on azimuthal mode number, the jet to ambient gas temperature ratio, and the jet Mach number is studied. It is shown that the switch of the dominant screech mode (axisymmetric to helical/flapping) as Mach number increases is due to the switch in dominance of the corresponding mode of instability waves. Super-resonance can occur when the feedback loop is powered by the most amplified instability wave. It is suggested that the large amplitude pressure fluctuations and tone in the test cells are generated by super-resonance.
Spin Mode Switching at the Edge of a Quantum Hall System.
Khanna, Udit; Murthy, Ganpathy; Rao, Sumathi; Gefen, Yuval
2017-11-03
Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential, the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the ordering of the edge modes at ν=3 switches abruptly as the edge potential is made softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many verifiable experimental signatures in transport.
Development of SWITCH-Hawaii model: loads and renewable resources.
DOT National Transportation Integrated Search
2016-08-01
This report summarizes work done to configure the SWITCH power system model using data for the Oahu power system. SWITCH is a planning model designed to choose optimal infrastructure investments for power systems over a multi-decade period. Investmen...
Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation
NASA Astrophysics Data System (ADS)
Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul
2015-03-01
Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.
Aircraft loss-of-control prevention and recovery: A hybrid control strategy
NASA Astrophysics Data System (ADS)
Dongmo, Jean-Etienne Temgoua
The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Reconfiguration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry. Flight envelope is essential in all flying aerospace vehicles. Typically, flying the vehicle means remaining within the flight envelope at all times. Operation outside the normal flight regime is usually subject to failure of components (Actuators, Engines, Deflection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions (crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected. For the purpose of this work, (LOC) in aircraft is defined as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial flight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Differential Equation (HJ-PDE) where a cost function is set to he minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two-point boundary value problem. Once illustrate, a set of control strategies is designed for recovery purpose ranging from nonlinear smooth regulators with Hamilton Jacobi-Hellman (HJB) formulation to the switching controllers with High Order Sliding Mode Controllers (HOSMC). A coordinated strategy known as a high level supervisor is then implemented using the multi-models concept where models operate in specified safe regions of the state space.
TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.
Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun
2016-11-01
The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .
Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser
NASA Astrophysics Data System (ADS)
Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun
2018-03-01
Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.
Resonance transition periodic orbits in the circular restricted three-body problem
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo
2018-04-01
This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soer, Wouter
LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-powermore » LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm 2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm 2 and 4 mm 2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux greater than 4100 lm, a correlated color temperature (CCT) of 4000K and a color rendering index (CRI) greater than 70.« less
Stroup, T. Scott; McEvoy, Joseph P.; Ring, Kimberly D.; Hamer, Robert H.; LaVange, Lisa M.; Swartz, Marvin S.; Rosenheck, Robert A.; Perkins, Diana O.; Nussbaum, Abraham M.; Lieberman, Jeffrey A.
2013-01-01
Objective We conducted a multi-site, randomized controlled trial examining the strategy of switching from olanzapine, quetiapine, or risperidone to aripiprazole to ameliorate metabolic risk factors for cardiovascular disease. Method Patients with schizophrenia or schizoaffective disorder with BMI ≥ 27 and non-HDL cholesterol (non-HDL-C) ≥ 130 mg/dl on a stable dosage of olanzapine, quetiapine, or risperidone were randomly assigned to stay on the current medication (n=106) or switch to aripiprazole (n=109) for 24 weeks. All participants were enrolled in a behaviorally oriented diet and exercise program. Raters were blinded to treatment assignment. The primary and key secondary outcomes were non-HDL-C change and efficacy failure, respectively. Results The pre-specified primary analysis included 89 switchers and 98 stayers who had at least one post-baseline non-HDL-C measurement. The least squares mean estimates of non-HDL-C decreased more for the switch than the stay groups (−20.2 vs. −10.8 mg/dl). Switching was associated with larger reductions in weight (2.9 kg) and a net reduction of serum triglycerides of 32.7 mg/dl. Twenty-two (20.6%) switchers and 18 (17.0%) stayers experienced protocol-defined efficacy failure. Forty-seven (43.9%) switchers and 26 (24.5%) stayers discontinued the assigned antipsychotic before 24 weeks. Conclusion Switching to aripiprazole led to improvement of non-HDL-C and other metabolic parameters. Rates of efficacy failure were similar between groups, but switching to aripiprazole was associated with a higher rate of treatment discontinuation. In the context of close clinical monitoring, switching from an antipsychotic with high metabolic risk to one with lower risk to improve metabolic parameters is an effective strategy. PMID:21768610
Colmegna, Patricio H; Sánchez-Peña, Ricardo S; Gondhalekar, Ravi; Dassau, Eyal; Doyle, Francis J
2016-05-01
Time-varying dynamics is one of the main issues for achieving safe blood glucose control in type 1 diabetes mellitus (T1DM) patients. In addition, the typical disturbances considered for controller design are meals, which increase the glucose level, and physical activity (PA), which increases the subject's sensitivity to insulin. In previous works the authors have applied a linear parameter-varying (LPV) control technique to manage unannounced meals. A switched LPV controller that switches between 3 LPV controllers, each with a different level of aggressiveness, is designed to further cope with both unannounced meals and postprandial PA. Thus, the proposed control strategy has a "standard" mode, an "aggressive" mode, and a "conservative" mode. The "standard" mode is designed to be applied most of the time, while the "aggressive" mode is designed to deal only with hyperglycemia situations. On the other hand, the "conservative" mode is focused on postprandial PA control. An ad hoc simulator has been developed to test the proposed controller. This simulator is based on the distribution version of the UVA/Padova model and includes the effect of PA based on Schiavon.(1) The test results obtained when using this simulator indicate that the proposed control law substantially reduces the risk of hypoglycemia with the conservative strategy, while the risk of hyperglycemia is scarcely affected. It is demonstrated that the announcement, or anticipation, of exercise is indispensable for letting a mono-hormonal artificial pancreas deal with the consequences of postprandial PA. In view of this the proposed controller allows switching into a conservative mode when notified of PA by the user. © 2016 Diabetes Technology Society.
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos
NASA Astrophysics Data System (ADS)
Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting
2017-03-01
This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.
NASA Astrophysics Data System (ADS)
Zhang, Liping; Sawchuk, Alexander A.
2001-12-01
We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).
NASA Astrophysics Data System (ADS)
Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.
2017-02-01
A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchiola, Aymeric; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau
An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10more » decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.« less
MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system
NASA Astrophysics Data System (ADS)
Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya
2018-01-01
In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
NASA Astrophysics Data System (ADS)
Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio
2012-02-01
Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Inukai, Thomas
1995-01-01
In designing a satellite system with on-board processing, the selection of a switching architecture is often critical. The on-board switching function can be implemented by circuit switching or packet switching. Destination-directed packet switching has several attractive features, such as self-routing without on-board switch reconfiguration, no switch control memory requirement, efficient bandwidth utilization for packet switched traffic, and accommodation of circuit switched traffic. Destination-directed packet switching, however, has two potential concerns: (1) contention and (2) congestion. And this report specifically deals with the first problem. It includes a description and analysis of various self-routing switch structures, the nature of contention problems, and contention and resolution techniques.
