Science.gov

Sample records for multi-nanolayer structures grown

  1. Spin polarized state filter based on semiconductor–dielectric–iron–semiconductor multi-nanolayer device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2015-04-15

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Presently we report spin-polarized state transport in semiconductor–dielectric–iron–semiconductor (SDIS) four-nanolayer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-nanolayer devices. The theoretical model developed earlier is extended and used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment is also performed. The model predicts an exchange spectrum comprising a series of peaks, with the spectral structure determined by several factors, discussed in the paper.

  2. Structure and growth process of vapor-grown carbon fibers

    NASA Technical Reports Server (NTRS)

    Koyama, T.; Endo, M.

    1983-01-01

    The structure, effect of heat, and growth process of vapor-grown carbon fibers are investigated. The growth process of the carbon fibers could be divided into three stages; nucleation, elongation, and thickening processes. Also, a multi-layered structure can be produced as well as graphitization.

  3. Understanding the defect structure of solution grown zinc oxide

    SciTech Connect

    Liew, Laura-Lynn; Sankar, Gopinathan; Handoko, Albertus D.; Goh, Gregory K.L.; Kohara, Shinji

    2012-05-15

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown ({<=}90 Degree-Sign C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn-Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer ZnO powders have been synthesized through an aqueous solution method. Black-Right-Pointing-Pointer Defect structure studied using XAS and XPDF. Black-Right-Pointing-Pointer Zn-Zn correlations are less in the ZnO powders synthesized in solution than bulk. Black-Right-Pointing-Pointer Zn vacancies are present in the powders synthesized. Black-Right-Pointing-Pointer EXAFS and XPDF, when used complementary, are useful characterization techniques.

  4. Structure property relationships of carbonaceous films grown under ion enhancement

    SciTech Connect

    Weissmantel, C.; Ackermann, E.; Bewilogua, K.; Hecht, G.; Kupfer, H.; Rau, B.

    1986-11-01

    Based on our own results and in comparison with data published by other groups the structure property relationships of carbon and carbon/metal films prepared by sputtering and deposition of partially ionized species are discussed. Films grown by ion beam sputtering are dark brownish and amorphous with a small fraction of microcrystals. However, a transition to transparent and insulating layers can be effected by ion bombardment. C/Me coatings, where Me stands for Ti or Sn, were obtained by magnetron sputtering of composite targets. The films proved to be amorphous up to metal concentrations of more than 10 at. %, but metal and carbide crystals grow upon annealing. Measurements of the hardness, the electrical conductivity, and the contact behavior in dependence on the composition provided interesting information. For carbon films prepared by deposition of partially ionized benzene species it has been found that the properties depend characteristically on the ion energy; typical ''diamondlike'' i-C films are obtained by applying a bias voltage from 1--3 keV. The thermal stability of the amorphous coatings is discussed in conjunction with their electrical conductivity. Summarizing extensive structure investigations, a structure model based on tetrahedrally interlinked carbon rings is proposed. Composites of the type i-C/Me (Me: Al, Ti, Cr), which were prepared by simultaneous metal evaporation, exhibit a wide range of structure property relations.

  5. Structural properties of opals grown with vertical controlled drying.

    PubMed

    Hartsuiker, Alex; Vos, Willem L

    2008-05-01

    We have grown thin opals of self-assembled silica colloids by the well-known vertically controlled drying method. The volume fraction at the start of the growth and the temperature were systematically varied. We have quantitatively characterized the lateral domain sizes by scanning electron microscopy. The sample thickness as a function of position was obtained from Fabry-Pérot fringes measured in optical reflectivity. We observe that the sample thickness strongly increases from top to bottom, independent of temperature, in agreement with a model that we propose. The inhomogeneity in thickness contrasts with earlier reports. The lateral domain shapes of the single-crystal domains are found to vary from irregular near the top to rectangular near the bottom. A surprising observation is that, grosso modo, the lateral domain extents increase linearly with thickness (i.e., thin crystals are small, and thick crystals are large). This behavior agrees qualitatively with results on completely different colloids such as disordered slurries. The consequence of our results for optical applications, including photonic crystals, is that unwanted scattering due to grain boundaries is reduced for large domains that are thick. Conversely, thin crystals will scatter relatively strongly from grain boundaries.

  6. Structure Analysis of Composition Modulation in Epitaxially-Grown III-V Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Ishimaru, Manabu; Hasegawa, Shigehiko; Asahi, Hajime; Sato, Kazuhisa; Konno, Toyohiko J.

    2013-11-01

    It has been reported that composition modulation is naturally formed in some of the epitaxially-grown thin films. Structural characterization of these materials is necessary for controlling their nanostructures precisely. Here, we prepared epitaxially-grown III-V semiconductor alloys and characterized their atomistic structures by means of diffraction crystallography and electron microscopy techniques. As a consequence, we found that the following quantum well structures are spontaneously formed: (1) ultrashort period lateral composition modulation (LCM) with a modulation period of ˜1 nm; (2) complex vertical composition modulated (VCM) structures consisting of two modulated structures with a different period (˜4 and ˜25 nm). The former LCM structure is created via nanoscale phase separation at the growth surface, while the shorter-period modulation in the later VCM structure is induced by rotating a substrate through an inhomogeneous distribution of the anion flux within a chamber.

  7. Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE)

    NASA Astrophysics Data System (ADS)

    Kaatz, F. H.; Dai, J.-Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H.

    2003-01-01

    We describe the design, construction, and use of pulsed organometallic beam epitaxy (POMBE), a plasma-enhanced CVD technique to grow oxide heterostructures. Solid-state precursors are sampled in the gas line via quartz crystal monitors and injected into the O 2 microwave plasma with pulse time durations of a few seconds. The precursors are injected through pneumatic valves in a heated valve box. The valves and microwave power are under computer control. The microwave plasma is ramped between a forward power of 600 and 1500 W to improve film epitaxy. We use POMBE to grow epitaxial BaYZrO 3/MgO, Y-ZrO 2/LAO, and YBa 2Cu 3O 7/Y-ZrO 2/LAO structures. The processing parameters leading to the heteroepitaxy are described. The best epitaxy results in X-ray FWHM of 0.12°, 0.38°, and 0.87° for BaYZrO 3, Y-ZrO 2, and YBa 2Cu 3O 7, respectively. We show the advantages of the POMBE technique over that of plasma-enhanced CVD. Selected TEM results of the heteroepitaxial oxide structures are shown, and the role that temperature plays in the oxide epitaxy. The epitaxy of BaYZrO 3 is the first described in the literature, and that of YSZ is among the best reported.

  8. Hierarchical tubular structures grown from the gel/liquid interface.

    PubMed

    Steenbjerg Ibsen, Casper Jon; Mikladal, Bjørn Fridur; Bjørnholt Jensen, Uffe; Birkedal, Henrik

    2014-12-01

    Three dimensional hierarchical materials are widespread in nature but are difficult to synthesize by using self-assembly/organization. Here, we employ a gel-liquid interface to obtain centimeter-long ∼100 μm diameter tubes with complex mineral wall structures that grow from the interface into solution. The gel, made from gelatin, is loaded with metal chloride salt, whereas the solution is a high pH anion source. Tubes were obtained with a range of cations (Ca(2+) , Sr(2+) , Ba(2+) , Cu(2+) , and Zn(2+) ) and anions (CO3 (2-) and PO4 (3-) ). The crystalline phases found in the tube walls corresponded to expectations from solution chemistries and phase solubilities. The growth mechanism is found to be akin to that of chemical gardens. The divalent cations modify the strength of the gelatin gel in a manner that involves not only simple electrostatic screening, but also ion-specific effects. Thus, tubes were not obtained for those ions and/or concentrations that significantly changed the gel's mechanical structure. At high Cu(2+) loading, for example, vertical convection bands, not Liesegang bands, were observed in the gels. PMID:25336024

  9. AlN Nanowall Structures Grown on Si (111) Substrate by Molecular Beam Epitaxy.

    PubMed

    Tamura, Yosuke; Hane, Kazuhiro

    2015-12-01

    AlN nanowall structures were grown on Si (111) substrate using molecular beam epitaxy at substrate temperature of 700 °C with N/Al flux ratios ranging from 50 to 660. A few types of other AlN nanostructures were also grown under the nitrogen-rich conditions. The AlN nanowalls were ranged typically 60-120 nm in width and from 190 to 470 nm in length by changing N/Al flux ratio. The AlN nanowall structures grown along the c-plane consisted of AlN (0002) crystal with full-width at half maximum of the rocking curve about 5000 arcsec.

  10. Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Virt, I. S.; Rudyi, I. O.; Lopatynskyi, I. Ye.; Dubov, Yu.; Tur, Y.; Lusakowska, E.; Luka, G.

    2016-09-01

    Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.

  11. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  12. Evaluation of MOS structures processed on 4H SiC layers grown by PVT epitaxy

    NASA Astrophysics Data System (ADS)

    Ciechonski, R. R.; Syväjärvi, M.; Wahab, Q.; Yakimova, R.

    2005-12-01

    MOS capacitors have been fabricated on 4H-SiC epilayers grown by physical vapor transport (PVT) epitaxy. The properties were compared with those on similar structures based on chemical vapor deposition (CVD) layers. Capacitance-voltage ( C- V) and conductance measurements ( G- V) were performed in the frequency range of 1 kHz to 1 MHz and also at temperatures up to 475 K. Detailed investigations of the PVT structures indicate a stable behaviour of the interface traps from room temperature up to 475 K. The amount of positive oxide charge QO is 6.83 × 10 9 cm -2 at room temperature and decreases with temperature increase. This suggests that the processed devices are temperature stable. The density of interface states Dit obtained by Nicollian-Brews conductance method is lower in the structure based on the PVT grown sample.

  13. Atomic structure of "multilayer silicene" grown on Ag(111): Dynamical low energy electron diffraction analysis

    NASA Astrophysics Data System (ADS)

    Kawahara, Kazuaki; Shirasawa, Tetsuroh; Lin, Chun-Liang; Nagao, Ryo; Tsukahara, Noriyuki; Takahashi, Toshio; Arafune, Ryuichi; Kawai, Maki; Takagi, Noriaki

    2016-09-01

    We have investigated the atomic structure of the "multilayer silicene" grown on the Ag(111) single crystal surface by using low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). We measured the intensity of the LEED spot as a function of the incident electron energy (I-V curve) and analyzed the I-V curve using a dynamical LEED theory. We have found that the Si(111)(√{ 3} ×√{ 3})-Ag model well reproduces the I-V curve whereas the models consisting of the honeycomb structure of Si do not. The bias dependence of the STM image of multilayer silicene agrees with that of the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed surface. Consequently, we have concluded that the multilayer silicene grown on Ag(111) is identical to the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed structure.

  14. Structure of ferromagnetic CrAs epilayers grown on GaAs(001).

    PubMed

    Etgens, V H; de Camargo, P C; Eddrief, M; Mattana, R; George, J M; Garreau, Y

    2004-04-23

    Magnetic and structural properties of CrAs epilayers grown on GaAs(001) by molecular beam epitaxy have been studied. CrAs epilayers are orthorhombic for all thicknesses investigated but show a structural transition from a metastable phase for very thin films, to the usual bulk MnP-type orthorhombic phase at higher thicknesses. At intermediate thicknesses, there is a predominance of the new phase, although a contribution from the usual CrAs bulk phase remains clearly present. These results strongly suggest that the ferromagnetic signal measured at room temperature comes from the new metastable orthorhombic structure with an expanded b-axis induced by the substrate strain.

  15. Structure of Ferromagnetic CrAs Epilayers Grown on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Etgens, V. H.; de Camargo, P. C.; Eddrief, M.; Mattana, R.; George, J. M.; Garreau, Y.

    2004-04-01

    Magnetic and structural properties of CrAs epilayers grown on GaAs(001) by molecular beam epitaxy have been studied. CrAs epilayers are orthorhombic for all thicknesses investigated but show a structural transition from a metastable phase for very thin films, to the usual bulk MnP-type orthorhombic phase at higher thicknesses. At intermediate thicknesses, there is a predominance of the new phase, although a contribution from the usual CrAs bulk phase remains clearly present. These results strongly suggest that the ferromagnetic signal measured at room temperature comes from the new metastable orthorhombic structure with an expanded b-axis induced by the substrate strain.

  16. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer

    PubMed Central

    Dong, K. F.; Deng, J. Y.; Peng, Y. G.; Ju, G.; Chow, G. M.; Chen, J. S.

    2016-01-01

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) <100>//ZrN (001) <100>//TiN (001) <100> among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained. PMID:27686046

  17. Ga/1-x/Al/x/As LED structures grown on GaP substrates.

    NASA Technical Reports Server (NTRS)

    Woodall, J. M.; Potemski, R. M.; Blum, S. E.; Lynch, R.

    1972-01-01

    Ga(1-x)Al(x)As light-emitting diode structures have been grown on GaP substrates by the liquid-phase-epitaxial method. In spite of the large differences in lattice constants and thermal-expansion coefficients, room-temperature efficiencies up to 5.5% in air have been observed for a peak emission of 8500 A. Using undoped GaP substrates, which are transparent to the infrared and red portions of the spectrum, thin structures of Ga(1-x)Al(x)As with large external efficiencies can now be made.

  18. Optical and structural properties of InN grown by HPCVD

    NASA Astrophysics Data System (ADS)

    Buegler, M.; Alevli, M.; Atalay, R.; Durkaya, G.; Senevirathna, I.; Jamil, M.; Ferguson, I.; Dietz, N.

    2009-08-01

    The optical and structural properties of InN layers grown by 'High Pressure Chemical Vapor Deposition' (HPCVD) using a pulsed precursor approach have been studied. The study focuses on the effect of ammonia precursor exposure time and magnitude on the InN layer quality. The samples have been analyzed by X-ray diffraction, Raman scattering, infra red reflectance spectroscopy and photoluminescence spectroscopy. Raman measurements and X-ray diffraction showed the grown layers to be single phase InN of high crystalline quality. The E2(high) Raman mode showed FWHM's as small as 9.2 cm-1. The FWHM's of the InN(0002) X-ray Bragg reflex in the 2Θ-Ω- scans were around 350 arcsec, with rocking curve values as low as 1152 arcsec Photoluminescence features have been observed down to 0.7 eV, where the low energy cutoff might be due to the detector limitation. The analysis of the IR reflectance spectra shows that the free carrier concentrations are as low as as 3.3•1018 cm-3 for InN layers grown on sapphire substrates.

  19. Structural characterization of InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2015-06-24

    In the present work we have grown InSb thin films on brass substrates, using the electrodeposition technique. The electrochemical baths used in the growth were made up of aqueous solutions of InCl{sub 3} and SbCl{sub 3} mixed together in various proportions. The films grown were characterized by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Analysis of X-rays (EDAX). Compositional studies show that stoichiometric InSb films can be prepared from a bath containing 0.05M InCl{sub 3} and 0.04M SbCl{sub 3}. XRD studies reveal that the films grown are polycrystalline having the zinc blende structure with (111) orientation. Crystallite size, dislocation density and strain were calculated using the XRD results. Optical transmission spectra were recorded using an FTIR spectrophotometer. The value of direct band gap was found to be around 0.20 eV for the thin films having the best stoichiometry.

  20. Spontaneous formation of highly regular superlattice structure in InGaN epilayers grown by molecular beam epitaxy

    SciTech Connect

    Wu, Z. H.; Kawai, Y.; Honda, Y.; Yamaguchi, M.; Amano, H.; Fang, Y.-Y.; Chen, C. Q.; Kondo, H.; Hori, M.

    2011-04-04

    In this letter, we have investigated the structural properties of thick InGaN layers grown on GaN by plasma-assisted molecular beam epitaxy, using two growth rates of 1.0 and 3.6 A/s. A highly regular superlattice (SL) structure is found to be spontaneously formed in the film grown at 3.6 A/s but not in the film grown at 1.0 A/s. The faster grown film also exhibits superior structural quality, which could be due to the surface roughness suppression caused by kinetic limitation, and the inhibition of the Frank-Read dislocation generation mechanism within the spontaneously formed SL structure.

  1. Carbohydrate Structure of Sindbis Virus Glycoprotein E2 from Virus Grown in Hamster and Chicken Cells

    PubMed Central

    Burke, David; Keegstra, Kenneth

    1979-01-01

    Sindbis virus was used as a probe to examine glycosylation processes in two different species of cultured cells. Parallel studies were carried out analyzing the carbohydrate added to Sindbis glycoprotein E2 when the virus was grown in chicken embryo cells and BHK cells. The Pronase glycopeptides of Sindbis glycoprotein E2 were purified by a combination of ion-exchange and gel filtration chromatography. Four glycopeptides were resolved, ranging in molecular weight from 1,800 to 2,700. Structures are proposed for each of the four glycopeptides, based on data obtained by quantitative composition analyses, methylation analyses, and degradation of the glycopeptides using purified exo- and endoglycosidases. The largest three glycopeptides (S1, S2, and S3) have similar structures but differ in the extent of sialylation. All three contain N-acetylglucosamine, mannose, galactose, and fucose, in a structure similar to oligosaccharides found on other glycoproteins. Glycopeptide S1 has two residues of sialic acid, whereas glycopeptides S2 and S3 contain 1 and 0 residues of sialic acid, respectively. The smallest glycopeptide, S4, contains only N-acetyglucosamine and mannose, and is also similar to mannose-rich oligosaccharides found on other glycoproteins. Each of the complex glycopeptides (S1, S2, or S3) from virus grown in BHK cells is indistinguishable from the corresponding glycopeptides derived from virus grown in chicken cells. Glycopeptide S4 is also very similar in size, composition, and sugar linkages from virus derived from the two hosts. These results suggest that chicken cells and BHK cells have similar glycosylation mechanisms and glycosylate Sindbis glycoprotein E2 in nearly identical ways. PMID:430605

  2. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments.

    PubMed

    Jorquera, Milko A; Maruyama, Fumito; Ogram, Andrew V; Navarrete, Oscar U; Lagos, Lorena M; Inostroza, Nitza G; Acuña, Jacquelinne J; Rilling, Joaquín I; de La Luz Mora, María

    2016-10-01

    Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments. PMID:27406732

  3. A pipeline for structure determination of in vivo-grown crystals using in cellulo diffraction

    PubMed Central

    Boudes, Marion; Garriga, Damià; Fryga, Andrew; Caradoc-Davies, Tom; Coulibaly, Fasséli

    2016-01-01

    While structure determination from micrometre-sized crystals used to represent a challenge, serial X-ray crystallography on microfocus beamlines at synchrotron and free-electron laser facilities greatly facilitates this process today for microcrystals and nanocrystals. In addition to typical microcrystals of purified recombinant protein, these advances have enabled the analysis of microcrystals produced inside living cells. Here, a pipeline where crystals are grown in insect cells, sorted by flow cytometry and directly analysed by X-ray diffraction is presented and applied to in vivo-grown crystals of the recombinant CPV1 polyhedrin. When compared with the analysis of purified crystals, in cellulo diffraction produces data of better quality and a gain of ∼0.35 Å in resolution for comparable beamtime usage. Importantly, crystals within cells are readily derivatized with gold and iodine compounds through the cellular membrane. Using the multiple isomorphous replacement method, a near-complete model was autobuilt from 2.7 Å resolution data. Thus, in favourable cases, an in cellulo pipeline can replace the complete workflow of structure determination without compromising the quality of the resulting model. In addition to its efficiency, this approach maintains the protein in a cellular context throughout the analysis, which reduces the risk of disrupting transient or labile interactions in protein–protein or protein–ligand complexes. PMID:27050136

  4. Low-power optically addressed spatial light modulators using MBE-grown III-V structures

    NASA Astrophysics Data System (ADS)

    Maserjian, Joseph L.; Larsson, Anders G.

    1991-12-01

    Device approaches are investigated for O-SLMs based on MBE engineered III-V materials and structures. Strong photo-optic effects can be achieved in periodically (delta) -doped multiple quantum well (MQW) structures. The doping-defined barriers serve to separate and delay recombination of the photo-generated electron-hole pairs. One can use this photo-effect to change the internal field across the MQWs giving rise to quantum-confined Stark shift. Alternately, the photo-generated electrons can be used to occupy the quantum wells, which in turn causes exciton quenching and a shift of the absorption edge. Recent work has shown that both of these predicted photo-optic effects can indeed be achieved in such MBE engineered structures. However, these enhanced effects are still insufficient for high contrast modulation with only single or double pass absorption through active layers of practical thickness. We use the asymmetric Fabry-Perot cavity approach which permits extinction of light due to interference of light reflected from the front and back surfaces of the cavity. Modulation of the absorption in the active cavity layers unbalances the cavity and 'turns on' the reflected output signal, thereby allowing large contrast ratios. This approach is realized with an all-MBE- grown structure consisting of a GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror (approximately equals 0.98) and the GaAs surface as the low reflectance mirror (approximately equals 0.3). We use for our active cavities InGaAs/GaAs MQWs separated by npn (delta) -doped GaAs barriers to achieve sensitive photo-optic effect due to exciton quenching. High contrast modulation (> 60:1) is achieved with the Fabry-Perot structures using low power (< 100 mW/cm2) InGaAs/GaAS quantum well lasers for a write signal.

  5. Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils

    SciTech Connect

    Buchowicz, G.; Stone, P.R.; Robinson, J.T.; Cress, C.D.; Beeman, J.W.; Dubon, O.D.

    2010-11-04

    Graphene grown by chemical vapor deposition and supported on SiO2 and sapphire substrates was studied following controlled introduction of defects induced by 35 keV carbon ion irradiation. Changes in Raman spectra following fluences ranging from 1012 cm-2 to 1015 cm-2 indicate that the structure of graphene evolves from a highly-ordered layer, to a patchwork of disordered domains, to an essentially amorphous film. These structural changes result in a dramatic decrease in the Hall mobility by orders of magnitude while, remarkably, the Hall concentration remains almost unchanged, suggesting that the Fermi level is pinned at a hole concentration near 1x1013 cm-2. A model for scattering by resonant scatterers is in good agreement with mobility measurements up to an ion fluence of 1x1014 cm-2.

  6. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    NASA Astrophysics Data System (ADS)

    Rajyaguru, Bhargav; Gadani, Keval; Rathod, K. N.; Solanki, Sapana; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S.

    2016-05-01

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  7. Surface Structure of Kio (3) Grown By Heterogeneous Reaction of Ozone With Ki (001)

    SciTech Connect

    Brown, M.A.; Liu, Z.; Ashby, P.D.; Mehta, A.; Grimm, R.L.; Hemminger, J.C.

    2009-05-12

    The crystal structure of KIO{sub 3} grown by heterogeneous surface oxidation of KI (001) with ozone is reported. Under ambient reaction conditions (RH {approx}35%, room temperature) a thick layer of KIO{sub 3} grows at the gas-solid interface. Two doublets are present in the I(4d) X-ray photoelectron spectroscopy structure measurements, characteristic of unreacted KI (I{sup -}) from the substrate and the oxidized KIO{sub 3} (I{sup 5+}) reaction product. X-ray diffraction measurements confirm the presence at the interface of randomly oriented polycrystalline-triclinic KIO{sub 3} with an average particle diameter of 15 nm. KIO{sub 3} particle diameters determined from the X-ray diffraction peak widths are consistent with the results of atomic force microscopy. There is no X-ray powder diffraction evidence to suggest that the underlying KI substrate is altered in any manner during this heterogeneous interfacial reaction.

  8. Structural characterization of nanostructures grown by Ni metal induced lateral crystallization of amorphous-Si

    NASA Astrophysics Data System (ADS)

    Radnóczi, G. Z.; Dodony, E.; Battistig, G.; Vouroutzis, N.; Kavouras, P.; Stoemenos, J.; Frangis, N.; Kovács, A.; Pécz, B.

    2016-02-01

    The nickel metal induced lateral crystallization of amorphous silicon is studied by transmission electron microscopy in the range of temperatures from 413 to 521 °C. The structural characteristics of the whiskers grown at 413 °C are compared to the grains grown at 600 °C, where both Metal Induced Lateral Crystallization (MILC) and Solid Phase Crystallization (SPC) are involved. At 413 °C, long whiskers are formed at any crystallographic direction almost free of defects. In contrary, whiskers grown by MILC around 600 °C are crystallized along the ⟨111⟩ directions. These differences are attributed to the low crystallization rate and suppression of the SPC process. The activation energy of the pure MILC was measured in the order of 2 eV. The effect of Ni on the crystallization rate is studied by in-situ heating experiments inside the microscope. The role of contamination that can inhibit MILC is discussed. The cases of MILC process under limited Ni and unlimited Ni source were studied and compared to in-situ annealing experiments. The crystallization rate is strongly influenced by the neighbouring Ni sources; this long-range interaction is attributed to the requirement of a critical Ni concentration in amorphous silicon before the initiation of the MILC process. The long-range interaction can enhance crystallization along a certain direction. The transition from MILC to SPC and the change of the crystallization mode due to the lack of Ni are discussed. The beneficial effect of long annealing at 413 °C is also discussed.

  9. Solidification structures grown under induced flow and continuous casting of steel

    NASA Technical Reports Server (NTRS)

    Tsavaras, A. A.

    1984-01-01

    The use of induced flow as a means to control solidification structures in strand cast steel is investigated. The quality problems in strand cast steel stemming from columnar growth can be partially controlled, by Electro Magnetic Stirring (EMS). Induced flow changes the normal morphology of dendrites. Solids grown under intense stirring conditions show both negative and positive segregation which is considered unacceptable by some steel producers. The inclusion size and population is strongly affected by induced flow (EMS). Laboratory and industrial data show substantial reduction in inclusion size and content, but the overall effect of flow on inclusions is affected by the particular type of flow patterns utilized in each case. Productivity and quality are raised substantially in steel strand casting by utilizing EMS.

  10. Structural investigations of hydrogenated epitaxial graphene grown on 4H-SiC (0001)

    SciTech Connect

    Tokarczyk, M.; Kowalski, G. Stępniewski, R.; Możdżonek, M.; Strupiński, W.; Ciepielewski, P.; Borysiuk, J.

    2013-12-09

    Structural investigations of hydrogenated epitaxial graphene grown on SiC(0001) are presented. It is shown that hydrogen plays a dual role. In addition to contributing to the well-known removal of the buffer layer, it goes between the graphene planes, resulting in an increase of the interlayer spacing to 3.6 Å–3.8 Å. It is explained by the intercalation of molecular hydrogen between carbon planes, which is followed by H{sub 2} dissociation, resulting in negatively charged hydrogen atoms trapped between the graphene layers, with some addition of covalent bonding to carbon atoms. Negatively charged hydrogen may be responsible for p-doping observed in hydrogenated multilayer graphene.

  11. Structural evolution of platinum thin films grown by atomic layer deposition

    SciTech Connect

    Geyer, Scott M.; Methaapanon, Rungthiwa; Bent, Stacey; Johnson, Richard; Clemens, Bruce; Brennan, Sean; Toney, Mike F.

    2014-08-14

    The structural properties of Pt films grown by atomic layer deposition (ALD) are investigated with synchrotron based x-ray scattering and x-ray diffraction techniques. Using grazing incidence small angle scattering, we measure the lateral growth rate of the Pt islands to be 1.0 Å/cycle. High resolution x-ray diffraction reveals that the in-plane strain of the Pt lattice undergoes a transition from compressive strain to tensile strain when the individual islands coalescence into a continuous film. This transition to tensile strain is attributed to the lateral expansion that occurs when neighboring islands merge to reduce their surface energy. Using 2D grazing incidence x-ray diffraction, we show that the lattice orientation becomes more (111) oriented during deposition, with a sharp transition occurring during coalescence. Pt ALD performed at a lower deposition temperature (250 °C) is shown to result in significantly more randomly oriented grains.

  12. Structural Defects in Laterally Overgrown GaN Layers Grown onNon-polar Substrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2007-02-14

    Transmission electron microscopy was used to study defects in lateral epitaxial layers of GaN which were overgrown on a template of a-plane (11{und 2}0) GaN grown on (1{und 1}02) r-plane Al2O3. A high density of basal stacking faults is formed in these layers because the c-planes of wurtzite structure are arranged along the growth direction. Density of these faults is decreasing at least by two orders of magnitude lower in the wings compared to the seed areas. Prismatic stacking faults and threading dislocations are also observed, but their densities drastically decrease in the wings. The wings grow with opposite polarities and the Ga-wing width is at least 6 times larger than N-wing and coalescence is rather difficult. Some tilt and twist was detected using Large Angle Convergent Beam Electron Diffraction.

  13. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling

    NASA Astrophysics Data System (ADS)

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-10-01

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique.Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new

  14. Structural and Electronic Properties of GaN Films Grown on Sapphire.

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Botchkarev, A.; Kim, W.; Aktas, O.; Salvador, A.; Sverdlov, B.; Morkoc, H.; Tsen, S.-C. Y.; Smith, D. J.

    1996-03-01

    The structural characteristics of GaN films grown on sapphire substrates by molecular beam epitaxy (MBE) have been investigated using high-resolution synchrotron x-ray diffraction and electron microscopy, and compared to their electrical and optical properties. We find remarkable correspondence between the in-plane structural order (coherence length and mosaic spread) and the electrical and optical properties. Contrary to common belief, our observations show unequivocally that the out-of-plane structural features, which are considerably better developed than the in-plane counterparts, can not be used for determining the material quality with respect to their optical and electrical activity. In particular, the (00l) mosaic spread is not a good indicator of film quality. The structural correlations of the GaN film, the AlN buffer laryer and the sapphire substrate are also explored and compared to their growth conditions. The issue of in-plane stacking fault (hcp - fcc) is also addressed using x-ray scans along the (10l) direction. Work supported by the US Department of Energy, Division of Materials Science under contract No. DEAC0276CH00016, by NSF Grant DMR-9314326, by the Office of Naval Research with M. Yoder and Dr. Y. S. Park as monitors, and by the Air Force Office of Scientific Research with Dr. G. L. Witt as the monitor. H. M. was funded by AFOSR under a URRP program.

  15. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    NASA Astrophysics Data System (ADS)

    Nirwal, Varun Singh; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao

    2016-05-01

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10-5 A to 7.31×10-7 A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of Rs decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  16. Structural origin of perpendicular magnetic anisotropy in epitaxial CoPt3 nanostructures grown on WSe2(0001)

    NASA Astrophysics Data System (ADS)

    Liscio, F.; Maret, M.; Meneghini, C.; Mobilio, S.; Proux, O.; Makarov, D.; Albrecht, M.

    2010-03-01

    We present a detailed analysis of the local ordering in CoPt3 nanostructures epitaxially grown on WSe2(0001) and NaCl(001) low-energy surfaces. Polarized extended x-ray absorption fine-structure measurements at the CoK -edge show a local structural anisotropy in fcc CoPt3 nanostructures grown at 300 K on WSe2 . It is characterized by preferential Co-Co bonding along the in-plane direction balanced with preferential heteroatomic bonding along the out-of-plane direction and explains the unexpected perpendicular magnetic anisotropy. Such anisotropy almost vanishes in partially L12 -ordered nanostructures grown at 700 K. In contrast, the short-range order is isotropic in CoPt3 nanostructures grown on NaCl(001) at 370 K. These different behaviors emphasize the favorable role of Se segregated atoms of WSe2 in the dynamic segregation of Pt atoms at the advancing surface during codeposition, which governs the local structural anisotropy. In the absence of Se, as previously observed in epitaxial CoPt3 films grown on Ru buffer layers, the development of similar structural anisotropy requires higher growth temperatures (550-720 K).

  17. Superheating Suppresses Structural Disorder in Layered BiI3 Semiconductors Grown by the Bridgman Method

    SciTech Connect

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung; Baciak, James E.; Bliss, Mary; Nino, Juan C.

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient to the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.

  18. Structural modulation of nanowire interfaces grown over selectively disrupted single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Garratt, E.; Nikoobakht, B.

    2015-08-01

    Recent breakthroughs in deterministic approaches to the fabrication of nanowire arrays have demonstrated the possibility of fabricating such networks using low-cost scalable methods. In this regard, we have developed a scalable growth platform for lateral fabrication of nanocrystals with high precision utilizing lattice match and symmetry. Using this planar architecture, a number of homo- and heterostructures have been demonstrated including ZnO nanowires grown over GaN. The latter combination produces horizontal, epitaxially formed crystals aligned in the plane of the substrate containing a very low number of intrinsic defects. We use such ordered structures as model systems in the interests of gauging the interfacial structural dynamics in relation to external stimuli. Nanosecond pulses of focused ion beams are used to slightly modify the substrate surface and selectively form lattice disorders in the path of nanowire growth to examine the nanocrystal, namely: its directionality and lattice defects. High resolution electron microscopies are used to reveal some interesting structural effects; for instance, a minimum threshold of surface defects that can divert nanowires. We also discuss data indicating formation of surface strains and show their mitigation during the growth process.

  19. Structure and Morphology of Phthalocyanine Films Grown in Electrical Fields by Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Banks, Curtis E.; Frazier, Donald O.; Penn, Benjamin; Abdeldayem, Hossin; Hicks, Roslin

    1999-01-01

    Phthalocyanine is a very stable organic material in the atmosphere and has been used in numerous applications, such as optical switching and optical storage devices. Although this material has already been discovered for several decades and has had extensive studies conducted on it, many properties still need to be better understood, for example, the mechanisms of forming different solid phases and of changing film morphology by external forces. Phthalocyanine has two preferred solid phases (alpha and beta phases) for which the crystal structures, surface morphology and optical properties are different. In order to investigate these phenomena and the relationship among them, phthalocyanine films have been synthesized by vapor deposition on quartz substrates with and without an external electrical field. Some substrates were coated with a very thin gold film for the electrical field. These films have been characterized using x-ray diffraction, scanning electron microscopy, Fourier transfer infrared spectroscopy, and Z-scan technique. The films have excellent chemical and thermal stability. However, the surface of these films grown without the electrical field shows flower-like morphology. When films are deposited under an electrical field (approximately 3000 V/cm), an aligned structure is revealed on the surface. A comparison of the structure, morphology, optical properties, and the growth mechanism for these films with and without an electrical field will be discussed.

  20. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.

    PubMed

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-11-21

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of (12)C-lattice and surface deposition of (13)C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like (13)C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique. PMID:25303722

  1. Morphology and Oxide Shell Structure of Iron Nanoparticles Grown by Sputter-Gas-Aggregation

    SciTech Connect

    Wang, Chong M.; Baer, Donald R.; Amonette, James E.; Engelhard, Mark H.; Qiang, You; Antony, Jiji

    2007-06-27

    Much recent research effort has been made on the synthesis, characterization, and property evaluation of core-shell structured Fe nanoparticles. Fundamental properties of these particles depend on both their external crystal faceting planes and the nature of a protective oxide layer. In this paper, the crystal faceting planes and oxide coating structures of core-shell structured iron/iron oxide nanoparticles synthesized by a sputter-gas-aggregation process were studied using transmission electron microscopy (TEM), electron diffraction and Wulff shape construction. The particles grown by this process and deposited on a support at room temperature process have been compared with particles grown and deposited at high temperature as reported in literature. Most synthesis processes produce round particles for particles less than 20 nm in diameter. For larger particles crystallographic facets are observed. It has been found that the Fe nanoparticles formed at RT are invariantly faceted on the {100} lattice planes and truncated by the {110} planes at different degrees. Substantial fraction of particles are confined only by the 6 {100} planes (not truncated by the {110} planes), this contrasts with the Fe particles formed at high temperature (HT) for which a predominance of {110} planes has been reported. Furthermore, at RT no particle was identified to be only confined by the 12 {110} planes which is relatively common for the particles formed at HT. The Fe cubes defined by the 6 {100} planes show a characteristic inward relaxation along the <100> and <110> directions and the reason for this behavior is not fully understood. The oxide shell on the Fe {100} plane maintains an orientation relationship: Fe(001)//Fe3O4(001) and Fe[100]//Fe3O4[110], which is same as the oxide formed on a bulk Fe(001) through thermal oxidation. Orientation of the oxide that forms on the Fe{110} facets differs from that on Fe{001}, therefore, properties of core-shell structured Fe nanoparticle

  2. Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels.

    PubMed

    Peharec Štefanić, Petra; Koffler, Tal; Adler, Guy; Bar-Zvi, Dudy

    2013-01-01

    The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA.

  3. Chloroplasts of Salt-Grown Arabidopsis Seedlings Are Impaired in Structure, Genome Copy Number and Transcript Levels

    PubMed Central

    Adler, Guy; Bar-Zvi, Dudy

    2013-01-01

    The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA. PMID:24340039

  4. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.

    2015-12-01

    Titanium doped tungsten oxide (Ti:WO3) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O2 atmosphere. Ti:WO3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10-3-5.0 × 10-3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm2) and tungsten (3 W/cm2) were kept constant. Ti:WO3 films deposited at an oxygen pressure of 5 × 10-3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm2/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: -22.01 mC/cm2, Qa: 17.72 mC/cm2), reversibility (80%) and methylene blue decomposition rate (-1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO3 films.

  5. Structure of GaSb layers grown on (111) GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Babkevich, A. Yu.; Cowley, R. A.; Mason, N. J.; Shields, P. A.; Stadelman, T.; Brown, S.; Mannix, D.; Paul, D.

    2004-09-01

    The structure of GaSb layers with thicknesses of 70Å, 160Å, and 1260Å grown on GaAs (111) substrates by metal-organic vapor phase epitaxy has been studied by high-resolution x-ray diffraction. The lattice mismatch between the layer and the substrate is large and most of the misfit strain is taken up by a regular network of dislocations localized at the interface between the GaSb and the GaAs. The spacing between the dislocations is about 49Å along the [1¯1¯2] direction. We observe that the layers have both the ABC … and ACB … face-centered-cubic (fcc) domains with a domain size of about 1500Å. The presence of approximately the same volume of both the domains in the overall layer suggests that the particular domain is chosen largely randomly and independent of the orientation of the substrate. In contrast, the results show that the structure of the GaAs substrate was a single fcc domain. The widths of the off-axis Bragg reflections along the [111] direction for the thinnest sample was within error the same as those for the (hhh ) Bragg reflections showing that each fcc domain penetrated through the entire layer.