Kim, MinSu; Ham, Hyeong Gyun; Choi, Han-Sol; Bos, Philip J; Yang, Deng-Ke; Lee, Joong Hee; Lee, Seung Hee
2017-03-20
The demands for a power-saving mode for displaying static images are ubiquitous not only in portable devices but also in price tags and advertising panels. At a low-frequency driving in liquid crystal displays (LCDs) for low-power consumption, the flexoelectric effect arises even in calamitic liquid crystals and the optical appearance of this physical phenomenon is found to be unusually large, being noticed as an image-flickering. Although the inherent integrated optical transmittance of in-plane switching (IPS) mode is relatively lower than that of fringe-field switching (FFS) mode, the IPS mode shows no static image-flickering but an optical spike (the so-called optical bounce), at the transient moment between signal positive and negative frames. Here, we demonstrate an IPS mode using negative dielectric anisotropy of liquid crystals (Δε < 0) and fine-patterned electrodes (the width w of and the space l between electrodes ≤ 3 μm) with reduced operation voltage (up to 40.7% to a conventional FFS mode with Δε < 0), reduced optical bounce (up to 4.4%. to a conventional FFS mode with Δε < 0) and enhanced transmittance (up to 32.1% to a conventional IPS mode with Δε > 0). We believe the result will contribute not only to the scientific understanding of the optical appearance of flexoelectric effect but also pave the way for engineering of a superior low-power consumption LCD.
Yoon, Jeong-Hee; Han, Joon Koo; Choi, Byung Ihn
2013-01-01
Objective To compare the in-vitro efficiency of dual-switching monopolar (DSM) radiofrequency ablation (RFA) using a separable clustered electrode (Octopus® electrodes) with consecutive monopolar (CM) and switching monopolar (SM) RFA techniques to create an ablative zone in the explanted bovine liver. Materials and Methods For DSM-RFA, we used a prototype, three-channel, dual generator RFA Unit and Octopus® electrodes with three, 17 gauge internally cooled electrodes. The RFA Unit allowed simultaneous radiofrequency (RF) energy delivery to two electrodes of the Octopus® electrodes as well as automatic switching among the three electrode pairs according to the impedance changes. RF energy was sequentially applied to one of the three electrodes for 24 minutes (group A; CM mode, n = 10) or alternatively applied for 12 minutes (group B; SM mode, n = 10) or concurrently applied to a pair of electrodes for 12 minutes (group C; DSM mode, n = 10) in explanted bovine livers. Changes in the impedance and current during RFA as well as the dimensions of the thermal ablative zones were compared among the three groups. Results The mean, delivered RF energy amounts in groups A, B, and C were 63.15 ± 8.6 kJ, 72.13 ± 5.4 kJ, and 106.08 ± 13.4 kJ, respectively (p < 0.001). The DSM mode created a significantly larger ablation volume than did the other modes, i.e., 68.1 ± 10.2 cm3 (group A), 92.0 ± 19.9 cm3 (group B), and 115.1 ± 14.0 cm3 (group C) (p < 0.001). The circularity in groups A, B, and C were 0.84 ± 0.06, 0.87 ± 0.04 and 0.90 ± 0.03, respectively (p = 0.03). Conclusion DSM-RFA using Octopus® electrodes can help create large ablative zones within a relatively short time. PMID:23690705
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1981-01-01
A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.
Switching the mode of metabolism in the yeast Saccharomyces cerevisiae
Otterstedt, Karin; Larsson, Christer; Bill, Roslyn M; Ståhlberg, Anders; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena
2004-01-01
The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. PMID:15071495
NASA Astrophysics Data System (ADS)
Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.
2014-11-01
This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.
Space-time evolution of ejected plasma for the triggering of gas switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shanhong, E-mail: liushanhong108098@163.com; Liu, Xuandong; Shen, Xi
2016-06-15
Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence onmore » the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from “plasmoid” to “plasma flow,” and the distribution of the ejected plasma goes through “cloud,” “core-cloud,” and “branch” in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted “U”-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the “branch” channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%–90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.« less
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
NASA Astrophysics Data System (ADS)
Houtman, H.; Meyer, J.
1985-06-01
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (≊1 GW) to evolve in the oscillator, and to allow simple synchronization to a (˜100 ns fixed delay) CO2 laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration as in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50-70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50-100 ps with ±5-ps stability. Relative timing between the main (CO2) and probe (ruby) pulses allows a measurement accuracy of ±50 ps to be attained.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houtman, H.; Meyer, J.
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (roughly-equal1 GW) to evolve in the oscillator, and to allow simple synchronization to a (approx.100 ns fixed delay) CO/sub 2/ laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration asmore » in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50--70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50--100 ps with +- 5-ps stability. Relative timing between the main (CO/sub 2/) and probe (ruby) pulses allows a measurement accuracy of +- 50 ps to be attained.« less
Quadratic stabilisability of multi-agent systems under switching topologies
NASA Astrophysics Data System (ADS)
Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long
2014-12-01
This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.
Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array
NASA Technical Reports Server (NTRS)
Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert
1991-01-01
This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.
15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry
NASA Astrophysics Data System (ADS)
Jelínek, M., Jr.; Kubeček, V.
2011-09-01
A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.
Single mode to dual mode switch through a THz reconfigurable metamaterial
NASA Astrophysics Data System (ADS)
Zhang, Wu; Zhang, Meng; Yan, Zongkai; Zhao, Xin; Cheng, Jianping; Liu, Ai Qun
2017-12-01
Metamaterials interact with incident electromagnetic waves through their consisting subwavelength metamolecules. In this paper, we reported a reconfigurable metamaterial which tunes its THz response experimentally from a single mode resonance at 2.99 THz to a dual mode resonance at 2.94 THz and 2.99 THz. The reconfiguration is realized through a micromachined actuator, and the tunability is achieved by breaking the symmetry of the metamolecule. An abrupt change in the transmission is experimentally observed when the gap between two metallic structures is closed, and a decrease in transmission from 40% to 5% at 2.94 THz is obtained. Such a tunable metamaterial promises widespread applications in optical switches, filters, and THz detectors.
The 77 K operation of a multi-resonant power converter
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, W.; Marciante, J.R.
2008-07-23
Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.
Reedy, Robert P.
1987-01-01
An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.
A voltage-division-type low-jitter self-triggered repetition-rate switch.
Su, Jian-Cang; Zeng, Bo; Gao, Peng-Cheng; Li, Rui; Wu, Xiao-Long; Zhao, Liang
2016-10-01
A voltage-division-type (V/N) low-jitter self-triggered multi-stage switch is put forward. It comprises of a triggered corona gap, several quasi-uniform-field gaps, and an inversion inductor. When the corona gap is in the stage of self-breakdown, the multi-stage gaps are triggered and the switch is closed via an over-voltage. This type of V/N switch has the advantage of compact structure since the auxiliary components like the gas-blowing system and the triggered system are eliminated from the whole system. It also has advantages such as low breakdown jitter and high energy efficiency. The dependence of the self-triggered voltage on the over-voltage factor and the switch operating voltage is deduced. A switch of this type is designed and fabricated and experiments to research its characteristics are conducted. The results show that this switch can operate on a voltage of 1 MV at 50 Hz and can generate 1000 successive pulses with a jitter as low as 3% and an energy efficiency as high as 90%. This V/N switch can work under a high repetition rate with a long lifetime.
Development of a Calibration Rig for a Large Multi-Component Rotor Balance
2000-05-01
valve pressure reducer pressure manifold pressure switch pressure transducer pressure relief valve pressure gage off on control valve pressure switch on...Each of the four manifolds has been equipped with a pressure switch , a pressure transducer, a pressure gage, and a pressure relief valve. If the...valve. A pressure switch is installed between the servo valve and the actuator. This pressure switch is used as a diagnostic indicator by the
ECG fiducial point extraction using switching Kalman filter.
Akhbari, Mahsa; Ghahjaverestan, Nasim Montazeri; Shamsollahi, Mohammad B; Jutten, Christian
2018-04-01
In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called "switch" is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and compared among two consecutive modes and a path is estimated, which shows the relation of each part of the ECG signal to the mode with the maximum probability. ECG FPs are found from the estimated path. For performance evaluation, the Physionet QT database is used and the proposed method is compared with methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS) and extended Kalman filter. For our proposed method, the mean error and the root mean square error across all FPs are 2 ms (i.e. less than one sample) and 14 ms, respectively. These errors are significantly smaller than those obtained using other methods. The proposed method achieves lesser RMSE and smaller variability with respect to others. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Jee Young; Choi, Misoo; Nam, Chan Hee; Kim, Ji Seok; Kim, Myung Hwa; Park, Byung Cheol
2016-01-01
Background Low-fluence 1,064 nm Q-switched Nd:YAG laser has been widely used for the treatment of melasma. Although new Q-switched Nd:YAG lasers with photoacoustic twin pulse (PTP) mode have been recently developed for high-efficiency, there is limited information available for the new technique. Objective This study was designed to investigate the efficacy and adverse effects after few sessions of repeated low fluence 1,064 nm Q-switched Nd:YAG laser treatment with PTP mode in Asian women with melasma. Methods Twenty-two Korean women were treated with a total of five sessions of low-fluence PTP mode Nd:YAG laser treatment (Pastelle®) at 2 weeks interval. Responses to treatments were evaluated by using Melasma Area and Severity Index (MASI) scoring, colorimeter measurement, and the investigators' and patients' overall assessments. Adverse events were recorded at each visit. Results Investigators' and patients' overall assessment showed that 'significantly improved' was assessed by 13 (59.1%) and 19 of 22 patients (86.4%), respectively. MASI scores were significantly reduced by 20.4%. The lightness, measured by using a colorimeter, was significantly increased by 1.3 point. Notable adverse events were not observed. Conclusion After 5 sessions of laser therapy alone, about 60% of the subjects showed significant improvement. Few sessions of repeated laser toning treatment using the PTP mode is a safe and effective way to treat facial melasma. PMID:27274626
NASA Astrophysics Data System (ADS)
He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi
2016-12-01
A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.
A Multi-Systemic School-Based Approach for Addressing Childhood Aggression
ERIC Educational Resources Information Center
Runions, Kevin
2008-01-01
School-based approaches to addressing aggression in the early grades have focused on explicit curriculum addressing social and emotional processes. The current study reviews research on the distinct modes of aggression, the status of current research on social and emotional processing relevant to problems of aggression amongst young children, as…
Being Online Peer Supported: Experiences from a Work-Based Learning Programme
ERIC Educational Resources Information Center
Altinay Aksal, Fahriye; Altinay, Zehra; De Rossi, Gazivalerio; Isman, Aytekin
2012-01-01
Problem Statement: Work-based learning programmes have become an increasingly popular way of fulfilling the desire for life-long learning; multi-dimensional work-based learning modes have recently played a large role in both personal and institutional development. The peculiarity of this innovative way of learning derives from the fact that…
NASA Astrophysics Data System (ADS)
Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng
2009-08-01
The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Structural Optimization for Reliability Using Nonlinear Goal Programming
NASA Technical Reports Server (NTRS)
El-Sayed, Mohamed E.
1999-01-01
This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.
Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.
2018-03-01
We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.
Skovran, Elizabeth; Crowther, Gregory J; Guo, Xiaofeng; Yang, Song; Lidstrom, Mary E
2010-11-24
When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This "downstream priming" mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Farkas, Dávid; Denham, Susan L.; Bendixen, Alexandra; Tóth, Dénes; Kondo, Hirohito M.; Winkler, István
2016-01-01
Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual’s tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions. PMID:27135945
Design of automatic curtain controlled by wireless based on single chip 51 microcomputer
NASA Astrophysics Data System (ADS)
Han, Dafeng; Chen, Xiaoning
2017-08-01
In order to realize the wireless control of the domestic intelligent curtains, a set of wireless intelligent curtain control system based on 51 single chip microcomputer have been designed in this paper. The intelligent curtain can work in the manual mode, automatic mode and sleep mode and can be carried out by the button and mobile phone APP mode loop switch. Through the photosensitive resistance module and human pyroelectric infrared sensor to collect the indoor light value and the data whether there is the person in the room, and then after single chip processing, the motor drive module is controlled to realize the positive inversion of the asynchronous motor, the intelligent opening and closing of the curtain have been realized. The operation of the motor can be stopped under the action of the switch and the curtain opening and closing and timing switch can be controlled through the keys and mobile phone APP. The optical fiber intensity, working mode, curtain state and system time are displayed by LCD1602. The system has a high reliability and security under practical testing and with the popularity and development of smart home, the design has broad market prospects.
Xu, Fengzhou; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Ye, Xiaosheng; Tang, Jinlu; Shangguan, Jingfang; Luo, Lan
2015-06-21
A novel channel-switch-mode strategy for simultaneous sensing of Fe(3+) and Hg(2+) is developed with dual-excitation single-emission graphene quantum dots (GQDs). By utilizing the dual-channel fluorescence response performance of GQDs, this strategy achieved a facile, low-cost, masking agent-free, quantitative and selective dual-ion assay even in mixed ion samples and practical water samples.
Fraine, A; Minaeva, O; Simon, D S; Egorov, R; Sergienko, A V
2012-01-30
A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
Implementation method of multi-terminal DC control system
NASA Astrophysics Data System (ADS)
Yi, Liu; Hao-Ran, Huang; Jun-Wen, Zhou; Hong-Guang, Guo; Yu-Yong, Zhou
2018-04-01
Currently the multi-terminal DC system (MTDC) has more stations. Each station needs operators to monitor and control the device. It needs much more operation and maintenance, low efficiency and small reliability; for the most important reason, multi-terminal DC system has complex control mode. If one of the stations has some problem, the control of the whole system should have problems. According to research of the characteristics of multi-terminal DC (VSC-MTDC) systems, this paper presents a strong implementation of the multi-terminal DC Supervisory Control and Data Acquisition (SCADA) system. This system is intelligent, can be networking, integration and intelligent. A master control system is added in each station to communication with the other stations to send current and DC voltage value to pole control system for each station. Based on the practical application and information feedback in the China South Power Grid research center VSC-MTDC project, this system is higher efficiency and save the cost on the maintenance of convertor station to improve the intelligent level and comprehensive effect. And because of the master control system, a multi-terminal system hierarchy coordination control strategy is formed, this make the control and protection system more efficiency and reliability.
All-IP-Ethernet architecture for real-time sensor-fusion processing
NASA Astrophysics Data System (ADS)
Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya
2016-03-01
Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.
Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements
NASA Astrophysics Data System (ADS)
Koprubasi, Kerem
The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV drivetrain and to ensure smooth vehicle operation during mode changes, a special control method is developed. This method is generalized to a broad class of switched systems in which the switching conditions are state dependent or are supervised. The control approach involves partitioning the state-space such that the control law is modified as the state trajectory approaches a switching set and the state is steered to a location within the partition with low transitioning cost. Away from the partitions that contain switching sets, the controller is designed to achieve any suitable control objective. In the case of the HEV control problem, this objective generally involves minimizing fuel consumption. Finally, the experimental verification of this control method is illustrated using the application that originally motivated the development of this approach: the control of a HEV driveline during the transition from electric only to hybrid mode.
A framework for implementing data services in multi-service mobile satellite systems
NASA Technical Reports Server (NTRS)
Ali, Mohammed O.; Leung, Victor C. M.; Spolsky, Andrew I.