  6. Surface structural analysis of LiF(100) thin films grown on Pt(111)

    SciTech Connect

    Roberts, J.G.; Van Hove, M.A.; Somorjai, G.A.

    2002-08-29

    The surface structure of a multilayer LiF(100) thin film grown on Pt(111) from the vapor has been determined by the automated tensor low energy electron diffraction (LEED) method. The final structure, which refined to a Pendry R-factor (RP) of 0.24, had a surface corrugation (D1) of 0.24+-0.04 Angstrom due to the Li+ being displaced towards the bulk, leaving the initially coplanar F - unshifted. A similar intralayer corrugation due to the movement of the Li+ was also observed in the layer immediately under the surface layer, although to a lesser degree: D2=0.07+-0.04 Angstrom. This asymmetric relaxation resulted in the reduction of the first interlayer spacing, d(F2-Li1), to 1.77+-0.0 6 Angstrom from the ideal value of 2.01 Angstrom. The second interlayer spacing, d(Li3-F2), was within error bars of the bulk value, 2.01 Angstrom.

  7. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

    SciTech Connect

    Ye, Han Yu, Zhongyuan

    2014-11-15

    Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.

  8. Structural and electrical properties of silicon epitaxial layers grown by LPE and CVD on identical polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Wagner, G.; Wawra, H.; Dorsch, W.; Albrecht, M.; Krome, R.; Strunk, H. P.; Riedel, S.; Möller, H. J.; Appel, W.

    1997-04-01

    We compare structural and electrical properties of polycrystalline Si layers grown by chemical vapour deposition (CVD) and liquid-phase epitaxy (LPE) on multicrystalline, cast silicon substrates with similar grain boundary structures. Time-resolved microwave conductivity shows a higher minority carrier lifetime in LPE than in CVD layers; the calculated diffusion lengths are up to three times the layer thickness for LPE-grown layers. After etching the samples in Secco or Sirtl solution, we measured in the p-type Si epitaxial LPE and CVD layers practically at the same dislocation density as in the same areas of the substrate. Electron-beam-induced current measurements reveal a low recombination strength of grain boundaries and dislocations in the LPE-grown layers compared to those of the CVD layers. Transmission electron microscope investigations indicate that the lower recombination strength at the grain boundaries of the LPE layers is due to a lower density of grain boundary dislocations.

  9. Thermodynamic and structural properties of tuber starches from transgenic potato plants grown in vitro and in vivo.

    PubMed

    Wasserman, Luybov A; Sergeev, Andrey I; Vasil'ev, Viktor G; Plashchina, Irina G; Aksenova, Nina P; Konstantinova, Tatyana N; Golyanovskaya, Svetlana A; Sergeeva, Lidiya I; Romanov, Georgy A

    2015-07-10

    Potato plants harboring Phytochrome B (PHYB) gene from Arabidopsis thaliana or rol genes from Agrobacterium rhizogenes were used to study the effect of transgene expression on structure and properties of starch in tubers. Thermodynamic characteristics of starch (melting temperature, enthalpy of melting, thickness of crystalline lamellae) were shown to be variable depending on the transgene expression and plant culturing mode: in vitro or in soil. The expression of rolB or rolC genes in in vitro cultured plants evoked opposite effects on starch melting temperature and crystalline lamellae thickness. AtPHYB or rolB expression in the soil-grown potato led to the formation of more defective or more ordered starch structures, respectively, in comparison with starches of the same lines grown in vitro. On the whole, our study revealed genotype-dependent differences between starches extracted from tubers of in vitro or in vivo grown plants.

  10. Ultrafast structural dynamics of LaVO3 thin films grown by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Lapano, Jason; Stoica, Vladimir; Zhang, Lei; Zhang, Hai-Tian; Akamatsu, Hirofumi; Eaton, Craig; Gopalan, Venkatraman; Freeland, John; Wen, Haidan; Engel-Herbert, Roman

    LaVO3, with a partially full d-shell is expected to be metallic, but due to electron-electron interactions a gap emerges and the ground state is a Mott insulator. Such effects are a strong function of the bonding geometry, and particularly the V-O-V bond angle. Controlling these structural effects on the ultrafast time scale can lead to control over the underlying electronic ground state. Here we report the ultrafast structural dynamics of 25 and 50 nm thick LaVO3 thin films grown by the hybrid molecular beam epitaxy technique on SrTiO3 when excited across the bandgap by 800 nm light. Using time-resolved x-ray diffraction on the 100 ps time scale at Sector 7 of the Advanced Photon Source, we directly measured the structural changes with atomic accuracy by monitoring integer Bragg diffraction peaks and find a large out-of-plane strain of 0.18% upon optical excitation; the recovery time is ~1 ns for the 25 nm film and ~2 ns for the 50 nm film, consistent with the thermal transport from the film to the substrate. Further, we will discuss the response of the oxygen octahedral rotation patterns indicated by changes of the half-order diffraction peaks. Understanding such ultrafast structural deformation is important for optimizing optical excitations to create new metastable phases starting from a Mott insulator. This work was supported by the Department of Energy under Grant DE-SC0012375, and DE-AC02-06CH11357.

  11. Structural analysis of fructans from Agave americana grown in South Africa for spirit production.

    PubMed

    Ravenscroft, Neil; Cescutti, Paola; Hearshaw, Meredith A; Ramsout, Ronica; Rizzo, Roberto; Timme, Elizabeth M

    2009-05-27

    Fructans isolated from Agave americana grown in South Africa are currently used for spirit production. Structural studies on water-soluble fructans were performed to facilitate the development of other applications including its use as a prebiotic. Acid hydrolysis followed by HPAEC-PAD analysis confirmed that the fructan was composed of glucose and fructose, and size analysis by HPAEC-PAD and size exclusion chromatography indicated that the saccharides have a DP range from 6 to 50. An average DP of 14 was estimated by (1)H NMR analysis. Linkage analysis and ESI-MS studies suggest that A. americana has a neofructan structure consisting of a central sucrose to which (2 → 1)- and (2 → 6)-linked β-D-Fruf chains are attached. The (2 → 1)-linked units extend from C-1 of Fru and C-6 of glucose, whereas the (2 → 6)-linked β-D-Fruf units are attached to C-6 of the central Fru. This structure accounts for the presence of equimolar amounts of 1,6-linked Glu and 1,2,6-linked Fru found in linkage analysis and the multiplicity of the NMR signals observed. Detailed ESI-MS studies were performed on fructan fractions: native, periodate oxidized/reduced, and permethylated oligomers. These derivatizations introduced mass differences between Glc and Fru following oxidation and between 1,2-, 1,6-, 2,6-, and 1,2,6-linked units after methylation. Thus, ESI-MS showed the presence of a single Glc per fructan chain and that it is predominantly internal, rather than terminal as found in inulin. These structural features were confirmed by the use of 1D and 2D NMR experiments.

  12. Influence of substrate quality on structural properties of AlGaN/GaN superlattices grown by molecular beam epitaxy

    SciTech Connect

    Schubert, F.; Merkel, U.; Schmult, S.; Mikolajick, T.

    2014-02-28

    Short-period AlGaN/GaN superlattices were established as versatile test structures to investigate the structural properties of molecular beam epitaxy (MBE)-grown GaN and AlGaN layers and their dependence on the GaN substrate quality. X-ray diffractometry data of the investigated superlattices allow access to relevant structural parameters such as aluminum mole fraction and layer thicknesses. The occurrence of theoretically predicted intense high-order satellite peaks and pronounced interface fringes in the diffraction pattern reflects abrupt interfaces and perfect 2-dimensional growth resulting in smooth surfaces. The data unambiguously demonstrate that the structural quality of the MBE grown layers is limited by the structural properties of the GaN substrate.

  13. Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

    NASA Astrophysics Data System (ADS)

    Yadav, Shivesh; Rodríguez-Fernández, Carlos; de Lima, Mauricio M.; Cantarero, Andres; Dhar, Subhabrata

    2015-12-01

    Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [ 10 1 ¯ 0 ] direction. Interestingly, the average wire diameter has been found to decrease with the increase in III/V ratio. It has also been observed that in these samples, defect related broad luminescence features, which are often present in GaN, are completely suppressed. At all temperatures, photoluminescence spectrum is found to be dominated only by a band edge feature, which comprises of free and bound excitonic transitions. Our study furthermore reveals that the bound excitonic feature is associated with excitons trapped in certain deep level defects, which result from the deficiency of nitrogen during growth. This transition has a strong coupling with the localized vibrational modes of the defects.

  14. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  15. Crystal structure and energy gap of CdTe thin films grown by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Jiménez-Sandoval, S.; Meléndez-Lira, M.; Hernández-Calderón, I.

    1992-11-01

    We have investigated the influence of structural characteristics on the band gap of rf sputtered CdTe thin films grown at substrate temperatures in the 69-232 °C range. The results of scanning electron microscopy and x-ray diffraction studies indicated that the films are a polycrystalline mixture of cubic and hexagonal phases with preferential growth of columnar type parallel to the cubic [111] direction. The band gap of the films was obtained from photoreflectance spectroscopy experiments carried out at room temperature. It was found that the films had a band gap larger than that of CdTe single crystals. This result has been correlated with the existence of lattice strain, quantum size effects, and hexagonal phase regions. By using theoretical models it was possible to estimate the contribution to the band gap shift due to strain and quantum size effects obtaining results in good agreement with the experiment. The study of annealed samples indicated that the effects of thermal treatments were to promote the change of the hexagonal phase to cubic, increase grain size, and shift the band gap towards lower energies reducing its difference with respect to that of single crystals.

  16. Isolated starches from yams (Dioscorea sp) grown at the Venezuelan Amazons: structure and functional properties.

    PubMed

    Pérez, Elevina; Rolland-Sabaté, Agnès; Dufour, Dominique; Guzmán, Romel; Tapia, María; Raymundez, Marìa; Ricci, Julien; Guilois, Sophie; Pontoire, Bruno; Reynes, Max; Gibert, Olivier

    2013-10-15

    This work aimed to characterize the molecular structure and functional properties of starches isolated from wild Dioscorea yams grown at the Amazons, using conventional and up-to-date methodologies. Among the high purity starches isolated (≥99%), the chain lengths were similar, whereas variations in gelatinization profile were observed. Starches have shown varied-shaped granules with monomodal distribution, and B-type crystallinity. Variations in amylose contents found by three analyses were hypothesized being related to intermediate material. Linear chain lengths were similar, and their amylopectins showed a dense, spherical conformation and similar molecular characteristics. The average molar mass and the radius of gyration of the chromatograms of the yam amylopectin, M¯W and R¯G were ranging between 174×10(6) g mol(-1) and 237×10(6) g mol(-1), and 201 nm and 233 nm, respectively. The white yams starches were more sensible to enzymes than the other two. All starches have shown a wide range of functional and nutritional properties.

  17. Structural and optical properties of GaAsSb QW heterostructures grown by laser deposition

    SciTech Connect

    Zvonkov, B. N.; Vikhrova, O. V. Dorokhin, M. V.; Kalentyeva, I. L.; Morozov, S. V.; Kryzhkov, D. I.; Yunin, P. A.

    2015-01-15

    The possibility of using the laser deposition method to grow crystalline light-emitting structures with GaAsSb/GaAs quantum wells (QWs) is experimentally demonstrated for the first time. The growth temperature of the GaAs{sub 1−x}Sb{sub x} layers is varied within the range 450–550°C; according to X-ray diffraction analyses, the content of antimony reaches x{sub Sb} ≈ 0.37 at a growth temperature of 450°C. Low-temperature (4 K) photoluminescence spectroscopy demonstrates the presence of a peak associated with the GaAsSb/GaAs QW at around 1.3 μm at the minimum laser-light pumping level. The optimal growth temperature T{sub g} = 500°C and arsine flow rate P{sub A} = 2.2 × 10{sup −8} mol/s at which the best emission properties of QWs with x{sub Sb} ∼ 0.17–0.25 are observed at temperatures of 77 and 300 K are determined. It is shown that GaAsSb/GaAs QWs with similar parameters (width and composition) grown by laser deposition at 500°C and metal-organic vapor-phase epitaxy at 580°C have comparable optical quality.

  18. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co2FeAl (CFA) thin films of different thicknesses (10 nmgrown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600 °C has been studied. x-ray diffraction (XRD) measurements revealed an (011) out-of-plane textured growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2.

  19. Optimization of the structural quality of sapphire rods grown by the Stepanov method in a reducing atmosphere

    SciTech Connect

    Kryvonosov, Ye. V.; Konevskiy, P. V. Lytvynov, L. A.; Tkachenko, V. F.

    2015-03-15

    Historically, the Stepanov method has been used for growing long shaped sapphire crystals (rods, tubes, and ribbons) for practical design. The recent intense development of this technique was stimulated by sapphire applications in optics and electronics; thus, the optical and structural quality of these crystals is of great importance. The results of studying the structural quality of sapphire rods up to 18 mm in diameter grown under optimized conditions are reported.

  20. Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix Till

    Phase transitions play an important role in many fields of physics and engineering, and their study in bulk materials has a long tradition. Many of the experimental techniques involve measurements of thermodynamically extensive parameters. With the increasing technological importance of thin-film technology there is a pressing need to find new ways to study phase transitions at smaller length-scales, where the traditional methods are insufficient. In this regard, the phase transitions observed in thin-films of MnAs present interesting challenges. As a ferromagnetic material that can be grown epitaxially on a variety of technologically important substrates, MnAs is an interesting material for spintronics applications. In the bulk, the first order transition from the low temperature ferromagnetic alpha-phase to the beta-phase occurs at 313 K. The magnetic state of the beta-phase has remained controversial. A second order transition to the paramagnetic gamma-phase takes place at 398 K. In thin-films, the anisotropic strain imposed by the substrate leads to the interesting phenomenon of coexistence of alpha- and beta-phases in a regular array of stripes over an extended temperature range. In this dissertation these phase transitions are studied in films grown by molecular beam epitaxy on GaAs (001). The films are confirmed to be of high structural quality and almost purely in the A0 orientation. A diverse set of experimental techniques, germane to thin-film technology, is used to probe the properties of the film: Temperature-dependent X-ray diffraction and atomic-force microscopy (AFM), as well as magnetotransport give insights into the structural properties, while the anomalous Hall effect is used as a probe of magnetization during the phase transition. In addition, reflectance difference spectroscopy (RDS) is used as a sensitive probe of electronic structure. Inductively coupled plasma etching with BCl3 is demonstrated to be effective for patterning MnAs. We show

  1. Optical, structural and microhardness properties of KDP crystals grown from urea-doped solutions

    SciTech Connect

    Pritula, I. Kosinova, A.; Kolybayeva, M.; Puzikov, V.; Bondarenko, S.; Tkachenko, V.; Tsurikov, V.; Fesenko, O.

    2008-10-02

    Potassium dihydrophosphate single crystals were grown from aqueous solutions onto a point seed using temperature reduction method by doping with different molar values of urea. The characterization of the grown crystals was made by visible and Fourier transform infrared spectroscopy, Vicker's hardness studies, X-ray powder diffraction, non-linear optical and laser damage threshold measurements. By comparing these crystals with the ones grown from the pure solution, it is shown that 0.2-2.0 M of the urea additive enhances the laser damage threshold and the second harmonic efficiency more than by 25 and 20%, respectively. By means of the Bond method using a multipurpose three-crystal X-ray diffractometer it is shown that the presence of urea additive increases the crystal lattice parameter c of the grown crystals, whereas the lattice parameter a is by an order less sensitive to the changing urea concentration in the solution. The Vicker's hardness studies at room temperature carried out on (1 0 0) and (0 0 1) crystallographic planes show an increased hardness of the doped crystals (grown in the presence of urea additive) on the plane (0 0 1) in comparison with that of pure potassium dihydrophosphate crystal.

  2. Surface structure of tetrahedral-coordinated amorphous diamond-like carbon films grown by pulsed laser deposition

    SciTech Connect

    Mercer, T.W.; DiNardo, N.J. |; Martinez-Miranda, L.J.; Fang, F.; Friedmann, T.A.; Sullivan, J.P.; Siegal, M.P.

    1994-12-31

    The structure and composition of tetrahedral-coordinated amorphous diamond-like carbon films (a-tC) grown by pulsed laser deposition (PLD) of graphite has been studied with atomic force microscopy (AFM). The nanometer-scale surface structure has been studied as a function of growth parameters (e.g., laser energy density and film thickness) using contact-mode and tapping-mode AFM. Although the surfaces were found to be generally smooth, they exhibited reproducible structural features on several size scales which correlate with the variation of laser energy and th excited ion etching.

  3. Structural and surface topography analysis of AlN single crystals grown on 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Sumathi, R. R.; Barz, R. U.; Straubinger, T.; Gille, P.

    2012-12-01

    Bulk AlN single crystals (3 mm thick and 1 in. diameter) were hetero-epitaxially grown on (0001) 6H-SiC substrates by the sublimation method. Double-crystal x-ray diffraction and micro-Raman results confirm the good crystallinity as well as structural homogeneity of the grown crystals. The presence of low-angle grain boundaries was observed by x-ray diffraction rocking curve analysis and also supported by defect-selective etching analysis. The estimated defect density of the 3 mm thick crystals is about (5-8)×105 cm-2. 3D-microstructures with different morphology were observed on the as-grown crystal surfaces and were interpreted to be originated from screw dislocations. These screw dislocations are decorated by carbon impurities as evidenced by micro-Raman spectroscopic measurements. SiC incorporation in the grown crystals was found to be fairly low with 4 mol% at 2 mm distance from the interface and varies slightly between different sub-grains.

  4. Structure and magnetism of Fe thin films grown on Rh(001) studied by spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Sawada, M.; Harasawa, A.; Kimura, A.; Kakizaki, A.

    2001-06-01

    Bulk Fe is known to be a bcc structure at room temperature and ferromagnetic below 920 K. On the other hand Fe films grown on non-magnetic substrates show a variety of structures and magnetism depending on the degree of the lattice constant (a0) difference between substrate and a bulk bcc Fe (a0=2.87 Å). On Au(001) (a0=4.07 Å) and Ag(001), Fe films grow in bcc structure and are ferromagnetic due to the small lattice mismatch to the Fe(110). On Cu(001) and Co(001), Fe films thinner than 5 ML reveal a face centred tetragonal (fct) structure and ferromagnetism, while in 6-10 ML region Fe films show fcc structure and only the topmost few layers were found to be ferromagnetic. The origin of this complicated magnetic behavior has been considered due to the lattice mismatch at the interface and investigated by a first principle calculation of the total energy and magnetic moments [1]. In this report, we present the structural and electronic properties of the Fe films epitaxially grown on a Rh(001) surface. .

  5. X-Ray Characterization of Structural Defects in Seeded and Self-Seeded ZnSe Crystal Grown by PVT in Horizontal and Vertical Configurations

    NASA Technical Reports Server (NTRS)

    Raghothamachar, B.; Dudley, M.; Su, C.-H.; Volz, H. M.; Matyi, R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    As part of a pre-flight ground based investigation of crystal growth of II-VI compound semiconductors, a number of ZnSe boules have been grown by physical vapor transport (PVT) at Marshall Space Flight Center. Boules were grown in both horizontal and vertical configurations and seeded and self-seeded growth techniques were employed. As-grown and/or cleaved boules were examined by a combination of synchrotron white beam x-ray topography (SWBXT) and high resolution triple axis diffraction (HRTXD) to characterized the structural defects and correlate them with the growth conditions. Horizontal grown boules tend to grow away from the ampoule wall (contactless growth) and generally exhibit large (110) facets parallel to the gravity vector. Vertical grown boules grew to the full diameter of the ampoule and exhibited no faceting. X-ray topography combined with back reflection x-ray diffraction revealed the presence of lamellar twins (180 deg type about the [111] axis) in horizontal grown boules while vertically grown boules contain a few large grains, some of which are twinned. X-ray topographs and reciprocal space maps recorded from the boules show the better crystal quality of horizontal grown boules. The relationship between crystal quality and gravity vector is investigated. Further, an attempt is made to extend the Hurle theory of twin nucleation in Czochralski grown crystals to explain the twinning mechanisms in horizontal grown boules.

  6. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  7. Differences and similarities between structural properties of GaN grown by different growth methods

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-08-01

    In this paper defects formed in GaN grown by different methods are reviewed. The crystal growth direction and growth rate play important roles. For bulk crystals grown under high pressure the highest growth rates are for planes perpendicular to the c-axis. Only planar defects formed on c-planes are observed in these crystals. There are no threading dislocations or nanotubes in the c-direction. However, polarity of the growth direction plays a role in the surface roughness and the distribution of planar defects. For growth of homo-epitaxial and hetero-epitaxial layers the growth is forced to take place in the much slower c-direction. As a result defects related to the purity of constituents used for growth are formed such as nanotubes and pinholes. In addition threading dislocations and dislocations that accommodate lattice and thermal expansion mismatch are formed.

  8. Multilayer epitaxial graphene grown on the SiC (000- 1) surface; structure and electronic properties

    SciTech Connect

    Sprinkle, M.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fevre, P.; Bertran, F.; Tinkey, H.; Clark, M.C.; Soukiassian, P.; Martinotti, D.; Hass, J.; Conrad, E.H.

    2010-10-22

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (000{bar 1}) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  9. Electrical and structural characterization of as-grown and annealed hydrothermal bulk ZnO

    SciTech Connect

    Kassier, G. H.; Hayes, M.; Auret, F. D.; Mamor, M.; Bouziane, K.

    2007-07-01

    Hall effect measurements in the range 20-370 K on as-grown and annealed hydrothermal bulk ZnO have been performed. The bulk conductivity in the highly resistive as-grown sample was found to decrease and then increase after annealing at 550 deg. C and 930 deg. C, respectively. The conduction in the as-grown material is attributed to a deep donor which is replaced by a much shallower donor after annealing at 930 deg. C. Annealing at both temperatures also produced strong surface conduction effects. Nondegenerate low-mobility surface conduction dominated the electrical properties of the sample annealed at 550 deg. C, while a degenerate surface channel was formed after annealing at 930 deg. C. In addition, Rutherford backscattering and channeling spectrometry (RBS/C) was used to assess the effect of annealing on the crystalline quality of the samples. RBS/C measurements reveal that annealing at 930 deg. C leads to significant improvement of the crystalline quality of the material, while annealing at 550 deg. C results in the segregation of a nonchanneling impurity at the surface.

  10. Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology.

    PubMed

    Vergara, Alessandro; Lorber, Bernard; Sauter, Claude; Giegé, Richard; Zagari, Adriana

    2005-12-01

    The crystallographic quality of protein crystals that were grown in microgravity has been compared to that of crystals that were grown in parallel on earth gravity under otherwise identical conditions. A goal of this comparison was to assess if a more accurate 3D-structure can be derived from crystallographic analysis of the former crystals. Therefore, the properties of crystals prepared with the Advanced Protein Crystallisation Facility (APCF) on earth and in orbit during the last decade were evaluated. A statistical analysis reveals that about half of the crystals produced under microgravity had a superior X-ray diffraction limit with respect of terrestrial controls. Eleven protein structures could be determined at previously unachieved resolutions using crystals obtained in the APCF. Microgravity induced features of the most relevant structures are reported. A second goal of this study was to identify the cause of the crystal quality enhancement useful for structure determination. No correlations between the effect of microgravity and other system-dependent parameters, such as isoelectric point or crystal solvent content, were found except the reduced convection during the crystallisation process. Thus, crystal growth under diffusive regime appears to be the key parameter explaining the beneficial effect of microgravity on crystal quality. The mimicry of these effects on earth in gels or in capillary tubes is discussed and the practical consequences for structural biology highlighted.

  11. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    SciTech Connect

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D.; Park, C. Y.; Jo, Y. R.; Kim, B. J.; Lee, Y. T.

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ∼37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  12. Structural and morphological characteristics of planar (112¯0) a-plane gallium nitride grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Haskell, B. A.; Wu, F.; Matsuda, S.; Craven, M. D.; Fini, P. T.; DenBaars, S. P.; Speck, J. S.; Nakamura, Shuji

    2003-08-01

    This letter discusses the structural and morphological characteristics of planar, nonpolar (112¯0) a-plane GaN films grown on (11¯02) r-plane sapphire by hydride vapor phase epitaxy. Specular films with thicknesses over 50 μm were grown, eliminating the severely faceted surfaces that have previously been observed for hydride vapor phase epitaxy-grown a-plane films. Internal cracks and crack healing, similar to that in c-plane GaN films, were observed. Atomic force microscopy revealed nanometer-scale pitting and steps on the film surfaces, with rms roughness of ˜2 nm. X-ray diffraction confirmed the films are solely a-plane oriented with on-axis (112¯0) and 30° off-axis (101¯0) rocking curve peak widths of 1040 and 3000 arcsec, respectively. Transmission electron microscopy revealed a typical basal plane stacking fault density of 4×105cm-1. The dislocation content of the films consisted of predominately edge component (bedge=±[0001]) threading dislocations with a density of 2×1010 cm-2, and mixed-character Shockley partial dislocations (b=1/3<11¯00>) with a density of 7×109 cm-2.

  13. Development of surface structures in MBE grown MgS and the origin of the phase instability

    NASA Astrophysics Data System (ADS)

    Bradford, C.; Prior, K. A.; Cavenett, B. C.

    2004-03-01

    MgS is an excellent barrier material for wide-gap II-VI quantum structures due to its large band gap of 5 eV. Although its stable crystal structure is rocksalt we have demonstrated the growth of zinc blende (ZB) MgS lattice matched to GaAs substrates [1]. MgS layers up to a critical thickness of 130 nm can be grown in the metastable ZB phase before the compound reverts to the stable rocksalt structure. In this paper we describe the changes in the surface morphology which occur during the growth of MgS in the stages leading up to the collapse of the ZB crystal structure.

  14. Observation and manipulation of the as-grown maze domain structure in lead germanate by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Shishkin, E. I.; Shur, V. Ya.; Schlaphof, F.; Eng, L. M.

    2006-06-01

    The ferroelectric domain structure of single crystalline Pb5Ge3O11 was inspected and manipulated using piezoresponse force microscopy (PFM) and Kelvin probe force microscopy (KPFM). The irregularly shaped three-dimensional maze reflecting the as-grown domain structure on the micron and submicron scale was resolved with both PFM and KPFM. The temporal stability and recovery of that equilibrium structure was tested with macroscopic and local electric fields. Fractal analysis was applied for quantitative characterization of the complicated domain geometry. While spatially extended fields lead to a partial decay of the maze structure, local electric fields applied by the PFM tip result in addition in pronounced surface charging. The time constants of charge decay were extracted by KPFM and could be attributed to mobile charge redistribution and backswitching.

  15. Atomic structure of defects in GaN:Mg grown with Ga polarity

    SciTech Connect

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; O'Keefe, M.A.; Hautakangas, S.; Laakso, A.; Saarinen, K.

    2003-11-25

    Electron microscope phase images, produced by direct reconstruction of the scattered electron wave from a focal series of high-resolution images, were used to determine the nature of defects formed in GaN:Mg crystals. We studied bulk crystals grown from dilute solutions of atomic nitrogen in liquid gallium at high pressure and thin films grown by the MOCVD method. All the crystals were grown with Ga-polarity. In both types of samples the majority of defects were three dimensional Mg-rich hexagonal pyramids with bases on the (0001) plane and six walls on {l_brace}11{und 2}3{r_brace} planes seen in cross-section as triangulars. Some other defects appear in cross-section as trapezoidal (rectangular) defects as a result of presence of truncated pyramids. Both type of defects have hollow centers. They are decorated by Mg on all six side walls and a base. The GaN which grows inside on the defect walls shows polarity inversion. It is shown that change of polarity starts from the defect tip and propagates to the base, and that the stacking sequence changes from ab in the matrix to bc inside the defect. Exchange of the Ga sublattice with the N sublattice within the defect leads to 0.6 {+-} 0.2{angstrom} displacement between Ga sublattices outside and inside the defects. It is proposed that lateral overgrowth of the cavities formed within the defect takes place to restore matrix polarity on the defect base.

  16. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    SciTech Connect

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Very little information is available in the literature concerning the experimental heavy-atom phasing of membrane-protein structures where the crystals have been grown using the lipid cubic phase (in meso) method. In this paper, pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine labelling as applied to an integral membrane kinase crystallized in meso are described. An assay to assess cysteine accessibility for mercury labelling of membrane proteins is introduced. Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  17. Structural characterization of strained silicon grown on a SiGe buffer layer

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Phen, M. S.; Gerger, A.; Jones, K. S.; Hansen, J. L.; Larsen, A. N.; Craciun, V.

    2008-03-01

    The microstructure of about 50 nm thick strained-Si/Si0.7Ge0.3/graded-SiGe/Si-substrate layers grown by MBE (molecular beam epitaxy) was characterized using high-resolution x-ray based characterization techniques. The degree of relaxation of the Si-capping layer after a thermal anneal at 800 °C for 30 min was determined using reciprocal space map (RSM) scans recorded around the (1 1 3) diffraction plane. However, since a RSM is not suitable when the strain relaxation is very small, x-ray reflectivity (XRR) and omega rocking curves (ω-RCs) were employed for the relaxation study. XRR spectra were collected and analyzed to obtain thickness, Ge concentration and surface/interfacial roughness information of the as-grown and annealed samples. ω-RCs were performed in order to investigate the crystalline quality of the samples. It was found that the annealed strained layer showed higher Lorentzian fraction in ω-RCs and misfit defect density which were caused by strain relaxation. In addition, the results showed that after the annealing process the broadening in the tail region of the ω-RCs was indicative of a change in the coherence length distribution of the crystallite size. The misfit defects and surface morphology obtained from transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations were consistent with results obtained from the x-ray based characterization techniques.

  18. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    SciTech Connect

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  19. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  20. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  1. Large anomalous Hall resistance of pair {delta}-doped GaAs structures grown by molecular-beam epitaxy

    SciTech Connect

    Jung, D. W.; Noh, J. P.; Touhidul Islam, A. Z. M.; Otsuka, N.

    2008-02-15

    Beryllium/silicon pair {delta}-doped GaAs structures grown by molecular-beam epitaxy exhibit a Hall resistance which has a nonlinear dependence on the applied magnetic field and which is strongly correlated to the negative magnetoresistance observed under the applied magnetic field parallel to the {delta}-doped layers. Dependence of the occurrence of the nonlinear Hall resistance on the growth condition is investigated. A significantly large increase in both the magnitude and the nonlinearity of the Hall resistance is observed from samples whose GaAs buffer layers are grown under the condition of a low As/Ga flux ratio. Reflection high energy electron diffraction and electron microscope observations show that a faceted surface develops with the growth and postgrowth annealing of a GaAs buffer layer under the condition of a low As flux. From samples which have only Si {delta}-doped layers and exhibit the n-type conduction, such nonlinear Hall resistance is not observed. The nonlinearity of the Hall resistance of Be/Si pair {delta}-doped structures depends on the single parameter B/T, where B and T are the applied magnetic field and the temperature, respectively. Based on these results, it is suggested that the nonlinear Hall resistance of Be/Si pair {delta}-doped structures is the anomalous Hall effect caused by localized spins in {delta}-doped layers.

  2. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering

    SciTech Connect

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-10-15

    X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate while a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)

  3. Optical Properties of ZnO Soccer-Ball Structures Grown by Vapor Phase Transport

    NASA Astrophysics Data System (ADS)

    Nam, Giwoong; Lee, Sang-heon; Kim, Soaram; Kim, Min Su; Kim, Do Yeob; Gug Yim, Kwang; Lee, Dong-Yul; Kim, Jin Soo; Kim, Jong Su; Son, Jeong-Sik; Kim, Sung-O.; Jung, Jae Hak; Leem, Jae-Young

    2012-02-01

    ZnO soccer balls were grown on an Au-catalyzed Si(100) substrate by vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. Temperature-dependent PL was carried out to investigate the mechanism governing the quenching behavior of the PL spectra. From the PL spectra of the ZnO soccer balls at 10 K, several PL peaks were observed at 3.365, 3.318, 3.249, and 3.183 eV corresponding to excitons bound to neutral donors (DoX), a donor-acceptor pair (DAP), first-order longitudinal optical phonon replica of donor-acceptor pair (DAP-1LO), and DAP-2LO, respectively. The mixed system composed of the free exciton (FX) and DoX and the DAP radiative lifetimes were estimated with a theoretical relation between the lifetime and the spectral width. The exciton radiative lifetimes were observed to increase linearly with temperature.

  4. Structural and electronic characterization of graphene grown by chemical vapor deposition and transferred onto sapphire

    NASA Astrophysics Data System (ADS)

    Joucken, Frédéric; Colomer, Jean-François; Sporken, Robert; Reckinger, Nicolas

    2016-08-01

    We present a combination of magnetotransport and local probe measurements on graphene grown by chemical vapor deposition on copper foil and subsequently transferred onto a sapphire substrate. A rather strong p-doping is observed (∼9 × 1012 cm-2) together with quite low carrier mobility (∼1350 cm2/V s). Atomic force and tunneling imaging performed on the transport devices reveals the presence of contaminants between sapphire and graphene, explaining the limited performance of our devices. The transferred graphene displays ridges similar to those observed whilst graphene is still on the copper foil. We show that, on sapphire, these ridges are made of different thicknesses of the contamination layer and that, contrary to what was reported for hBN or certain transition metal dichalcogenides, no self-cleansing process of the sapphire substrate is observed.

  5. Micro structural and dielectric property analysis on hydrothermally grown gadolinium doped SnO2 crystals

    NASA Astrophysics Data System (ADS)

    Pilakavil, Jaya T.; Pradyumnan, P. P.

    2016-09-01

    A series of SnO2-Gd2O3 mixed oxides were grown in aqueous medium by varying the thermodynamic parameters by hydrothermal method. X ray diffraction data identified tetragonal phases corresponding to tin oxide. The average crystallite size of the samples were between 21 and 31 nm. The morphological studies were conducted using scanning electron microscopy and compositional purity confirmed using energy dispersive spectroscopy. Detailed dielectric studies on the samples were performed in the frequency range 100 Hz-5 MHz, which showed that dielectric constant decreases with frequency in the low frequency range, whereas remains constant at higher frequencies. Impedance analysis is used to explain the effects of grain and grain boundary on transport mechanism of Gd:SnO2 particles synthesised at various pH.

  6. Chemical structure of microcrystalline CdTe films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Hernández-Calderón, I.; Jiménez-Sandoval, S.; Peña, J. L.; Sailer, V.

    1990-01-01

    We have applied X-ray photoemission and Auger spectroscopy techniques to the study of the stoichiometric properties of CdTe thin films grown by RF sputtering. The microcrystalline films were deposited on glass substrates held at temperatures between 50 and 200°C. They contain a mixture of the cubic (zinc-blende) and hexagonal (wurtzite) phases which are nearly stoichiometric. By using bulk and surface sensitive photoemission geometries it is shown that a tellurium oxide overlayer is always formed after exposure to air. A simple calculation shows that this overlayer is at most 10 Å thick. Cadmium seems to be insensitive to the presence of oxygen, as demonstrated by the absence of shifted Cd peaks in the X-ray spectra. It is shown that the low kinetic energy features in the Auger spectra ( <100 eV) are very sensitive to the oxide overlayer and contamination.

  7. Chemical structure of microcrystalline CdTe films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Hernández-Calderón, I.; Jiménez-Sandoval, S.; Peña, J. L.; Sailer, V.

    1988-01-01

    We have applied X-ray photoemission and Auger spectroscopy techniques to the study of the stoichiometric properties of CdTe thin films grown by RF sputtering. The microcrystalline films were deposited on glass substrates held at temperatures between 50 and 200°C. They contain a mixture of the cubic (zinc-blende) and hexagonal (wurtzite) phases which are nearly stoichiometric. By using bulk and surface sensitive photoemission geometries it is shown that a tellurium oxide overlayer is always formed after exposure to air. A simple calculation shows that this overlayer is at most 10 Å thick. Cadmium seems to be insensitive to the presence of oxygen, as demonstrated by the absence of shifted Cd peaks in the X-ray spectra. It is shown that the low kinetic energy features in the Auger spectra ( <100 eV) are very sensitive to the oxide overlayer and contamination.

  8. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method.

    PubMed

    Li, Dianfan; Pye, Valerie E; Caffrey, Martin

    2015-01-01

    Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  9. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    PubMed Central

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method. PMID:25615865

  10. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  11. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  12. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  13. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Hojabri, Alireza

    2016-09-01

    Zirconium oxide thin films were grown successfully by thermal annealing of zirconium thin films deposited on quartz and silicon substrates by direct current magnetron sputtering technique. The structural and optical properties in relation to thermal annealing times were investigated. The X-ray diffraction patterns revealed that structure of films changes from amorphous to crystalline by increase of annealing times in range 60-240 min. The composition of films was determined by Rutherford back scattering spectroscopy. Atomic force microscopy results exhibited that surface morphology and roughness of films depend on the annealing time. The refractive index of the films was calculated using Swanepoel's method. The optical band gap energy of annealed films decreased from 5.50 to 5.34 eV with increasing thermal annealing time.

  14. Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Ramirez, E. A.; Gordillo Guzmán, G.

    2016-02-01

    Results regarding optical and structural properties of Cu2ZnSnS4 (CZTS) thin films prepared by co-evaporation using a novel procedure are compared with those obtained with CZTS films grown using a solution based route. The lattice strain ε and crystallite size D of CZTS films prepared by co-evaporation and by spray pyrolysis were estimated through X-ray diffraction (XRD) measurements using Williamson-Hall-isotropic strain model. The results of estimated average crystallite size of CZTS films by Scherrer and Williamson-Hall plot methods were compared with AFM (atomic force microscopy) measurements. It was found that the average crystallite size measured by Williamson-Hall plot methods agree quite well with AFM results. Further, information regarding the influence of preparation method on both, crystalline phases and the formation of structural defects was achieved through Raman and Urbach energy measurements.

  15. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures. PMID:21942189

  16. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition.