1988-01-01
Mobile satellite systems being planned for introduction in the early 1990s are expected to be invariably of the multi-service type. Mobile Telephone Service (MTS), Mobile Radio Service (MRS), and Mobile Data Service (MDS) are the major classifications used to categorize the many user applications to be supported. The MTS and MRS services encompass circuit-switched voice communication applications, and may be efficiently implemented using a centralized Demand-Assigned Multiple Access (DAMA) scheme. Applications under the MDS category are, on the other hand, message-oriented and expected to vary widely in characteristics; from simplex mode short messaging applications to long duration, full-duplex interactive data communication and large file transfer applications. For some applications under this service category, the conventional circuit-based DAMA scheme may prove highly inefficient due to the long time required to set up and establish communication links relative to the actual message transmission time. It is proposed that by defining a set of basic bearer services to be supported in MDS and optimizing their transmission and access schemes independent of the MTS and MRS services, the MDS applications can be more efficiently integrated into the multi-service design of mobile satellite systems.
A framework for implementing data services in multi-service mobile satellite systems
NASA Astrophysics Data System (ADS)
Ali, Mohammed O.; Leung, Victor C. M.; Spolsky, Andrew I.
1988-05-01
Mobile satellite systems being planned for introduction in the early 1990s are expected to be invariably of the multi-service type. Mobile Telephone Service (MTS), Mobile Radio Service (MRS), and Mobile Data Service (MDS) are the major classifications used to categorize the many user applications to be supported. The MTS and MRS services encompass circuit-switched voice communication applications, and may be efficiently implemented using a centralized Demand-Assigned Multiple Access (DAMA) scheme. Applications under the MDS category are, on the other hand, message-oriented and expected to vary widely in characteristics; from simplex mode short messaging applications to long duration, full-duplex interactive data communication and large file transfer applications. For some applications under this service category, the conventional circuit-based DAMA scheme may prove highly inefficient due to the long time required to set up and establish communication links relative to the actual message transmission time. It is proposed that by defining a set of basic bearer services to be supported in MDS and optimizing their transmission and access schemes independent of the MTS and MRS services, the MDS applications can be more efficiently integrated into the multi-service design of mobile satellite systems.
AEA Cell-Bypass-Switch Activation: An Update
NASA Technical Reports Server (NTRS)
Keys, Denney; Rao, Gopalakrishna M.; Wannemacher, Harry
2002-01-01
The objectives of this project included the following: (1) verify the performance of AEA cell bypass protection device (CBPD) under simulated EOS-Aqua/Aura flight hardware configuration; (2) assess the safety of the hardware under an inadvertent firing of CBPD switch, as well as the closing of CBPD; and (3) confirm that the mode of operation of CBPD switch is the formation of a continuous low impedance path (a homogeneous low melting point alloy). The nominal performance of AEA CBPD under flight operating conditions (vacuum except zero-G, and high impedance cell) has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). The formation of a continuous low impedance path (a homogeneous low melting point alloy) has been confirmed.
Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min
2016-01-11
We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.
Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min
2016-01-01
We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557
NASA Astrophysics Data System (ADS)
Yoshida, Mari; Reyes, Sabrina Galiñanes; Tsuda, Soichiro; Horinouchi, Takaaki; Furusawa, Chikara; Cronin, Leroy
2017-06-01
Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs.
NASA Astrophysics Data System (ADS)
Duan, W. J.; Wang, J. B.; Zhong, X. L.
2018-05-01
Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.
White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature
NASA Astrophysics Data System (ADS)
Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng
2018-07-01
The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.
High Current, Multi-Filament Photoconductive Semiconductor Switching
2011-06-01
linear PCSS triggered with a 100 fs laser pulse . Figure 1. A generic photoconductive semiconductor switch rapidly discharges a charged capacitor...switching is the most critical challenge remaining for photoconductive semiconductor switch (PCSS) applications in Pulsed Power. Many authors have...isolation and control, pulsed or DC charging, and long device lifetime, provided the current per filament is limited to 20-30A for short pulse (10
Theoretical modeling of diode-laser-pumped 3-μm Er3+ crystal lasers
NASA Astrophysics Data System (ADS)
Tikerpae, Mark; Jackson, Stuart D.; King, Terence A.
1997-05-01
We present results from a theoretical model that has been developed to simulate the 3-micrometer laser transition in Er3+ doped Y3Al5O12 (YAG), Y2Sc2Ga3O12 (YSGG), LiYF4 (YLF) and BaY2F8 (BaYF) host crystals. The rate equations for the lowest seven energy levels of Er3+ were solved numerically and laser action was simulated under cw, gain-switched (pulse pumped) and Q-switched operation with optical pumping at wavelengths of 975 nm and 795 nm. The relative performance of each laser crystal was compared under identical pumping and cavity conditions to establish the optimum crystal host, doping concentration and pump wavelength for each mode of operation. Some unexpected saturation effects were investigated that could limit the maximum practical pump fluence used for high energy Q-switched systems. We investigate possible additional multi-ion energy transfer processes that may cause the decrease in efficiency that is observed experimentally at high Er3+ ion concentrations. In addition, lower laser level deactivation by co-doping with Pr3+ in BaYF was simulated and compared with singly doped Er:BaYF for a range of Er3+ and Pr3+ concentrations. It was found that co-doping was not as effective as the cooperative upconversion process present in singly doped Er3+ crystals for efficient laser operation.
Vehicle Hybrid Braking Control Using Sliding Mode Control
NASA Astrophysics Data System (ADS)
Kasahara, Misawa; Kanai, Yuki; Shiraki, Ryoko; Mori, Yasuchika
Anti-lock brake system and brake-by-wire are proposed in the vehicle control using a brake, and the braking power is expected to be improved more than ever. The researches such as an application to the ABS of Siliding mode control which considered a actuator dynamics and a hybrid control of the brake using model reference adaptive control are done so far. However, in the former case, speed following that becomes a target exists physically impossible situation by saturation of tire frictional force because only speed following is done. In the latter, the model error is caused because the simulation model and the controller design model are different. Therefore, there is a problem that an accurate follow cannot be done. In this paper, the braking control is performed using the sliding mode control which has high robustness for disturbance that fulfils matching conditions. In so doing, it aims at the achievement of optimal braking control to switch wheel speed following to slip ratio following.
Multi-Modalities Sensor Science
2015-02-28
enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance
Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability
NASA Astrophysics Data System (ADS)
Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.
2018-03-01
We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.
Coupling radiative heat transfer in participating media with other heat transfer modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tencer, John; Howell, John R.
The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.
Coupling radiative heat transfer in participating media with other heat transfer modes
Tencer, John; Howell, John R.
2015-09-28
The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.
Liang, Fan; Xie, Weihong; Yu, Yang
2017-01-01
Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively "switch" from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.
NASA Astrophysics Data System (ADS)
Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei
2018-02-01
This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.
2017-09-01
One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.
Wu, Kan; Zhang, Xiaoyan; Wang, Jun; Li, Xing; Chen, Jianping
2015-05-04
Two-dimensional (2D) nanomaterials, especially the transition metal sulfide semiconductors, have drawn great interests due to their potential applications in viable photonic and optoelectronic devices. In this work, 2D tungsten disulfide (WS2) based saturable absorber (SA) for ultrafast photonic applications was demonstrated. WS2 nanosheets were prepared using liquid-phase exfoliation method and embedded in polyvinyl alcohol (PVA) thin film for the practical usage. Saturable absorption was discovered in the WS2-PVA SA at the telecommunication wavelength near 1550 nm. By incorporating WS2-PVA SA into a fiber laser cavity, both stable mode locking operation and Q-switching operation were achieved. In the mode locking operation, the laser obtained femtosecond output pulse width and high spectral purity in the radio frequency spectrum. In the Q-switching operation, the laser had tunable repetition rate and output pulse energy of a few tens of nano joule. Our findings suggest that few-layer WS2 nanosheets embedded in PVA thin film are promising nonlinear optical materials for ultrafast photonic applications as a mode locker or Q-switcher.
Shi, Yiquan; Wolfensteller, Uta; Schubert, Torsten; Ruge, Hannes
2018-02-01
Cognitive flexibility is essential to cope with changing task demands and often it is necessary to adapt to combined changes in a coordinated manner. The present fMRI study examined how the brain implements such multi-level adaptation processes. Specifically, on a "local," hierarchically lower level, switching between two tasks was required across trials while the rules of each task remained unchanged for blocks of trials. On a "global" level regarding blocks of twelve trials, the task rules could reverse or remain the same. The current task was cued at the start of each trial while the current task rules were instructed before the start of a new block. We found that partly overlapping and partly segregated neural networks play different roles when coping with the combination of global rule reversal and local task switching. The fronto-parietal control network (FPN) supported the encoding of reversed rules at the time of explicit rule instruction. The same regions subsequently supported local task switching processes during actual implementation trials, irrespective of rule reversal condition. By contrast, a cortico-striatal network (CSN) including supplementary motor area and putamen was increasingly engaged across implementation trials and more so for rule reversal than for nonreversal blocks, irrespective of task switching condition. Together, these findings suggest that the brain accomplishes the coordinated adaptation to multi-level demand changes by distributing processing resources either across time (FPN for reversed rule encoding and later for task switching) or across regions (CSN for reversed rule implementation and FPN for concurrent task switching). © 2017 Wiley Periodicals, Inc.
Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch
NASA Technical Reports Server (NTRS)
Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.
1997-01-01
NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.
2014-04-01
In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.
NASA Astrophysics Data System (ADS)
Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng
2018-05-01
We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.
Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)
NASA Astrophysics Data System (ADS)
Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul
2017-10-01
This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.
EMD-WVD time-frequency distribution for analysis of multi-component signals
NASA Astrophysics Data System (ADS)
Chai, Yunzi; Zhang, Xudong
2016-10-01
Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.
Huang, Qiuhua; Vittal, Vijay
2018-05-09
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; Vittal, Vijay
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
Distributed fault detection over sensor networks with Markovian switching topologies
NASA Astrophysics Data System (ADS)
Ge, Xiaohua; Han, Qing-Long
2014-05-01
This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.
Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong
2011-06-01
Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.
Multi-megavolt low jitter multistage switch
Humphreys, D.R.; Penn, K.J. Jr.
1985-06-19
It is one object of the present invention to provide a multistage switch capable of holding off numerous megavolts, until triggered, from a particle beam accelerator of the type used for inertial confinement fusion. The invention provides a multistage switch having low timing jitter and capable of producing multiple spark channels for spreading current over a wider area to reduce electrode damage and increase switch lifetime. The switch has fairly uniform electric fields and a short spark gap for laser triggering and is engineered to prevent insulator breakdowns.
Multi-gap high impedance plasma opening switch
Mason, Rodney J.
1996-01-01
A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.
Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode
NASA Astrophysics Data System (ADS)
Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.
2012-12-01
Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.
Launch and Early Orbit Operations for CryoSat-2
NASA Astrophysics Data System (ADS)
Mardel, Nic; Marchese, Franco
2010-12-01
CryoSat-2 was launched from Baikonur on 8th of April 2010 aboard a modified Dnepr ICBM, the so-called SS18 Satan. Following the ascent and separation from the launch vehicle the Flight Operations Segment (FOS) in ESOC, Darmstadt started the operations to configure the satellite into the correct mode to acquire science; switching on units, configuring software and ensuring that the satellite health and performance was as expected. This paper will describe the operations performed by the FOS during the first weeks in orbit, including the unexpected problems encountered, their implications and solutions.
Third-order nonlinear electro-optic measurements in the smectic-? phase
NASA Astrophysics Data System (ADS)
Nowicka, Kamila; Bielejewska, Natalia
2018-02-01
The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.
PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks
Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young
2015-01-01
Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084
NASA Astrophysics Data System (ADS)
Argha, Ahmadreza; Li, Li; W. Su, Steven
2017-04-01
This paper develops a novel stabilising sliding mode for systems involving uncertainties as well as measurement data packet dropouts. In contrast to the existing literature that designs the switching function by using unavailable system states, a novel linear sliding function is constructed by employing only the available communicated system states for the systems involving measurement packet losses. This also equips us with the possibility to build a novel switching component for discrete-time sliding mode control (DSMC) by using only available system states. Finally, using a numerical example, we evaluate the performance of the designed DSMC for networked systems.
Multi-point contact of the high-speed vehicle-turnout system dynamics
NASA Astrophysics Data System (ADS)
Ren, Zunsong
2013-05-01
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn't occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
2007-02-01
N2 Halocarbon WK-872450-000 Discharge head, plain nut Halocarbon WK-934208-000 Swivel adapter Halocarbon 06-118262-001 Pressure switch Halocarbon...06-118263-001 Pressure switch Halocarbon 81-486536-000 Pressure switch Halocarbon 81-981332-000 X-proof pressure switch Halocarbon 81-871072-001...90-100121-001 67 kg (125 lb.) Cyl w/LLI 82-878751-000 Lever Pressure Op Actuator6 06-118263-001 Pressure Switch 119.9 400.0 3.8 27.6 Pressure
NASA Technical Reports Server (NTRS)
Welford, D.; Isyanova, Y.
1993-01-01
TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.
1980-01-01
Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.
Zhang, Haijuan; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Wang, Yonggang
2013-09-20
A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO(4)/Nd:YVO(4)/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz.
NASA Astrophysics Data System (ADS)
Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team
This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.
Normal modes of synchronous rotation
NASA Astrophysics Data System (ADS)
Varadi, Ferenc; Musotto, Susanna; Moore, William; Schubert, Gerald
2005-07-01
The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.
NASA Technical Reports Server (NTRS)
Bonin, E. L.
1969-01-01
Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.
NASA Astrophysics Data System (ADS)
Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka
2016-08-01
We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.
Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong
2017-01-01
The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952
Martin, Adam; Panter, Jenna; Suhrcke, Marc; Ogilvie, David
2015-08-01
Active commuting is associated with various health benefits, but little is known about its causal relationship with body mass index (BMI). We used cohort data from three consecutive annual waves of the British Household Panel Survey, a longitudinal study of nationally representative households, in 2004/2005 (n=15,791), 2005/2006 and 2006/2007. Participants selected for the analyses (n=4056) reported their usual main mode of travel to work at each time point. Self-reported height and weight were used to derive BMI at baseline and after 2 years. Multivariable linear regression analyses were used to assess associations between switching to and from active modes of travel (over 1 and 2 years) and change in BMI (over 2 years) and to assess dose-response relationships. After adjustment for socioeconomic and health-related covariates, the first analysis (n=3269) showed that switching from private motor transport to active travel or public transport (n=179) was associated with a significant reduction in BMI compared with continued private motor vehicle use (n=3090; -0.32 kg/m(2), 95% CI -0.60 to -0.05). Larger adjusted effect sizes were associated with switching to active travel (n=109; -0.45 kg/m(2), -0.78 to -0.11), particularly among those who switched within the first year and those with the longest journeys. The second analysis (n=787) showed that switching from active travel or public transport to private motor transport was associated with a significant increase in BMI (0.34 kg/m(2), 0.05 to 0.64). Interventions to enable commuters to switch from private motor transport to more active modes of travel could contribute to reducing population mean BMI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Martin, Adam; Panter, Jenna; Suhrcke, Marc; Ogilvie, David
2015-01-01
Background Active commuting is associated with various health benefits, but little is known about its causal relationship with body mass index (BMI). Methods We used cohort data from three consecutive annual waves of the British Household Panel Survey, a longitudinal study of nationally representative households, in 2004/2005 (n=15 791), 2005/2006 and 2006/2007. Participants selected for the analyses (n=4056) reported their usual main mode of travel to work at each time point. Self-reported height and weight were used to derive BMI at baseline and after 2 years. Multivariable linear regression analyses were used to assess associations between switching to and from active modes of travel (over 1 and 2 years) and change in BMI (over 2 years) and to assess dose–response relationships. Results After adjustment for socioeconomic and health-related covariates, the first analysis (n=3269) showed that switching from private motor transport to active travel or public transport (n=179) was associated with a significant reduction in BMI compared with continued private motor vehicle use (n=3090; −0.32 kg/m2, 95% CI −0.60 to −0.05). Larger adjusted effect sizes were associated with switching to active travel (n=109; −0.45 kg/m2, −0.78 to −0.11), particularly among those who switched within the first year and those with the longest journeys. The second analysis (n=787) showed that switching from active travel or public transport to private motor transport was associated with a significant increase in BMI (0.34 kg/m2, 0.05 to 0.64). Conclusions Interventions to enable commuters to switch from private motor transport to more active modes of travel could contribute to reducing population mean BMI. PMID:25954024
Multi-mode of Four and Six Wave Parametric Amplified Process
NASA Astrophysics Data System (ADS)
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-01
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
Multi-mode of Four and Six Wave Parametric Amplified Process.
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-03
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
Thermally actuated thermionic switch
Barrus, Donald M.; Shires, Charles D.
1988-01-01
A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.
Thermally actuated thermionic switch
Barrus, D.M.; Shires, C.D.
1982-09-30
A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.
Level-Set Topology Optimization with Aeroelastic Constraints
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2015-01-01
Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.
New model of inverting substation for DC traction with regenerative braking system
NASA Astrophysics Data System (ADS)
Omar, Abdul Malek Saidina; Samat, Ahmad Asri Abd; Isa, Siti Sarah Mat; Shamsuddin, Sarah Addyani; Jamaludin, Nur Fadhilah; Khyasudeen, Muhammad Farris
2017-08-01
This paper presents a power electronic devices application focus on modeling, analysis, and control of switching power converter in the inverting DC substation with regenerative braking system which is used to recycle the surplus regenerative power by feed it back to the main AC grid. The main objective of this research is to improve the switching power electronic converter of the railway inverting substation and optimize the maximum kinetic energy recovery together with minimum power losses from the railway braking system. Assess performance including efficiency and robustness will be evaluated in order to get the best solution for the design configuration. Research methodology included mathematical calculation, simulation, and detail analysis on modeling of switching power converter on inverting substation. The design stage separates to four main areas include rectification mode, regenerative mode, control inverter mode and filtering mode. The simulation result has shown that the regenerative inverter has a capability to accept a maximum recovery power on the regeneration mode. Total energy recovery has increase and power losses have decreases because inverter abilities to transfer the surplus energy back to the main AC supply. An Inverter controller with PWM Generator and PI Voltage Regulator has been designed to control voltage magnitude and frequency of the DC traction system.
Controlling the mode of operation of organic transistors through side-chain engineering.
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B; Bandiello, Enrico; Hanifi, David A; Sessolo, Michele; Malliaras, George G; McCulloch, Iain; Rivnay, Jonathan
2016-10-25
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.
Switching PD-based sliding mode control for hovering of a tilting-thruster underwater robot.
Jin, Sangrok; Bak, Jeongae; Kim, Jongwon; Seo, TaeWon; Kim, Hwa Soo
2018-01-01
This paper presents a switching PD-based sliding mode control (PD-SMC) method for the 6-degree-of-freedom (DOF) hovering motion of the underwater robot with tilting thrusters. Four thrusters of robot can be tilted simultaneously in the horizontal and vertical directions, and the 6-DOF motion is achieved by switching between two thruster configurations. Therefore, the tilting speed of thruster becomes the most essential parameter to determine the stability of hovering motion. Even though the previous PD control ensures stable hovering motion within a certain ranges of tilting speed, a PD-SMC is suggested in this paper by combining PD control with sliding mode control in order to achieve acceptable hovering performance even at the much lower tilting speeds. Also, the sign function in the sliding mode control is replaced by a sigmoid function to reduce undesired chattering. Simulations show that while PD control is effective only for tilting duration of 600 ms, the PD-based sliding mode control can guarantee the stable hovering motion of underwater robot even for the tilting duration of up to 1500 ms. Extensive experimental results confirm the hovering performance of the proposed PD-SMC method is much superior to that of PD method for much larger tilting durations.
Controlling the mode of operation of organic transistors through side-chain engineering
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan
2016-01-01
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983
Hardware enabled performance counters with support for operating system context switching
Salapura, Valentina; Wisniewski, Robert W.
2015-06-30
A device for supporting hardware enabled performance counters with support for context switching include a plurality of performance counters operable to collect information associated with one or more computer system related activities, a first register operable to store a memory address, a second register operable to store a mode indication, and a state machine operable to read the second register and cause the plurality of performance counters to copy the information to memory area indicated by the memory address based on the mode indication.
The three-dimensional structure of swirl-switching in bent pipe flow
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...
2017-11-27
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
The three-dimensional structure of swirl-switching in bent pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
DC switching regulated power supply for driving an inductive load
Dyer, George R.
1986-01-01
A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.
DC switching regulated power supply for driving an inductive load
Dyer, G.R.
1983-11-29
A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.
A high repetition rate passively Q-switched microchip laser for controllable transverse laser modes
NASA Astrophysics Data System (ADS)
Dong, Jun; Bai, Sheng-Chuang; Liu, Sheng-Hui; Ueda, Ken-Ichi; Kaminskii, Alexander A.
2016-05-01
A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for versatile controllable transverse laser modes has been demonstrated by adjusting the position of the Nd:YVO4 crystal along the tilted pump beam direction. The pump beam diameter-dependent asymmetric saturated inversion population inside the Nd:YVO4 crystal governs the oscillation of various Laguerre-Gaussian, Ince-Gaussian and Hermite-Gaussian modes. Controllable transverse laser modes with repetition rates over 25 kHz and up to 183 kHz, depending on the position of the Nd:YVO4 crystal, have been achieved. The controllable transverse laser beams with a nanosecond pulse width and peak power over hundreds of watts have been obtained for potential applications in optical trapping and quantum computation.
Transient current interruption mechanism in a magnetically delayed vacuum switch
NASA Technical Reports Server (NTRS)
Morris, Gibson, Jr.; Dougal, Roger A.
1993-01-01
The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.
High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti
Matko, Vojko; Milanović, Miro
2014-01-01
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334
NASA Astrophysics Data System (ADS)
Chang, C. C.; Hsieh, Y. H.; Lee, C. Y.; Sung, C. L.; Tuan, P. H.; Tung, J. C.; Liang, H. C.; Chen, Y. F.