    PubMed

    Liu, Zheng; Amani, Matin; Najmaei, Sina; Xu, Quan; Zou, Xiaolong; Zhou, Wu; Yu, Ting; Qiu, Caiyu; Birdwell, A Glen; Crowne, Frank J; Vajtai, Robert; Yakobson, Boris I; Xia, Zhenhai; Dubey, Madan; Ajayan, Pulickel M; Lou, Jun

    2014-11-18

    Monolayer molybdenum disulfide (MoS2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS2. Recently, large-size monolayer MoS2 has been produced by chemical vapour deposition, but has not yet been fully explored. Here we systematically characterize chemical vapour deposition-grown MoS2 by photoluminescence spectroscopy and mapping and demonstrate non-uniform strain in single-crystalline monolayer MoS2 and strain-induced bandgap engineering. We also evaluate the effective strain transferred from polymer substrates to MoS2 by three-dimensional finite element analysis. Furthermore, our work demonstrates that photoluminescence mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS2.

  17. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures.

  18. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition

    DOE PAGES

    Liu, Zheng; Amani, Matin; Najmaei, Sina; Xu, Quan; Zou, Xiaolong; Zhou, Wu; Yu, Ting; Qiu, Caiyu; Birdwell, A. Glen; Crowne, Frank J.; et al

    2014-11-18

    Monolayer molybdenum disulfide (MoS2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS2. Recently, large-size monolayer MoS2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS2 and strain-induced band gap engineering. We also evaluate the effective strain transferred from polymermore » substrates to MoS2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS2.« less

  19. Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Yu; Chang, Chung-En; Wang, Cheng-Hung; Su, Chen-Fung; Chen, Chi; Lee, Si-Chen; Lin, Shih-Yen

    2014-08-01

    Uniform large-size MoS2/graphene hetero-structures fabricated directly on sapphire substrates are demonstrated with layer-number controllability by chemical vapor deposition (CVD). The cross-sectional high-resolution transmission electron microscopy (HRTEM) images provide the direct evidences of layer numbers of MoS2/graphene hetero-structures. Photo-excited electron induced Fermi level shift of the graphene channel are observed on the single MoS2/graphene hetero-structure transistors. Furthermore, double hetero-structures of graphene/MoS2/graphene are achieved by CVD fabrication of graphene layers on top of the MoS2, as confirmed by the cross-sectional HRTEM. These results have paved the possibility of epitaxially grown multi-hetero-structures for practical applications.

  20. Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS{sub 2}/graphene hetero-structures by chemical vapor depositions

    SciTech Connect

    Lin, Meng-Yu; Chang, Chung-En; Wang, Cheng-Hung; Su, Chen-Fung; Chen, Chi; Lee, Si-Chen; Lin, Shih-Yen

    2014-08-18

    Uniform large-size MoS{sub 2}/graphene hetero-structures fabricated directly on sapphire substrates are demonstrated with layer-number controllability by chemical vapor deposition (CVD). The cross-sectional high-resolution transmission electron microscopy (HRTEM) images provide the direct evidences of layer numbers of MoS{sub 2}/graphene hetero-structures. Photo-excited electron induced Fermi level shift of the graphene channel are observed on the single MoS{sub 2}/graphene hetero-structure transistors. Furthermore, double hetero-structures of graphene/MoS{sub 2}/graphene are achieved by CVD fabrication of graphene layers on top of the MoS{sub 2}, as confirmed by the cross-sectional HRTEM. These results have paved the possibility of epitaxially grown multi-hetero-structures for practical applications.

  1. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    NASA Astrophysics Data System (ADS)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  2. Structural and magnetic characterization of Sm-doped GaN grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dehara, Kentaro; Miyazaki, Yuta; Hasegawa, Shigehiko

    2016-05-01

    We have investigated structural, optical and magnetic properties of Sm-doped GaN thin films grown by plasma-assisted molecular beam epitaxy. Reflection high-energy electron diffraction and X-ray diffraction reveal that Ga1- x Sm x N films with a SmN mole fraction of ˜8% or below are grown on GaN templates without segregation of any secondary phases. With increasing SmN mole fraction, the c-axis lattice parameter of the GaSmN films linearly increases. GaSmN films with low Sm concentrations exhibit inner-4f transitions of Sm3+ in photoluminescence spectra. The present findings show that Sm atoms are substituted for some Ga atoms as trivalent ions (Sm3+). The Ga1- x Sm x N films display hysteresis loops in magnetization versus external magnetic field (M-H) curves even at 300 K. We will discuss the origin of these features together with the corresponding temperature dependences of magnetization.

  3. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L.

    2016-09-01

    The pulsed laser deposition (PLD) technique is used to grow Al-doped ZnO (AZO) thin films at 500 ° C on silicon substrates under vacuum or oxygen gas background from ablating AZO nanoparticle targets synthesized via the sol-gel process. The structural, morphological and optical properties were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) techniques. XRD and TEM images show that AZO powder has a wurtzite-type structure and is composed of small prismatic-like shape nanoparticles with an average size of 30nm. The structural properties of the AZO films grown under oxygen show no significant changes compared to those of the film grown under vacuum. However, the optical properties show a dependence on the growth conditions of the AZO films. Highly c -axis-oriented AZO thin films were obtained with grain size ˜ 15 nm. The stress in the AZO films is tensile as measured from the c -parameter. The dielectric function, the refractive index and the extinction coefficient as a function of the photon energy for the AZO films were determined by using spectroscopic ellipsometry measurements in the photon energy region from 1 to 6eV. The band gap energy was observed to slightly decrease in the presence of the O2 gas background and this may be attributed to the stress. The surface and volume energy loss functions are calculated and exhibit different behaviors in the energy range 1-6eV. Refractive indices of 1.9-2.1 in the visible region were obtained for the AZO films. Also, the electronic carrier concentration appears to be related to the presence of O2 during the growth process.

  4. Structural Properties and Electrochemical Performance of ZnO Nanosheets Grown Directly on Al substrate by Chemical Bath Deposition Techniques

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed; Ferrera, Roberto; Henley, Luke; Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Talapatra, Saikat

    We will report on the synthesis & electrochemical characterization of 2-dimentional zinc oxide grown directly on Al substrate by a simple chemical bath deposition method at low temperature (below 1000C). Detail structural characterizations of the synthesized ZnO sheets will be presented and discussed. The electrochemical performances of electrochemical double layer capacitors (EDLC) on electrodes fabricated using these materials were evaluated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy using various electrolytes. We found that high specific capacitance values (greater than 300 F/g) could be achieved using an aqueous electrolyte. The aforementioned results indicates the possibly for using 2-D ZnO architectures fabricated by this simple and cost efficient technique for future electrochemical energy storage devices.

  5. Synthesis and characterization of ZnO nano and micro structures grown by low temperature spray pyrolysis and vapor transport.

    PubMed

    Agouram, S; Bushiri, M J; Montenegro, D N; Reig, C; Martínez-Tomás, M C; Muñoz-Sanjosé, V

    2012-08-01

    In this work we present a systematic study of ZnO micro and nanostructures grown by spray pyrolysis (SP) and by physical vapour transport (PVT) on glass and c-sapphire substrates at low temperatures. Optimised growth conditions have allowed to obtain homogeneous ZnO nanolayers composed of quasi-spherical nanoparticles in the range 2 to 8 nm by spray pyrolysis, while by PVT the selected growth conditions allow to produce a wide variety of morphologies (tripods, grains, arrows and wires) of nano and microsize dimension. Grazing incidence X-ray diffraction, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX) were used as characterization techniques in the investigation of structural, morphological and compositional nature of these nanostructures in relation with the growth method.

  6. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    SciTech Connect

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  7. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    SciTech Connect

    Barick, B. K. E-mail: subho-dh@yahoo.co.in; Dhar, S. E-mail: subho-dh@yahoo.co.in; Rodríguez-Fernández, Carlos; Cantarero, Andres

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  8. Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface.

    PubMed

    Fan, Peixun; Bai, Benfeng; Long, Jiangyou; Jiang, Dafa; Jin, Guofan; Zhang, Hongjun; Zhong, Minlin

    2015-09-01

    Infrared antireflection is an essential issue in many fields such as thermal imaging, sensors, thermoelectrics, and stealth. However, a limited antireflection capability, narrow effective band, and complexity as well as high cost in implementation represent the main unconquered problems, especially on metal surfaces. By introducing precursor micro/nano structures via ultrafast laser beforehand, we present a novel approach for facile and uniform growth of high-quality oxide semiconductor nanowires on a Cu surface via thermal oxidation. Through the enhanced optical phonon dissipation of the nanowires, assisted by light trapping in the micro structures, ultralow total reflectance of 0.6% is achieved at the infrared wavelength around 17 μm and keeps steadily below 3% over a broad band of 14-18 μm. The precursor structures and the nanowires can be flexibly tuned by controlling the laser processing procedure to achieve desired antireflection performance. The presented approach possesses the advantages of material simplicity, structure reconfigurability, and cost-effectiveness for mass production. It opens a new path to realize unique functions by integrating semiconductor nanowires onto metal surface structures. PMID:26280305

  9. Properties of MIS structures based on graded-gap HgCdTe grown by molecular beam epitaxy

    SciTech Connect

    Voitsekhovskii, A. V. Nesmelov, S. N.; Dzyadookh, S. M.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Sidorov, Yu. G.; Vasiliev, V. V.

    2008-11-15

    The effect of near-surface graded-gap layers on the electrical characteristics of MIS structures fabricated based on heteroepitaxial Hg{sub 1-x} Cd{sub x}Te films grown by molecular beam epitaxy with a two-layer SiO{sub 2}/Si{sub 3}N{sub 4} insulator and anodic oxide film is studied experimentally. It is shown that a larger modulation of capacitance (depth and width of the valley) is observed compared with the structures without the graded-gap layer. The field dependences of photovoltage of MIS structures with the graded-gap layers had a classical form and were characterized by a drop only in the enrichment region. For the structures without the graded-gap layer with x = 0.22, a drop in the voltage dependence of the photocurrent is observed in the region of pronounced inversion. This drop is governed by limitation of the space charge region by processes of tunneling generation via deep levels. The properties of the HgCdTe-insulator interfaces are studied.

  10. Structural and magnetic properties of MnPd/Fe grown on MgO(100) substrate: Ab initio studies

    NASA Astrophysics Data System (ADS)

    Malonda-Boungou, B. R.; Magnoungou, J. H. J.; M'Passi-Mabiala, B.; Demangeat, C.

    2016-07-01

    Structural and magnetic properties of ultrathin films MnPd/Fe grown on MgO(001) are investigated using a self-consistent pseudopotential plane waves method based on density functional theory in the Perdew-Burke-Ernzerhof generalized gradient approximation. The results obtained reveal the presence of an antiferromagnetic coupling between successive Mn [100] rows, combined with a ripple where Mn outward atoms exhibit a positive magnetic moment, in the case of Mn overlayer on Fe/MgO(001). In the case of MnPd monolayer ordered alloy, the c(2 × 2) structure formation is more favorable than the p(1 × 2) one, exhibiting a ferromagnetic coupling between Mn neighbor atoms with a positive induced ferromagnetic moment on Pd atoms. Pd atoms are pushed outward. For 1-ML MnxPd1 - x on Fe/MgO, the Mn absolute mean magnetization per atom increases as x coverage increases, whereas the Pd mean induced magnetic moment decreases. For systems alternating Mn and Pd monolayers on Fe/MgO(001), a complex magnetic structure is shown on Mn monolayers: changing from Mn neighboring antiferromagnetic coupling to Mn [010] rows antiferromagnetic behavior. The correlation is made between the electronic structure and the magnetic properties, by comparing filled with partially filled components (Pd, Mn and Fe) d-bands. The magnetization easy-axis changes between the in-plane and the out-of-plane orientations from Fe/MgO to MnPd/Fe/MgO systems.

  11. Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique

    SciTech Connect

    Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C.

    2015-03-15

    The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300 K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.

  12. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  13. Simulating nitrate leaching under winter wheat grown on a structured clay soil considering bypass flow

    NASA Astrophysics Data System (ADS)

    Ragab, R.; Coopers, D. M.; Harris, G. L.; Catt, J. A.

    1996-07-01

    Nitrate leaching from drained plots of structured clay soil under winter wheat is simulated for one growing season using the SOILN model. Results are compared with field measurements from two replicate plots. Soil water movement is simulated both with and without a bypass flow component using the SOIL model. Flow to field drains and soil water content in the root zone are simulated better when bypass flow is included. The results emphasise the importance of considering bypass flow in modelling leaching from structured clay soils. Simulations of nitrate leaching using the SOILN model show that the model captures the main features of the cumulative loss of nitrate over the year.

  14. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    PubMed

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-13

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  15. Surface termination structure of α-Ga2O3 film grown by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tamba, Daiki; Kubo, Osamu; Oda, Masaya; Osaka, Shun; Takahashi, Kazuki; Tabata, Hiroshi; Kaneko, Kentaro; Fujita, Shizuo; Katayama, Mitsuhiro

    2016-06-01

    The surface structure of α-Ga2O3(0001) grown on an α-Al2O3(0001) substrate by mist chemical vapor deposition was studied by coaxial impact-collision ion scattering spectroscopy (CAICISS) and atomic force microscopy (AFM). The minimum step height observed in the AFM image was 0.21 ± 0.01 nm, coinciding with the height of three atomic layers of α-Ga2O3(0001). It was revealed by CAICISS analysis that the surface of α-Ga2O3(0001) is terminated by a Ga layer followed by an O layer, which is consistent with the surface termination of α-Al2O3(0001). A structural model taking surface relaxation into account was also constructed by fitting the simulated curve for the azimuth angle dependence of the Ga intensity to the experimental dependence. The resultant structural model is similar to the model of an α-Al2O3(0001) surface, which indicates analogous behavior in corundum crystals.

  16. High-resolution transmission electron microscopy studies of quantum wire structures grown on submicrometre gratings of V-grooves

    NASA Astrophysics Data System (ADS)

    Gustafsson, A.; Malm, J.-O.; Carlsson, A.; Vermeire, G.

    1996-11-01

    We present an extensive characterization of a quantum wire (QWR) structure using transmission electron microscopy (TEM). The structure consisted of a single GaAs layer in between AlGaAs barriers, grown on a GaAs substrate patterned with a submicrometre grating of V-grooves. For reference we also studied other QWR, as well as, quantum well (QW) samples, fabricated under similar conditions. We used bright field and dark field imaging to study the overall structure, high-resolution TEM to study the layer thickness and the interface quality, and chemical lattice imaging to study the compositional variations across the interfaces. In the QWR sample, there were mainly two distinctly different areas of the QW: on the (100) planes between the V-grooves, the QW was flat, whereas the QW on the near 0268-1242/11/11/018/img5 side walls of the V-grooves had a flat lower interface and a saw-tooth shaped upper interface. The QWRs at the bottom of the V-grooves were crescent shaped. We also observed a fundamental difference in growth of the GaAs and the AlGaAs on the side wall, where the AlGaAs formed straight interfaces, determined by high-index planes, whereas the GaAs tended to form alternating low-index planes giving a saw-tooth appearance of the GaAs QW.

  17. Structural properties of Bi2-xMnxSe3 thin films grown via molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-01

    The effects of Mn doping on the structural properties of the topological insulator Bi2Se3 in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn2+ substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  18. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    PubMed

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  19. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress

    PubMed Central

    Salinas, Carlos; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported. PMID:27454873

  20. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    PubMed

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported. PMID:27454873

  1. Structural and magnetic properties of SmCo-based magnetic films grown by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Vishnuraj, R.; Arout Chelvane, J.; Kamat, S. V.; Hsu, Jen-Hwa

    2015-07-01

    Sub-micron thick Sm-Co films (200 and 300 nm) with selective phase composition are grown on Si (100) substrates by electron-beam evaporation using Sm-lean alloy targets such as Sm4Co96 and Sm8Co92. The structural and magnetic properties of Sm-Co films are characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and super-conducting quantum interference device (SQUID) magnetometer. The Sm-Co films obtained with the Sm4Co96 target exhibit Sm2Co17 as a prominent phase; while the films produced with the Sm8Co92 target show Sm2Co7 as a major phase. Both the Sm-Co films reveal granular morphology; however, the estimated grain size values are slightly lower in the case of Sm2Co7 films, irrespective of their thicknesses. Coercivity (Hc) values of 1.48 and 0.9 kOe are achieved for the as-grown 200-nm thick Sm2Co17 and Sm2Co7-films. Temperature-dependent magnetization studies confirm that the demagnetization behaviors of these films are consistent with respect to the identified phase composition. Upon rapid thermal annealing, maximum Hc value of 8.4 kOe is achieved for the 200 nm thick Sm2Co17-films. As far as e-beam evaporated Sm-Co films are concerned, this Hc value is one of the best values reported so far.

  2. Structural, optical and electrical properties of chemically grown Pb 1- xFe xSe nanoparticle thin films

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Asha; Varadarajan, E.; Srivastava, P.; Sehgal, H. K.

    2008-04-01

    Single phase Pb 1- xFe xSe ( 0.00≤x≤0.07) thin films, with typical rocksalt structure, are grown by the chemical bath deposition method. An additional segregated phase of Fe 2O 3 is observed in the x≥0.08 films. The average grain size in the films grown at a fixed bath temperature (Tb) is observed to remain constant with increase in Fe concentration from x=0.00 to x=0.07. A decrease in Tb, for fixed x, results in a decrease in grain size in the films. The Tb induced decrease in grain size is seen to result in an increase of direct optical band gap (Eg) in films with the same x. In the typical case of x=0.06 films, decrease in grain size from 9 nm to 3 nm due to change in Tb from 85 to 55 ∘C, results in an increase in Eg from 2.09 eV to 2.89 eV. The blue shift is attributed to enhanced quantum confinement in the nanograins. However, at a fixed Tb, while grain size remains constant with increase in x, Eg is observed to decrease. Eg is seen to decrease from 2.20 to 1.84 eV with change in x from 0.02 to 0.07 in Tb of 85 ∘C films. This decrease is attributed to tailoring of Eg due to alloying between PbSe (Ebulk=0.28 eV) and FeSe (Ebulk=0.14 eV) in the single-phase nanoparticle films of Pb 1- xFe xSe. Resistivity decreases while Hall mobility increases with the increase in x ( 0.00≤x≤0.06) in the films.

  3. Optical and structural properties of BGaN layers grown on different substrates

    NASA Astrophysics Data System (ADS)

    Kadys, A.; Mickevičius, J.; Malinauskas, T.; Jurkevičius, J.; Kolenda, M.; Stanionytė, S.; Dobrovolskas, D.; Tamulaitis, G.

    2015-11-01

    Growth of BGaN epitaxial layers by metalorganic chemical vapor deposition (MOCVD) using triethylboron (TEB) as a boron source was studied on 6H-SiC substrate and on GaN and AlN templates on sapphire. X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy were exploited to characterize the structural quality, surface morphology, luminescence efficiency, and boron content. Silicon carbide was shown to be slightly superior to AlN/sapphire and considerably better than GaN/sapphire as the most favorable substrate to incorporate a possibly higher boron content. Increasing TEB flow rate at correspondingly optimized growth temperature and V/III ratio enabled us to achieve the boron content of up to 5.5%, though at the expense of structural quality. We showed that the band gap bowing parameter is similar for the epilayers deposited on all the three templates/substrates under study and is approximately equal to 4 eV, substantially lower than reported before.

  4. Influence of nitrogen background pressure on structure of niobium nitride films grown by pulsed laser deposition

    SciTech Connect

    Ashraf H. Farha, Ali O. Er, Yüksel Ufuktepe, Ganapati Myneni, Hani E. Elsayed-Ali

    2011-12-01

    Depositions of niobium nitride thin films on Nb using pulsed laser deposition (PLD) with different nitrogen background pressures (10.7 to 66.7 Pa) have been performed. The effect of nitrogen pressure on NbN formation in this process was examined. The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and energy dispersive X-ray (EDX) analysis. Hexagonal {beta}-Nb{sub 2}N and cubic {delta}-NbN phases resulted when growth was performed in low nitrogen background pressures. With an increase in nitrogen pressure, NbN films grew in single hexagonal {beta}-Nb{sub 2}N phase. The formation of the hexagonal texture during the film growth was studied. The c/a ratio of the hexagonal {beta}-Nb{sub 2}N unit cell parameter increases with increasing nitrogen pressure. Furthermore, the N:Nb ratio has a strong influence on the lattice parameter of the {delta}-NbN, where the highest value was achieved for this ratio was 1.19. It was found that increasing nitrogen background pressure leads to change in the phase structure of the NbN film. With increasing nitrogen pressure, the film structure changes from hexagonal to a mixed phase and then back to a hexagonal phase.

  5. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata.

    PubMed

    Banerjee, Sanchari; Coussens, Nathan P; Gallat, François-Xavier; Sathyanarayanan, Nitish; Srikanth, Jandhyam; Yagi, Koichiro J; Gray, James S S; Tobe, Stephen S; Stay, Barbara; Chavas, Leonard M G; Ramaswamy, Subramanian

    2016-07-01

    Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å) crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution. PMID:27437115

  6. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata

    PubMed Central

    Banerjee, Sanchari; Coussens, Nathan P.; Gallat, François-Xavier; Sathyanarayanan, Nitish; Srikanth, Jandhyam; Yagi, Koichiro J.; Gray, James S. S.; Tobe, Stephen S.; Stay, Barbara; Chavas, Leonard M. G.; Ramaswamy, Subramanian

    2016-01-01

    Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å) crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution. PMID:27437115

  7. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata.

    PubMed

    Banerjee, Sanchari; Coussens, Nathan P; Gallat, François-Xavier; Sathyanarayanan, Nitish; Srikanth, Jandhyam; Yagi, Koichiro J; Gray, James S S; Tobe, Stephen S; Stay, Barbara; Chavas, Leonard M G; Ramaswamy, Subramanian

    2016-07-01

    Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å) crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution.

  8. Polycrystalline domain structure of pentacene thin films epitaxially grown on a hydrogen-terminated Si(111) surface

    SciTech Connect

    Nishikata, S.; Sadowski, J. T.; Al-Mahboob, A.; Nishihara, T.; Fujikawa, Y.; Sakurai, T.; Nakajima, K.; Sazaki, G.; Suto, S.

    2007-10-15

    Single-monolayer high pentacene (Pn) dendrites grown on a hydrogen-terminated Si(111) surface [H-Si(111)] under ultrahigh vacuum were observed by low-energy electron microscopy and microbeam low-energy electron diffraction analyses. We determined the epitaxial structure (type I) inside a unique polycrystalline domain structure of such dendrites, each of which has six equivalent epitaxial orientations of Pn two-dimensional (2D) unit cells. There are three sets of these cells, which are rotated {+-}120 deg. relative to each other. Domain boundaries inside each dendrite were successfully observed by scanning tunneling microscopy. In addition, we found another epitaxial relation (type II): the polycrystalline domain structure and lattice parameters are similar to those of the type-I dendrite; however, the 2D unit cells of the type-II dendrite are rotated approximately 90 deg. relative to those of the type-I dendrite. These results suggest that the crystal structure of the dendrites on H-Si(111) is determined mainly by the interaction between Pn molecules. Each dendrite is composed of domains that are exclusively of type I or II. The so-called point-on-line coincidences are found between the Pn 2D lattices of types I and II, and H-Si(111). The higher commensurability of the type-I dendrites than the type-II dendrites results in a higher probability of type-I dendrite formation. Moreover, for both the type-I and type-II dendrites, we found supercell structures. We estimated the minimum interface energy between the dendrite and H-Si(111) from an island's free energy, which is necessary to reproduce the growth of a single-monolayer high dendrite.

  9. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing

    SciTech Connect

    List III, Frederick Alyious; Dehoff, Ryan R; Lowe, Larry E; Sames, William J

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand better these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  10. MBE grown high-quality Gd 2O 3/Si(1 1 1) hetero-structure

    NASA Astrophysics Data System (ADS)

    Lin, T. D.; Hang, M. C.; Hsu, C. H.; Kwo, J.; Hong, M.

    2007-04-01

    A nearly lattice-matched Gd 2O 3/Si(1 1 1) hetero-epitaxy was demonstrated using molecular beam epitaxy (MBE). Detailed structural studies find that the nano thick Gd 2O 3 films have a cubic phase with a very uniform thickness, an excellent crystallinity and atomically sharp interfaces. These features are characterized by the bright, streaky reconstructed reflection high-energy electron diffraction (RHEED) patterns at the initial oxide growth, the pronounced interference fringes in the X-ray reflectivity curve as well as in the crystal truncation rod around the substrate diffraction peaks using the high-resolution X-ray diffraction. The (1 1 1) axis of the thin oxide is oriented parallel to the substrate (1 1 1) normal with a 60° in-plane symmetry rotation.

  11. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  12. Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces

    NASA Astrophysics Data System (ADS)

    Korotchenkov, Oleg; Nadtochiy, Andriy; Kuryliuk, Vasyl; Wang, Chin-Chi; Li, Pei-Wen; Cantarero, Andres

    2014-03-01

    The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.

  13. Synthesis, optical and structural properties of quantum-wells crystals grown into porous alumina

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Dammak, T.; ElHouichet, H.; Chtourou, R.

    2014-07-01

    In this work, we present the confinement effect of the incorporation of perovskite compounds (C12H25-NH3)2PbI4 quantum wells into different porous anodic aluminum oxide (PAA) matrix via a chemical route. The detailed structure and optical property of the quantum wells in PAA were characterized by FT-IR, UV-Vis absorption and photoluminescence (PL) spectroscopy. The surface topography for the two used PAA matrix has been studied using atomic force microscopy (AFM). The pores diameters (pores spacing) for the two matrix are 15 (35 nm) and 45 (82 nm). UV-visible and photoluminescence spectroscopy of (C12H25-NH3)2PbI4/PAA exhibits a clear blue shift of the fundamental excitonic transition. This effect is attributed to the confinement of the exciton mode in the pore of the PAA matrix.

  14. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    NASA Astrophysics Data System (ADS)

    Fedoseeva, Yu. V.; Pozdnyakov, G. A.; Okotrub, A. V.; Kanygin, M. A.; Nastaushev, Yu. V.; Vilkov, O. Y.; Bulusheva, L. G.

    2016-11-01

    Since amorphous oxygenated hydrocarbon (COxHy) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of COxHy films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the COxHy films, deposited at 300 and 500 °C, were mainly composed of the sp2-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  15. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering

    PubMed Central

    2012-01-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. PMID:23031449

  16. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Korona, K. P.; Sobanska, M.; Klosek, K.

    2015-12-01

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 102 and the leakage current of about 10-4 A/cm2 at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ˜2 nm thick SiNx layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 1015 cm-3. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiNx interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  17. Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Kumar, Vinod; Purohit, L. P.; Swart, H. C.; Kroon, R. E.

    2016-10-01

    Zinc sulphide (ZnS) films are of great importance for applications in various optoelectronic devices. ZnS thin films were grown on glass, indium tin oxide (ITO) and Corning glass substrates by radio-frequency magnetron sputtering at a temperature of 373 K and a comparative study of the structural, optical and electrical properties was performed using X-ray diffraction (XRD), scanning electron microscopy, optical and current-voltage (I-V) measurements. The XRD patterns showed that the sputtered thin films exhibited good crystallinity with the (111) peak around 2θ=28.3° indicating preferential orientation of the cubic structure. The maximum strain and most densely packed grains were obtained for the Corning glass substrate. The transmittance spectra of the films were measured in the wavelength range from 200 to 800 nm, showing that the films are about 77% transparent in the visible region. A slight change of 3.50 eV to 3.54 eV was found for the bandgap of the films deposited on different substrates. The ZnS thin films deposited on Corning glass show better crystallinity, morphology and I-V characteristics than that deposited on ordinary glass and ITO substrates.

  18. Selectively grown photonic crystal structures for high efficiency InGaN emitting diodes using nanospherical-lens lithography

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Wu, Kui; Lan, Ding; Yan, Qingfeng; Chen, Yu; Du, Chengxiao; Wang, Junxi; Zeng, Yiping; Li, Jinmin

    2012-11-01

    We report a low-cost and high-throughput process for the fabrication of two-dimensional SiO2 photonic crystal (PhC) by nanospherical-lens photolithography method to improve the light extraction of GaN-based light-emitting diodes (LEDs). The PhC structures were realized by the selective area growth of p-GaN using SiO2 nanodisks, which were patterned utilizing a self-assembled nanosphere as an optical lens. Without prejudice to the electrical properties of LEDs, the light output power (at 350 mA) of LEDs with the SiO2 and corresponding air-hole PhC was enhanced by 71.3% and 49.3%, respectively, compared to that without PhC. The LEDs with selectively grown PhC structures were found to exhibit partial compression strain release and reduced emission divergence. The finite-difference time-domain simulation was also performed to further reveal the emission characteristics of PhC LEDs.

  19. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.; Korona, K. P.

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  20. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering.

    PubMed

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-10-03

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters.

  1. {CdTe(111) B}/{Si(100) } structure grown by metalorganic vapor phase epitaxy with Te adsorption and annealing

    NASA Astrophysics Data System (ADS)

    Nishino, Hironori; Nishijima, Yoshito

    1996-10-01

    We studied the crystal structure of CdTe(111)B layers directly grown on Si(100) by MOVPE using a new pre-growth process, which includes a metalorganic Te adsorption and an annealing process. In this paper, we discussed the CdTe structure from the three aspects of antiphase, twinning and tilt. We investigated the dependence of the antiphase content in CdTe(111)B on the anneal temperature and the Si misorientation angle. From the results, we assume that the origin of the antiphase formation is the difference in the arrangement of adsorbed Te atoms. Te arrangement leading to antiphase formation occurs on Si terraces away from steps at relatively low temperatures. We reduced most of the twinning in epilayers by optimizing the {VI}/{II} ratio. We think the remaining twinning was confined to near the interface and it nucleated from the Te arrangement on terraces. We found that the Si(100)-CdTe(111) tilt was much smaller than that expected from the well-known Nagai model. We propose that a negative tilt is induced to reduce the lateral mismatch. To adjust the lateral distance of unit cells, 30 CdTe lattices match to 31 Si lattices. CdTe(111)B planes are inclined to reduce the remaining mismatch between two lattices. This initial tilt also causes wider CdTe terraces. We modified Nagai's tilting model for this reconstructed CdTe surface. The total tilt angle is defined by these two tilting mechanisms.

  2. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution, as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  3. Structural, optical and ferroelectric behavior of hydrothermally grown ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2013-12-01

    In the present study, zinc oxide (ZnO) nanostructures have been synthesized at 100 °C for different aging periods, 1, 24, 48 and 96 h by hydrothermal method. Structural, optical and ferroelectric properties were investigated using X-ray diffractometer, field emission scanning electron microscope, Transmission electron microscope, photoluminescence, UV-visible, Raman spectroscopy and P-E loop tracer. The X-ray diffractometer pattern indicates the pure phase formation of ZnO without any impurity for the samples synthesized from 1 to 96 h aging periods, respectively. Field emission scanning electron microscope and transmission electron microscope analysis also shows that the average diameter and length of these nanorods increases with increasing the aging periods. Moreover Raman and Photoluminescence spectrum also confirm the wurtzite phase formation of ZnO. The optical band gaps calculated through UV-visible spectroscopy are found to decrease from 3.81 to 3.45 eV with increase in aging periods, 1-96 h, respectively. Further, improved ferroelectric behavior has been observed for 48 and 96 h aged samples.

  4. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    PubMed

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. PMID:26965558

  5. Band structure characterization of WS2 grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tanabe, Iori; Gomez, Michael; Coley, William C.; Le, Duy; Echeverria, Elena M.; Stecklein, Gordon; Kandyba, Viktor; Balijepalli, Santosh K.; Klee, Velveth; Nguyen, Ariana E.; Preciado, Edwin; Lu, I.-Hsi; Bobek, Sarah; Barroso, David; Martinez-Ta, Dominic; Barinov, Alexei; Rahman, Talat S.; Dowben, Peter A.; Crowell, Paul A.; Bartels, Ludwig

    2016-06-01

    Growth by chemical vapor deposition (CVD) leads to multilayer WS2 of very high quality, based on high-resolution angle-resolved photoemission spectroscopy. The experimental valence band electronic structure is considered to be in good agreement with that obtained from density functional theory calculations. We find the spin-orbit splitting at the K ¯ point to be 420 ± 20 meV with a hole effective mass of -0.35 ± 0.02 me for the upper spin-orbit component (the branch closer to the Fermi level) and -0.43 ± 0.07 me for the lower spin-orbit component. As predicted by theory, a thickness-dependent increase of bandwidth is observed at the top of the valence band, in the region of the Brillouin zone center. The top of the valence band of the CVD-prepared films exhibits a substantial binding energy, consistent with n-type behavior, and in agreement with transistor characteristics acquired using devices incorporating the same WS2 material.

  6. Structural, compositional, and photoluminescence characterization of thermal chemical vapor deposition-grown Zn₃N₂ microtips

    SciTech Connect

    Wei, Pai-Chun E-mail: tsengcm@phys.sinica.edu.tw; Chang, Chung-Chieh; Hsu, Chia-Hao; Tong, Shih-Chang; Shen, Ji-Lin; Tseng, Chuan-Ming E-mail: tsengcm@phys.sinica.edu.tw

    2014-10-14

    The catalytic growth of Zn₃N₂ using guided-stream thermal chemical vapor deposition has been investigated within the parameter range of acicular growth to obtain uniform microtips with a high crystalline quality. The cubic anti-bixbyite crystal structure of Zn₃N₂ microtips and its related phonon mode are revealed by X-ray diffraction and Raman spectroscopy, respectively. The surface morphologies of pure and surface-oxidized Zn₃N₂ microtips are depicted by scanning electron microscopy and show the crack formation on the surface-oxidized Zn₃N₂ microtips. The spatial element distribution map confirms the VLS growth mechanism for Zn₃N₂ microtips and reveals the depth profile of zinc, nitrogen, oxygen, and nickel elements. Photoluminescence (PL) spectra of Zn₃N₂ microtips show a sharp infrared band-to-band emission peak at 1.34 eV with a full width at half maximum of ~100 meV and a very broad oxygen-related defect band emission peak centered at ~0.85 eV.

  7. Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel.

    PubMed

    Camilli, Luca; Scarselli, Manuela; Gobbo, Silvano Del; Castrucci, Paola; Gautron, Eric; De Crescenzi, Maurizio

    2012-01-01

    We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs) by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG). Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE) and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron-hole pairs. PMID:23016140

  8. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    PubMed

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications.

  9. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    SciTech Connect

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru; Ishizawa, Nobuo; Fukuda, Koichiro

    2015-09-15

    We prepared the b-axis-oriented polycrystalline Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} (NTGO) embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix using the reactive diffusion technique. When the sandwich-type Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5} diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10{sup −4} to 7.3×10{sup −3} S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na{sup +} ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems. - Graphical abstract: We have prepared the b-axis-oriented Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} polycrystal embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix by the heat treatment of sandwich-type diffusion couple of Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5}. The resulting Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} electrolyte showed the ionic conductivity ranging from 1.3×10{sup −4} S/cm at 573 K to 7.3×10{sup −3} S/cm at 1073 K. - Highlights: • The b

  10. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru; Ishizawa, Nobuo; Fukuda, Koichiro

    2015-09-01

    We prepared the b-axis-oriented polycrystalline Na0.85Ti0.51Ga4.37O8 (NTGO) embedded in Ga2O3-doped Na2Ti4O9 matrix using the reactive diffusion technique. When the sandwich-type Ga2TiO5/NaGaO2/Ga2TiO5 diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10-4 to 7.3×10-3 S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na+ ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems.

  11. Strain compensation technique in indium arsenide/gallium arsenide SAQD structure grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nuntawong, Noppadon

    This dissertation describes the investigations of the strain-compensation technique for stacked InAs/GaAs self assembled quantum dot (SAQD) structures grown by MOCVD. The effects of the strain-compensated (SC) layers have been investigated using several methods. High-resolution x-ray diffractrometry (XRD) is used to quantify the reduction of overall strain. Atomic force microscopy (AFM) reveals that the SC layer improves QD uniformity and reduces defect density. An increase in photoluminescence (PL) intensity has been observed. The combination of strain compensation and In flushing method, to dissolve large islands and prevent further defect propagation in the stacked QD active region, has been described. Experimental and mathematical treatments of the reduction of strain field in the compensated structure has been conducted. We identify two types of strain in stacked SAQD samples, homogeneous and localized. For homogeneous strain, we use high-resolution x-ray diffraction spectra to quantify the net strain in each sample, which indicate strain reduction of > 36% can be accomplished. For localized strain, which can not be observed by regular XRD techniques, an evaluating method has been proposed. As the localized field propagates, the strain energy diffuses and the maximum of the strain field reduces. Thus, the probability of strain coupling between QD layers is inversely proportional to the spacer thickness. By studying the strain coupling probability as a function of the spacer thickness, a 19% reduction of localized strain within SC structures has been evaluated. Finally, room temperature ground state lasing with an emission wavelength between 1250-1270 nm have been realized. The obtained threshold current density of 108 A/cm2 is the lowest value so far from MOCVD-based QD device emitting near 1.3 mum, which would be promising for application to light source in near-infrared optical communication systems.

  12. Effect of oxygen surfactant on the magnetic and structural properties of Co films grown on Cu(110)

    SciTech Connect

    Ling, W.L.; Qiu, Z.Q.; Takeuchi, O.; Ogletree, D.F.; Salmeron, M.

    2000-04-13

    It was found that atomically flat Co(110) film could be grown on Cu(110) using O as a surfactant. To obtain detailed knowledge on the effect of O on the growth, as well as on the magnetic properties of Co overlayer, we carried out an investigation on this system using Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED), Surface Magneto-Optic Kerr Effect (SMOKE), and Scanning Tunneling Microscopy (STM). With O as a surfactant, the initial growth of Co (< 1 ML) results in a flat monolayer structure. When the Co is thicker than 1 ML, three-dimensional clusters begin to form. These clusters become ordered islands at 3 ML Co and coalesce at about 5 ML Co. Above 5 ML Co, layer-by-layer growth resumes. No Cu segregation is observed. SMOKE studies at room temperature show that the Co film is magnetic above about 5 ML Co, with the magnetization easy axis along the [001] direction. On the other hand, without using oxygen as a surfactant, Co grows three-dimensionally on Cu(110). The Co overlayer has its easy magnetization axis along the [001] direction, but the onset of the magnetization was observed at 11 ML Co at room temperature.