2017-12-01
Various high-order Hermite-Gaussian (HG) modes with high repetition rates and high peak powers are systematically generated by designing the cavity configuration to satisfy the criterion of the passive Q-switching. For the HG m,0 modes with the order m = 1-9, the pulse repetition rate can exceed 100 kHz with peak power higher than 0.3 kW. For the HG m,m modes with the order m = 1-10, the pulse repetition rate can be up to 37 kHz with peak power higher than 0.35 kW. Furthermore, the high-order HG beams is transformed by using an astigmatic mode converter to generate various structured lights with optical vortices. Experimental patterns of the transformed high-order HG beams in the propagation are theoretically analyzed and the phase structures are numerically manifested.
Electrical model of dielectric barrier discharge homogenous and filamentary modes
NASA Astrophysics Data System (ADS)
López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.
2017-01-01
This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.
Liu, Wei; Huang, Jie
2018-03-01
This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.
AC motor controller with 180 degree conductive switches
NASA Technical Reports Server (NTRS)
Oximberg, Carol A. (Inventor)
1995-01-01
An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.
Passive gas-gap heat switch for adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)
2005-01-01
A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.
Micromechanical Switches on GaAs for Microwave Applications
NASA Technical Reports Server (NTRS)
Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang
1995-01-01
In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.
NASA Astrophysics Data System (ADS)
Niakan, F.; Vahdani, B.; Mohammadi, M.
2015-12-01
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.
NASA Astrophysics Data System (ADS)
Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher
2018-01-01
This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.
NASA Astrophysics Data System (ADS)
Li, Xing-Wang; Bai, Chao-Ying; Yue, Xiao-Peng; Greenhalgh, Stewart
2018-02-01
To overcome a major problem in current ray tracing methods, which are only capable of tracing first arrivals, and occasionally primary reflections (or mode conversions) in regular cell models, we extend in this paper the multistage triangular shortest-path method (SPM) into 3D titled transversely isotropic (TTI) anisotropic media. The proposed method is capable of tracking multi-phase arrivals composed of any kind of combinations of transmissions, mode conversions and reflections. In model parameterization, five elastic parameters, plus two angles defining the titled axis of symmetry of TTI media are sampled at the primary nodes of the tetrahedral cell, and velocity value at secondary node positions are linked by a tri-linear velocity interpolation function to the primary node velocity value of that of a tetrahedral cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are computed. The multistage triangular SPM is used to track multi-phase arrivals. The uniform anisotropic test indicates that the numerical solution agrees well with the analytic solution, thus verifying the accuracy of the methodology. Several simulations and comparison results for heterogeneous models show that the proposed algorithm is able to efficiently and accurately approximate undulating surface topography and irregular subsurface velocity discontinuities. It is suitable for any combination of multi-phase arrival tracking in arbitrary tilt angle TTI media and can accommodate any magnitude of anisotropy.
Sidlauskaite, J; Sonuga-Barke, E; Roeyers, H; Wiersema, J R
2016-02-01
Individuals with attention deficit hyperactivity disorder (ADHD) display excess levels of default mode network (DMN) activity during goal-directed tasks, which are associated with attentional disturbances and performance decrements. One hypothesis is that this is due to attenuated down-regulation of this network during rest-to-task switching. A second related hypothesis is that it may be associated with right anterior insula (rAI) dysfunction - a region thought to control the actual state-switching process. These hypotheses were tested in the current fMRI study in which 19 adults with ADHD and 21 typically developing controls undertook a novel state-to-state switching paradigm. Advance cues signalled upcoming switches between rest and task periods and switch-related anticipatory modulation of DMN and rAI was measured. To examine whether rest-to-task switching impairments may be a specific example of a more general state regulation deficit, activity upon task-to-rest cues was also analysed. Against our hypotheses, we found that the process of down-regulating the DMN when preparing to switch from rest to task was unimpaired in ADHD and that there was no switch-specific deficit in rAI modulation. However, individuals with ADHD showed difficulties up-regulating the DMN when switching from task to rest. Rest-to-task DMN attenuation seems to be intact in adults with ADHD and thus appears unrelated to excess DMN activity observed during tasks. Instead, individuals with ADHD exhibit attenuated up-regulation of the DMN, hence suggesting disturbed re-initiation of a rest state.
Fuel-Optimal Trajectories in a Planet-Moon Environment Using Multiple Gravity Assists
NASA Technical Reports Server (NTRS)
Ross, Shane D.; Grover, Piyush
2007-01-01
For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system, multiple gravity assists by moons could be used in conjunction with ballistic capture to drastically decrease fuel usage. In this paper, we outline a procedure to obtain a family of zero-fuel multi-moon orbiter trajectories, using a family of Keplerian maps derived by the first author previously. The maps capture well the dynamics of the full equations of motion; the phase space contains a connected chaotic zone where intersections between unstable resonant orbit manifolds provide the template for lanes of fast migration between orbits of different semimajor axes. Patched three body approach is used and the four body problem is broken down into two three-body problems, and the search space is considerably reduced by the use of properties of the Keplerian maps. We also introduce the notion of Switching Region where the perturbations due to the two perturbing moons are of comparable strength, and which separates the domains of applicability of the corresponding two Keplerian maps.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
Optical network democratization.
Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra
2016-03-06
The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
Qu, Chen; Bowman, Joel M
2016-07-14
Semiclassical quantization of vibrational energies, using adiabatic switching (AS), is applied to CH4 using a recent ab initio potential energy surface, for which exact quantum calculations of vibrational energies are available. Details of the present calculations, which employ a harmonic normal-mode zeroth-order Hamiltonian, emphasize the importance of transforming to the Eckart frame during the propagation of the adiabatically switched Hamiltonian. The AS energies for the zero-point, and fundamental excitations of two modes are in good agreement with the quantum ones. The use of AS in the context of quasi-classical trajectory calculations is revisited, following previous work reported in 1995, which did not recommend the procedure. We come to a different conclusion here.
Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan
2016-01-01
Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527
A dual-mode secure UHF RFID tag with a crypto engine in 0.13-μm CMOS
NASA Astrophysics Data System (ADS)
Tao, Yang; Linghao, Zhu; Xi, Tan; Junyu, Wang; Lirong, Zheng; Hao, Min
2016-07-01
An ultra-high-frequency (UHF) radio frequency identification (RFID) secure tag chip with a non-crypto mode and a crypto mode is presented. During the supply chain management, the tag works in the non-crypto mode in which the on-chip crypto engine is not enabled and the tag chip has a sensitivity of -12.8 dBm for long range communication. At the point of sales (POS), the tag will be switched to the crypto mode in order to protect the privacy of customers. In the crypto mode, an advanced encryption standard (AES) crypto engine is enabled and the sensitivity of the tag chip is switched to +2 dBm for short range communication, which is a method of physical protection. The tag chip is implemented and verified in a standard 0.13-μm CMOS process. Project supported by the National Science & Technology Pillar Program of China (No. 2015BAK36B01).
NASA Astrophysics Data System (ADS)
Boubakir, A.; Boudjema, F.; Boubakir, C.
2008-06-01
This paper proposes an approach of hybrid control that is based on the concept of combining fuzzy logic and the methodology of sliding mode control (SMC). In the present works, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode control, a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed fuzzy sliding mode control (FSMC) is a good candidate for control applications.
Track-before-detect labeled multi-bernoulli particle filter with label switching
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Angel F.
2016-10-01
This paper presents a multitarget tracking particle filter (PF) for general track-before-detect measurement models. The PF is presented in the random finite set framework and uses a labelled multi-Bernoulli approximation. We also present a label switching improvement algorithm based on Markov chain Monte Carlo that is expected to increase filter performance if targets get in close proximity for a sufficiently long time. The PF is tested in two challenging numerical examples.