  13. Structural properties of strained YBa2Cu3O6+x superconducting films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ariosa, Daniel; Abrecht, M.; Pavuna, Davor; Onellion, Marshall

    2000-09-01

    In YBa2Cu3O6+x compound the tetragonal to orthorhombic transition occurs around x equals 0.3, followed by a continuum variation of lattice parameters. Hence both, the structural and superconducting properties, depend upon the oxygen content in CuO chains. Conversely, the epitaxial stress, exerted by the substrate on YBCO films, modified the lattice parameters influencing the oxygen stability in the chains. The understanding of this mechanism is essential when growing epitaxial films for in- situ photoemission studies as well as for tunneling experiments, since the oxygen stability up to the top surface unit-cell is a central issue. We have studied this effect on c-axis oriented YBCO films grown by laser ablation on (001) STO single crystals. Accurate x-ray diffraction analysis of thick films (t GRT 500 angstrom) indicates the presence of two distinct layers, one strained and the other relaxed. Detailed analysis shows that the relaxed layer is as well oxidized as bulk samples, while the strained one is oxygen deficient. Furthermore, despite an oxygen content of about x equals 0.65, the strained layer is in the tetragonal phase (in bulk, the tetragonal phase exists for x < 0.3). We discuss these results in terms of competition between the chemical pressure induced by oxygen inclusion in the chains, and the uniaxial stress within the film.

  14. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Maksimova, K. Yu.; Grunin, A. I.; Bursian, V. E.; Lutsev, L. V.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  15. Effect of oxygen surfactant on the magnetic and structural properties of Co films grown on Cu(110)

    SciTech Connect

    Ling, W. L.; Qiu, Z. Q.; Takeuchi, O.; Ogletree, D. F.; Salmeron, M.

    2001-01-01

    It was found that atomically flat Co(110) films could be grown on Cu(110) using O as a surfactant. To obtain detailed knowledge on the effect of O on the growth, as well as on the magnetic properties of Co overlayer, we carried out an investigation on this system using Auger electron spectroscopy, low-energy electron diffraction, surface magneto-optic Kerr effect (SMOKE), and scanning tunneling microscopy. With O as a surfactant, the initial growth of Co (<1 ML) results in a flat monolayer structure. When the Co is thicker than 1 ML, three-dimensional clusters begin to form. These clusters become ordered islands at 3 ML Co and coalesce at {approx}5 ML Co. Above 5 ML Co, layer-by-layer growth resumes. No significant Cu segregation is observed. SMOKE studies at room temperature show that the Co film is magnetic above {approx}5 ML Co, with the magnetization easy axis along the [001] direction. On the other hand, without using oxygen as a surfactant, Co grows three-dimensionally on Cu(110). The Co overlayer has its easy magnetization axis along the [001] direction, but the onset of the magnetization was observed at 11 ML Co at room temperature.

  16. Structural, morphological, and optoelectrical characterization of Bi2S3 thin films grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Arredondo, C. A.; Vallejo, W.

    2016-03-01

    This work presents the results of synthesis and characterization of polycrystalline n-type Bi2S3 thin films. The films were grown through a chemical reaction from co-evaporation of their precursor elements in a soda-lime glass substrate. The effect of the experimental conditions on the optical, morphological structural properties, the growth rate, and the electrical conductivity (σ) was studied through spectral transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM) and σ versus T measurements, respectively. The results showed that the films grow only in the orthorhombic Bi2S3 bismuthinite phase. It was also found that the Bi2S3 films present an energy band gap (Eg) of about 1.38 eV. In addition to these results, the electrical conductivity of the Bi2S3 films was affected by both the transport of free carriers in extended states of the conduction band and for variable range hopping transport mechanisms, each one predominating in a different temperature range.

  17. Effect of gas flow rate on structural properties of zinc oxide nanowires grown by vapor-solid mechanism

    NASA Astrophysics Data System (ADS)

    Sakrani, S.; Jamaludin, N.; Muhammad, R.; Wahab, Y.; Ismail, A. K.; Suhaimi, S.; Mohammed, Y. H.

    2016-07-01

    ZnO nanowires have been grown on pre-coated (ZnO thin film) silicon (100) substrates with special attention on the effect of gas flow rate. The samples were fabricated using a simple thermal evaporation method within a horizontal quartz tube under controlled supply of Ar and O2 gas where ZnO powder source were previously weighed and heated at 960 °C for 2 h, allowing the reactant vapors to deposit onto substrate to form the nanowires. FESEM images revealed the randomly-oriented nanowires in which the shapes varied with increasing gas flow rates from varied from 90 to 130 sccm. According, both diameter and aspect ratio of the nanowires was observed to shift at 110 sccm where optimum growth condition was expected at this gas flow rate. From EDX spectrum analysis, ZnO nanowires appeared to have uniform composition and purity and confirming the hexagonal wurtzite crystal structure. These measured parameters in combination with unique properties made the possibility of ZnO nanowires potentially useful for functional nanodevices.

  18. Piezoelectric InAs (211)B quantum dots grown by molecular beam epitaxy: Structural and optical properties

    SciTech Connect

    Dialynas, G. E.; Kalliakos, S.; Xenogianni, C.; Androulidaki, M.; Kehagias, T.; Komninou, P.; Savvidis, P. G.; Pelekanos, N. T.; Hatzopoulos, Z.

    2010-11-15

    The structural and optical properties of piezoelectric (211)B InAs nanostructures grown by molecular beam epitaxy are systematically investigated as a function of the various growth parameters. Depending on the specific growth conditions, we show that the InAs nanostructures take the form of a quantum dot (QD) or a quantum dash, their height ranges between 2 and 20 nm, and their density varies from a few times 10{sup 8} cm{sup -2} all the way up to a few times 10{sup 10} cm{sup -2}. The (211)B QDs are characterized by large aspect ratios, which are compatible with a truncated pyramid morphology. By analyzing the QD emission spectrum, we conclude that only small size QDs, with heights less than 3 nm, are optically active. This is consistent with high resolution transmission electron microscopy observations showing that large QDs contain misfit dislocations, whereas small QDs are dislocation-free. The formation of a two-dimensional wetting layer is observed optically, and its thickness is determined to be between 0.30 and 0.39 nm. Finally, the large blueshift in the QD emission observed with increasing excitation power represents a clear evidence of the strong built-in piezoelectric field present in these dots.

  19. Study of GaAs/AlGaAs quantum-well structures grown by MOVPE using tertiarybutylarsine

    NASA Astrophysics Data System (ADS)

    Lee, Hyung G.; Kim, HyungJun; Park, S. H.; Langer, Dietrich W.

    1991-03-01

    Tertiarybutylarsine (TBAs) was utilized in the fabrication of GaAs A1GaAs and GaAs/A1GaAs structures in a Low Pressure - Metal Organic Vapor Phase Epitaxy (LP-MOVPE) system. Good quality epitaxial layers were achieved at 700 C with V/LI! ratio of 50. Undoped GaAs and AI (x 3-0. 6) layers were p-type with typical background carrier concentrations of mid 1014 cm3 and 1016 cm3 range respectively. Carbon could be used as p-type dopant in A1GaAS layers by controlling the TBAs mole fraction. Double-heterostructure lasers were fabricated and showed a threshold current density of 500 A/cm2. GaAs/AlGaAs multiple quantum well structures produced photoluminescence spectra with very narrow FWHM comparable to arsine-grown samples. Electro-absorptive waveguide modulator with MQW active layer demonstrated more than 2: 1 modulation ratio at the energy far below the QW exciton absorption peak. The deposition of 111-V compound semiconductors by metalorganic vapor phase epitaxy (MOVPE) is normally accomplished with gaseous group V precursors. These sources arsine (AsH3) and phosphine (PH3) are highly toxic and are stored in high pressure cylinders. Thus careful handlings are required to avoid accidental leakage. Lately a number of less hazardous arsenic compounds have been investigated as alternative As sources Methyl ethyl and butyl groups are substituted for one or more of the hydrogen atoms in arsine. In particular Tertiarybutylarsine (TBAs) has been most successful in growing high quality GaAs and A1GaAS films and useful electronic devices have

  20. Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming.

    PubMed

    Romaní, Anna M; Borrego, Carles M; Díaz-Villanueva, Verónica; Freixa, Anna; Gich, Frederic; Ylla, Irene

    2014-08-01

    Biofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old). In dark-grown biofilms, changes in the prokaryotic community composition due to warming were mainly related to rotifer grazing, but no significant changes were observed in functional fingerprints. In light-grown biofilms, warming also affected protozoan densities, but its effect on prokaryotic density and composition was less evident. In contrast, heterotrophic metabolic activities in light-grown biofilms under warming showed a decrease in the functional diversity towards a specialized use of several carbohydrates. Results suggest that prokaryotes are functionally redundant in dark biofilms but functionally plastic in light biofilms. The more complex and self-serving light-grown biofilm determines a more buffered response to temperature than dark-grown biofilms. Despite the moderate increase in temperature of only 2°C, warming conditions drive significant changes in freshwater biofilms, which responded by finely tuning a complex network of interactions among microbial populations within the biofilm matrix.

  1. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-10-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  2. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; Worschech, L.; Grutzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  3. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE PAGES

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  4. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  5. CdTeOx to CdTeO3 structural phase transition in as-grown polycrystalline films by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Carmona-Rodríguez, J.; Lozada-Morales, R.; Jiménez-Sandoval, O.; Rodríguez-Melgarejo, F.; Meléndez-Lira, M.; Jiménez-Sandoval, S. J.

    2008-06-01

    Polycrystalline thin films of CdTeOx (x <3) and CdTeO3 were grown at 400 °C by rf-reactive sputtering. The CdTe oxide films were elaborated in an Ar-O2 atmosphere using different oxygen flow rates in the 5-11 SCCM (SCCM denotes cubic centimeter per minute at STP) range. The structural properties of the samples were studied by x-ray diffraction and micro-Raman spectroscopy. The diffraction patterns show that the films grown with oxygen flows between 5 and 10.5 SCCM present a crystalline structure similar to that of pure CdTe films, that is, a mixture of cubic zinc-blende-type and hexagonal wurtzite-type structures. However, the diffraction patterns of samples grown under an oxygen flow rate of 11 SCCM are strikingly different and in agreement with that of cubic CdTeO3, indicating that a structural phase transition was achieved. These results are in accordance with those obtained by micro-Raman spectroscopy, where the spectra of the CdTeOx samples grown with oxygen flows below 11 SCCM show an intense LO CdTe-like peak at 166 cm-1, which is no longer observable for the CdTeO3 sample. Instead, the Raman spectrum in this case is dominated by two broad bands in the 550-800 cm-1 range, which have been ascribed to the vibrational modes of TeO3 structural subunits. The optical properties, as determined by optical absorption and photoreflectance spectroscopies, are in correspondence with the structural and chemical changes induced by the incorporation of oxygen. The band gap varied between 1.55 and 3.3 eV, the last value corresponding to CdTeO3 films.

  6. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    SciTech Connect

    Szymański, Tomasz Wośko, Mateusz; Paszkiewicz, Bogdan; Paszkiewicz, Regina

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grown with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.

  7. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    PubMed Central

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  8. Cathodoluminescence study of radiative interface defects in thermally grown SiO{sub 2}/4H-SiC(0001) structures

    SciTech Connect

    Fukushima, Yuta; Chanthaphan, Atthawut; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2015-06-29

    Radiative defects in thermally grown SiO{sub 2}/4H-SiC(0001) structures and their location in depth were investigated by means of cathodoluminescence spectroscopy. It was found that while luminescence peaks ascribed to oxygen vacancy and nonbridging oxygen hole centers were observed both from thermal oxides grown on (0001) Si-face and C-face surfaces as with thermal oxides on Si, intense yellow luminescence at a wavelength of around 600 nm was identified only from the oxide interface on the Si-face substrate regardless of the oxide thickness and dopant type. Possible physical origins of the radiative centers localized near an oxide interface of a few nm thick are discussed on the basis of visible light emission from Si backbone structures.

  9. Structure and morphology characters of GaN grown by ECR-MBE using hydrogen-nitrogen mixed gas plasma[Electron Cyclotron Resonance-Molecular Beam Epitaxy

    SciTech Connect

    Araki, Tsutomu; Chiba, Yasuo; Nanishi, Yasushi

    2000-07-01

    GaN growth by electron-cyclotron-resonance plasma-excited molecular beam epitaxy using hydrogen-nitrogen mixed gas plasma were carried out on GaN templates with a different polar-surface. Structure and surface morphology of the GaN layers were characterized using transmission electron microscopy. The GaN layer grown with hydrogen on N-polar template showed a relatively flat morphology including hillocks. Columnar domain existed in the center of the hillock, which might be attributed to the existence of tiny inversion domain with Ga-polarity. On the other hand, columnar structure was formed in the GaN layer grown with hydrogen on Ga-polar template.

  10. Crystal growth, structural investigation and characterization of newly grown quinolinium derivative single crystal: 1-Ethyl-2-(2-p-tolyl-vinyl)-quinolinium; iodide

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Kalainathan, S.

    2016-11-01

    A new N-ethyl quinolinium derivative of 1-Ethyl-2-(2-p-tolyl-vinyl)-quinoliniumiodide (PTQI) was synthesized by knoevenagel condensation reaction and single crystal was successfully grown by slow evaporation technique. The grown crystal exhibit a centric monoclinic space group P21/C with a third order nonlinear optical response in their crystalline form. The molecular structure of the crystal was studied by single crystal XRD and NMR spectral analysis. FTIR reveal the existence of vinyl group and functional groups of the grown crystal. The melting point and thermal behaviour of PTQI were investigated using TG/DTA analysis. The linear optical study was done by UV-vis-NIR analysis show that the crystal is transparent in the wavelength range of 472-1100 nm. Photoluminescence study shows that PTQI crystal has green luminescence emission property. The etching study reveals that the title crystal encompasses good crystalline nature and lesser amount of dislocations. Third order nonlinear optical property was determined by Z scan technique and the results making grown crystal as a promising material in the field of nonlinear optical devices.

  11. Effects of annealing on the polymorphic structure of starches from sweet potatoes (Ayamurasaki and Sunnyred cultivars) grown at various soil temperatures.

    PubMed

    Genkina, Natalia K; Wasserman, Lyubov A; Noda, Takahiro; Tester, Richard F; Yuryev, Vladimir P

    2004-04-28

    Starches extracted from the sweet potato cultivars Sunnyred and Ayamurasaki grown at 15 or 33 degrees C (soil temperature) were annealed in excess water (3 mg starch/mL water) for different times (1, 4, 8 or 10h) at the temperatures 2-3 degrees K below the onset melting temperature. The structures of annealed starches, as well as their gelatinisation (melting) properties, were studied using high-sensitivity differential scanning calorimetry (HSDSC). In excess water, the single endothermic peak shifted to higher temperatures, while the melting (gelatinisation) enthalpy changed only very slightly, if any. The elevation of gelatinisation temperature was associated with increasing order/thickness of the crystalline lamellae. The only DSC endotherm identified in 0.6 M KCl for Sunnyred starch grown at 33 degrees C was attributed to A-type polymorphic structure. The multiple endothermic forms observed by DSC performed in 0.6M KCl for annealed starches from both cultivars grown at 15 degrees C provided evidence of a complex C-type (A- plus B-type) polymorphic structure of crystalline lamellae. The A:B-ratio of two polymorphic forms increased upon annealing due to partial transformation of B- to A-polymorph, which was time dependent. Long heating periods facilitated the maximal transformation of B- to A-polymorph associated with limited A:B ratio.

  12. Effects of annealing on the polymorphic structure of starches from sweet potatoes (Ayamurasaki and Sunnyred cultivars) grown at various soil temperatures.

    PubMed

    Genkina, Natalia K; Wasserman, Lyubov A; Noda, Takahiro; Tester, Richard F; Yuryev, Vladimir P

    2004-04-28

    Starches extracted from the sweet potato cultivars Sunnyred and Ayamurasaki grown at 15 or 33 degrees C (soil temperature) were annealed in excess water (3 mg starch/mL water) for different times (1, 4, 8 or 10h) at the temperatures 2-3 degrees K below the onset melting temperature. The structures of annealed starches, as well as their gelatinisation (melting) properties, were studied using high-sensitivity differential scanning calorimetry (HSDSC). In excess water, the single endothermic peak shifted to higher temperatures, while the melting (gelatinisation) enthalpy changed only very slightly, if any. The elevation of gelatinisation temperature was associated with increasing order/thickness of the crystalline lamellae. The only DSC endotherm identified in 0.6 M KCl for Sunnyred starch grown at 33 degrees C was attributed to A-type polymorphic structure. The multiple endothermic forms observed by DSC performed in 0.6M KCl for annealed starches from both cultivars grown at 15 degrees C provided evidence of a complex C-type (A- plus B-type) polymorphic structure of crystalline lamellae. The A:B-ratio of two polymorphic forms increased upon annealing due to partial transformation of B- to A-polymorph, which was time dependent. Long heating periods facilitated the maximal transformation of B- to A-polymorph associated with limited A:B ratio. PMID:15063196

  13. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.

    2013-06-01

    By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.

  14. Stability and structure of nanowires grown from silver, copper and their alloys by laser ablation into superfluid helium.

    PubMed

    Gordon, Eugene; Karabulin, Alexander; Matyushenko, Vladimir; Sizov, Vyacheslav; Khodos, Igor

    2014-12-14

    Nanowires with 5 nm diameter made of silver, copper, and their alloys were grown in superfluid helium. The silver nanowires being heated to 300 K disintegrated into individual clusters. In contrast, copper nanowires were stable at room temperature, and nanowires made of alloys were also stable despite their low melting temperature.

  15. Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

    DOE PAGES

    Kwon, J.; Bowers, M. L.; Brandes, M. C.; McCreary, V.; Robertson, Ian M.; Phani, P. Sudaharshan; Bei, H.; Gao, Y. F.; Pharr, George M.; George, Easo P.; et al

    2015-02-26

    In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations inmore » the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to

  16. Interface-structure of the Si/SiC heterojunction grown on 6H-SiC

    SciTech Connect

    Li, L. B.; Chen, Z. M.; Zang, Y.

    2015-01-07

    The Si/SiC heterojunctions were prepared on 6H-SiC (0001) C-face by low-pressure chemical vapour deposition at 850 ∼ 1050 °C. Transmission electron microscopy and selected area electron diffraction were employed to investigate the interface-structure of Si/SiC heterojunctions. The Si/6H-SiC heterostructure of large lattice-mismatch follows domain matching epitaxy mode, which releases most of the lattice-mismatch strain, and the coherent Si epilayers can be grown on 6H-SiC. Si(1-11)/6H-SiC(0001) heterostructure is obtained at 900 °C, and the in-plane orientation relationship of Si/6H-SiC heterostructure is (1–11)[1-1-2]{sub Si}//(0001)[-2110]{sub 6H-SiC}. The Si(1-11)/6H-SiC(0001) interface has the same 4:5 Si-to-SiC matching mode with a residual lattice-mismatch of 0.26% along both the Si[1-1-2] and Si[110] orientations. When the growth temperature increases up to 1000 °C, the 〈220〉 preferential orientation of the Si film appears. SAED patterns at the Si/6H-SiC interface show that the in-plane orientation relationship is (-220)[001]{sub Si}//(0001)[2-1-10]{sub 6H-SiC}. Along Si[110] orientation, the Si-to-SiC matching mode is still 4:5; along the vertical orientation Si[001], the Si-to-SiC mode change to approximate 1:2 and the residual mismatch is 1.84% correspondingly. The number of the atoms in one matching-period decreases with increasing residual lattice-mismatch in domain matching epitaxy and vice versa. The Si film grows epitaxially but with misfit dislocations at the interface between the Si film and the 6H-SiC substrate. And the misfit dislocation density of the Si(1-11)/6H-SiC(0001) and Si(-220)/6H-SiC(0001) obtained by experimental observations is as low as 0.487 × 10{sup 14 }cm{sup −2} and 1.217 × 10{sup 14 }cm{sup −2}, respectively, which is much smaller than the theoretical calculation results.

  17. Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

    SciTech Connect

    Kwon, J.; Bowers, M. L.; Brandes, M. C.; McCreary, V.; Robertson, Ian M.; Phani, P. Sudaharshan; Bei, H.; Gao, Y. F.; Pharr, George M.; George, Easo P.; Mills, M. J.

    2015-02-26

    In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations in the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to

  18. Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Sharma, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-11-01

    This paper presents effect of low temperature annealing on the physical properties of ZnO thin films for photovoltaic applications. The thin films of thickness 50 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing radio frequency magnetron sputtering technique followed by thermal annealing within low temperature range 150-450 °C. These as-grown and annealed films were subjected to the X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of the as-grown ZnO film was also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the films have wurtzite structure of hexagonal phase with preferred orientation (1 0 0) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in detail. The optical band gap was found in the range 3.30-3.52 eV and observed to decrease with annealing temperature except 150 °C. The current-voltage characteristics show that the films exhibit approximately ohmic behavior. The SEM studies show that the films are uniform, homogeneous and free from crystal defects and voids. The experimental results reveal that ZnO thin films may be used as alternative materials for eco-friendly buffer layer to the thin film solar cell applications.

  19. Structural investigation of InGaAsN films grown on pseudo-lattice-matched InGaAs substrates by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kongjaeng, Pornsiri; Sanorpim, Sakuntam; Yamamoto, Takahisa; Ono, Wataru; Nakajima, Fumio; Katayama, Ryuji; Onabe, Kentaro

    2007-01-01

    The use of the nearly lattice-matched In xGa 1-xAs pseudo-substrate has been explored for the growth of In xGa 1-xAs 1-yN y with higher In ( x) contents by metalorganic vapor phase epitaxy (MOVPE). As compared with the quality of high In-containing In 0.3Ga 0.7As 0.98N 0.02 films grown directly on GaAs substrates, the growth on In 0.2Ga 0.8As pseudo-lattice-matched substrates yielded good structural quality films. The number of misfit dislocations investigated by cross-sectional transmission electron microscopy was found to be reduced in the InGaAsN grown layer. Furthermore, higher optical quality In 0.3Ga 0.7As 0.98N 0.02 films with the bandgap of 1.01 eV were grown on the In 0.2Ga 0.8As pseudo-lattice-matched substrate. This study shows that the use of the In xGa 1-xAs pseudo-lattice-matched substrate is an effective method to fabricate a thick lattice-matched InGaAsN layers with higher optical and structural qualities necessary for the development of the multijunction (MJ) solar cells.

  20. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    PubMed

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film. PMID:27483897

  1. Structural and optical properties of InAs/InAsSb superlattices grown by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Ning, Zhen-Dong; Liu, Shu-Man; Luo, Shuai; Ren, Fei; Wang, Feng-Jiao; Yang, Tao; Liu, Feng-Qi; Wang, Zhan-Guo; Zhao, Lian-Cheng

    2016-04-01

    InAs/InAsSb superlattices were grown on (0 0 1) GaSb substrates by metal organic chemical vapor deposition for potential applications as mid-infrared optoelectronic devices. X-ray diffraction, transmission electron microscopy, photoluminescence emission and spectral photoconductivity were used to characterize the grown structures. Generally, photoluminescence emission measurements of InAs/InAsSb superlattices were performed over the temperature range from 11 K to 300 K. The Varshni and Bose-Einstein parameters were determined. Low-temperature photoluminescence measurements showed peaks at 3-5 μm, while photoconductance results showed strong spectral response up to room temperature, when the photoresponse onset was extended to 5.5 μm. The photoluminescence emission band covers the CO2 absorption peak making it suitable for application in CO2 detection.

  2. Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport.

    PubMed

    McCreary, Amber; Ghosh, Rudresh; Amani, Matin; Wang, Jin; Duerloo, Karel-Alexander N; Sharma, Ankit; Jarvis, Karalee; Reed, Evan J; Dongare, Avinash M; Banerjee, Sanjay K; Terrones, Mauricio; Namburu, Raju R; Dubey, Madan

    2016-03-22

    One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.

  3. Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport.

    PubMed

    McCreary, Amber; Ghosh, Rudresh; Amani, Matin; Wang, Jin; Duerloo, Karel-Alexander N; Sharma, Ankit; Jarvis, Karalee; Reed, Evan J; Dongare, Avinash M; Banerjee, Sanjay K; Terrones, Mauricio; Namburu, Raju R; Dubey, Madan

    2016-03-22

    One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain. PMID:26881920

  4. Study of structural defects and crystalline perfection of near stoichiometric LiNbO3 crystals grown from flux and prepared by VTE technique

    NASA Astrophysics Data System (ADS)

    Bhatt, R.; Bhaumik, Indranil; Ganesamoorthy, S.; Karnal, A. K.; Gupta, P. K.; Swami, M. K.; Patel, H. S.; Sinha, A. K.; Upadhyay, A.

    2014-10-01

    Near-stoichiometric LiNbO3 (SLN) single crystals were grown/prepared by top seeded solution growth/vapor transport equilibration (VTE) technique, and investigated for stoichiometry, disorder and structural defects. The optical absorption and Raman line-width studies revealed higher stoichiometry (i.e., higher Li/Nb) for SLN prepared by vapor transport equilibration (SLN_V) technique in comparison to SLN grown from K2O flux (SLN_K) and Li-rich melt (SLN_L). The nearly symmetric single diffraction curve (DC), though broad, as observed for SLN_L specimen in high resolution X-rays diffraction (HRXRD) analysis depicted lesser low angle grain boundaries. On the other hand, relatively sharp DC with lowest full-width at half-maximum (FWHM ∼45 arc-sec) in HRXRD and lesser Urbach energy (∼80 meV) in the absorption spectra for SLN_V crystal revealed less structural defects with respect to other SLN crystals. The higher FWHM of DCs in HRXRD for SLN_L and SLN_K is attributed to growth related imperfections usually observed in solution growth. Though, VTE process results in SLN crystals with better stoichiometry and lesser structural defects but the limitation being that samples up to ∼1 mm thickness can be prepared with this technique. For bulk SLN, growth from K2O flux resulted in better stoichiometry whereas Li-rich flux resulted in better structural quality. The absorption spectra of the grown SLN crystals depicted oxygen vacancy induced electronic defects (Nb4+, polarons), which was further authenticated by X-ray absorption near-edge structure (XANES) analysis at Nb K edge revealing lesser Nb4+ defects in SLN with respect to congruent lithium niobate (CLN) crystal.

  5. Computational Analysis of the Optical and Charge Transport Properties of Ultrasonic Spray Pyrolysis-Grown Zinc Oxide/Graphene Hybrid Structures.

    PubMed

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2016-12-01

    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively. PMID:27173675

  6. Computational Analysis of the Optical and Charge Transport Properties of Ultrasonic Spray Pyrolysis-Grown Zinc Oxide/Graphene Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2016-05-01

    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively.

  7. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition.

    PubMed

    Ahlawat, Anju; Mishra, Dileep K; Sathe, V G; Kumar, Ravi; Sharma, T K

    2013-01-16

    The local domain structure of a strain free, 150 nm thick, epitaxially grown single crystalline thin film of CaCu(3)Ti(4)O(12) is probed by polarized Raman spectroscopy. The polarization dependence of the Raman intensities of the observed bands as a function of varying angle between the domain axes and the polarization vector of the scattered laser photon is measured. Theoretical formulations involving the Raman tensor are presented, which enable determination of the domain structure from the observed polarized Raman spectra, and a single-crystal-like domain structure is found. The Raman tensor elements and domain orientation direction were determined by fitting the observed Raman intensities with theoretical calculations and by carrying out Raman mapping of the film. Our data show an absence of twin domain structure and twin domain boundaries in the single-crystal-like epitaxial thin films of CaCu(3)Ti(4)O(12).

  8. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ahlawat, Anju; Mishra, Dileep K.; Sathe, V. G.; Kumar, Ravi; Sharma, T. K.

    2013-01-01

    The local domain structure of a strain free, 150 nm thick, epitaxially grown single crystalline thin film of CaCu3Ti4O12 is probed by polarized Raman spectroscopy. The polarization dependence of the Raman intensities of the observed bands as a function of varying angle between the domain axes and the polarization vector of the scattered laser photon is measured. Theoretical formulations involving the Raman tensor are presented, which enable determination of the domain structure from the observed polarized Raman spectra, and a single-crystal-like domain structure is found. The Raman tensor elements and domain orientation direction were determined by fitting the observed Raman intensities with theoretical calculations and by carrying out Raman mapping of the film. Our data show an absence of twin domain structure and twin domain boundaries in the single-crystal-like epitaxial thin films of CaCu3Ti4O12.

  9. Structural, morphological and electrical studies of lithium ion irradiated sodium potassium niobate single crystal grown by flux method

    SciTech Connect

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-02-05

    Single crystals of sodium potassium niobate (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) were grown by flux method and crystals were irradiated with 45 MeV Li ions to modify the electrical properties. Energy of the irradiated heavy ion was lower than the threshold energy to produce columnar defect and only clusters of defect was observed. The surface morphology of the irradiated single crystals was studied using scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the surface roughness value was found to increase with increasing fluence.

  10. Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Ho, Jian Wei; Zhang, Li; Wee, Qixun; Tay, Andrew A. O.; Heuken, Michael; Chua, Soo-Jin

    2013-11-01

    We examine the structural and morphological qualities of InxGa1-xN grown directly on AlN/Si(111) substrates by MOCVD as a function of growth pressure and temperature. The use of elevated pressures (up to 300 Torr) resulted in the suppression of InGaN phase separation and indium droplet formation allowing single phase, textured epitaxial (0002)-oriented InxGa1-xN to be grown on the highly mismatched substrates. Various indium compositions x, up to ~0.4, can subsequently be achieved by adjusting the growth temperature over the range of 655 °C-795 °C. Increase in growth temperature reduces the indium composition x but is accompanied by a decrease in the FWHM of the (002)-ω and asymmetric (105)-ω rocking curves indicating lower crystallographic tilt and improved crystal quality. The reduction in tilt saturates at ~705 °C. This corroborates with room-temperature photoluminescence (PL) measurements where PL is not detectable below ~705 °C but emerges above this temperature and narrows in FWHM with further temperature increase. SEM shows that films grown at low pressure are compositionally and morphologically non-uniform, while films grown at elevated pressure are homogeneous, single phase and composed of densely packed, interconnected epitaxial islands, with lower temperature favouring a smaller island size. We conclude that while lower temperatures favour increased indium incorporation, the ensuing smaller island size and greater extent of island boundaries, arising from larger lattice mismatch and lower surface mobility of species, degrades crystal quality appreciably. Above 705 °C, improvement in crystallographic quality is limited by the AlN growth template and requires innovative MOCVD growth strategies.

  11. Optical, structural, and transport properties of indium nitride, indium gallium nitride alloys grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Khan, Neelam

    InGaN based, blue and green light emitting diodes (LEDs) have been successfully produced over the past decade. But the progress of these LEDs is often limited by the fundamental problems of InGaN such as differences in lattice constants, thermal expansion coefficients and physical properties between InN and GaN. This difficulty could be addressed by studying pure InN and InxGa 1-xN alloys. In this context Ga-rich InxGa1-xN (x ≤ 0.4) epilayers were grown by metal organic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) measurements showed InxGa1-xN films with x= 0.37 had single phase. Phase separation occurred for x ˜ 0.4. To understand the issue of phase separation in Ga-rich InxGa 1-xN, studies on growth of pure InN and In-rich InxGa 1-xN alloys were carried out. InN and In-rich InxGa1-xN (x ˜ 0.97-0.40) epilayers were grown on AlN/Al2O3 templates. A Hall mobility of 1400 cm2/Vs with a carrier concentration of 7x1018cm -3 was observed for InN epilayers grown on AlN templates. Photoluminescence (PL) emission spectra revealed a band to band emission peak at ˜0.75 eV for InN. This peak shifted to 1.15 eV when In content was varied from 1.0 to 0.63 in In-rich InxGa1-xN epilayers. After growth parameter optimization of In-rich InxGa1-xN alloys with (x = 0.97-0.40) were successfully grown without phase separation. Effects of Mg doping on the PL properties of InN epilayers grown on GaN/Al 2O3 templates were investigated. An emission line at ˜ 0.76 eV, which was absent in undoped InN epilayers and was about 60 meV below the band edge emission peak at ˜ 0.82 eV, was observed to be the dominant emission in Mg-doped InN epilayers. PL peak position and the temperature dependent emission intensity corroborated each other and suggested that Mg acceptor level in InN is about 60 meV above the valance band maximum. Strain effects on the emission properties of InGaN/GaN multiple quantum wells (MQWs) were studied using a single blue LED wafer possessing a continuous

  12. Improved structural properties and crystal coherence of superconducting NdBa2Cu3O7-δ films grown by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Schmauder, T.; Saleh, S. A.; Rast, S.; Pavuna, D.

    2000-11-01

    We report on improved structural, crystallographic and electrical properties of epitaxial NdBa2Cu3O7-δ (NBCO) films grown on SrTiO3 by `off-axis' pulsed laser deposition (PLD). Transport and XRD studies show that the c-axis-oriented epitaxial films, with critical temperatures of 90-92 K, are mono phase and single-crystalline. Furthermore, very smooth, almost outgrowth-free surfaces and crystal coherences of up to 0.8 µm (to our knowledge the best value ever reported for high-Tc films) were obtained.

  13. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  14. Prediction of the structure of a novel amylopectin-based Cd-associated molecule in the stem of common reed grown in the presence of Cd.

    PubMed

    Higuchi, Kyoko; Ito, Naho; Nukada, Tomoo

    2016-10-01

    We previously found a novel Cd-associated molecule with an apparent molecular weight of 10-50 kDa in common reeds grown in the presence of Cd. The partial structure of this molecule was predicted by enzymatic digestion to release Cd from a trace amount that had been partially purified from the cell sap. The major component was branched α-glucan, whereas a peptide, β-1,4 glucan, and mannose were found as minor components. Uronic acids appeared to provide functional groups that bind Cd.

  15. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    PubMed

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  16. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    PubMed

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  17. Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings

    PubMed Central

    Solís-Domínguez, Fernando A.; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2011-01-01

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p < 0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  18. Probing the chemical structure of monolayer covalent-organic frameworks grown via Schiff-base condensation reactions.

    PubMed

    Hu, Ya; Goodeal, Niall; Chen, Ying; Ganose, Alex M; Palgrave, Robert G; Bronstein, Hugo; Blunt, Matthew O

    2016-08-01

    Two-dimensional covalent-organic frameworks (2D-COFs) on surfaces offer a facile route to new 2D materials. Schiff-base condensation reactions have proven to be an effective fabrication route for such materials. We present scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) studies of porphyrin 2D-COFs grown at a solid-vapour interface. XPS shows that covalent links between porphyrins consist of a mixture of imines and hemiaminals, a non-conjugated intermediate in the Schiff-base condensation reaction. These results demonstrate that environmental conditions during growth can have an important impact on the chemical composition of Schiff-base 2D-COFs.

  19. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    SciTech Connect

    Acharya, Ananta R. E-mail: anantaach@gmail.com; Thoms, Brian D.; Nepal, Neeraj; Eddy, Charles R.

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  20. Correlation of Crystalline and Structural Properties of C60 Thin Films Grown at Various Temperature with Charge Carrier Mobility

    SciTech Connect

    Singh,T.; Sarciftci, N.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H.

    2007-01-01

    Transistors fabricated from C{sub 60} films grown by hot wall epitaxy at higher substrate temperature, showed an order of magnitude increased charge carrier mobility up to 6 cm{sup 2}/V s. In this letter, the authors present an extensive study of morphology and crystallinity of the fullerene films using atomic force microscopy and grazing-incidence x-ray diffraction. A clear correlation of crystalline quality of the C{sub 60} film and charge carrier mobility was found. A higher substrate temperature leads to a single crystal-like faceted fullerene crystals. The high crystalline quality solely brings a drastic improvement in the charge carrier mobility. A gate voltage independent mobility is also observed in these devices which can be attributed to the highly conjugated nature of the C{sub 60} thin film.

  1. Resistance change in memory structures integrating CuTCNQ nanowires grown on dedicated HfO 2 switching layer

    NASA Astrophysics Data System (ADS)

    Muller, Ch.; Deleruyelle, D.; Müller, R.; Thomas, M.; Demolliens, A.; Turquat, Ch.; Spiga, S.

    2011-02-01

    The present paper deals with the bipolar resistive switching of memory elements based on metal-organic complex CuTCNQ (copper-7,7',8,8'-tetracyanoquinodimethane) nanowires grown on a dedicated HfO2 oxide switching layer. Switching characteristics are explored either at millimeter scale on pad-size devices or at nanoscale by using conductive atomic force microscopy. Whatever the investigation scales, the basic memory characteristics appear to be controlled by copper ionic transport within a switching layer. This latter corresponds to either HfO2 layer in pad-size devices or nanogap formed at nanoscale between the atomic force microscopy conductive tip and CuTCNQ surface. Depending upon the observation scale, the switching layer (either HfO2 oxide or nanogap) acts as a matrix in which copper conductive bridges are formed and dissolved thanks to redox processes controlled in alternating applied bias voltages.

  2. Structural properties of SrO thin films grown by molecular beam epitaxy on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Maksimov, O.; Heydemann, V. D.; Fisher, P.; Skowronski, M.; Salvador, P. A.

    2006-12-01

    SrO films were grown on LaAlO3 substrates by molecular beam epitaxy and characterized using reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD). The evolution of the RHEED pattern is discussed as a function of film thickness. 500Å thick SrO films were relaxed and exhibited RHEED patterns indicative of an atomically smooth surface having uniform terrace heights. Films had the epitaxial relationship (001)SrO‖(001)LaAlO3; [010]SrO‖[110]LaAlO3. This 45° in-plane rotation minimizes mismatch and leads to films of high crystalline quality, as verified by Kikuchi lines in the RHEED patterns and narrow rocking curves of the (002) XRD peak.

  3. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  4. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  5. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young

    2013-05-01

    ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.

  6. Spatially correlated structural and optical characterization of a single InGaAs quantum well fin selectively grown on Si by microscopy and cathodoluminescence techniques

    NASA Astrophysics Data System (ADS)

    David, S.; Roque, J.; Rochat, N.; Bernier, N.; Piot, L.; Alcotte, R.; Cerba, T.; Martin, M.; Moeyaert, J.; Bogumilowizc, Y.; Arnaud, S.; Bertin, F.; Bassani, F.; Baron, T.

    2016-05-01

    Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.

  7. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Amiri, G.; Sallet, V.; Souissi, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2016-05-01

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  8. Temperature dependent surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs double quantum well structures grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Wu, J. D.; Huang, Y. S.; Su, Y. K.; Tiong, K. K.

    2009-08-01

    Highly strained InxGa1-xAs/GaAs double quantum well (DQW) structures grown by metal organic vapor phase epitaxy with different In compositions are investigated by surface photovoltage spectroscopy (SPS) in the temperature range 20-300 K. A lineshape fit of spectral features in the differential surface photovoltage (SPV) spectra determines the transition energies accurately. A comprehensive analysis of the anomalous phenomena appearing in lower temperature SPV spectra enable us to evaluate directly the band lineup of DQW and to remove the ambiguity in the identification of spectral features. The process of separation of carriers within the QW with possible capture by the interface defect traps plays an important role for phase change in SPV signal in the vicinity of light-hole related feature at low temperature. The results demonstrate the considerable diagnostic values of the SPS technique for characterizing these highly strained DQW structures.

  9. Structural properties of InN films grown on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Cho, Yong Jin; Brandt, Oliver; Kaganer, Vladimir M.; Ramsteiner, Manfred; Riechert, Henning; Korytov, Maxim; Albrecht, Martin

    2012-04-09

    We study the impact of substrate temperature and layer thickness on the morphological and structural properties of InN films directly grown on O-face ZnO(0001) substrates by plasma-assisted molecular beam epitaxy. With increasing substrate temperature, an interfacial reaction between InN and ZnO takes place that eventually results in the formation of cubic In{sub 2}O{sub 3} and voids. The properties of the InN films, however, are found to be unaffected by this reaction for substrate temperatures less than 550 deg. C. In fact, both the morphological and the structural quality of InN improve with increasing substrate temperature in the range from 350 to 500 deg. C. High quality films with low threading dislocation densities are demonstrated.

  10. Microscopic structure of GaSb(001) c(2{times}6) surfaces prepared by Sb decapping of MBE-grown samples

    SciTech Connect

    Resch-Esser, U.; Esser, N.; Brar, B.; Kroemer, H.

    1997-06-01

    In this study we report on the microscopic structure of GaSb(001) c(2{times}6) surfaces prepared by Sb decapping. Molecular beam epitaxy grown GaSb(001) layers capped with a protective Sb layer were transferred through the atmosphere into an UHV-analysis system and investigated by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). After thermal desorption of the capping layer clear c(2{times}6) LEED patterns were observed. STM images show flat surface areas with a rowlike, somewhat disordered structure. High-resolution images resolve individual Sb dimers on the surface. The surface is covered by an incomplete layer of dimerized Sb, adsorbed on a complete second layer of Sb, which is also dimerized in that regions not covered by the fractional Sb top layer. {copyright} {ital 1997} {ital The American Physical Society}

  11. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Wassner, Thomas A.; Laumer, Bernhard; Maier, Stefan; Stutzmann, Martin; Laufer, Andreas; Meyer, Bruno K.; Eickhoff, Martin

    2009-01-15

    Wurtzite Zn{sub 1-x}Mg{sub x}O thin films with Mg contents between x=0 and x=0.37 were grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy using a MgO/ZnMgO buffer layer. The a-lattice parameter is independent from the Mg concentration, whereas the c-lattice parameter decreases from 5.20 A for x=0 to 5.17 A for x=0.37, indicating pseudomorphic growth. The near band edge photoluminescence shows a blueshift with increasing Mg concentration to an emission energy of 4.11 eV for x=0.37. Simultaneously, the energetic position of the deep defect luminescence shows a linear shift from 2.2 to 2.8 eV. Low temperature transmission measurements reveal strong excitonic features for the investigated composition range and alloy broadening effects for higher Mg contents. The Stokes shift as well as the Urbach energy is increased to values of up to 125 and 54 meV for x=0.37, respectively, indicating exciton localization due to alloy fluctuations.

  12. Morphology and structure of photosensitive dye J-aggregates adsorbed on AgBr microcrystals grown in gelatin.

    PubMed

    Saijo, H; Shiojiri, M

    1998-07-15

    Though the cyanine dye J-aggregates carry the role to sense the exposing light in the silver halide photographic system, little research on the morphology of the aggregates in adsorption has been made with modern surface analytical methods. In this paper, we describe the size, epitaxy, multi-layered array formation, nucleation and preferential adsorption, and irregular distribution of population between particles and the segregation on a particle, of J-aggregates adsorbed on AgBr grown in gelatin. We employed cathodoluminescence microscopy, low energy high resolution scanning electron microscopy, and atomic force microscopy. Dye molecules aggregate together near the surface of AgBr and adsorb on the surface. The growth of adsorbed aggregates is controlled by the diffusion of dye molecules from the surrounding solution. The population of J-aggregates adsorbed on an AgBr particle varies from almost none to full coverage. Each aggregate is about (20-30) x (30-50) nm in size and is 2.1 nm thick for thiacarbocyanine with sodium ion, 1.04 nm for thiacarbocyanine with tosyl ion, and 0.5 nm for an oxacarbocyanine. The aggregates connect their longer edges to each other to form arrays, and the arrays build up multi-layered stacks. The arrays align parallel and segregate to form terraces. The longer edges of J-aggregates align along [210] on AgBr (100) or [632] on AgBr (111). PMID:9728883

  13. Optimization of structural and growth parameters of metamorphic InGaAs/GaAs photoconverters grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Rybalchenko, D. V.; Mintairov, S. A.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-08-01

    Metamorphic Ga0.76In0.24As heterostructures for PV converters of 1064 nm laser radiation have been grown by the MOCVD. Parameters of the GaInAs metamorphic buffer layer with a stepwise profile of In composition variation were calculated. Its epitaxial growth conditions have been optimized, which allowed improving collection of charge carriers from the n-GaInAs base region and obtaining the photo-response quantum yield of 83% at 1064 nm wavelength. It has been found that, due to discontinuity of valence bands at the In0.24Al0.76As- p/Ga0.76In0.24As-p heterointerface (window/emitter) a potential barrier for holes arises as a result of low carrier concentration in the wide-band-gap material. The use of InAlGaAs solid solution with Al concentration of < 40% has allowed raising the holes concentration in the wide-band-gap window, eliminating completely the potential barrier and reducing the device series resistance. Optimization of the PV converter metamorphic heterostructure has resulted in obtaining 1064 nm laser radiation conversion efficiency at the level of 38.5%.

  14. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition

    SciTech Connect

    Liu, Zheng; Amani, Matin; Najmaei, Sina; Xu, Quan; Zou, Xiaolong; Zhou, Wu; Yu, Ting; Qiu, Caiyu; Birdwell, A. Glen; Crowne, Frank J.; Vajtai, Robert; Yakobson, Boris I.; Xia, Zhenhai; Dubey, Madan; Ajayan, Pulickel M.; Lou, Jun

    2014-11-18

    Monolayer molybdenum disulfide (MoS2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS2. Recently, large-size monolayer MoS2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS2 and strain-induced band gap engineering. We also evaluate the effective strain transferred from polymer substrates to MoS2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS2.

  15. Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures

    SciTech Connect

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-15

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  16. Investigation of √7 × √3 structures grown on In/Si(111) surfaces at room temperature

    NASA Astrophysics Data System (ADS)

    Shin, Dongchul; Woo, Jeongseok; Jeon, Yujin; Shim, Hyungjoon; Lee, Geunseop

    2015-10-01

    In/Si(111) superstructures formed by the deposition of indium on a √3 × √3-In surface at room temperature were investigated by using a scanning tunneling microscope (STM). The 2×2, `striped', hexagonal √7 × √3 (√7 × √3-hex), and rectangular √7 × √3 (√7 × √3-rec) structures were identified. We demonstrated that the `striped' and the √7 × √3-hex structures were falsely identified as √7 × √3-hex and √7 × √3-rec in a previous report [A. A. Saranin et al., Phys. Rev. B 74, 035436 (2006)]. As in the √7 × √3-hex and √7 × √3-rec structures, a √7 × √3 periodicity was observed in the resolved STM features of the `striped' structure. These three √7 × √3 structures formed at room temperature were shown to be identical to the corresponding In-induced phases formed at high temperature. The apparent height difference between the `striped' and the √7 × √3-hex structures in the topographic STM image suggests that the √7 × √3-hex structure consists of double l√ayers of In. This possibility contrasts with recent theoretical predictions of single-layer In for the √7 × √3-hex structure.

  17. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid.

    PubMed

    Ho, I-Ching; Yang, Sheng-Pin; Chiu, Wen-Yen; Huang, Shih-Yow

    2007-01-30

    PHAs (poly-3-hydroxyalkanoates) obtained by Pseudomonas oleovorans grown with mixed carbon sources were investigated. Mixed carbon sources were sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. Effect of carbon source in pre-culture on PHAs structure was investigated. Main fermentation was conducted with mixture of sodium octanoate/undecylenic acid, and PHA contained both saturated and unsaturated units. When more undecylenic acid was used in the medium, the ratio of unsaturated unit increased and the T(g) of the products also changed. The PHA grown with mixture of sodium octanoate and undecylenic acid was a random copolymer, which was determined by DSC analysis. Using mixed carbon sources of sodium octanoate and 5-phenylvaleric acid, highest dry cell weight and PHA concentration were obtained when 0.02g or 0.04g of 5-phenylvaleric acid were added in 50mL medium. Cultured with sodium octanoate and 5-phenylvaleric acid, PHA containing HO (3-hydroxyoctanoate) unit and HPV (3-hydroxy-5-phenylvalerate) unit was produced. T(g) of the products fell between those of pure PHO and pure PHPV. By means of DSC analysis and fractionation method, the PHA obtained was regarded as a random copolymer. PMID:16919325

  18. Structural and magnetic properties of Ge{sub 1-x}Mn{sub x} thin films grown on Ge (001) substrates

    SciTech Connect

    Yada, Shinsuke; Nam Hai, Pham; Tanaka, Masaaki; Sugahara, Satoshi

    2011-10-01

    We investigate the structural and magneto-optical properties of Mn-doped Ge (Ge{sub 1-x}Mn{sub x}) films with self-organized nanocolumns, grown on Ge (001) substrates by molecular beam epitaxy (MBE), in which the substrate temperature (T{sub S}) and growth rate (R{sub G}) are varied. Transmission electron microscopy (TEM) observations and magnetic circular dichroism (MCD) measurements reveal that Mn-rich nanocolumnar precipitation is formed in the Ge{sub 1-x}Mn{sub x} films grown at T{sub S} {<=} 100 deg. C, with keeping the size and spacing. At higher T{sub S} ({>=}150 deg. C), ferromagnetic Mn{sub 5}Ge{sub 3} clusters are formed. It is also found that the Mn distribution in the Ge{sub 1-x}Mn{sub x} films can be controlled: By lowering T{sub S} or increasing R{sub G}, the Mn content x{sub nc} in the nanocolumns decreases and Mn atoms are more distributed into the Ge matrix, and eventually the magnetic properties are changed. The formation of the nanocolumns is explained by the spinodal decomposition in the layer-by-layer growth mode. We analyzed the periodicity and Mn content x{sub nc} of nanocolumns by using the Cahn-Hilliard equation.

  19. Growth and Characterization of High Quality a-Plane InGaN/GaN Single Quantum Well Structure Grown by Multibuffer Layer Technique

    NASA Astrophysics Data System (ADS)

    Song, Hooyoung; Soak Kim, Jin; Kim, Eun Kyu; Seo, Yong Gon; Hwang, Sung-Min

    2010-04-01

    Nonpolar (1120) a-plane InGaN/GaN single quantum well (SQW) structure has been grown using a multi buffer layer on a (1102) r-plane sapphire substrate. The effects on the lattice constants of the a-plane GaN template caused by reactor pressure and V/III ratio of the first buffer layer were studied to improve the crystal quality. Under optimum growth conditions, the full widths at half maximum (FWHMs) of (1120) X-ray rocking curves along the c- and m-axis orientations were 430 and 530 arcsec, respectively. The optical characteristics of the nonpolar InGaN SQW determined from excitation-power-dependent photoluminescence and temperature-dependent photoluminescence spectra showed the absence of the quantum-confined Stark effect.

  20. Structural and Optical Properties of Carbon-Doped AlN Substrates Grown by Hydride Vapor Phase Epitaxy Using AlN Substrates Prepared by Physical Vapor Transport

    NASA Astrophysics Data System (ADS)

    Nagashima, Toru; Kubota, Yuki; Kinoshita, Toru; Kumagai, Yoshinao; Xie, Jinqiao; Collazo, Ramón; Murakami, Hisashi; Okamoto, Hiroshi; Koukitu, Akinori; Sitar, Zlatko

    2012-12-01

    Freestanding AlN substrates with various carbon (C) concentrations were prepared from C-doped thick layers grown by hydride vapor phase epitaxy (HVPE) on bulk AlN substrates prepared by physical vapor transport (PVT). The structural properties of the AlN substrates up to a C concentration of 3×1019 cm-3 were the same as those of the nominally undoped substrates, while the absorption coefficient α at 265 nm was increased by C doping from 6.6 to 97 cm-1, when C concentration changed from <2×1017 to 1×1019 cm-3, respectively. Photoluminescence (PL) below 4.0 eV also increased by C doping.

  1. Structural properties of free-standing 50 mm diameter GaN waferswith (101_0) orientation grown on LiAlO2

    SciTech Connect

    Jasinski, Jacek; Liliental-Weber, Zuzanna; Maruska, Herbert-Paul; Chai, Bruce H.; Hill, David W.; Chou, Mitch M.C.; Gallagher, John J.; Brown, Stephen

    2005-09-27

    (10{und 1}0) GaN wafers grown on (100) face of {gamma}-LiAlO{sub 2} were studied using transmission electron microscopy. Despite good lattice matching in this heteroepitaxial system, high densities of planar structural defects in the form of stacking faults on the basal plane and networks of boundaries located on prism planes inclined to the layer/substrate interface were present in these GaN layers. In addition, significant numbers of threading dislocations were observed. High-resolution electron microscopy indicates that stacking faults present on the basal plane in these layers are of low-energy intrinsic I1type. This is consistent with diffraction contrast experiments.

  2. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  3. Temporal changes in population genetic diversity and structure in red and white clover grown in three contrasting environments in northern Europe

    PubMed Central

    Collins, Rosemary P.; Helgadóttir, Áslaug; Frankow-Lindberg, Bodil E.; Skøt, Leif; Jones, Charlotte; Skøt, Kirsten P.

    2012-01-01

    Backgound and Aims Extending the cultivation of forage legume species into regions where they are close to the margin of their natural distribution requires knowledge of population responses to environmental stresses. This study was conducted at three north European sites (Iceland, Sweden and the UK) using AFLP markers to analyse changes in genetic structure over time in two population types of red and white clover (Trifolium pratense and T. repens, respectively): (1) standard commercial varieties; (2) wide genetic base (WGB) composite populations constructed from many commercial varieties plus unselected material obtained from germplasm collections. Methods At each site populations were grown in field plots, then randomly sampled after 3–5 years to obtain survivor populations. AFLP markers were used to calculate genetic differentiation within and between original and survivor populations. Key Results No consistent changes in average genetic diversity were observed between original and survivor populations. In both species the original varieties were always genetically distinct from each other. Significant genetic shift was observed in the white clover ‘Ramona’ grown in Sweden. The WGB original populations were more genetically similar. However, genetic differentiation occurred between original and survivor WGB germplasm in both species, particularly in Sweden. Regression of climatic data with genetic differentiation showed that low autumn temperature was the best predictor. Within the set of cold sites the highest level of genetic shift in populations was observed in Sweden. Conclusions The results suggest that changes in population structure can occur within a short time span in forage legumes, resulting in the rapid formation of distinct survivor populations in environmentally challenging sites. PMID:22437665

  4. Colony structure in Ce-doped Al2O3/YAG eutectic systems grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Yamada, Seiya; Yoshimura, Masafumi; Sakata, Shin-ichi; Taishi, Toshinori; Hoshikawa, Keigo

    2016-08-01

    We investigated the influence of growth rate and Ce concentration on colony structure variation in Al2O3/YAG:Ce eutectic systems. The distance between boundary zones in the colony structure decreased with increases in either growth rate or Ce concentration. The eutectic spacing in the coarse microstructure in the boundary zone decreased with increasing growth rate but increased with increasing Ce concentration. We conclude that the colony structure is formed by cellular growth driven by constitutional supercooling with an interface instability due to Ce atom accumulation, so that the distance between boundary zones depends on both the growth rate and Ce concentration, and the coarse microstructure in the boundary zone depends on the solidification rate perpendicular to the growth interface at the cell bottom of the microscopic growth interface shape in the cellular growth.

  5. Structural, electrical and magnetic measurements on oxide layers grown on 316L exposed to liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter; Hofer, Christian; Hlawacek, Gregor; Li, Ning; Maloy, Stuart A.; Teichert, Christian

    2012-02-01

    Fast reactors and spallation neutron sources may use lead-bismuth eutectic (LBE) as a coolant. Its physical, chemical, and irradiation properties make it a safe coolant compared to Na cooled designs. However, LBE is a corrosive medium for most steels and container materials. The present study was performed to evaluate the corrosion behavior of the austenitic steel 316L (in two different delivery states). Detailed atomic force microscopy, magnetic force microscopy, conductive atomic force microscopy, and scanning transmission electron microscopy analyses have been performed on the oxide layers to get a better understanding of the corrosion and oxidation mechanisms of austenitic and ferritic/martensitic stainless steel exposed to LBE. The oxide scale formed on the annealed 316L material consisted of multiple layers with different compositions, structures, and properties. The innermost oxide layer maintained the grain structure of what used to be the bulk steel material and shows two phases, while the outermost oxide layer possessed a columnar grain structure.

  6. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    SciTech Connect

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  7. Cellular porous anodic alumina grown in neutral organic electrolyte. 1. Structure, composition, and properties of the films

    SciTech Connect

    Liu, Y.; Alwitt, R.S.; Shimizu, K.

    2000-04-01

    Anodic alumina films with cellular porous structure grow in neutral organic electrolytes with low water content and containing ethylene glycol and a large dicarboxylic acid. An Al carboxylate precipitates in the pore and is extruded from the coating. The porous structure develops even though the current efficiency for film formation is near 95%. The coating matrix contains substantial organic material, 15 wt % by thermal analysis. It is an oxide/organic composite with higher field strength and lower dielectric constant than pure anodic alumina.

  8. Evolution of morphology and structure of Pb thin films grown by pulsed laser deposition at different substrate temperatures

    SciTech Connect

    Lorusso, Antonella Maiolo, Berlinda; Perrone, Alessio; Gontad, Francisco; Maruccio, Giuseppe; Tasco, Vittorianna

    2014-03-15

    Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.

  9. A structural and electrical comparison of thin SiO2 films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation

    NASA Astrophysics Data System (ADS)

    Nelson, S. A.; Hallen, H. D.; Buhrman, R. A.

    1988-05-01

    We have used capacitance-voltage (C-V) techniques and x-ray photoelectron spectroscopy (XPS) to study for the first time the electrical and structural properties of thin SiO2 films grown on silicon by plasma anodization and rapid thermal processes (RTO) and then compared them to furnace oxides. We have compared the SiO4 tetrahedral ring structure and the suboxide content of the ˜3-nm-thick interfacial region of these oxides and have found significant structural differences. By correlating these differences with measured electrical differences, we have identified the structural causes of some of the electrical characteristics of the plasma and RTO oxides. In plasma oxides we see larger amounts of silicon dangling bonds, Pb centers, at the Si-SiO2 interface and have identified these dangling bonds as the source of a localized peak of interface states found at 0.3 eV above the silicon valence band. Low-temperature rapid thermal annealing of the plasma oxides relieves localized compressive interfacial strain, apparently by allowing the completion of oxidation at the interface, and reduces the amount of dangling bonds. However, this strain relief simultaneously increases the average SiO4 ring structure at the interface. A larger interfacial SiO4 ring structure is also seen in rapid thermal oxides and has been attributed to the very rapid cooling which takes place at the end of the rapid thermal process. Post-growth thermal processing has been shown to reduce the average ring structure by relieving localized tensile interfacial stress, but this stress relief is accompanied by the appearance of a peak of interface states at about 0.8 eV above the valence band which is attributed to Si-O bonds broken during the anneal. Long furnace anneals of rapid thermal oxides remove these states and give interface state densities comparable to those of furnace oxides.

  10. A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire

    NASA Astrophysics Data System (ADS)

    de la Mata, Maria; Zhou, Xiang; Furtmayr, Florian; Teubert, Jörg; Gradecak, Silvija; Eickhoff, Martin; Fontcuberta i Morral, Anna; Arbiol, Jordi

    2013-05-01

    We review different strategies to achieve a three-dimensional energy bandgap modulation in a nanowire (NW) by the introduction of self-assembled 0D, 1D and 2D quantum structures, quantum dots (QDs), quantum wires (QWRs) and quantum wells (QWs). Starting with the well-known axial, radial (coaxial/prismatic) or polytypic quantum wells in GaN/AlN, GaAs/AlAs or wurtzite/zinc-blende systems, respectively, we move to more sophisticated structures by lowering their dimensionality. New recent approaches developed for the self-assembly of GaN quantum wires and InAs or AlGaAs quantum dots on single nanowire templates are reported and discussed. Aberration corrected scanning transmission electron microcopy is presented as a powerful tool to determine the structure and morphology at the atomic scale allowing for the creation of 3D atomic models that can help us to understand the enhanced optical properties of these advanced quantum structures.

  11. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Roberts, Joel Glenn

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2 (0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface. The surface layer of NaCl(100) was found to have a 0.12 +/- 0.03 A corrugation due to movement of the Na+ ions towards the bulk. Additional deviations from the bulk structure were not seen in the deeper atomic layers. In order to determine if the metal substrate had an influence on the films' growth characteristics, multilayer films of NaCl(100) were grown on Pd(100) and Pt(111). An tensor LEED (TLEED) analysis of the diffraction beam intensities from the NaCl(100)-(1 x 1) on Pd(100) and NaCl(100)-(1 x 1) on Pt(111) LEED patterns showed that the multilayer NaCl(100) film had the same structure on both substrates to a depth sampled by the electrons in the individual experimental energy ranges. Additionally, these two films exhibited the same adsorbate-substrate interaction on Pd(100) and Pt(111) as evidenced by the lone multilayer (zero order) desorption peak observed in the temperature programmed desorption (TPD) spectra of NaCl. The surface structure of LiF(100) was studied to correlate the surface corrugation of the alkali halide (100) surface to the ions' polarizability. The LiF surface is less polarizable than the NaCl surface. TLEED calculations determined that the LiF(100) surface had a 0.24 +/- 0.04 A corrugation with a 0.06 +/- 0.04 A corrugation of the second layer. Both corrugations were due to the cations moving deeper into the bulk. Unlike NaCl and LiF, MgCl2 adsorbed on Pd(111) and Pt

  12. Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy.

    PubMed

    Roy, Anupam; Movva, Hema C P; Satpati, Biswarup; Kim, Kyounghwan; Dey, Rik; Rai, Amritesh; Pramanik, Tanmoy; Guchhait, Samaresh; Tutuc, Emanuel; Banerjee, Sanjay K

    2016-03-23

    We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states. PMID:26939890

  13. Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy.

    PubMed

    Roy, Anupam; Movva, Hema C P; Satpati, Biswarup; Kim, Kyounghwan; Dey, Rik; Rai, Amritesh; Pramanik, Tanmoy; Guchhait, Samaresh; Tutuc, Emanuel; Banerjee, Sanjay K

    2016-03-23

    We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states.

  14. Magnitude differences in agronomic, chemical, nutritional, and structural features among different varieties of forage corn grown on dry land and irrigated land.

    PubMed

    Xin, Hangshu; Abeysekara, Samen; Zhang, Xuewei; Yu, Peiqiang

    2015-03-11

    In this study, eight varieties of corn forage grown in semiarid western Canada (including Pioneer P2501, Pioneer P39m26, Pioneer P7443, Hyland HL3085, Hyland HLBaxxos, Hyland HLR219, Hyland HLSR22, and Pickseed Silex BT) were selected to explore the effect of irrigation implementation in comparison with nonirrigation on (1) agronomic characteristics, (2) basic chemical profiles explored by using a near-infrared reflectance (NIR) system, and (3) protein and carbohydrate internal structural parameters revealed by using an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) system. Also, principal component analysis (PCA) was performed on spectroscopic data for clarification of differences in molecular structural makeup among the varieties. The results showed that irrigation treatment significantly increased (P < 0.05) contents of dry matter (DM) and organic matter (OM) but decreased crude protein (CP) of corn forages. Significant interactions of irrigation treatment and corn variety were observed on most agronomic characteristics (DM yield, T/ha, days to tasseling, days to silking) and crude fiber (CF) and ether extract (EE) contents as well as some spectral data such as cellulosic compounds (CELC) peak intensity, peak ratios of CHO third peak to CELC, α-helix to β-sheet, and CHO third peak to amide I. Additionally, the spectral ratios of chemical functional groups that related to structural and nonstructural carbohydrates and protein polymers in forages did not remain constant over corn varieties cultivated with and without water treatment. Moreover, different cultivars had different growth, structure, and nutrition performances in this study. Although significant differences could be found in peak intensities, PCA results indicated some structural similarities existed between two treated corn forages with the exception of HL3085 and HLBaxxos. In conclusion, irrigation and corn variety had interaction effects on agronomic, chemical

  15. Atomic structures of silicene layers grown on Ag(111): scanning tunneling microscopy and noncontact atomic force microscopy observations.

    PubMed

    Resta, Andrea; Leoni, Thomas; Barth, Clemens; Ranguis, Alain; Becker, Conrad; Bruhn, Thomas; Vogt, Patrick; Le Lay, Guy

    2013-01-01

    Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (√3 × √3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (√7 × √7)R ± 19.1° rotated silicene domains in the first layer.

  16. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    SciTech Connect

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  17. Structural and electrical properties of metamorphic nanoheterostructures with a high InAs content (37-100%) grown on GaAs and InP substrates

    SciTech Connect

    Galiev, G. B.; Vasil'evskii, I. S.; Imamov, R. M.; Klimov, E. A.; Pushkarev, S. S.; Subbotin, I. A.

    2011-09-15

    A complex study of the structural and electrical properties of nanoheterostructures containing a metamorphic barrier with a high InAs content (37-100%) in the active region have been performed by the Van der Pauw and X-ray diffraction methods. All peaks observed in the rocking curves for the samples studied (throughout the entire structure) have been revealed and identified. It is shown that, having properly chosen the design of the metamorphic buffer and the compositional gradient in it, one can obtain mobilities and concentrations of the 2D electron gas in the In{sub x}Ga{sub 1-x}As quantum well in the heterostructures formed on GaAs substrates that are comparable with the corresponding values for the nanoheterostructures grown on InP substrates. It is established that the mobility and concentration of 2D electron gas depend both on the metamorphic barrier design and on the structural quality of heterostructure as a whole.

  18. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3

    SciTech Connect

    Hawley, Marilyn E; Biegalski, Michael D; Schlom, Darrell G

    2008-01-01

    Strained epitaxial SrTiO{sub 3} films were grown on orthorhombic (101) DyScO{sub 3} substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 {angstrom} were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 {angstrom}. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018{sup o}). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700{sup o}C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO{sub 3} films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films.

  19. Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Mukai, T.; Ohnishi, D.; Hogg, R. A.

    2015-05-01

    We report on photoluminescence (PL) characterisation of metal-organic vapour phase epitaxy (MOVPE) grown high current density (~700 kA/cm2) InGaAs/AlAs/InP based resonant tunnelling diodes (RTDs) for terahertz emission. The PL mapping we describe allows important information about doping level and uniformity, ternary alloy composition and uniformity, and uniformity of quantum well thickness to be deduced. PL as a function of doping concentration is studied for InGaAs test layers at low temperatures and correlated to secondary-ion mass spectroscopy (SIMS) and electrochemical capacitance-voltage (eCV) profiling to provide non-destructive mapping of doping over the wafer. For the RTD structures, we utilise eCV as a selective etch tool to identify the origin of low temperature PL emission from the quantum well (QW) and the highly doped contact layers. PL mapping of the RTD wafer at low temperatures is shown to allow the assessment of variations in InGaAs alloy composition and QW thickness. Details of the growth process are discussed and confirmed using high resolution X-ray diffraction (HRXRD) crystallography. The rapid non-destructive characterisation and wafer mapping of these structures promises a route to future growth optimisation of such structures.

  20. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern: Dicranopteris linearis.

    PubMed

    Wei, Zhenggui; Hong, Fashui; Yin, Ming; Li, Huixin; Hu, Feng; Zhao, Guiwen; Wong, Jonathan Woonchung

    2005-09-01

    Chloroplasts and chlorophylls were isolated from the leaves of Dicranopteris linearis, a natural perennial fern sampled at rare earth element (REE) mining areas in the South-Jiangxi region (southern China). The inductively coupled plasma-mass spectrometry (ICP-MS) results indicated that REEs were present in the chloroplasts and chlorophylls of D. linearis. The in vivo coordination environment of light REE (lanthanum) or heavy REE (yttrium) ions in D. linearis chlorophyll-a was determined by the extended X-ray absorption fine structure (EXAFS). Results revealed that there were eight nitrogen atoms in the first coordination shell of the lanthanum atom, whereas there were four nitrogen atoms in the first coordination shell of yttrium. It was postulated that the lanthanum-chlorophyll-a complex might have a double-layer sandwich-like structure, but yttrium-binding chlorophyll-a might be in a single-layer form. Because the content of REE-binding chlorophylls in D. linearis chlorophylls was very low, it is impossible to obtain structural characteristics of REE-binding chlorophylls by direct analysis of the Fourier transform infrared (FTIR) and ultraviolet (UV)-visible spectra of D. linearis chlorophylls. In order to acquire more structural information of REE-binding chlorophyll-a in D. linearis, lanthanum - and yttrium-chlorophyll-a complexes were in vitro synthesized in acetone solution. Element analyses and EXAFS results indicated that REE ions (lanthanum or yttrium) of REE-chlorophyll-a possessed the same coordination environment whether in vivo or in vitro. The FTIR spectra of the REE-chlorophyll-a complexes indicated that REEs were bound to the porphyrin rings of chlorophylls. UV-visible results showed that the intensity ratios of Soret to the Q-band of REE-chlorophyll-a complexes were higher than those of standard chlorophyll-a and pheophytin-a, indicating that REE-chlorophyll-a might have a much stronger ability to absorb the ultraviolet light. The MCD spectrum in

  1. Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Shen, Chih-Chiang; Hsu, Yu-Te; Li, Lain-Jong; Liu, Hsiang-Lin

    2013-12-01

    THz absorption and spectroscopic ellipsometry were used to investigate the charge dynamics and electronic structures of chemical-vapor-deposited monolayer MoS2 films. THz conductivity displays a coherent response of itinerant charge carriers at zero frequency. Drude plasma frequency (˜7 THz) decreases with decreasing temperature while carrier relaxation time (˜26 fs) is almost temperature independent. The absorption spectrum of monolayer MoS2 shows a direct 1.95 eV band gap and charge transfer excitations that are ˜0.2 eV higher than those of the bulk counterpart. The ground-state exciton binding energy is found to be about 0.48 eV.

  2. Electronic structures and magnetic moments of Co{sub 3}FeN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Honda, Syuta; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Ueda, Shigenori; Takeda, Yukiharu; Saitoh, Yuji; Imai, Yoji

    2013-12-02

    We evaluated electronic structures and magnetic moments in Co{sub 3}FeN epitaxial films on SrTiO{sub 3}(001). The experimentally obtained hard x-ray photoemission spectra of the Co{sub 3}FeN film have a good agreement with those calculated. Site averaged spin magnetic moments deduced by x-ray magnetic circular dichroism were 1.52 μ{sub B} per Co atom and 2.08 μ{sub B} per Fe atom at 100 K. They are close to those of Co{sub 4}N and Fe{sub 4}N, respectively, implying that the Co and Fe atoms randomly occupy the corner and face-centered sites in the Co{sub 3}FeN unit cell.

  3. Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature.

    PubMed

    Hartikainen, Kaisa; Nerg, Anne-Marja; Kivimäenpää, Minna; Kontunen-Soppela, Sari; Mäenpää, Maarit; Oksanen, Elina; Rousi, Matti; Holopainen, Toini

    2009-09-01

    Northern forest trees are challenged to adapt to changing climate, including global warming and increasing tropospheric ozone (O(3)) concentrations. Both elevated O(3) and temperature can cause significant changes in volatile organic compound (VOC) emissions as well as in leaf anatomy that can be related to adaptation or increased stress tolerance, or are signs of damage. Impacts of moderately elevated O(3) (1.3x ambient) and temperature (ambient + 1 degrees C), alone and in combination, on VOC emissions and leaf structure of two genotypes (2.2 and 5.2) of European aspen (Populus tremula L.) were studied in an open-field experiment in summer 2007. The impact of O(3) on measured variables was minor, but elevated temperature significantly increased emissions of total monoterpenes and green leaf volatiles. Genotypic differences in the responses to warming treatment were also observed. alpha-Pinene emission, which has been suggested to protect plants from elevated temperature, increased from genotype 5.2 only. Isoprene emission from genotype 2.2 decreased, whereas genotype 5.2 was able to retain high isoprene emission level also under elevated temperature. Elevated temperature also caused formation of thinner leaves, which was related to thinning of epidermis, palisade and spongy layers as well as reduced area of palisade cells. We consider aspen genotype 5.2 to have better potential for adaptation to increasing temperature because of thicker photosynthetic active palisade layer and higher isoprene and alpha-pinene emission levels compared to genotype 2.2. Our results show that even a moderate elevation in temperature is efficient enough to cause notable changes in VOC emissions and leaf structure of these aspen genotypes, possibly indicating the effort of the saplings to adapt to changing climate.

  4. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers.

    PubMed

    Ren, Xiaoping; Jiang, Huifang; Yan, Zhongyuan; Chen, Yuning; Zhou, Xiaojing; Huang, Li; Lei, Yong; Huang, Jiaquan; Yan, Liying; Qi, Yue; Wei, Wenhui; Liao, Boshou

    2014-01-01

    One hundred and forty-six highly polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 196 peanut (Arachis Hypogaea L.) cultivars which had been extensively planted in different regions in China. These SSR markers amplified 440 polymorphic bands with an average of 2.99, and the average gene diversity index was 0.11. Eighty-six rare alleles with a frequency of less than 1% were identified in these cultivars. The largest Fst or genetic distance was found between the cultivars that adapted to the south regions and those to the north regions in China. A neighbor-joining tree of cultivars adapted to different ecological regions was constructed based on pairwise Nei's genetic distances, which showed a significant difference between cultivars from the south and the north regions. A model-based population structure analysis divided these peanut cultivars into five subpopulations (P1a, P1b, P2, P3a and P3b). P1a and P1b included most the cultivars from the southern provinces including Guangdong, Guangxi and Fujian. P2 population consisted of the cultivars from Hubei province and parts from Shandong and Henan. P3a and P3b had cultivars from the northern provinces including Shandong, Anhui, Henan, Hebei, Jiangsu and the Yangtze River region including Sichuan province. The cluster analysis, PCoA and PCA based on the marker genotypes, revealed five distinct clusters for the entire population that were related to their germplasm regions. The results indicated that there were obvious genetic variations between cultivars from the south and the north, and there were distinct genetic differentiation among individual cultivars from the south and the north. Taken together, these results provided a molecular basis for understanding genetic diversity of Chinese peanut cultivars.

  5. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography.

    PubMed

    Li, Dianfan; Boland, Coilín; Aragao, David; Walsh, Kilian; Caffrey, Martin

    2012-09-02

    An important route to understanding how proteins function at a mechanistic level is to have the structure of the target protein available, ideally at atomic resolution. Presently, there is only one way to capture such information as applied to integral membrane proteins (Figure 1), and the complexes they form, and that method is macromolecular X-ray crystallography (MX). To do MX diffraction quality crystals are needed which, in the case of membrane proteins, do not form readily. A method for crystallizing membrane proteins that involves the use of lipidic mesophases, specifically the cubic and sponge phases(1-5), has gained considerable attention of late due to the successes it has had in the G protein-coupled receptor field(6-21) (www.mpdb.tcd.ie). However, the method, henceforth referred to as the in meso or lipidic cubic phase method, comes with its own technical challenges. These arise, in part, due to the generally viscous and sticky nature of the lipidic mesophase in which the crystals, which are often micro-crystals, grow. Manipulating crystals becomes difficult as a result and particularly so during harvesting(22,23). Problems arise too at the step that precedes harvesting which requires that the glass sandwich plates in which the crystals grow (Figure 2)(24,25) are opened to expose the mesophase bolus, and the crystals therein, for harvesting, cryo-cooling and eventual X-ray diffraction data collection. The cubic and sponge mesophase variants (Figure 3) from which crystals must be harvested have profoundly different rheologies(4,26). The cubic phase is viscous and sticky akin to a thick toothpaste. By contrast, the sponge phase is more fluid with a distinct tendency to flow. Accordingly, different approaches for opening crystallization wells containing crystals growing in the cubic and the sponge phase are called for as indeed different methods are required for harvesting crystals from the two mesophase types. Protocols for doing just that have been

  6. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition

    SciTech Connect

    Shan, F.K.; Liu, G.X.; Lee, W.J.; Lee, G.H.; Kim, I.S.; Shin, B.C.