2015-01-01
A study of structure-based modulation of known ligands of hTopoIIα, an important enzyme involved in DNA processes, coupled with synthesis and in vitro assays led to the establishment of a strategy of rational switch in mode of inhibition of the enzyme’s catalytic cycle. 6-Arylated derivatives of known imidazopyridine ligands were found to be selective inhibitors of hTopoIIα, while not showing TopoI inhibition and DNA binding. Interestingly, while the parent imidazopyridines acted as ATP-competitive inhibitors, arylated derivatives inhibited DNA cleavage similar to merbarone, indicating a switch in mode of inhibition from ATP-hydrolysis to the DNA-cleavage stage of catalytic cycle of the enzyme. The 6-aryl-imidazopyridines were relatively more cytotoxic than etoposide in cancer cells and less toxic to normal cells. Such unprecedented strategy will encourage research on “choice-based change” in target-specific mode of action for rapid drug discovery. PMID:25941559
NASA Technical Reports Server (NTRS)
Kim, Kyong H.; Choi, Young S.; Barnes, Norman P.; Hess, Robert V.; Bair, Clayton H.; Brockman, Philip
1993-01-01
Flash-lamp-pumped normal-mode and Q-switched 2.1-micron laser operations of Ho:Tm:Cr:YAG crystals have been evaluated under a wide variety of experimental conditions in order to determine an optimum lasing condition and to characterize the laser outputs. Q-switched laser-output energies equal to, or in some cases exceeding the normal-mode laser energies, were obtained in the form of a strong single spike through an optimization of the opening time of a lithium niobate Q switch. The increase of the normal-mode laser slope efficiency was observed with the increase of the Tm concentration from 2.5 to 4.5 at. pct at operating temperatures from 120 K to near room temperature. Laser transitions were observed only at 2.098 and 2.091 microns under various conditions. The 2.091-micron laser transition appeared to be dominant at high-temperature operations with low-reflective-output couplers.
Demonstration of pulse controlled all-optical switch/modulator.
Akin, Osman; Dinleyici, M S
2014-03-15
An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.
Multi-gap high impedance plasma opening switch
Mason, R.J.
1996-10-22
A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal
2015-03-15
We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmissionmore » characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.« less
Resistive switching characteristics of thermally oxidized TiN thin films
NASA Astrophysics Data System (ADS)
Biju, K. P.
2018-04-01
Resistive switching characteristics of thermally oxidized TiN thin films and mechanisms were investigated.XPS results indicates Ti-O content decreases with sputter etching and Ti 2p peak shift towards lower binding energy due to formation of Ti-O-N and Ti-N. Pt/TiO2/TiON/TiN stack exhibits both clockwise switching (CWS) and counter clockwise switching(CCWS) characteristic depending on polarity of the applied voltage. However the transition from CCWS to CWS is irreversible. Two stable switching modes with opposite switching polarity and different electrical characteristics are found to coexist in the same memory cell. Clockwise switching shows filamentary characteristics that lead to faster switching with excellent retention at high temperature. Counter-clockwise switching exhibits homogeneous conduction with slower switching and moderate retention. The field-induced switching in both CCWS and CWS might be due to inhomogeneous defect distribution due to thermal oxidation.
Skovran, Elizabeth; Crowther, Gregory J.; Guo, Xiaofeng; Yang, Song; Lidstrom, Mary E.
2010-01-01
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints. PMID:21124828
Research on Integrated Control of Microgrid Operation Mode
NASA Astrophysics Data System (ADS)
Cheng, ZhiPing; Gao, JinFeng; Li, HangYu
2018-03-01
The mode switching control of microgrid is the focus of its system control. According to the characteristics of different control, an integrated control system is put forward according to the detecting voltage and frequency deviation after switching of microgrid operating mode. This control system employs master-slave and peer-to-peer control. Wind turbine and photovoltaic(PV) adopt P/Q control, so the maximum power output can be achieved. The energy storage will work under the droop control if the system is grid-connected. When the system is off-grid, whether to employ droop control or P/f control is determined by system status. The simulation has been done and the system performance can meet the requirement.
Electronic Switching Spherical Array (ESSA) antenna systems
NASA Technical Reports Server (NTRS)
Hockensmith, R. P.
1984-01-01
ESSA (Electronic Switching Spherical Array) is an antenna system conceived, developed and qualified for linking satellite data transmissions with NASA's tracking and data relay satellites (TDRSS) and tracking and data acquisition satellites (TDAS). ESSA functions in the S band frequency region, cover 2 pi or more steradians with directional gain and operates in multiple selectable modes. ESSA operates in concert with the NASA's TDRS standard transponder in the retrodirective mode or independently in directional beam, program track and special modes. Organizations and projects to the ESSA applications for NASA's space use are introduced. Coverage gain, weight power and implementation and other performance information for satisfying a wide range of data rate requirements are included.
Finite-time containment control of perturbed multi-agent systems based on sliding-mode control
NASA Astrophysics Data System (ADS)
Yu, Di; Ji, Xiang Yang
2018-01-01
Aimed at faster convergence rate, this paper investigates finite-time containment control problem for second-order multi-agent systems with norm-bounded non-linear perturbation. When topology between the followers are strongly connected, the nonsingular fast terminal sliding-mode error is defined, corresponding discontinuous control protocol is designed and the appropriate value range of control parameter is obtained by applying finite-time stability analysis, so that the followers converge to and move along the desired trajectories within the convex hull formed by the leaders in finite time. Furthermore, on the basis of the sliding-mode error defined, the corresponding distributed continuous control protocols are investigated with fast exponential reaching law and double exponential reaching law, so as to make the followers move to the small neighbourhoods of their desired locations and keep within the dynamic convex hull formed by the leaders in finite time to achieve practical finite-time containment control. Meanwhile, we develop the faster control scheme according to comparison of the convergence rate of these two different reaching laws. Simulation examples are given to verify the correctness of theoretical results.
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator
Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph
2018-01-01
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.
Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph
2018-04-24
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
Scheduling optimization of design stream line for production research and development projects
NASA Astrophysics Data System (ADS)
Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming
2017-05-01
In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.
NASA Astrophysics Data System (ADS)
Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun
2009-02-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.
V/STOL propulsion control analysis: Phase 2, task 5-9
NASA Technical Reports Server (NTRS)
1981-01-01
Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.
Design of a compact low-power human-computer interaction equipment for hand motion
NASA Astrophysics Data System (ADS)
Wu, Xianwei; Jin, Wenguang
2017-01-01
Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.
NASA Astrophysics Data System (ADS)
Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew
2017-02-01
Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.
Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.
2015-10-06
A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.
Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas
2018-03-14
This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.
Structural model of control system for hydraulic stepper motor complex
NASA Astrophysics Data System (ADS)
Obukhov, A. D.; Dedov, D. L.; Kolodin, A. N.
2018-03-01
The article considers the problem of developing a structural model of the control system for a hydraulic stepper drive complex. A comparative analysis of stepper drives and assessment of the applicability of HSM for solving problems, requiring accurate displacement in space with subsequent positioning of the object, are carried out. The presented structural model of the automated control system of the multi-spindle complex of hydraulic stepper drives reflects the main components of the system, as well as the process of its control based on the control signals transfer to the solenoid valves by the controller. The models and methods described in the article can be used to formalize the control process in technical systems based on the application hydraulic stepper drives and allow switching from mechanical control to automated control.
Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms.
Helms, Lucas; Clune, Jeff
2017-01-01
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding.
An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing
NASA Astrophysics Data System (ADS)
Waluyo, T. B.; Bayuwati, D.
2017-04-01
We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.
Real-time multi-mode neutron multiplicity counter
Rowland, Mark S; Alvarez, Raymond A
2013-02-26
Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.