    2005-07-15

    Gallium oxide (Ga{sub 2}O{sub 3}) thin films were deposited on silicon (100) and sapphire (001) substrates using the plasma-enhanced atomic layer deposition (PEALD) technique with an alternating supply of reactant source, [(CH{sub 3}){sub 2}GaNH{sub 2}]{sub 3}, and oxygen plasma. The thin films were annealed at different temperatures (500, 700, and 900 deg. C, respectively) in a rapid thermal annealing system for 1 min. It was found that Ga{sub 2}O{sub 3} thin films deposited by PEALD showed excellent step coverage characteristics. X-ray diffraction measurements showed that the as-deposited thin film was amorphous. However, the thin films annealed at temperatures higher than 700 deg. C showed a (400) orientation of the monoclinic structure. An atomic force microscope was used to investigate the surface morphologies of the thin films. The thin films showed very smooth surfaces; the roughness of the as-deposited thin film was about 4 A . With increasing annealing temperature, the thin film became rougher compared with that annealed at lower temperatures. A double-beam spectrophotometer was used to measure the transmittances of the thin films on the sapphire substrates. The thin films showed a very high transmittance (nearly 100%). The band-gap energies of the thin films were determined by a linear fit of the transmittance spectra and were calculated to be between 5.0 and 5.24 eV. The electrical properties of thin films of Pt/film/Si structure were also investigated. It was found that, with increasing annealing temperature, the insulating characteristics of the Ga{sub 2}O{sub 3} thin films were significantly improved. Spectroscopic ellipsometry was used to derive the refractive indices and the thicknesses of the thin films. The refractive indices of the thin films showed normal dispersion behavior. The refractive indices of the thin films annealed at low temperatures were smaller than those annealed at high temperatures.

  7. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  8. Electric-field dependence of electroreflectance and photocurrent spectra at visible wavelengths in MOVPE-grown InAlGaP multiple strained quantum-well structures

    SciTech Connect

    Fritz, I.J.; Blum, O.; Schneider, R.P. Jr.; Howard, A.J.; Follstaedt, D.M.

    1993-12-31

    The authors present electric-field dependent electroreflectance and photocurrent spectra of visible-bandgap In{sub x}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}x}P/In{sub x{prime}}(Al{sub y{prime}}Ga{sub 1{minus}y{prime}}){sub 1{minus}x{prime}}P multiple-quantum-well (MQW) structures. These structures, grown by metal-organic vapor phase epitaxy on 6{degrees}-misoriented (100) GaAs substrates, have undoped MQWs sandwiched between doped In{sub 0.5}Al{sub 0.5}P layers, forming p-i-n diodes. Quantum-well compositions in the range 0.46{le}x{le}0.52 and 0{le}y{le}0.4, corresponding to bandgaps in the red to yellow-green range, were used. The Stark shifts in these various samples were measured and found to depend on the details of the Mg p-type doping profile, confirming important diffusion effects, in agreement with secondary ion mass spectrometry and capacitance-voltage data. The results show that these new materials are promising for visible-wavelength optical modulator applications.

  9. Structural and dynamical properties of Bridgman-grown CdSexTe1-x (0

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2013-04-01

    Measurements of the Raman scattering and extended x-ray-absorption fine-structure (EXAFS) spectroscopy are reported on a series of Bridgman-grown zinc-blende CdTe1-xSex (0.35 ≥ x > 0.05) ternary alloys to empathize their lattice dynamical and structural properties. Low-temperature Raman spectra have revealed the classic CdTe-like (TO1, LO1) and CdSe-like (TO2, LO2) pairs of optical phonons. The composition-dependent peak positions of the LO2 modes exhibited shifts towards the higher-energy side, while those of the LO1 phonon frequencies have unveiled the slight redshifts. Detailed analyses of EXAFS data by using the first-principles bond orbital model have enabled us to estimate both the lattice relaxations and nearest-neighbor radial force constants around the Se/Te atoms in the CdTe/CdSe matrix. These results are methodically integrated in the “average t-matrix” formalism within the Green's-function theory for defining the impurity perturbations to comprehend the composition-dependent optical phonons in CdTe1-xSex alloys. Based on our comprehensive calculations of impurity modes in the low-composition regime x→ 0, we have assigned the weak phonon feature observed near ˜175 cm-1 in the low-temperature infrared reflectivity spectroscopy study to a SeTe localized vibrational mode.

  10. Role of deposition time on structural, optical and electrical properties of In-rich Cu-In-S spinel films grown by electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Gannouni, M.; Ben Assaker, I.; Chtourou, R.

    2013-09-01

    CuIn5S8 spinel films were grown at different deposition times onto (ITO)-coated glass substrates using a one-step electrodeposition route of In-rich Cu-In-S system. A contribution to the knowledge of thickness (or deposition time) dependence of structural, morphological, optical, and electrical properties of CuIn5S8 thin film is reported. According to these studies, when the deposition time is extended beyond 10 min, X-ray diffraction pattern has indicated a growth mode along the (3 1 1) plane which is consistent with the CuIn5S8 cubic spinel structure. XRD peaks broaden and shift depending on film thicknesses which are presumably due to strain and size effect. From AFM analysis, nucleus density, size, roughness, as well as film thickness have increased with increasing deposition time from 1 to 30 min. Through optical measurements, both values of transmittance and band gap have decreased respectively from approximately (˜77%) to (˜40%) and from 2.75 eV to 1.53 eV with the increase of deposition time. The film deposited at 15 min shows a minimum electrical resistivity of about 3.12 × 10-3 Ω cm. It is also reported that by controlling the electrodeposition time, n-type or p-type conductivity of CuIn5S8 could be adjusted.

  11. Resistive and New Optical Switching Memory Characteristics Using Thermally Grown Ge0.2Se0.8 Film in Cu/GeSex/W Structure

    NASA Astrophysics Data System (ADS)

    Jana, Debanjan; Chakrabarti, Somsubhra; Rahaman, Sheikh Ziaur; Maikap, Siddheswar

    2015-10-01

    It is known that conductive-bridge resistive-random-access-memory (CBRAM) device is very important for future high-density nonvolatile memory as well as logic application. Even though the CBRAM devices using different materials, structures, and switching performance have been reported in Nanoscale Res. Lett., 2015, however, optical switching characteristics by using thermally grown Ge0.2Se0.8 film in Cu/GeSex/W structure are reported for the first time in this study. The Cu/GeSex/W memory devices have low current compliances (CCs) ranging from 1 nA to 500 μA with low voltage of ±1.2 V, high resistance ratio of approximately 103, stable endurance of >200 cycles, and good data retention of >7 × 103 s at 85 °C. Multi-steps of RESET phenomena and evolution of Cu filaments' shape under CCs ranging from 1 nA to 500 μA have been discussed. Under external white-light illumination with an intensity of 2.68 mW/cm2 (wavelength ranges from 390 to 700 nm), memory device shows optical switching with long read pulse endurance of >105 cycles. This CBRAM device has optically programmed and electrically erased, which can open up a new area of research field for future application.

  12. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  13. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate

    PubMed Central

    2012-01-01

    We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096

  14. Thickness modulation and strain relaxation in strain-compensated InGaP/InGaP multiple-quantum-well structure grown by metalorganic molecular beam epitaxy on GaAs (100) substrate

    NASA Astrophysics Data System (ADS)

    Mitsuhara, M.; Watanabe, N.; Yokoyama, H.; Iga, R.; Shigekawa, N.

    2016-09-01

    We have investigated the structural features of a strain-compensated InGaP/InGaP multiple-quantum-well (MQW) structure on GaAs (100) substrate with a band-gap energy of around 1.7 eV for solar cell applications. In transmission electron microscopy images, noticeable thickness modulation was observed in the barrier layers for a sample grown at the substrate temperature of 530 °C. Meanwhile, the X-ray diffraction patterns indicated that strain relaxation predominantly occurred in the well layers. Decreasing the substrate temperature from 530 to 510 °C was effective in suppressing both the thickness modulation and strain relaxation. Additionally, increasing the growth rate of the well layer further suppressed the thickness modulation. In room-temperature photoluminescence (PL) emission spectra, the sample grown at 510 °C showed approximately 50 times higher PL peak intensity than the one grown at 530 °C.

  15. Structural Complexity of Non-acid Glycosphingolipids in Human Embryonic Stem Cells Grown under Feeder-free Conditions*

    PubMed Central

    Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.

    2013-01-01

    Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501

  16. Structural and optical properties of La-doped BaSnO3 thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    James, K. K.; Krishnaprasad, P. S.; Hasna, K.; Jayaraj, M. K.

    2015-01-01

    In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10-4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm-1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.

  17. Effect of substrate temperature on structure and luminescence properties of YVO4:Eu3+ thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Foka, K. E.; Dejene, B. F.; Swart, H. C.

    2016-03-01

    YVO4:Eu3+ thin films were deposited by pulse laser deposition at substrate temperatures of 200, 300 and 400 °C. The oxygen deposition background pressure was also changed from 20 to 85 mTorr at a substrate temperature of 400 °C. The films deposited at the higher temperatures showed a tetragonal phase in consistent with the standard JCPDS card 17-0341. The X-ray diffraction patterns obtained from the 200 °C sample showed only a very small peak at the (200) orientation. The other phosphor thin film showed an improved crystalline structure when the temperature was increased. Scanning electron microscope images indicated larger particles on the surface at the higher temperatures. Atomic force microscopy results showed smooth surfaces with small particles at lower temperatures and an increase in surface roughness at higher temperatures due to the improvement in crystallinity. The photoluminescence showed the typical emission peaks of Eu3+ in the red region at 594 and 618 nm attributed to the 5D0-7F1 and 5D0-7F2 transitions. The peaks at 652 and 699 nm corresponding to the 5D0-7F3 and 5D0-7F4 transitions were also observed. The spectra showed an increase in PL intensity when the deposition temperature and oxygen pressure were increased.

  18. Co2FeAl thin films grown on MgO substrates: Correlation between static, dynamic, and structural properties

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Tuzcuoglu, H.; Gabor, M. S.; Petrisor, T., Jr.; Tiusan, C.; Berling, D.; Zighem, F.; Chauveau, T.; Chérif, S. M.; Moch, P.

    2013-05-01

    Co2FeAl (CFA) thin films with thickness varying from 10 to 115 nm have been deposited on MgO(001) substrates by magnetron sputtering and then capped by a Ta or Cr layer. X-ray diffraction (XRD) revealed that the cubic [001] CFA axis is normal to the substrate and that all the CFA films exhibit full epitaxial growth. The chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. Magneto-optical Kerr effect (MOKE) and vibrating sample magnetometer (VSM) measurements show that, depending on the field orientation, one- or two-step switchings occur. Moreover, the films present a quadratic MOKE signal increasing with the CFA thickness, due to the increasing chemical order. Ferromagnetic resonance (FMR), MOKE transverse bias initial inverse susceptibility and torque (TBIIST) measurements reveal that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term. The fourfold anisotropy is in accord with the crystal structure of the samples and is correlated to the biaxial strain and to the chemical order present in the films. In addition, a large negative perpendicular uniaxial anisotropy is observed. Frequency and angular dependencies of the ferromagnetic resonance linewidth show two magnon scattering and mosaicity contributions, which depend on the CFA thickness. A Gilbert damping coefficient as low as 0.0011 is found.

  19. Structural and optical properties of low temperature grown AlN films on sapphire using helicon sputtering system

    SciTech Connect

    Chen, Meei-Ru; Chen, Hou-Guang; Kao, Hui-Ling Wu, Ming-Guei; Tzou, An-Jye; Chen, Jyh Shin; Chou, Hsiung

    2015-05-15

    AlN thin films have been deposited directly on c-plane sapphire substrates at low temperatures by a helicon sputtering system. The structural quality of AlN epitaxial films was characterized by x-ray diffractometry and transmission electron microscopy. The films exhibit smooth surface with root-mean-square roughness as small as 0.7 nm evaluated by atomic force microscope. The optical transmittance spectra show a steep absorption edge at the wavelength of 200 nm and a high transmittance of over 80% in the visible range. The band-edge transition (6.30 eV) of AlN film was observed in the cathodoluminescence spectrum recorded at 11 K. The spectral response of metal–semiconductor–metal photodetectors constructed with AlN/sapphire reveals the peak responsivity at 200 nm and a UV/visible rejection ratio of about two orders of magnitude. The results of this low temperature deposition suggest the feasibility of the epitaxial growth of AlN on sapphire substrates and the incorporation of the AlN films in the surface acoustic wave devices and the optical devices at deep ultraviolet region.

  20. Mixing ALD/MLD-grown ZnO and Zn-4-aminophenol layers into various thin-film structures.

    PubMed

    Sundberg, Pia; Sood, Anjali; Liu, Xuwen; Karppinen, Maarit

    2013-11-14

    Building 2D inorganic-organic hybrids by combining inorganic and organic constituents with molecular-layer precision is an attractive approach to fabricate novel materials with a tailored combination of properties from both entities. Here we demonstrate the potential of the combined atomic and molecular layer deposition (ALD/MLD) technique for the state-of-the-art synthesis of such materials and to fabricate both homogeneous thin-film mixtures and nanolaminates of ZnO and the Zn-4-aminophenol inorganic-organic hybrid. The thin films are deposited by varying the number of precursor cycles during the depositions. Diethyl zinc and 4-aminophenol (AP) are used as precursors for the Zn-AP hybrid depositions, and diethyl zinc and water for the ZnO depositions. The characterization of the mixed Zn-AP and ZnO films reveals that crystallinity, density, surface roughness, chemical stability, hardness and contact modulus are sensitively altered by even a minor insertion of Zn-AP hybrid into the ZnO structure. Fabrication of Zn-AP + ZnO nanolaminates with different thicknesses of the Zn-AP and ZnO layers provides us with an even better way to control the hardness and contact modulus, and also to enhance the chemical stability of the films.

  1. Magnetic and structural properties of BiFeO{sub 3} thin films grown epitaxially on SrTiO{sub 3}/Si substrates

    SciTech Connect

    Laughlin, Ryan P.; Currie, Daniel A.; Contreras-Guererro, Rocio; Dedigama, Aruna; Priyantha, Weerasinghe; Droopad, Ravindranath; Theodoropoulou, Nikoleta; Gao Peng; Pan Xiaoqing

    2013-05-07

    The integration of oxides with semiconductors is important for the technological advancement of the next generation electronics. Concomitant ferroelectric and antiferromagnetic (AF) behavior is demonstrated in single crystal BiFeO{sub 3} (BFO) films grown on 20 nm SrTiO{sub 3} (STO) virtual substrates on Si(100) using molecular beam epitaxy (MBE). STO thin films are grown in an oxide MBE chamber by co-deposition of Sr, Ti, and molecular O{sub 2}. Careful control of the O{sub 2} during nucleation produced commensurate growth of STO on Si. The sequence of the steps allows for the suppression of an amorphous SiO{sub 2} layer. This STO(20 nm)/Si structure was used as a virtual substrate for MBE deposition of BFO on Si without breaking vacuum. BFO was deposited using Fe and O{sub 2} plasma with an overpressure of Bi flux, the growth rate was controlled by the incoming Fe flux. The reflection high energy electron diffraction image shows a 2-D growth front with a 6-fold surface reconstruction under optimized O{sub 2} pressure of 5 Multiplication-Sign 10{sup -8} mbar. Cross-sectional transmission electron microscopy (TEM) confirms the high crystallinity of the films and shows sharp, atomically flat interfaces. The selected area diffraction pattern (SADP) reveals that BFO grows in a distorted rhombohedral crystal structure. X-ray diffraction does not show formation of second phases and is consistent with the TEM and SADP results. The BFO films show AF behavior with a Neel temperature that exceeds 350 K, as expected (T{sub N} = 673 K) and with a residual ferromagnetic behavior that decreases with film thickness and is consistent with the G-type AF due to the canted spins. The saturation magnetization per unit volume for a 40 nm thick film was 180 emu/cm{sup 3} at an in-plane magnetic field of 8 kOe. The ferroelectric behavior of the films was verified using piezoresponse force microscopy.

  2. Effects of Concentration and Substrate Type on Structure and Conductivity of p-Type CuS Thin Films Grown by Spray Pyrolysis Deposition

    NASA Astrophysics Data System (ADS)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.

    2016-09-01

    Copper sulphide (CuS) thin films were grown upon Ti, indium tin oxide (ITO), and glass substrates by using spray pyrolysis deposition at 200°C. The films exhibited good adhesion compared to chemical bath deposition. CuCl2·2H2O and Na2S2O3·5H2O precursors were used as Cu2+ and S2- sources, respectively. Two concentrations (i.e., 0.2 M and 0.4 M) were selected in this study. X-ray diffraction analysis reveals that the films with 0.2 M showed only the formation of a covellite CuS phase having a hexagonal crystal structure with diffraction peaks of low intensity. For 0.4 M concentration, in addition to the covellite CuS phase, chalcocite Cu2S phase having a hexagonal crystal structure also appeared with relatively higher intensity peaks for all thin films. Field-emission scanning electron microscopy observations showed the formation of small grains for 0.2 M, whereas a mixture of grains with square-like shape and nanoplates were formed for 0.4 M. Depending on the 0.2 M and 0.4 M thin films thicknesses (3.2 μm and 4 μm, respectively), the band gap energy was obtained from optical measurements to be approximately 2.64 eV for 0.2 M (pure CuS phase), which slightly decreased up to 2.56 eV for 0.4 M concentration. Hall effect measurements showed that all grown films are p-type. The 0.2 M film exhibited much lower sheet resistance (R sh = 33.96 Ω/Sq-55.70 Ω/Sq) compared to 0.4 M film (R sh = 104.33 Ω/Sq-466.6 Ω/Sq). Moreover, for both concentrations, the films deposited onto ITO substrate showed the lowest sheet resistance (R sh = 33.96 Ω/Sq-104.33 Ω/Sq).

  3. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  4. (abstract) Transmission Electron Microscopy of Al(sub x)Ga(sub 1-x)N/SiC Multilayer Structures Grown on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; George, T.; Khan, M. A.; Kuznia, J. N.

    1994-01-01

    The potential of wide-band-gap III-V nitrides as ultraviolet sensors and light emitters has prompted an increasing amount of work recently, including the fabrication of the first UV sensors from as-deposited single crystal GaN. We have used high resolution transmission electron microscopy (TEM) to study the microstructure of two novel developments of wide-band-gap III-V nitrides: the growth of ultra-short period GaN/AlN superlattices; and the incorporation of SiC layers into Al(sub x)Ga(sub 1-x)N structures. By varying the relative periods in a GaN/AlN superlattice, the band gap of the composite can be tailored to lie between the elemental values of 365 nm for GaN and 200 nm for AlN. The group IV semiconductor, SiC, has a wide band-gap and has a close lattice match (less than 3 %) to Al(sub x)Ga(sub 1-x)N for growth on the basal plane. Demonstration of epitaxial growth for Al(sub x)Ga(sub 1-x)N/SiC multilayers would introduce a wide band-gap analog to the already existing family of III-V and Si(sub 1-x)Ge(sub x) heteroepitaxial growth systems. Although good quality growth of GaN on SiC substrates has been demonstrated, Al(sub x)Ga(sub 1-x)N/SiC multilayer structures have never been grown and the interfacial structure is unknown.

  5. High-density InAs/GaAs1-xSbx quantum-dot structures grown by molecular beam epitaxy for use in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Debnath, M. C.; Mishima, T. D.; Santos, M. B.; Cheng, Y.; Whiteside, V. R.; Sellers, I. R.; Hossain, K.; Laghumavarapu, R. B.; Liang, B. L.; Huffaker, D. L.

    2016-03-01

    InAs quantum-dot structures were grown using a GaAs1-xSbx matrix on a GaAs(001) substrate. The use of GaAs1-xSbx for the buffer and cap layers effectively suppressed coalescence between dots and significantly increased the dot density. The highest density (˜3.5 × 1011/cm2) was obtained for a nominal 3.0 monolayer deposition of InAs with an Sb composition of x = 13-14% in the GaAs1-xSbx matrix. When the Sb composition was increased to 18%, the resulting large photoluminescent red shift (˜90 meV) indicated the release of compressive strain inside the quantum dots. For x > 13%, we observed a significant decrease in photoluminescence intensity and an increase in the carrier lifetime (≥4.0 ns). This is attributed to the type-II band alignment between the quantum dots and matrix material.

  6. Magnetism and Nanoscale Structural and Compositional Irregularities in MBE-grown La2MnNiO6 on SrTiO3(001)

    NASA Astrophysics Data System (ADS)

    Chambers, Scott; Du, Yingge; Droubay, Timothy; Sushko, Peter; Spurgeon, Steven; Devaraj, Arun; Bowden, Mark; Shutthanandan, V.; Gustafsson, Torgny

    Double perovskites (A2BB'O6) are a fascinating class of oxides with considerable potential for applications requiring ferromagnetic and semiconducting properties. We have investigated MBE-grown La2MnNiO6 and have found that despite the fact that Mn and Ni are present as 4 + (d 3 : t2g 3eg0) and 2 + (d 8 : t2g 6eg2) respectively, and exhibit suitable XMCD signatures, the volume-averaged moment per formula unit is considerably less than 5 Bohr magnetons. Our electron energy loss spectroscopy (STEM-EELS) and atom probe tomography (APT) results to date reveal that there is considerable disorder in the B-site sublattice for as-deposited films, despite excellent volume-averaged stoichiometry. While air annealing results in substantial ordering, the moment remains low due to the nucleation of NiO inclusions with needle-like shapes revealed only by APT. First principles modeling suggests that even though the double perovskite is quite stable if nucleated in excess O, the presence of O vacancies facilitates structural disorder. In this talk, we will present our latest results on this fascinating material.

  7. Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1)

    SciTech Connect

    Bouhafs, C. Darakchieva, V.; Persson, I. L.; Persson, P. O. Å.; Yakimova, R.; Tiberj, A.; Paillet, M.; Zahab, A.-A.; Landois, P.; Juillaguet, S.; Schöche, S.; Schubert, M.

    2015-02-28

    Understanding and controlling growth of graphene on the carbon face (C-face) of SiC presents a significant challenge. In this work, we study the structural, vibrational, and dielectric function properties of graphene grown on the C-face of 4H-SiC by high-temperature sublimation in an argon atmosphere. The effect of growth temperature on the graphene number of layers and crystallite size is investigated and discussed in relation to graphene coverage and thickness homogeneity. An amorphous carbon layer at the interface between SiC and the graphene is identified, and its evolution with growth temperature is established. Atomic force microscopy, micro-Raman scattering spectroscopy, spectroscopic ellipsometry, and high-resolution cross-sectional transmission electron microscopy are combined to determine and correlate thickness, stacking order, dielectric function, and interface properties of graphene. The role of surface defects and growth temperature on the graphene growth mechanism and stacking is discussed, and a conclusion about the critical factors to achieve decoupled graphene layers is drawn.

  8. Morphological evolution and growth mechanism of hierarchical structure of PbTe films grown by off-axis magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Si, Jianxiao; Zhao, Ji; Ding, Guangchao; Wu, Haifei

    2014-12-01

    The morphological evolution of PbTe thin films grown by off-axis co-sputtering was studied. The hierarchical structures with various shapes including pyramids, truncated octahedrons, triangular shape plates and flower shape mounds were formed on the surface by adjusting the co sputter Telluride (Te) flux and substrate temperatures. The pyramids were favor to form under low co-sputter Te flux (<0.06 Å/s) at any growth temperatures between 150 °C and 320 °C. The columnar growth mode was proposed to explain the pyramid formation. The shape transitions from pyramids to truncated octahedrons and triangular shape plates were gradually taking place with the Te flux increased from 0.13 Å/s to 0.4 Å/s. The evolution was mainly attributed to the change in the ratio of growth rate between the {1 1 1} and {1 0 0} planes. The origin of flower shape mounds may be relative to the kinetic growth of these crystal habits of PbTe due to low mobility at 220 °C.

  9. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes.

    PubMed

    Xie, Zhiqiang; He, Ziyang; Feng, Xuhui; Xu, Wangwang; Cui, Xiaodan; Zhang, Jiuhong; Yan, Cheng; Carreon, Moises A; Liu, Zheng; Wang, Ying

    2016-04-27

    A sandwich-like, graphene-based porous nitrogen-doped carbon (PNCs@Gr) has been prepared through facile pyrolysis of zeolitic imidazolate framework nanoparticles in situ grown on graphene oxide (GO) (ZIF-8@GO). Such sandwich-like nanostructure can be used as anode material in lithium ion batteries, exhibiting remarkable capacities, outstanding rate capability, and cycling performances that are some of the best results among carbonaceous electrode materials and exceed most metal oxide-based anode materials derived from metal orgainc frameworks (MOFs). Apart from a high initial capacity of 1378 mAh g(-1) at 100 mA g(-1), this PNCs@Gr electrode can be cycled at high specific currents of 500 and 1000 mA g(-1) with very stable reversible capacities of 1070 and 948 mAh g(-1) to 100 and 200 cycles, respectively. At a higher specific current of 5000 mA g(-1), the electrode still delivers a reversible capacity of over 530 mAh g(-1) after 400 cycles, showing a capacity retention of as high as 84.4%. Such an impressive electrochemical performance is ascribed to the ideal combination of hierarchically porous structure, a highly conductive graphene platform, and high-level nitrogen doping in the sandwich-like PNCs@Gr electrode obtained via in situ synthesis.

  10. Defect structures and growth mechanisms of boron arsenide epilayers grown on 6H-silicon carbide and 15R-silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Chen, Hui

    B12As2 possesses the extraordinary properties, such as wide bandgap of 3.47eV and unique 'self heal' ability from electron irradiation damage, which make it attractive for the applications in space electronics, high temperature semiconductors and in particular, beta cells, devices capable of producing electrical energy by coupling a radioactive beta emitter to a semiconductor junction. Due to the absence of native substrates, B12As2 has been grown on substrates with compatible structural parameters via chemical vapor deposition. To date, growth on Si with (100), (110) and (111) orientation and (0001) 6H-SiC has been attempted. However, structural variants, including rotational and translational variants, have been observed in the epilayers and are expected to have a detrimental effect on device performance which has severely hindered progress of this material to date. In addition, none of the earlier reports provide a detailed atomic level study of defect structures in the films and growth mechanisms remain obscure. The focus of this thesis is to study defect structures in B12As2 films grown on different SiC substrates using synchrotron x-ray topography, high resolution transmission microscopy as well as other characterization techniques. The goals of the studies are to understand the generations of the defects present in B12As 2 films and their growth mechanisms so as to develop strategies to reduce defect densities and obtain better film quality for future device fabrication. The following detailed studies have been carried out: (1) The microstructures in B12As2 epitaxial layers grown on on-axis c-plane (0001) 6H-SiC substrates were analyzed in detail. Synchrotron white beam X-ray topography (SWBXT) and scanning electron microscopy (SEM) revealed a mosaic structure consisting of a solid solution of twin and matrix epilayer domains. The epitaxial relationship was determined to be (0001)B12As2<112¯0> B12As2||(0001)6H-SiC<112¯0>6H-SiC. B 12As2 twinned domains were

  11. Structural, electronic, and magnetic investigation of magnetic ordering in MBE-grown CrxSb2-xTe3 thin films

    NASA Astrophysics Data System (ADS)

    Collins-McIntyre, L. J.; Duffy, L. B.; Singh, A.; Steinke, N.-J.; Kinane, C. J.; Charlton, T. R.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Holmes, S. N.; Barnes, C. H. W.; van der Laan, G.; Langridge, S.; Hesjedal, T.

    2016-07-01

    We report the structural, electronic, and magnetic study of Cr-doped Sb2Te3 thin films grown by a two-step deposition process using molecular-beam epitaxy (MBE). The samples were investigated using a variety of complementary techniques, namely, x-ray diffraction (XRD), atomic force microscopy, SQUID magnetometry, magneto-transport, and polarized neutron reflectometry (PNR). It is found that the samples retain good crystalline order up to a doping level of x=0.42 (in Cr x Sb2-x Te3), above which degradation of the crystal structure is observed by XRD. Fits to the recorded XRD spectra indicate a general reduction in the c-axis lattice parameter as a function of doping, consistent with substitutional doping with an ion of smaller ionic radius. The samples show soft ferromagnetic behavior with the easy axis of magnetization being out-of-plane. The saturation magnetization is dependent on the doping level, and reaches from ˜2 μ_\\text{B} to almost 3 μ_\\text{B} per Cr ion. The transition temperature (T{c}) depends strongly on the Cr concentration and is found to increase with doping concentration. For the highest achievable doping level for phase-pure films of x=0.42 , a T{c} of 125 K was determined. Electric transport measurements find surface-dominated transport below ˜10 K. The magnetic properties extracted from anomalous Hall effect data are in excellent agreement with the magnetometry data. PNR studies indicate a uniform magnetization profile throughout the film, with no indication of enhanced magnetic order towards the sample surface.

  12. Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy

    SciTech Connect

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael; Kisslinger, Kim; Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.

    2015-11-25

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match the polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.

  13. The effects of annealing on the structural, optical, and vibrational properties of lattice-matched GaAsSbN /GaAs grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bharatan, S.; Iyer, S.; Nunna, K.; Collis, W. J.; Matney, K.; Reppert, J.; Rao, A. M.; Kent, P. R. C.

    2007-07-01

    The structural, optical, and vibrational properties of a GaAsSbN epilayer lattice matched to GaAs with a band gap of 1eV have been investigated using a variety of characterization techniques. These layers have potential applications in GaAs based tandem solar cells that utilize the near infrared region of the solar spectrum. The epilayers were grown in an elemental solid source molecular beam epitaxy system with a rf plasma nitrogen source. The Sb and N compositions of the nearly lattice-matched layers are 6.8% and 2.6%, respectively, as determined by high resolution x-ray diffraction and secondary ion mass spectroscopy (SIMS) analysis. The high crystalline quality of the layers is attested by the presence of well resolved Pendellosung fringes on a triple axis (004) x-ray scan and dynamical truncation rods observed on the corresponding (004) reciprocal space map. The effects of in situ annealing in As ambient and ex situ annealing in N ambient on the low temperature photoluminescence (PL) characteristics are discussed. Ex situ (in situ) annealed samples display an 8K PL peak energy of 1eV with a full width at half maximum of 18meV (26meV). Raman spectral analysis, the temperature dependence of the PL peak energy, and SIMS profiles indicate that outdiffusions of N and As are suppressed in the in situ annealed samples and improvement in Ga-N bonding is observed, leading to higher PL intensities in these samples. In addition, indirect evidence of atomic scale ordering has been observed. The stability of these structures appears to be dependent on the annealing conditions.

  14. Structural, electronic, and magnetic investigation of magnetic ordering in MBE-grown CrxSb2‑xTe3 thin films

    NASA Astrophysics Data System (ADS)

    Collins-McIntyre, L. J.; Duffy, L. B.; Singh, A.; Steinke, N.-J.; Kinane, C. J.; Charlton, T. R.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Holmes, S. N.; Barnes, C. H. W.; van der Laan, G.; Langridge, S.; Hesjedal, T.

    2016-07-01

    We report the structural, electronic, and magnetic study of Cr-doped Sb2Te3 thin films grown by a two-step deposition process using molecular-beam epitaxy (MBE). The samples were investigated using a variety of complementary techniques, namely, x-ray diffraction (XRD), atomic force microscopy, SQUID magnetometry, magneto-transport, and polarized neutron reflectometry (PNR). It is found that the samples retain good crystalline order up to a doping level of x=0.42 (in Cr x Sb2‑x Te3), above which degradation of the crystal structure is observed by XRD. Fits to the recorded XRD spectra indicate a general reduction in the c-axis lattice parameter as a function of doping, consistent with substitutional doping with an ion of smaller ionic radius. The samples show soft ferromagnetic behavior with the easy axis of magnetization being out-of-plane. The saturation magnetization is dependent on the doping level, and reaches from ∼2 μ_\\text{B} to almost 3 μ_\\text{B} per Cr ion. The transition temperature (T{c}) depends strongly on the Cr concentration and is found to increase with doping concentration. For the highest achievable doping level for phase-pure films of x=0.42 , a T{c} of 125 K was determined. Electric transport measurements find surface-dominated transport below ∼10 K. The magnetic properties extracted from anomalous Hall effect data are in excellent agreement with the magnetometry data. PNR studies indicate a uniform magnetization profile throughout the film, with no indication of enhanced magnetic order towards the sample surface.

  15. The effects of annealing on the structural, optical, and vibrational properties of lattice-matched GaAsSbN/GaAs grown by molecular beam epitaxy

    SciTech Connect

    Bharatan, S.; Iyer, Prof Shanthi; Nunna, K.; Collis, W J; Matney, K.; Reppert, J.; Rao, A. M.; Kent, Paul R

    2007-01-01

    The structural, optical, and vibrational properties of a GaAsSbN epilayer lattice matched to GaAs with a band gap of 1 eV have been investigated using a variety of characterization techniques. These layers have potential applications in GaAs based tandem solar cells that utilize the near infrared region of the solar spectrum. The epilayers were grown in an elemental solid source molecular beam epitaxy system with a rf plasma nitrogen source. The Sb and N compositions of the nearly lattice-matched layers are 6.8% and 2.6%, respectively, as determined by high resolution x-ray diffraction and secondary ion mass spectroscopy (SIMS) analysis. The high crystalline quality of the layers is attested by the presence of well resolved Pendellosung fringes on a triple axis (004) x-ray scan and dynamical truncation rods observed on the corresponding (004) reciprocal space map. The effects of in situ annealing in As ambient and ex situ annealing in N ambient on the low temperature photoluminescence (PL) characteristics are discussed. Ex situ (in situ) annealed samples display an 8 K PL peak energy of 1 eV with a full width at half maximum of 18 meV (26 meV). Raman spectral analysis, the temperature dependence of the PL peak energy, and SIMS profiles indicate that outdiffusions of N and As are suppressed in the in situ annealed samples and improvement in Ga-N bonding is observed, leading to higher PL intensities in these samples. In addition, indirect evidence of atomic scale ordering has been observed. The stability of these structures appears to be dependent on the annealing conditions.

  16. Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH{sub 3} molecular beam epitaxy

    SciTech Connect

    Browne, David A.; Speck, James S.; Mazumder, Baishakhi; Wu, Yuh-Renn

    2015-05-14

    Unipolar-light emitting diode like structures were grown by NH{sub 3} molecular beam epitaxy on c plane (0001) GaN on sapphire templates. Studies were performed to experimentally examine the effect of random alloy fluctuations on electron transport through quantum well active regions. These unipolar structures served as a test vehicle to test our 2D model of the effect of compositional fluctuations on polarization-induced barriers. Variables that were systematically studied included varying quantum well number from 0 to 5, well thickness of 1.5 nm, 3 nm, and 4.5 nm, and well compositions of In{sub 0.14}Ga{sub 0.86}N and In{sub 0.19}Ga{sub 0.81}N. Diode-like current voltage behavior was clearly observed due to the polarization-induced conduction band barrier in the quantum well region. Increasing quantum well width and number were shown to have a significant impact on increasing the turn-on voltage of each device. Temperature dependent IV measurements clearly revealed the dominant effect of thermionic behavior for temperatures from room temperature and above. Atom probe tomography was used to directly analyze parameters of the alloy fluctuations in the quantum wells including amplitude and length scale of compositional variation. A drift diffusion Schrödinger Poisson method accounting for two dimensional indium fluctuations (both in the growth direction and within the wells) was used to correctly model the turn-on voltages of the devices as compared to traditional 1D simulation models.

  17. Study of Defect Structures in 6H-SiC a/ m-Plane Pseudofiber Crystals Grown by Hot-Wall CVD Epitaxy

    NASA Astrophysics Data System (ADS)

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael; Kisslinger, Kim; Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.

    2016-04-01

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/ m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match the polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed-epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g· b and g· b× l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed-homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Finally, the implication of these results for improving the LTC growth process is addressed.

  18. Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy

    DOE PAGES

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael; Kisslinger, Kim; Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.

    2015-11-25

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match themore » polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.« less

  19. Effect of various buffer-layer structures on the material quality and dislocation density of high composition Al/sub x/Ga/sub 1/. sqrt. /sub x/As laser material grown by metalorganic chemical vapor deposition

    SciTech Connect

    Givens, M.E.; Coleman, J.J.; Zmudzinski, C.A.; Bryan, R.P.; Emanuel, M.A.; Miller, L.M.

    1988-05-15

    The effect of various types of buffer layers on the generation and propagation of dislocations in epitaxial layers of high composition (x = 0.85) Al/sub x/Ga/sub 1/..sqrt../sub x/As grown by metalorganic chemical vapor deposition (MOCVD) on horizontal Bridgman (HB) and liquid-encapsulated Czochralski (LEC) substrates is examined. Bulk epilayers of high composition (x = 0.85) Al/sub x/Ga/sub 1/..sqrt../sub x/As and graded-barrier quantum-well laser structures with confining layers of the same composition were grown simultaneously on high-qualitylow etch-pit density (EPD) HB substrates and comparatively lower qualityhigh EPD LEC substrates with one of four types of compositionally graded andor superlattice buffer-layer structures. The bulk material was characterized by delineation and measurement of surface EPD and the observation of overall surface morphology. Data are also presented on the device characteristics of graded-barrier quantum-well laser diodes grown with these same buffer layers in order to determine the correlation between dislocation density and laser threshold current. The various buffer-layer structures were seen to be effective in reducing the defect density and improving the surface morphology of high composition epilayers grown on both HB and LEC substrates. The threshold-current density of the laser diodes, however, was independent of both the type of prelayer andor substrate utilized

  20. Structure-Processing-Property Interrelationships of Vapor Grown Carbon Nanofiber, Single-Walled Carbon Nanotube and Functionalized Single-Walled Carbon Nanotube - Polypropylene Nanocomposites

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Vinod Karumathil

    This dissertation describes the first use of a design of experiments approach to investigate the interrelationships between structure, processing, and properties of melt extruded polypropylene (PP) carbon nanomaterial composites. The effect of nanomaterial structure was evaluated by exploring the incorporation of vapor grown carbon nanofibers (VGCFs), or pristine or functionalized single-walled carbon nanotubes (SWNTs or C12SWNTs) in polypropylene, while the effect of processing was investigated by studying the influence of melt extrusion temperature, speed, and time. The nanomaterials and PP were combined by an initial mixing method prior to melt extrusion. The nanocomposite properties were characterized by a combination of morphological, rheological, and thermal methods. Preliminary investigations into the effects of the initial mixing method revealed that the distribution of nanomaterials obtained after the mixing had a considerable influence on the properties of the final melt extruded nanocomposite. Dry mixing (DM) resulted in minimal adhesion between nanomaterials and PP during initial mixing; the majority of nanomaterials descended to the bottom. Hot coagulation (HC) mixing resulted in extremely high degrees of interaction between the nanomaterials and PP chains. Rotary evaporation (RE) mixing resulted in nanomaterial distribution uniformity between that obtained from DM and HC. Employing design of experiments to investigate the effects of structure and processing conditions on melt extruded PP nanocomposite properties revealed several interesting effects. The effect of processing conditions varied depending on the degree of nanomaterial distribution in PP attained prior to melt processing. Increasing melt extrusion temperature increased the decomposition temperature (Td) of PP/C12SWNT obtained from HC mixing but decreased T d of PP/C12SWNT obtained from RE mixing. Higher melt extrusion screw speed, on the other hand, significantly improved the nanocomposite

  1. Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1-xGex/Si substrate

    NASA Astrophysics Data System (ADS)

    Tanoto, H.; Yoon, S. F.; Lew, K. L.; Loke, W. K.; Dohrman, C.; Fitzgerald, E. A.; Tang, L. J.

    2009-10-01

    We studied the electroluminescence and structural characteristics of five-layer stacked self-assembled InAs/In0.1Ga0.9As quantum dot (QD) structures grown on graded Si1-xGex/Si substrate. The QD was found to take on a lens shaped structure with aspect ratio of 0.23±0.05. Room-temperature electroluminescence at 1.29 μm was observed from the QD structures. The external quantum efficiency as function of injected current was investigated and the dominant carrier recombination processes were identified from analysis of the current-optical power relationship.

  2. Synthesis, growth, structural, optical, luminescence, surface and HOMO LUMO analysis of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Kalainathan, S.; Maheswara Rao, Kunda Uma; Hamada, Fumio; Yamada, Manabu; Kondo, Yoshihiko

    2016-02-01

    Single crystals of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate (4CLNS) were grown by a slow evaporation technique. The formation of molecule was confirmed from 1H NMR and FTIR analysis. The confirmation of crystal structure was done by single crystal XRD and atomic packing of grown crystal was identified. The grown single crystal crystallized in triclinic structure with centrosymmetric space group P-1. The crystalline nature of the synthesised material was recorded by powder XRD. The optical absorption properties of the grown crystals were analyzed by UV-vis spectral studies. The thermal behaviour of the title material has been studied by TG/DTA analysis which revealed the stability of the compound till its melting point 276.7 °C. The third order nonlinear optical property of 4CLNS was investigated in detail by Z scan technique and it confirms that the title crystal is suitable for photonic devices and NLO optical applications. Emissions at 519 nm in green region of the EM spectrum were found by photoluminescence studies. The charge transfer occurring within the molecule is explained by the calculated HOMO and LUMO energies.

  3. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  4. High optical and structural quality of GaN epilayers grown on (2{sup ¯}01) β-Ga{sub 2}O{sub 3}

    SciTech Connect

    Muhammed, M. M.; Roqan, I. S.; Peres, M.; Franco, N.; Lorenz, K.; Yamashita, Y.; Morishima, Y.; Sato, S.; Kuramata, A.

    2014-07-28

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2{sup ¯}01) oriented β-Ga{sub 2}O{sub 3} has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2{sup ¯}01) oriented β-Ga{sub 2}O{sub 3} are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ∼10{sup 8 }cm{sup −2}. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2{sup ¯}01) β-Ga{sub 2}O{sub 3} with in-plane epitaxial orientation relationships between the β-Ga{sub 2}O{sub 3} and the GaN thin film defined by (010) β-Ga{sub 2}O{sub 3} || (112{sup ¯}0) GaN and (2{sup ¯}01) β-Ga{sub 2}O{sub 3} || (0001) GaN leading to a lattice mismatch of ∼4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high.

  5. Molecule diagram from space-grown crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers' at Hauptman-Woodward Medical Research Institute, in Buffalo, N.Y. have analyzed the molecular structures of insulin crystals grown during Space Shuttle experiments and are unlocking the mystery of how insulin works.

  6. Structural and optical properties of AgAlTe{sub 2} layers grown on sapphire substrates by closed space sublimation method

    SciTech Connect

    Uruno, A. Usui, A.; Kobayashi, M.

    2014-11-14

    AgAlTe{sub 2} layers were grown on a- and c-plane sapphire substrates using a closed space sublimation method. Grown layers were confirmed to be single phase layers of AgAlTe{sub 2} by X-ray diffraction. AgAlTe{sub 2} layers were grown to have a strong preference for the (112) orientation on both kinds of substrates. The variation in the orientation of grown layers was analyzed in detail using the X-ray diffraction pole figure measurement, which revealed that the AgAlTe{sub 2} had a preferential epitaxial relationship with the c-plane sapphire substrate. The atomic arrangement between the (112) AgAlTe{sub 2} layer and sapphire substrates was compared. It was considered that the high order of the lattice arrangement symmetry probably effectively accommodated the lattice mismatch. The optical properties of the grown layer were also evaluated by transmittance measurements. The bandgap energy was found to be around 2.3 eV, which was in agreement with the theoretical bandgap energy of AgAlTe{sub 2}.

  7. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  8. Ferroelectric properties and crystalline structures of BaMgF{sub 4} thin films grown on Pt(111)/SiO{sub 2}/Si(100)

    SciTech Connect

    Moriwaki, Masashi; Aizawa, Koji; Tokumitsu, Eisuke; Ishiwara, Hiroshi

    1997-07-01

    Crystalline quality and ferroelectric properties of (120)-oriented BaMgF{sub 4}(BMF) films grown on Pt(111)/SiO{sub 2}/Si(100) and n-Si(111) substrates have been investigated. The BaMgF{sub 4} films grown on Pt(111) have large and flat grains, while the films on Si(111) have small grains. The C-V curve of BaMgF{sub 4}/Pt(111)/SiO{sub 2}/Si(100) diodes showed a hysteresis loop with a memory window of 3.8V.

  9. Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gan, J.; Gorantla, S.; Riise, H. N.; Fjellvâg, Ø. S.; Diplas, S.; Løvvik, O. M.; Svensson, B. G.; Monakhov, E. V.; Gunnæs, A. E.

    2016-04-01

    Epitaxial Cu2O films grown by reactive and ceramic radio frequency magnetron sputtering on single crystalline ZnO (0001) substrates are investigated. The films are grown on both O- and Zn-polar surface of the ZnO substrates. The Cu2O films exhibit a columnar growth manner apart from a ˜5 nm thick CuO interfacial layer. In comparison to the reactively sputtered Cu2O, the ceramic-sputtered films are less strained and appear to contain nanovoids. Irrespective of polarity, the Cu2O grown by reactive sputtering is observed to have (111)Cu2O||(0001)ZnO epitaxial relationship, but in the case of ceramic sputtering the films are found to show additional (110)Cu2O reflections when grown on O-polar surface. The observed CuO interfacial layer can be detrimental for the performance of Cu2O/ZnO heterojunction solar cells reported in the literature.

  10. Optical properties and structural investigations of (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells grown by molecular beam epitaxy

    SciTech Connect

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry; Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; Mierry, Philippe de; Damilano, Benjamin; Massies, Jean; Bigenwald, Pierre

    2015-07-14

    We have grown (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al{sub 0.5}Ga{sub 0.5}N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  11. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV–vis–NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology–Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission–Department of Atomic Research–Consortium for Scientific Research (Grant No. CSR–KN/CSR–63/2014–2015/503), and the Kalpakkam and Indore, India.

  12. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV-vis-NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology-Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission-Department of Atomic Research-Consortium for Scientific Research (Grant No. CSR-KN/CSR-63/2014-2015/503), and the Kalpakkam and Indore, India.

  13. Investigation of the structural, electrical, and optical properties of MnAl2Se4 layers grown using the hot-wall deposition technique

    NASA Astrophysics Data System (ADS)

    You, S. H.; Hong, K. J.; Jeong, J. W.; Jeong, T. S.; Youn, C. J.; Moon, J. D.

    2016-08-01

    MnAl2Se4 layers were grown using the hot-wall deposition technique with an attached reservoir tail. Precise control of the vapor pressure in the reservoir was thought to play an important role in the grown of a stoichiometric layer. From the relation between the reciprocal temperature and the carrier concentration, we extracted the dominant trap level as 96.1 meV in the high-temperature region and 13.9 meV in the middle-temperature region. Thus, from a log-log plot between the mobility and the temperature, the mobility showed the different temperature-dependent decreases of the mobility at temperatures above 100 K: T -1/2 in the temperature range of 100 < T < 225 K and T -3/2 in the temperature of T > 225 K. The mobility decreased in proportion to T 1 in the low-temperature range of T < 100 K. By analyzing the optical absorption results, the bandgap variation matched E g ( T) = E g (0) - 3.19 × 10-3 T 2/( T + 488) well, where E g (0) is estimated to be 3.5616 eV. Consequently, low-temperature growth of MnAl2Se4 layers was achieved by using the hot-wall deposition technique.

  14. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

    PubMed

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-01-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere. PMID:25852391

  15. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe “Doped” and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  16. Structural and electrical characterization of NbO2 vertical devices grown on TiN coated SiO2/Si substrate

    NASA Astrophysics Data System (ADS)

    Joshi, Toyanath; Borisov, Pavel; Lederman, David

    Due to its relatively high MIT temperature (1081 K) and current-controlled negative differential resistance, NbO2 is a robust candidate for memory devices and electrical switching applications. In this work, we present in-depth analysis of NbO2 thin film vertical devices grown on TiN coated SiO2/Si substrates using pulsed laser deposition (PLD). Two of the films grown in 1 mTorr and 10 mTorr O2/Ar (~7% O2) mixed growth pressures were studied. The formation of NbO2 phase was confirmed by Grazing Incidence X-ray Diffractometry (GIXRD), X-ray Photoelectron Spectroscopy (XPS) and current vs. voltage measurements. A probe station tip (tip size ~2 μm) or conductive AFM tip was used as a top and TiN bottom layer was used as a bottom contact. Device conductivity showed film thickness and contact size dependence. Current pulse measurements, performed in response to applied triangular voltage pulses, showed a non-linear threshold switching behavior for voltage pulse durations of ~100 ns and above. Self-sustained current oscillations were analyzed in terms of defect density presented in the film. Supported by FAME (sponsored by MARCO and DARPA, Contract 2013-MA-2382), WV Higher Education Policy Commission Grant (HEPC.dsr.12.29), and WVU SRF. We also thank S. Kramer from Micron for providing the TiN-coated Si substrates.

  17. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  18. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

    PubMed

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-01-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

  19. Structural and optical properties of lanthanide oxides grown by atomic layer deposition (Ln = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb).

    PubMed

    Hansen, Per-Anders; Fjellvåg, Helmer; Finstad, Terje; Nilsen, Ola

    2013-08-14

    Ln2O3 thin films with optically active f-electrons (Ln = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) have been grown on Si(100) and soda lime glass substrates by atomic layer deposition (ALD) using Ln(thd)3 (Hthd = 2,2,6,6-tetramethyl-3,5-heptanedione) and ozone as precursors. The temperature range for depositions was 200-400 °C. Growth rates were measured by spectroscopic ellipsometry and a region with a constant growth rate (ALD window) was found for Ln = Ho and Tm. All the compounds are grown as amorphous films at low temperatures, whereas crystalline films (cubic C-Ln2O3) are obtained above a certain temperature ranging from 300 to 250 °C for Nd2O3 to Yb2O3, respectively. AFM studies show that the films were smooth (rms < 1 nm) except for depositions at the highest temperatures. The refractive index was measured by spectroscopic ellipsometry and was found to depend on the deposition temperature. Optical absorption measurements show that the absorption from the f-f transitions depends strongly on the crystallinity of the material. The clear correlation between the degree of crystallinity, optical absorptions and refractive indices is discussed.

  20. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone

    NASA Astrophysics Data System (ADS)

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-02-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti3+ ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti3+ ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

  1. Defects in the crystal structure of Cd{sub x}Hg{sub 1-x}Te layers grown on the Si (310) substrates

    SciTech Connect

    Yakushev, M. V. Gutakovsky, A. K.; Sabinina, I. V.; Sidorov, Yu. G.

    2011-07-15

    Microstructure of the CdTe (310) and CdHgTe (310) layers grown by molecular-beam epitaxy on Si substrates has been studied by the methods of transmission electron microscopy and selective etching. It is established that formation of antiphase domains in the CdHgTe/CdTe/ZnTe/Si(310) is determined by the conditions of formation of the ZnTe/Si interface. Monodomain layers can be obtained by providing conditions that enhance zinc adsorption. An increase in the growth temperature and in the pressure of Te{sub 2} vapors gives rise to antiphase domains and induces an increase in their density to the extent of the growth of poly-crystals. It is found that stacking faults exist in a CdHgTe/Si(310) heterostructure; these defects are anisotropically distributed in the bulk of grown layers. The stacking faults are predominantly located in one (111) plane, which intersects the (310) surface at an angle of 68 Degree-Sign . The stacking faults originate at the ZnTe/Si(310) interface. The causes of origination of stacking faults and of their anisotropic distribution are discussed.

  2. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions.

    PubMed

    Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G

    2012-12-14

    The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.

  3. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions.

    PubMed

    Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G

    2012-12-14

    The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions. PMID:23154521

  4. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions

  5. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    NASA Astrophysics Data System (ADS)

    Ayari, Taha; Sundaram, Suresh; Li, Xin; El Gmili, Youssef; Voss, Paul L.; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2016-04-01

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  6. Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties

    SciTech Connect

    Coulon, P. M.; Mexis, M.; Teisseire, M.; Vennéguès, P.; Leroux, M.; Zuniga-Perez, J.; Jublot, M.

    2014-04-21

    Self-assembled catalyst-free GaN micropillars grown on (0001) sapphire substrates by metal organic vapor phase epitaxy are investigated. Transmission electron microscopy, as well as KOH etching, shows the systematic presence of two domains of opposite polarity within each single micropillar. The analysis of the initial growth stages indicates that such double polarity originates at the micropillar/substrate interface, i.e., during the micropillar nucleation, and it propagates along the micropillar. Furthermore, dislocations are also generated at the wire/substrate interface, but bend after several hundreds of nanometers. This leads to micropillars several tens of micrometers in length that are dislocation-free. Spatially resolved cathodoluminescence and microphotoluminescence show large differences in the optical properties of each polarity domain, suggesting unequal impurity/dopant/vacancy incorporation depending on the polarity.

  7. Structure and properties of Bi(Zn0.5Ti0.5)O3- Pb(Zr(1-x)Ti(x))O3 ferroelectric single crystals grown by a top-seeded solution growth technique.

    PubMed

    Wang, Bixia; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2015-06-01

    Bi(Zn0.5Ti0.5)O3 (BZT)-modified Pb(Zr(1-x)Ti(x))O3 (PZT) single crystals have been grown using a top-seeded solution growth technique and characterized by various methods. The crystal structure is found to be rhombohedral by means of X-ray powder diffraction. The composition and homogeneity of the as-grown single crystals are studied by laser ablation inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The domain structure of a (001)(cub) platelet is investigated by polarized light microscopy (PLM), which confirms the rhombohedral symmetry. The paraelectric-to-ferroelectric phase transition temperature T(C) is found to be 313°C with the absence of rhombohedral-tetragonal phase transition. The ferroelectric properties of the ternary crystals are enhanced by the BZT substitution with a remanent polarization of 28 μC/cm(2) and a coercive field E(C) of 22.1 kV/cm.

  8. Effects of substrate misorientation and background impurities on electron transport in molecular-beam-epitaxial grown GaAs/AlGaAs modulation-doped quantum-well structures

    NASA Technical Reports Server (NTRS)

    Radulescu, D. C.; Wicks, G. W.; Schaff, W. J.; Calawa, A. R.; Eastman, L. F.

    1987-01-01

    The effects of substrate misorientation off the (001) plane and of background impurities on electron transport in MBE-grown GaAs/AlGaAs modulation-doped superlattice-buffered quantum-well structures were investigated. Low-field transport data were obtained on GaAs/AlGaAs structures grown on substrates oriented 0, 2, 4, and 6.5 deg off the (001) plane towards either (111)A or (111)B. It is shown that the low-field two-dimensional electron gas (2DEG) mobility is a function of the angle and direction of the substrate orientation, and that the 2DEG mobility is a function of the direction of the applied electric field in the GaAs quantum well. The anisotropy in the 2DEG mobility is also a function of the tilt angle and tilt azimuth direction of the substrate from the (001) plane. In addition, it is shown that the amount of interface scattering from the inverted interface is a sensitive function of the amount of background impurities in the MBE machine.

  9. Mechanisms of the micro-crack generation in an ultra-thin AlN/GaN superlattice structure grown on Si(110) substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shen, X. Q.; Takahashi, T.; Ide, T.; Shimizu, M.

    2015-09-01

    We investigate the generation mechanisms of micro-cracks (MCs) in an ultra-thin AlN/GaN superlattice (SL) structure grown on Si(110) substrates by metalorganic chemical vapor deposition. The SL is intended to be used as an interlayer (IL) for relaxing tensile stress and obtaining high-quality crack-free GaN grown on Si substrates. It is found that the MCs can be generated by two different mechanisms, where large mismatches of the lattice constant (LC) and the coefficient of thermal expansion (CTE) play key roles in the issue. Different MC configurations (low-density and high-density MCs) are observed, which are considered to be formed during the different growth stages (SL growth and cooling down processes) due to the LC and the CTE effects. In-situ and ex-situ experimental results support the mechanism interpretations of the MCs generation. The mechanism understanding makes it possible to optimize the SL IL structure for growing high-quality crack-free GaN films on Si substrates for optical and electronic device applications.

  10. Mechanisms of the micro-crack generation in an ultra-thin AlN/GaN superlattice structure grown on Si(110) substrates by metalorganic chemical vapor deposition

    SciTech Connect

    Shen, X. Q. Takahashi, T.; Ide, T.; Shimizu, M.

    2015-09-28

    We investigate the generation mechanisms of micro-cracks (MCs) in an ultra-thin AlN/GaN superlattice (SL) structure grown on Si(110) substrates by metalorganic chemical vapor deposition. The SL is intended to be used as an interlayer (IL) for relaxing tensile stress and obtaining high-quality crack-free GaN grown on Si substrates. It is found that the MCs can be generated by two different mechanisms, where large mismatches of the lattice constant (LC) and the coefficient of thermal expansion (CTE) play key roles in the issue. Different MC configurations (low-density and high-density MCs) are observed, which are considered to be formed during the different growth stages (SL growth and cooling down processes) due to the LC and the CTE effects. In-situ and ex-situ experimental results support the mechanism interpretations of the MCs generation. The mechanism understanding makes it possible to optimize the SL IL structure for growing high-quality crack-free GaN films on Si substrates for optical and electronic device applications.

  11. Structural, thermal, laser damage, photoconductivity, NLO and mechanical properties of modified vertical Bridgman method grown AgGa0.5In0.5Se2 single crystal

    NASA Astrophysics Data System (ADS)

    Vijayakumar, P.; Ramasamy, P.

    2016-08-01

    AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.

  12. Graphic Grown Up

    ERIC Educational Resources Information Center

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  13. Characterization of graded interface In(x)Ga(1-x)As/In(0.52)Al(0.48)As (x between 0.53 and 0.70) structures grown by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Sinha, S.; Morkoc, H.

    1987-01-01

    Modulation-doped In(x)Ga(1-x)As/In(0.52)Al(0.48)As/InP structures were grown by molecular-beam epitaxy with x values between 53 and 70 percent. For pseudomorphic cases, graded instead of abrupt interfaces were used. Hall mobility and persistent photoconductivity measurements as a function of temperature were used to characterize samples with different structural parameters. Consistent trends in the variation of mobilities and two-dimensional carrier concentration, n(2D), under light and dark conditions have been observed and discussed in terms of applicable scattering mechanisms. The Hall mobilities are comparable to the best results obtained to date but with significantly higher n(2D) concentration.

  14. Structural evolution and defect control of yttrium-doped ZrO2 films grown by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Jeong, Kwang Sik; Song, Jinho; Lim, Donghyeok; Lee, Myung Soo; Kim, Hyoungsub; Cho, Mann-Ho

    2014-11-01

    Yttrium-doped ZrO2 thin-films were prepared on Si substrates via sol-gel synthesis at a low temperature of 700 °C. During sol-gel synthesis, yttrium can easily take the place of the zirconium in ZrO2, even at low ambient process temperatures. We were therefore able to successfully synthesize yttrium-doped zirconium oxide (Y-ZrO2) with a clean interface without the generation of zirconium silicate, which is formed at high temperatures (∼1000 °C). Doped yttrium can eliminate the interstitial oxygen contained in ZrO2 thin films as O2-1 states. The conduction band offset (CBO) is also increased via yttrium doping: from 1.69 eV for ZrO2 to 1.99 eV for Y-ZrO2 in the as-grown films, and from 1.27 eV for ZrO2 to 1.35 eV for Y-ZrO2 in the annealed films. The difference observed in the CBO of the as-grown films may be caused by interstitial oxygen, which is formed in the ZrO2 films, while the annealed films have oxygen vacancies. The reported data show that yttrium doping of ZrO2 induces the formation of a yttrium-oxygen vacancy pair, which can reduce the formation energy of oxygen vacancies. However, using the density-of-states analysis from the VASP code density functional theory (DFT) calculations, we confirm that the oxygen vacancy in the Y-ZrO2 did not generate defect states within the silicon band gap, whereas in the ZrO2 it did generate defect states within the silicon band gap. Using the conductance method, reductions in the interfacial trap charge densities of approximately 20% were observed near the mid-gap in Y-ZrO2, as compared with undoped ZrO2. Following the application of electrical stress, the reduction in interface states was found to be greater in the Y-ZrO2 film, which is consistent with the DFT calculation.

  15. Interfacial structure and defect analysis of nonpolar ZnO films grown on R-plane sapphire by molecular beam epitaxy

    SciTech Connect

    Vennegues, P.; Korytov, M.; Deparis, C.; Zuniga-Perez, J.; Morhain, C.; Chauveau, J. M.

    2008-04-15

    The interfacial relationship and the microstructure of nonpolar (11-20) ZnO films epitaxially grown on (1-102) R-plane sapphire by molecular beam epitaxy are investigated by transmission electron microscopy. The already-reported epitaxial relationships [1-100]{sub ZnO} parallel [11-20]{sub sapphire} and <0001>{sub ZnO} parallel [-1101]{sub sapphire} are confirmed, and we have determined the orientation of the Zn-O (cation-anion) bond along [0001]{sub ZnO} in the films as being uniquely defined with respect to a reference surface Al-O bond on the sapphire substrate. The microstructure of the films is dominated by the presence of I{sub 1} basal stacking faults [density=(1-2)x10{sup 5} cm{sup -1}] and related partial dislocations [density=(4-7)x10{sup 10} cm{sup -2}]. It is shown that I{sub 1} basal stacking faults correspond to dissociated perfect dislocations, either c or a+c type.

  16. AgGaSe2 thin films grown by chemical close-spaced vapor transport for photovoltaic applications: structural, compositional and optical properties.

    PubMed

    Merschjann, C; Mews, M; Mete, T; Karkatzinou, A; Rusu, M; Korzun, B V; Schorr, S; Schubert-Bischoff, P; Seeger, S; Schedel-Niedrig, Th; Lux-Steiner, M-Ch

    2012-05-01

    Thin films of chalcopyrite AgGaSe(2) have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe(2), showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe(2) phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag(2)Se and Ga(2)O(3) nanometer-scaled surface layers, as well as by Ag(2)Se inclusions in the bulk and Ag clusters at the layers' rear side. PMID:22469870

  17. Fabrication and electrical characterization of homo- and hetero-structure Si/SiGe nanowire Tunnel Field Effect Transistor grown by vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Brouzet, V.; Salem, B.; Periwal, P.; Alcotte, R.; Chouchane, F.; Bassani, F.; Baron, T.; Ghibaudo, G.

    2016-04-01

    We demonstrate the fabrication and electrical characterization of Ω -gate Tunnel Field Effect Transistors (TFET) based on p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowires grown by Chemical Vapor Deposition (CVD) using the vapor-liquid-solid (VLS) mechanism. The electrical performances of the p-Si/i-Si/n+Si0.7Ge0.3 heterostructure TFET device are presented and compared to Si and Si0.7Ge0.3 homostructure nanowire TFETs. We observe an improvement of the electrical performances of TFET with p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowire (HT NW). The optimized devices present an Ion current of about 245 nA at VDS = -0.5 V and VGS = -3 V with a subthreshold swing around 135 mV/dec. Finally, we show that the electrical results are in good agreement with numerical simulation using Kane's Band-to-Band Tunneling model.

  18. A scanning tunneling microscopy study of the structure of thin oxide films grown on Ni(111) single crystal surfaces by anodic polarization in acid electrolyte

    NASA Astrophysics Data System (ADS)

    Maurice, V.; Talah, H.; Marcus, P.

    1994-03-01

    Scanning tunneling microscopy has been used to study ex situ (in air) the thin oxide films (passive films) grown on Ni(111) by anodic polarization at +550, +650 and +750 mV/SHE in 0.05 M H 2SO 4. Atomic resolution imaging demonstrates the crystalline character of the oxide film and the epitaxy with the substrate. Two levels of roughening with respect to the non-polarized surfaces are observed: on a mesoscopic scale and on the atomic scale. The roughening on the mesoscopic scale increases with higher polarization potentials. The observed roughness is attributed to the result of the competition between metal dissolution and nucleation and growth of the oxide film. The roughening on the atomic scale is independent of the polarization potential. It is evidenced by the formation of a stepped crystalline lattice whose parameters fit those of a (111)-oriented NiO surface. The presence of steps indicates a tilt of (8 ± 5)° of the surface of the film with respect to the (111) orientation. The possible epitaxial relationships resulting from the surface tilt are discussed. Local variations of the film thickness at the step edges are likely to result from the surface tilt and may constitute preferential sites for the local breakdown of passivity.

  19. Molecule diagram from earth-grown crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Like many chemicals in the body, the three-dimensional structure of insulin is extremely complex. When grown on the ground, insulin crystals do not grow as large or as ordered as researchers desire--obscuring the blueprint of the insulin molecules.

  20. Structural and optical investigations of AlGaN MQWs grown on a relaxed AlGaN buffer on AlN templates for emission at 280 nm

    NASA Astrophysics Data System (ADS)

    Li, X.; Le Gac, G.; Bouchoule, S.; El Gmili, Y.; Patriarche, G.; Sundaram, S.; Disseix, P.; Réveret, F.; Leymarie, J.; Streque, J.; Genty, F.; Salvestrini, J.-P.; Dupuis, R. D.; Li, X.-H.; Voss, P. L.; Ougazzaden, A.

    2015-12-01

    10-period Al0.57Ga0.43N/Al0.38Ga0.62N multi-quantum wells (MQWs) were grown on a relaxed Al0.58Ga0.42N buffer on AlN templates on sapphire. The threading dislocations and V-pits were characterized and their origin is discussed. The influence of V-pits on the structural quality of the MQWs and on optical emission at 280 nm was analyzed. It was observed that near-surface V-pits were always associated with grain boundaries consisting of edge threading dislocations originating from the AlN/Al2O3 interface. Although the high density of V-pits disrupted MQWs growth, it did not affect the internal quantum efficiency which was measured to be ~1% at room temperature even when V-pit density was increased from 7×107 cm-2 to 2×109 cm-2. The results help to understand the origin, propagation and influences of the typical defects in AlGaN MQWs grown on AlN/Al2O3 templates which may lead to further improvement of the performance of DUV devices.

  1. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  2. Low trap states in in situ SiN{sub x}/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lu, Xing; Ma, Jun; Jiang, Huaxing; Liu, Chao; Lau, Kei May

    2014-09-08

    We report the use of SiN{sub x} grown in situ by metal-organic chemical vapor deposition as the gate dielectric for AlN/GaN metal-insulator-semiconductor (MIS) structures. Two kinds of trap states with different time constants were identified and characterized. In particular, the SiN{sub x}/AlN interface exhibits remarkably low trap state densities in the range of 10{sup 11}–10{sup 12 }cm{sup −2}eV{sup −1}. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the in situ SiN{sub x} layer can provide excellent passivation without causing chemical degradation to the AlN surface. These results imply the great potential of in situ SiN{sub x} as an effective gate dielectric for AlN/GaN MIS devices.

  3. On the nature of electroluminescence at 1.5 {mu}m in the breakdown mode of reverse-biased Er-doped silicon p-n-junction structures grown by sublimation molecular beam epitaxy

    SciTech Connect

    Kornaukhov, A. V. Ezhevskii, A. A.; Marychev, M. O.; Filatov, D. O.; Shengurov, V. G.

    2011-01-15

    Electroluminescence features in the wavelength range of 0.9-1.65 {mu}m were experimentally studied in the breakdown mode of reverse biased Si/Si:Er/Si p-n-junction structures grown by sublimation molecular-beam epitaxy. Based on the results of this study, a new physical model is proposed, in which radiative transitions in the near-infrared region are excited by recombination of electrons arriving at corresponding energy levels in the Si:Er layer due to their tunneling from the valence band of the p{sup +}-layer in the electric field of the reverse biased p-n-junction. The model proposed is in qualitative agreement with main available experimental results.

  4. Strain-dependence Of The Structure And Ferroic Properties Of Epitaxial Ni-1 (-) Ti-x(1) (-) O-y(3) Thin Films Grown On Sapphire Substrates

    SciTech Connect

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, V.; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-03-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, Ni) [Fennie, Phys. Rev. Lett. 100, 167203 (2008)]. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on sapphire Al2O3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni1-xTi1-yO3 films of different Ni/Ti ratios and thicknesses were deposited on Al2O3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by film stoichiometry and thickness.

  5. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO 3 Thin Films Grown on Different Substrates

    DOE PAGES

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO 3 (M = Fe, Mn, and Ni). We set out to stabilize this metastable perovskite structure by growing NiTiO 3 epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO 3 films were deposited on Al 2 O 3 , Fe 2 O 3 , and LiNbO 3 substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-raymore » diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO 3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO 3 is polarization induced. From the substrates studied here, the perovskite substrate LiNbO 3 proved to be the most promising one for strong multiferroism.« less

  6. Strain-dependence Of The Structure And Ferroic Properties Of Epitaxial NiTiO3 Thin Films Grown On Different Substrates

    SciTech Connect

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-08-14

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, Ni) [Fennie, Phys. Rev. Lett. 100, 167203 (2008)]. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on different substrates, and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3 films were deposited on Al2O3, Fe2O3, and LiNbO3 substrates by pulsed laser deposition, and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3 is polarization-induced. From the substrates studied here, the perovskite substrate LiNbO3 proved to be the most promising one for strong multiferroism.

  7. Electron beam induced coloration and luminescence in layered structure of WO{sub 3} thin films grown by pulsed dc magnetron sputtering

    SciTech Connect

    Karuppasamy, A.; Subrahmanyam, A.

    2007-06-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO{sub 3} film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device.

  8. Effect of the annealing temperature on the low-temperature photoluminescence in Si:Er light-emitting structures grown by molecular-beam epitaxy

    SciTech Connect

    Andreev, B. A.; Sobolev, N. A. Denisov, D. V.; Shek, E. I.

    2013-10-15

    The photoluminescence spectra of light-emitting structures based on silicon doped with erbium during the course of molecular-beam epitaxy at a temperature of 500 Degree-Sign C are studied at 4.2 K on being annealed at 800-900 Degree-Sign C. Three sets of lines belonging to the emitting centers of erbium in silicon with a low oxygen-impurity concentration are revealed.

  9. Dopant in Near-Surface Semiconductor Layers of Metal-Insulator-Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-02-01

    Peculiarities in determining the dopant concentration and dopant distribution profile in the near-surface layer of a semiconductor are investigated by measuring the admittance of metal-insulator-semiconductor structures (MIS structures) based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy. The dopant concentrations in the near-surface layer of the semiconductor are determined by measuring the admittance of MIS structures in the frequency range of 50 kHz to 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded gap layer demonstrate a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level for an intrinsic semiconductor. The formation time of the inversion layer is decreased by less than two times, if a near-surface graded-gap layer is created. The dopant distribution profile in the near-surface layer of the semiconductor is found, and it is shown that for structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has a minimum near the interface with the insulator. For MIS structure based on n-Hg0.78Cd0.22Te, the dopant concentration is more uniformly distributed in the near-surface layer of the semiconductor.

  10. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen. PMID:25391237

  11. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  12. Peculiarities of Determining the Dopant Concentration in the Near-Surface Layer of a Semiconductor by Measuring the Admittance of MIS Structures Based on P-Hg0.78Cd0.22Te Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-06-01

    Peculiarities of determining the concentration and distribution profile of dopant in the near-surface layer of a semiconductor by measuring the admittance of MIS structures based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy are studied. A technique is proposed for the determining the concentration of dopant based on the measurement of the admittance of MIS structures in the frequency range of 50 kHz - 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer have a high- frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. The distribution profile of dopant in the nearsurface layer of the semiconductor is calculated. It is shown that in p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has the lowest value near the interface with the insulator.

  13. Structural properties of Al-rich AlInN grown on c-plane GaN substrate by metal-organic chemical vapor deposition

    PubMed Central

    2014-01-01

    The attractive prospect for AlInN/GaN-based devices for high electron mobility transistors with advanced structure relies on high-quality AlInN epilayer. In this work, we demonstrate the growth of high-quality Al-rich AlInN films deposited on c-plane GaN substrate by metal-organic chemical vapor deposition. X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy show that the films lattice-matched with GaN can have a very smooth surface with good crystallinity and uniform distribution of Al and In in AlInN. PMID:25489282

  14. Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: A comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana.

    PubMed

    Vargas-Ponce, Ofelia; Zizumbo-Villarreal, Daniel; Martínez-Castillo, Jaime; Coello-Coello, Julián; Colunga-Garcíamarín, Patricia

    2009-02-01

    Traditional farming communities frequently maintain high levels of agrobiodiversity, so understanding their agricultural practices is a priority for biodiversity conservation. The cultural origin of agave spirits (mezcals) from west-central Mexico is in the southern part of the state of Jalisco where traditional farmers cultivate more than 20 landraces of Agave angustifolia Haw. in agroecosystems that include in situ management of wild populations. These systems, rooted in a 9000-year-old tradition of using agaves as food in Mesoamerica, are endangered by the expansion of commercial monoculture plantations of the blue agave variety (A. tequilana Weber var. Azul), the only agave certified for sale as tequila, the best-known mezcal. Using intersimple sequence repeats and Bayesian estimators of diversity and structure, we found that A. angustifolia traditional landraces had a genetic diversity (H(BT) = 0.442) similar to its wild populations (H(BT) = 0.428) and a higher genetic structure ((B) = 0.405; (B) =0. 212). In contrast, the genetic diversity in the blue agave commercial system (H(B) = 0.118) was 73% lower. Changes to agave spirits certification laws to allow the conservation of current genetic, ecological and cultural diversity can play a key role in the preservation of the traditional agroecosystems.

  15. Structural and dynamical magnetic response of co-sputtered Co2FeAl heusler alloy thin films grown at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Yadav, Anjali; Chaudhary, Sujeet

    2014-04-01

    The interdependence between the dynamical magnetic response and the microstructural properties such as crystallinity, lateral crystallite size, structural ordering of the co-sputtered polycrystalline Co2FeAl thin films on Si (100) are studied by varying the growth temperature from room temperature (RT) to 600 °C. Frequency (7-11 GHz) dependent in-plane ferromagnetic resonance (FMR) studies were carried out by using co-planar waveguide to estimate Gilbert damping constant (α) and effective saturation magnetization (4πMeff). The improvement in crystallinity, larger crystallite and particle sizes of the films are critical in obtaining films with lower α and higher 4πMeff. Increase in the lattice constant with substrate temperature indicates the improvement in the structural ordering at higher temperatures. Minimum value of α is found to be 0.005 ± 0.0003 for the film deposited at 500 °C, which is comparable to the values reported for epitaxial Co2FeAl films. The value of 4πMeff is found to increase from 1.32 to 1.51 T with the increase in deposition temperature from RT to 500 °C. The study also shows that the root mean square (rms) roughness linearly affects the FMR in-homogenous line broadening and the anisotropy field.

  16. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Treu, J.; Speckbacher, M.; Saller, K.; Morkötter, S.; Döblinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ˜ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  17. Preparation, structure and ferromagnetic properties of the nanocrystalline Ti1-xMnxO2 thin films grown by radio frequency magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Liu, Fa-Min; Yang, Xin-An; Li, Jian-Qi

    2008-02-01

    This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron co-sputtering. X-ray diffraction measurements indicate that the samples are easy to form the rutile structure, and the sizes of the crystal grains grow big and big as the Mn concentration increases. X-ray photoemission spectroscopy measurements and high resolution transmission electron microscope photographs confirm that the manganese ions have been effectively doped into the TiO2 crystal when the Mn concentration is lower than 21%. The magnetic property measurements show that the Ti1-xMnxO2 (x = 0.21) films are ferromagnetic at room temperature, and the saturation magnetization, coercivity, and saturation field are 16.0emu/cm3, 167.5 × 80A/m and 3740 × 80A/m at room temperature, respectively. The room-temperature ferromagnetism of the films can be attributed to the new rutile Ti1-xMnxO2 structure formed by the substitution of Mn4+ for Ti4+ into the TiO2 crystal lattice, and could be explained by O vacancy (VO)-enhanced ferromagnetism model.

  18. Local structures and interface morphology of InxGa1-xAs1-yNy thin films grown on GaAs

    NASA Astrophysics Data System (ADS)

    Soo, Y. L.; Huang, S.; Kao, Y. H.; Chen, J. G.; Hulbert, S. L.; Geisz, J. F.; Kurtz, Sarah; Olson, J. M.; Kurtz, Steven R.; Jones, E. D.; Allerman, A. A.

    1999-11-01

    X-ray absorption fine-structure techniques have been utilized to probe the short-range structures around N and In in InxGa1-xAs1-yNy compounds containing about 3% of N and 8% of In. Our results indicate that N impurities most likely substitute for As atoms in the system. The In-As interatomic distance in these compounds remains practically the same as in InAs, while the coordination number of As atoms around In shows possible variations with changes in the material characteristics. The N atoms play an important role in affecting the changes of band gap while also serving as ``strain moderators'' by providing a tensile strain in the film to counteract the compressive strain caused by the In impurities. Further, grazing incidence x-ray scattering measurements of InxGa1-xAs1-yNy/GaAs heterojunctions provide direct evidence that the InxGa1-xAs1-yNy thin films can indeed be lattice matched to GaAs substrates resulting in a reasonably smooth heterointerface.

  19. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates

    DOEpatents

    Melechko, Anatoli V.; McKnight, Timothy E.; Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.

    2011-08-23

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.

  20. Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®

    NASA Astrophysics Data System (ADS)

    Oda, Masaya; Tokuda, Rie; Kambara, Hitoshi; Tanikawa, Tomochika; Sasaki, Takahiro; Hitora, Toshimi

    2016-02-01

    Thin-film corundum-structured gallium oxide (α-Ga2O3) Schottky barrier diodes (SBDs) were fabricated by growing α-Ga2O3 layers on sapphire substrates by the safe, low-cost, and energy-saving MIST EPITAXY® technique, followed by lifting off the α-Ga2O3 layers from the substrates. The SBDs exhibited on-resistance and breakdown voltage of 0.1 mΩ·cm2 and 531 V (SBD1) or 0.4 mΩ·cm2 and 855 V (SBD2), respectively. These results will encourage the future evolution of low-cost and high-performance SBDs with α-Ga2O3.

  1. Structural and dielectric properties of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown by PLD

    SciTech Connect

    James, K. K.; Satish, B.; Jayaraj, M. K.

    2014-01-28

    Ferroelectric thin films of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) were deposited on Si/SiO{sub 2}/TiO{sub 2}/Pt (PtSi) substrate by pulsed laser deposition (PLD). Crystalline films with perovskite structure were obtained without post-deposition annealing. Phase purity of the deposited films was confirmed by x-ray diffraction. The lowest value of FWHM obtained for the film deposited at oxygen pressure 5.4×10{sup −4} mbar and substrate temperature 600°C, indicates the high crystallinity of the film. The room temperature dielectric constant at 100 kHz was 85. Butterfly loop, which is the characteristic of ferroelectric materials, was obtained in the regime of −4 to +4V. The leakage current density was nearly 9×10{sup −13} Acm{sup −2}.

  2. The structure and properties of phthalocyanine films grown by the molecular beam epitaxy technique. III. Preparation and characterization of lutetium diphthalocyanine films

    NASA Astrophysics Data System (ADS)

    Hoshi, Hajime; Dann, Anthony J.; Maruyama, Yusei

    1990-06-01

    Two types of epitaxial films of lutetium diphthalocyanine, LuPc2, have been obtained on KBr, LuPc2 /KBr, and on the film of fluoro-bridged aluminum phthalocyanine polymer, (AlPcF)n, on KBr, LuPc2 /(AlPcF)n /KBr, by the molecular beam epitaxy technique. Their structures have been studied by transmission electron microscopy as well as scanning electron microscopy. The phase of LuPc2 /KBr is bidirectionally oriented tetragonal, KBr(100)((10)1/2×(10)1/2) R±27°-LuPc2. The phase of LuPc2 /(AlPcF)n /KBr is predominantly unidirectionally oriented tetragonal, KBr(100)(3×3)R45°-LuPc2 /(AlPcF)n, but some bidirectional orthorhombic phase, KBr(100)C(6×3)R45°-LuPc2 /(AlPcF)n, is also present.

  3. Preparation of regularly structured nanotubular TiO2 thin films on ITO and their modification with thin ALD-grown layers.

    PubMed

    Tupala, Jere; Kemell, Marianna; Härkönen, Emma; Ritala, Mikko; Leskelä, Markku

    2012-03-30

    Nanotubular titanium dioxide thin films were prepared by anodization of titanium metal films evaporated on indium tin oxide (ITO) coated glass. A facile method to enhance the adhesion of the titanium film to the ITO glass was developed. An optimum thickness of 550 nm for the evaporated titanium was found to keep the film adhered to ITO during the anodization. The films were further modified by growing amorphous titania, alumina and tantala thin films conformally in the nanotubes by atomic layer deposition (ALD). The optical, electrical and physical properties of the different structures were compared. It was shown that even 5 nm thin layers can modify the properties of the nanotubular titanium dioxide films.

  4. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo

    2009-11-01

    The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.

  5. Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method

    NASA Astrophysics Data System (ADS)

    No, Young Soo; Oh, Do Hyon; Kim, Su Yeon; Yoo, Keon-Ho; Kim, Tae Whan

    2012-07-01

    Electrochemical deposition was employed to fabricate Cu2O nanocubes on indium-tin-oxide (ITO)-coated glass substrates at 75 °C without using any template, catalyst, or seed layer. Scanning electron microscopy images showed that the Cu2O nanocubes with a nanoscale size were uniformly formed on ITO-coated glass substrates. X-ray patterns of the Cu2O nanocubes exhibited the dominant peaks corresponding to the Cu2O cubic structures. The current-voltage curves of an Au/n-type Al-doped ZnO/p-type Cu2O nanocube/ITO device clearly showed current rectifying behavior with a turn-on voltage of 3.6 V.

  6. Electronic and crystalline structures of zero band-gap LuPdBi thin films grown epitaxially on MgO(100)

    SciTech Connect

    Shan, Rong; Ouardi, Siham; Fecher, Gerhard H.; ViolBarbosa, Carlos E.; Felser, Claudia; Gao, Li; Kellock, Andrew; Roche, Kevin P.; Samant, Mahesh G.; Parkin, Stuart S. P.; Ikenaga, Eiji

    2013-04-29

    Thin films of the proposed topological insulator LuPdBi-a Heusler compound with the C1{sub b} structure-were prepared on Ta-Mo-buffered MgO(100) substrates by co-sputtering from PdBi{sub 2} and Lu targets. Epitaxial growth of LuPdBi films was confirmed by X-ray diffraction and reflection high-energy electron diffraction. The root-mean-square roughness of the films was as low as 1.45 nm, even though the films were deposited at high temperature. The film composition is close to the ideal stoichiometric ratio. The valence band spectra of the LuPdBi films, observed by hard X-ray photoelectron spectroscopy, correspond very well with the ab initio-calculated density of states.

  7. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    NASA Astrophysics Data System (ADS)

    Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

    2016-03-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

  8. Effects of Growth Temperature on Structural and Electrical Properties of InAlN/GaN Heterostructures Grown by Pulsed Metal Organic Chemical Vapor Deposition on c-Plane Sapphire

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2013-08-01

    The authors report the effects of growth temperature on the structural and electrical properties of InAlN/GaN heterostructures, which were grown on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition (PMOCVD). High resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM) measurements indicate that the quality of InAlN barrier is strongly dependent on the growth temperature. It is observed that the indium composition and surface root-mean-square (rms) roughness value of InAlN barrier decrease with increasing the growth temperature, and a nearly lattice-matched InAlN/GaN heterostructure with a smooth surface is obtained at 710 °C. As a consequence, the variation of structural properties of InAlN barrier influences the electrical properties of InAlN/GaN heterostructures, and high electron mobility in excess of 1400 cm2 V-1 s-1 is achieved at an optimized growth temperature window of InAlN barrier layer between 710 and 730 °C.

  9. Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy

    PubMed Central

    2014-01-01

    We report the observation of room temperature photoluminescence (PL) emission from GaAs/GaInAs core-multiple-quantum-well (MQW) shell nanowires (NWs) surrounded by AlGaAs grown by molecular beam epitaxy (MBE) using a self-catalyzed technique. PL spectra of the sample show two PL peaks, originating from the GaAs core NWs and the GaInAs MQW shells. The PL peak from the shell structure red-shifts with increasing well width, and the peak position can be tuned by adjusting the width of the MQW shell. The GaAs/GaInAs core-MQW shell NW surrounded by AlGaAs also shows an enhanced PL intensity due to the improved carrier confinement owing to the presence of an AlGaAs clad layer. The inclined growth of the GaAs NWs produces a core-MQW shell structure having a different PL peak position than that of planar QWs. The PL emission by MQW shell and the ability to tune the PL peak position by varying the shell width make such core-shell NWs highly attractive for realizing next generation ultrasmall light sources and other optoelectronics devices. PACS 81.07.Gf; 81.15.Hi; 78.55.Cr PMID:25489280

  10. Structure and magnetism in strained Ge{sub 1-x-y}Sn{sub x}Mn{sub y} films grown on Ge(001) by low temperature molecular beam epitaxy

    SciTech Connect

    Prestat, E.; Barski, A.; Bellet-Amalric, E.; Morel, R.; Tainoff, D.; Jain, A.; Porret, C.; Bayle-Guillemaud, P.; Jamet, M.; Jacquot, J.-F.

    2013-07-01

    In this letter, we study the structural and magnetic properties of Ge{sub 1-x-y}Sn{sub x}Mn{sub y} films grown on Ge(001) by low temperature molecular beam epitaxy using X-ray diffraction, high resolution transmission electron microscopy, and superconducting quantum interference device. Like in Mn doped Ge films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich nanocolumns of a few nanometers in diameter. Transmission electron microscopy observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical nanocolumns lower than the detection limit of electron energy loss spectroscopy. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn nanocolumns. The magnetization in Ge{sub 1-x-y}Sn{sub x}Mn{sub y} layers is higher than in Ge{sub 1-x}Mn{sub x} films. This magnetic moment enhancement in Ge{sub 1-x-y}Sn{sub x}Mn{sub y} is probably related to the modification of the electronic structure of Mn atoms in the nanocolumns by the Sn-rich shell, which is formed around the nanocolumns.

  11. Fluorescence extended X-ray absorption fine structure analysis of half-metallic ferromagnet ``zinc-blende CrAs'' grown on GaAs by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ofuchi, H.; Mizuguchi, M.; Ono, K.; Oshima, M.; Akinaga, H.; Manago, T.

    2003-01-01

    In this work, geometric structures for a half-metallic ferromagnet "zinc-blende CrAs", which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 Å. This value is close to that which was estimated from the lattice constant (5.82 Å) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy.

  12. Effect of In/Al ratios on structural and optical properties of InAlN films grown on Si(100) by RF-MOMBE

    PubMed Central

    2014-01-01

    In x Al1-x N films were deposited on Si(100) substrate using metal-organic molecular beam epitaxy. We investigated the effect of the trimethylindium/trimethylaluminum (TMIn/TMAl) flow ratios on the structural, morphological, and optical properties of In x Al1-x N films. Surface morphologies and microstructure of the In x Al1-x N films were measured by atomic force microscopy, scanning electron microscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), respectively. Optical properties of all films were evaluated using an ultraviolet/visible/infrared (UV/Vis/IR) reflection spectrophotometer. XRD and TEM results indicated that In x Al1-x N films were preferentially oriented in the c-axis direction. Besides, the growth rates of In x Al1-x N films were measured at around 0.6 μm/h in average. Reflection spectrum shows that the optical absorption of the In x Al1-x N films redshifts with an increase in the In composition. PMID:24855462

  13. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    SciTech Connect

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal; Chandra, Debraj; Bhaumik, Asim; Mondal, Anup

    2011-01-15

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes within 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.

  14. Effects of total CH 4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Wang, X.; Zheng, W. T.; Tian, H. W.; Liu, C.; Lu, Y. L.; Peng, Y. S.; Cheng, G.

    2009-12-01

    The effects of total CH 4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm 2.

  15. Li induced effects in the core level and π-band electronic structure of graphene grown on C-face SiC

    SciTech Connect

    Johansson, Leif I. Xia, Chao; Virojanadara, Chariya

    2015-11-15

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10{sup 14 }cm{sup −2} after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene.

  16. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions.

    PubMed

    Gschwendtner, Silvia; Leberecht, Martin; Engel, Marion; Kublik, Susanne; Dannenmann, Michael; Polle, Andrea; Schloter, Michael

    2015-05-01

    Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed

  17. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions.

    PubMed

    Gschwendtner, Silvia; Leberecht, Martin; Engel, Marion; Kublik, Susanne; Dannenmann, Michael; Polle, Andrea; Schloter, Michael

    2015-05-01

    Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed.

  18. Magnetic anisotropy and order structure of L10-FePt(001) single-crystal films grown epitaxially on (001) planes of MgO, SrTiO3, and MgAl2O4 substrates

    NASA Astrophysics Data System (ADS)

    Hotta, A.; Ono, T.; Hatayama, M.; Tsumura, K.; Kikuchi, N.; Okamoto, S.; Kitakami, O.; Shimatsu, T.

    2014-05-01

    L10-FePt(001) single-crystal films were grown epitaxially on SrTiO3(001), MgAl2O4(001), and MgO(001) substrates. Their uniaxial magnetic anisotropy Ku and the order structure were examined for the film thickness t range of 2-14 nm. All series of films show large Ku of 4 × 107 erg/cm3 in the thickness range higher than 10 nm, with order parameter S of 0.8 and saturation magnetization Ms of 1120 emu/cm3. Ku decreased gradually as t decreased. The Ku reduction was considerable when t decreased from 4 nm to 2 nm. No marked difference in the thickness dependence of Ku was found in any series of films, although the lattice mismatch between FePt and the substrates was markedly different. Ku reduction showed good agreement with the reduction of S for the films on MgAl2O4 and MgO. The Ku ˜ S2 plot showed an almost linear relation, which is in good agreement with theoretical predictions. Transmission electron microscopy images for a FePt film on MgO substrate revealed that the lattice mismatch between FePt(001) and MgO(001) was relaxed in the initial 1 or 2 layers of FePt(001) lattices, which is likely to be true also for two other series of films.

  19. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich InxAl1-xN thin films grown by plasma-assisted dual source reactive evaporation

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Ganesh, V.; Goh, B. T.; Dee, C. F.; Mohmad, A. R.; Rahman, S. A.

    2016-08-01

    In-rich InxAl1-xN thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV-vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the InxAl1-xN films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the InxAl1-xN films showed that by increasing the N2 flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich InxAl1-xN films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90-1.17 eV which is desirable for the application of full spectra solar cells.

  20. Structural and optical properties of Si-doped Al0.08In0.08Ga0.84N thin films grown on different substrates for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ghazai, Alaa Jabbar; Hassan, Haslan Abu; Hassan, Zanuri Bint

    2016-07-01

    The objective of the current study is to characterize the optoelectronic properties of quaternary n-Al0.08In0.08Ga0.84N thin films grown via molecular beam epitaxy (MBE) on sapphire (Al2O3) and silicon (Si) substrates for different optoelectronic applications. Due to mismatch problems between the epilayer and substrates, the AlN buffer layer was inserted at low temperature to reduce the lattice mismatch to approximately 4% for the samples, to produce high-quality epitaxy films. Defect-free films with high structural, optical and electrical qualities were obtained. Their small full width at half maximum, low compressive strain, relatively large grain size and low dislocation density which produced smooth surfaces without any separation phases or cracks were characterized using X-ray diffraction analysis. Scanning electron microscopy, energy-dispersive X-ray microscopy and atomic force microscopy images confirmed these characterizations. Furthermore, high optical quality, as well as high absorption and absorption coefficients were observed using photoluminescence and UV-VIS spectroscopy; however, a red shift was observed in the PL peak of the near band edge of 3.158 eV of the sample on Si substrate compared with 3.37 eV for the sample on sapphire substrate which is attributed to the compressive strain and occurrence of the quantum confined Stark effect.

  1. Structural and band alignment properties of Al{sub 2}O{sub 3} on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    SciTech Connect

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-07

    Structural and band alignment properties of atomic layer Al{sub 2}O{sub 3} oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al{sub 2}O{sub 3} film and the Ge epilayer. The extracted valence band offset, {Delta}E{sub v}, values of Al{sub 2}O{sub 3} relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in {Delta}E{sub v} related to the crystallographic orientation were {Delta}E{sub V}(110)Ge>{Delta}E{sub V}(100)Ge{>=}{Delta}E{sub V}(111)Ge and the conduction band offset, {Delta}E{sub c}, related to the crystallographic orientation was {Delta}E{sub c}(111)Ge>{Delta}E{sub c}(110)Ge>{Delta}E{sub c}(100)Ge using the measured {Delta}E{sub v}, bandgap of Al{sub 2}O{sub 3} in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  2. Annealing to reduce scattering centers in Czochralski-grown beta-BaB2O4.

    PubMed

    Kouta, H; Kuwano, Y

    1999-02-20

    When a visible laser beam passes through beta-BaB(2)O(4) (BBO), scattered light can be observed along the beam within the crystal. Scattering centers caused by structural defects in Czochralski-grown BBO can be reduced by 95% by annealing at 920 degrees C. In the flux-grown BBO, centers actually increase by the same annealing because the process causes microcracks and/or secondary inclusions. It is shown that annealed Czochralski-grown BBO is superior to flux-grown BBO (annealed or as-grown) in terms of optical loss.

  3. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  4. A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (NixFe3-xO4, x≤1) films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pachauri, Neha; Khodadadi, Behrouz; Singh, Amit V.; Mohammadi, Jamileh Beik; Martens, Richard L.; LeClair, Patrick R.; Mewes, Claudia; Mewes, Tim; Gupta, Arunava

    2016-11-01

    We report a detailed study of the structural and ferromagnetic resonance properties of spinel nickel ferrite (NFO) films, grown on (100)-oriented cubic MgAl2O4 substrates by direct liquid injection chemical vapor deposition (DLI-CVD) technique. Three different compositions of NFO films (NixFe3-xO4 where x=1, 0.8, 0.6) deposited at optimized growth temperature of 600 °C are characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometry (VSM), and broadband ferromagnetic resonance (FMR) techniques. XRD confirms the growth of epitaxial, single crystalline NixFe3-xO4 films. The out-of-plane lattice constant (c) obtained for Ni0.8Fe2.2O4 film is slightly higher than the bulk value (0.833 nm), indicating only partial strain relaxation whereas for the other two compositions (x=1 and x=0.6) films exhibit complete relaxation. The in-plane and out-of-plane FMR linewidths measurements at 10 GHz give the lowest values of 458 Oe and 98 Oe, respectively, for Ni0.8Fe2.2O4 film as compared to the other two compositions. A comprehensive frequency (5-40 GHz) and temperature (10-300 K) dependent FMR study of the Ni0.8Fe2.2O4 sample for both in-lane and out-of-plane configurations reveals two magnon scattering (TMS) as the dominant in-plane relaxation mechanism. It is observed that the TMS contribution to the FMR linewidth scales with the saturation magnetization Ms. In-plane angle-dependent FMR measurements performed on the same sample show that the ferromagnetic resonance field (Hres) and the FMR linewidth (ΔH) have a four-fold symmetry that is consistent with the crystal symmetry of the spinel. SEM measurements show formation of pyramid-like microstructures at the surface of the Ni0.8Fe2.2O4 sample, which can explain the observed four-fold symmetry of the FMR linewidth.

  5. Structure and superconductivity of (Li1-x Fe x )OHFeSe single crystals grown using A x Fe2-y Se2 (A  =  K, Rb, and Cs) as precursors.

    PubMed

    Yu, G; Zhang, G Y; Ryu, G H; Lin, C T

    2016-01-13

    We present results on the hydrothermal growth of ([Formula: see text])OHFeSe single crystals using floating-zone-grown [Formula: see text] (A  =  K, Rb, and Cs) as precursors. The growth proceeds by the hydrothermal ion exchange of Li/Fe-O-H for K, Rb, and Cs, resulting in a stacking layer of ([Formula: see text])OH sandwiched between the FeSe layers. Optimal growth parameters are achieved using high quality A 0.80Fe1.81Se2 single crystals added to the mixtures of LiOH, H2O, Fe and C(NH2)2Se in an autoclave and subsequently heated to 120 °C for 2 d, to obtain highest quality single crystals. The obtained crystals have lateral dimensions up to centimeters, with the final size related to that of the precursor crystal used. All ([Formula: see text])OHFeSe single crystals show a superconducting transition temperature T c  >  42 K, regardless of the phase of the precursor such as superconducting K0.80Fe1.81Se2 (T c  =  29.31 K) or non-superconducting Rb0.80Fe1.81Se2 or poor-superconducting Cs0.80Fe1.81Se2 (T c  =  28.67 K). The T c and transition width ΔT vary in the obtained single crystals, due to the inhomogeneity of the ionic exchange. X-ray diffraction analysis demonstrates that the 245 insulating phase is absent in the ion-exchanged single crystals, while it is observed in the [Formula: see text] precursors. Comparative studies of the structure, magnetization, and superconductivity on the parent A 0.80Fe1.81Se2 and the ion-exchanged ([Formula: see text])OHFeSe crystals are discussed. A phase diagram including antiferromagnetic spin density wave and superconducting phases is also proposed.

  6. Structure and superconductivity of (Li1-x Fe x )OHFeSe single crystals grown using A x Fe2-y Se2 (A  =  K, Rb, and Cs) as precursors

    NASA Astrophysics Data System (ADS)

    Yu, G.; Zhang, G. Y.; Ryu, G. H.; Lin, C. T.

    2016-01-01

    We present results on the hydrothermal growth of (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OHFeSe single crystals using floating-zone-grown {{A}x}\\text{F}{{\\text{e}}2-y}\\text{S}{{\\text{e}}2} (A  =  K, Rb, and Cs) as precursors. The growth proceeds by the hydrothermal ion exchange of Li/Fe-O-H for K, Rb, and Cs, resulting in a stacking layer of (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OH sandwiched between the FeSe layers. Optimal growth parameters are achieved using high quality A 0.80Fe1.81Se2 single crystals added to the mixtures of LiOH, H2O, Fe and C(NH2)2Se in an autoclave and subsequently heated to 120 °C for 2 d, to obtain highest quality single crystals. The obtained crystals have lateral dimensions up to centimeters, with the final size related to that of the precursor crystal used. All (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OHFeSe single crystals show a superconducting transition temperature T c  >  42 K, regardless of the phase of the precursor such as superconducting K0.80Fe1.81Se2 (T c  =  29.31 K) or non-superconducting Rb0.80Fe1.81Se2 or poor-superconducting Cs0.80Fe1.81Se2 (T c  =  28.67 K). The T c and transition width ΔT vary in the obtained single crystals, due to the inhomogeneity of the ionic exchange. X-ray diffraction analysis demonstrates that the 245 insulating phase is absent in the ion-exchanged single crystals, while it is observed in the {{A}x}\\text{F}{{\\text{e}}2-y}\\text{S}{{\\text{e}}2} precursors. Comparative studies of the structure, magnetization, and superconductivity on the parent A 0.80Fe1.81Se2 and the ion-exchanged (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OHFeSe crystals are discussed. A phase diagram including antiferromagnetic spin density wave and superconducting phases is also proposed.

  7. Wurtzite structure Sc{sub 1-x}Al{sub x}N solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations

    SciTech Connect

    Hoeglund, Carina; Birch, Jens; Bareno, Javier; Persson, Per O. A.; Wingqvist, Gunilla; Zukauskaite, Agne; Hultman, Lars; Alling, Bjoern; Czigany, Zsolt

    2010-06-15

    AlN(0001) was alloyed with ScN with molar fractions up to {approx}22%, while retaining a single-crystal wurtzite (w-) structure and with lattice parameters matching calculated values. Material synthesis was realized by magnetron sputter epitaxy of thin films starting from optimal conditions for the formation of w-AlN onto lattice-matched w-AlN seed layers on Al{sub 2}O{sub 3}(0001) and MgO(111) substrates. Films with ScN contents between 23% and {approx}50% exhibit phase separation into nanocrystalline ScN and AlN, while ScN-rich growth conditions yield a transformation to rocksalt structure Sc{sub 1-x}Al{sub x}N(111) films. The experimental results are analyzed with ion beam analysis, x-ray diffraction, and transmission electron microscopy, together with ab initio calculations of mixing enthalpies and lattice parameters of solid solutions in wurtzite, rocksalt, and layered hexagonal phases.

  8. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  9. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  10. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: The effect of single AlGaN interlayer on the structural properties of GaN epilayers grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Xin; Zhu, Jian-Jun; Zhao, De-Gang; Liu, Zong-Shun; Jiang, De-Sheng; Zhang, Shu-Ming; Wang, Yu-Tian; Wang, Hui; Chen, Gui-Feng; Yang, Hui

    2009-10-01

    High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.

  11. Comment on “Structural, dielectric, optical and ferroelectric property of urea succinic acid crystals grown in aqueous solution containing maleic acid” by B.K. Singh et al. [J. Phys. Chem. Solids 71 (2010) 1774

    NASA Astrophysics Data System (ADS)

    Tylczyński, Zbigniew

    2012-07-01

    The volume of elementary cell of the urea succinic acid (M-USA) growing from a solution containing 1 mol% maleic acid is 69% greater than that of urea succinic acid (USA) grown in the usual conditions. M-USA crystallises in the monoclinic system with a centre of symmetry, which excludes the piezoelectric and ferroelectric properties. The results presented in the paper commented on are artefacts.

  12. Confocal Raman studies in determining crystalline nature of PECVD grown Si nanowires

    SciTech Connect

    Ahmed, Nafis; Bhargav, P. Balaji; Ramasamy, P.; Sivadasan, A. K.; Tyagi, A. K.; Dhara, S.; Amirthapandian, S.; Panigrahi, B. K.; Bhattacharya, S.

    2015-06-24

    Silicon nanowires of diameter ∼200 nm and length of 2-4 µm are grown in the plasma enhanced chemical vapour deposition technique using nanoclustered Au catalyst assisted vapour-liquid-solid process. The crystallinity in the as-grown and annealed samples is studied using confocal Raman spectroscopic studies. Amorphous phase is formed in the as-grown samples. Structural studies using high resolution transmission electron microscopy confirm the polycrystalline nature in the annealed sample.

  13. Magnetization dynamics of cobalt grown on graphene

    SciTech Connect

    Berger, A. J.; White, S. P.; Adur, R.; Pu, Y.; Hammel, P. C.; Amamou, W.; Kawakami, R. K.

    2014-05-07

    Ferromagnetic resonance (FMR) spin pumping is a rapidly growing field which has demonstrated promising results in a variety of material systems. This technique utilizes the resonant precession of magnetization in a ferromagnet to inject spin into an adjacent non-magnetic material. Spin pumping into graphene is attractive on account of its exceptional spin transport properties. This article reports on FMR characterization of cobalt grown on chemical vapor deposition graphene and examines the validity of linewidth broadening as an indicator of spin pumping. In comparison to cobalt samples without graphene, direct contact cobalt-on-graphene exhibits increased FMR linewidth—an often used signature of spin pumping. Similar results are obtained in Co/MgO/graphene structures, where a 1 nm MgO layer acts as a tunnel barrier. However, magnetometry, magnetic force microscopy, and Kerr microscopy measurements demonstrate increased magnetic disorder in cobalt grown on graphene, perhaps due to changes in the growth process and an increase in defects. This magnetic disorder may account for the observed linewidth enhancement due to effects such as two-magnon scattering or mosaicity. As such, it is not possible to conclude successful spin injection into graphene from FMR linewidth measurements alone.

  14. Perfect crystals grown from imperfect interfaces.

    PubMed

    Falub, Claudiu V; Meduňa, Mojmír; Chrastina, Daniel; Isa, Fabio; Marzegalli, Anna; Kreiliger, Thomas; Taboada, Alfonso G; Isella, Giovanni; Miglio, Leo; Dommann, Alex; von Känel, Hans

    2013-01-01

    The fabrication of advanced devices increasingly requires materials with different properties to be combined in the form of monolithic heterostructures. In practice this means growing epitaxial semiconductor layers on substrates often greatly differing in lattice parameters and thermal expansion coefficients. With increasing layer thickness the relaxation of misfit and thermal strains may cause dislocations, substrate bowing and even layer cracking. Minimizing these drawbacks is therefore essential for heterostructures based on thick layers to be of any use for device fabrication. Here we prove by scanning X-ray nanodiffraction that mismatched Ge crystals epitaxially grown on deeply patterned Si substrates evolve into perfect structures away from the heavily dislocated interface. We show that relaxing thermal and misfit strains result just in lattice bending and tiny crystal tilts. We may thus expect a new concept in which continuous layers are replaced by quasi-continuous crystal arrays to lead to dramatically improved physical properties.

  15. Seedborne fungal contamination: consequences in space-grown wheat.

    PubMed

    Bishop, D L; Levine, H G; Kropp, B R; Anderson, A J

    1997-11-01

    Plants grown in microgravity are subject to many environmental stresses that may promote microbial growth and result in disease symptoms. Wheat (cv. Super Dwarf) recovered from an 8-day mission aboard a NASA (National Aeronautics and Space Administration) space shuttle showed disease symptoms, including girdling of leaf sheaths and chlorosis and necrosis of leaf and root tissues. A Neotyphodium species was isolated from the seed and leaf sheaths of symptomatic wheat used in the spaceflight mission. Certain isozymes of a peroxidase unique to extracts from the microgravity-grown plants were observed in extracts from earth-grown Neotyphodium-infected plants but were not present in noninfected wheat. The endophytic fungus was eliminated from the wheat seed by prolonged heat treatment at 50 degrees C followed by washes with water at 50 degrees C. Plants from wheat seed infected with the Neotyphodium endophyte were symptomless when grown under greenhouse conditions, whereas symptoms appeared after only 4 days of growth in closed containers. Disease spread from an infected plant to noninfected plants in closed containers. Dispersion via spores was found on asymptomatic plants at distances of 7 to 18 cm from infected plants. The size and shape of the conidia, mycelia, and phialide-bearing structures and the ability to grow rapidly on carbohydrates, especially xylose, resembled the characteristics of N. chilense, which is pathogenic on orchard grass, Doctylis glomerati. The Neotyphodium wheat isolate caused disease symptoms on other cereals (wheat cv. Malcolm, orchard grass, barley, and maize) grown in closed containers.

  16. Seedborne fungal contamination: consequences in space-grown wheat

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Levine, H. G.; Kropp, B. R.; Anderson, A. J.; Hood, E. E. (Principal Investigator)

    1997-01-01

    Plants grown in microgravity are subject to many environmental stresses that may promote microbial growth and result in disease symptoms. Wheat (cv. Super Dwarf) recovered from an 8-day mission aboard a NASA (National Aeronautics and Space Administration) space shuttle showed disease symptoms, including girdling of leaf sheaths and chlorosis and necrosis of leaf and root tissues. A Neotyphodium species was isolated from the seed and leaf sheaths of symptomatic wheat used in the spaceflight mission. Certain isozymes of a peroxidase unique to extracts from the microgravity-grown plants were observed in extracts from earth-grown Neotyphodium-infected plants but were not present in noninfected wheat. The endophytic fungus was eliminated from the wheat seed by prolonged heat treatment at 50 degrees C followed by washes with water at 50 degrees C. Plants from wheat seed infected with the Neotyphodium endophyte were symptomless when grown under greenhouse conditions, whereas symptoms appeared after only 4 days of growth in closed containers. Disease spread from an infected plant to noninfected plants in closed containers. Dispersion via spores was found on asymptomatic plants at distances of 7 to 18 cm from infected plants. The size and shape of the conidia, mycelia, and phialide-bearing structures and the ability to grow rapidly on carbohydrates, especially xylose, resembled the characteristics of N. chilense, which is pathogenic on orchard grass, Doctylis glomerati. The Neotyphodium wheat isolate caused disease symptoms on other cereals (wheat cv. Malcolm, orchard grass, barley, and maize) grown in closed containers.

  17. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    PubMed

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems.

  18. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    PubMed

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. PMID:25465948

  19. Film Thickness Dependence of Crystal Structure in 100-Oriented Epitaxial Pb(Zr0.65Ti0.35)O3 Films Grown on Single-Crystal Substrates with Different Thermal Expansion Coefficients

    NASA Astrophysics Data System (ADS)

    Ehara, Yoshitaka; Yasui, Shintaro; Ishii, Koji; Funakubo, Hiroshi

    2012-09-01

    100-oriented epitaxial Pb(Zr0.65Ti0.35)O3 films with various film thicknesses from 0.1 to 3 µm were grown on (100)cSrRuO3 ∥ (100)SrTiO3 and (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrates. The out-of-plane/in-plane lattice parameter ratio of the films on the CaF2 substrates was larger than that on the SrTiO3 substrates up to 1.1 µm film thickness, while (90°-α) (α was defined as the internal tilt angle) was almost 0°. Results of analysis of Raman spectra and piezoresponse images suggest that the 1.1-µm-thick film grown on the (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrate had tetragonal symmetry with a polar-axis orientation. Moreover, the saturation polarization values of the films measured from P-E hysteresis loops correspond to the two Ps values estimated from the thermodynamic theory, assuming the change in the polar direction due to the symmetry change to tetragonal, and from the crystal distortion in tetragonal symmetry. This can be explained by the large compressive stress from the CaF2 substrate having a large thermal expansion coefficient.

  20. Electronic and magnetic structure of epitaxial Fe3O4(001 ) /NiO heterostructures grown on MgO(001) and Nb-doped SrTiO3(001 )

    NASA Astrophysics Data System (ADS)

    Kuepper, K.; Kuschel, O.; Pathé, N.; Schemme, T.; Schmalhorst, J.; Thomas, A.; Arenholz, E.; Gorgoi, M.; Ovsyannikov, R.; Bartkowski, S.; Reiss, G.; Wollschläger, J.

    2016-07-01

    We study the underlying chemical, electronic, and magnetic properties of a number of magnetite-based thin films. The main focus is placed onto Fe3O4 (001)/NiO bilayers grown on MgO(001) and Nb-SrTiO3(001) substrates. We compare the results with those obtained on pure Fe3O4 (001) thin films. It is found that the magnetite layers are oxidized and Fe3 + dominates at the surfaces due to maghemite (γ -Fe2O3 ) formation, which decreases with increasing magnetite layer thickness. For layer thicknesses of around 20 nm and above, the cationic distribution is close to that of stoichiometric Fe3O4 . At the interface between NiO and Fe3O4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2 p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2O4 interlayer can be excluded by means of x-ray magnetic circular dichroism. Magneto-optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and an altered in-plane easy axis pointing in the <100 > direction. We discuss the spin magnetic moments of the magnetite layers and find that a thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite.

  1. Harvesting microalgae grown on wastewater.

    PubMed

    Udom, Innocent; Zaribaf, Behnaz H; Halfhide, Trina; Gillie, Benjamin; Dalrymple, Omatoyo; Zhang, Qiong; Ergas, Sarina J

    2013-07-01

    The costs and life cycle impacts of microalgae harvesting for biofuel production were investigated. Algae were grown in semi-continuous culture in pilot-scale photobioreactors under natural light with anaerobic digester centrate as the feed source. Algae suspensions were collected and the optimal coagulant dosages for metal salts (alum, ferric chloride), cationic polymer (Zetag 8819), anionic polymer (E-38) and natural coagulants (Moringa Oleifera and Opuntia ficus-indica cactus) were determined using jar tests. The relative dewaterability of the algae cake was estimated by centrifugation. Alum, ferric chloride and cationic polymer could all achieve >91% algae recovery at optimal dosages. Life cycle assessment (LCA) and cost analysis results revealed that cationic polymer had the lowest cost but the highest environmental impacts, while ferric chloride had the highest cost and lowest environmental impacts. Based on the LCA results, belt presses are the recommended algae dewatering technology prior to oil extraction.

  2. Harvesting microalgae grown on wastewater.

    PubMed

    Udom, Innocent; Zaribaf, Behnaz H; Halfhide, Trina; Gillie, Benjamin; Dalrymple, Omatoyo; Zhang, Qiong; Ergas, Sarina J

    2013-07-01

    The costs and life cycle impacts of microalgae harvesting for biofuel production were investigated. Algae were grown in semi-continuous culture in pilot-scale photobioreactors under natural light with anaerobic digester centrate as the feed source. Algae suspensions were collected and the optimal coagulant dosages for metal salts (alum, ferric chloride), cationic polymer (Zetag 8819), anionic polymer (E-38) and natural coagulants (Moringa Oleifera and Opuntia ficus-indica cactus) were determined using jar tests. The relative dewaterability of the algae cake was estimated by centrifugation. Alum, ferric chloride and cationic polymer could all achieve >91% algae recovery at optimal dosages. Life cycle assessment (LCA) and cost analysis results revealed that cationic polymer had the lowest cost but the highest environmental impacts, while ferric chloride had the highest cost and lowest environmental impacts. Based on the LCA results, belt presses are the recommended algae dewatering technology prior to oil extraction. PMID:23648758

  3. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  4. Impact of substrate temperature on the structural and optical properties of strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy

    SciTech Connect

    Liu, Shi; Li, Hua; Cellek, Oray O.; Ding, Ding; Lin, Zhi-Yuan; Steenbergen, Elizabeth H.; He, Zhao-Yu; Johnson, Shane R.; Zhang, Yong-Hang; Shen, Xiao-Meng; Fan, Jin; Smith, David J.; Lu, Jing

    2013-02-18

    Molecular beam epitaxial growth of strain-balanced InAs/InAs{sub 1-x}Sb{sub x} type-II superlattices on GaSb substrates has been investigated for substrate temperatures from 400 Degree-Sign C to 450 Degree-Sign C. The Sb composition is found to vary linearly with substrate temperature at constant V/III ratios. For samples grown at the optimized substrate temperature (410 Degree-Sign C), superlattice zero-order peak full-width at half-maximums are routinely less than 25 arc sec using high-resolution X-ray diffraction. Cross-sectional transmission electron microscopy images show the absence of any visible defects. Strong photoluminescence covers a wavelength range from 5.5 to 13 {mu}m at 12 K. Photoluminescence linewidth simulations show satisfactory agreement with experiments.

  5. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    SciTech Connect

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  6. The effect of nucleation layer thickness on the structural evolution and crystal quality of bulk GaN grown by a two-step process on cone-patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Zhai, Guangmei; Mei, Fuhong; Jia, Wei; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-05-01

    The role of nucleation layer thickness on the GaN crystal quality grown on cone-patterned sapphire substrate (PSS) was explored. The morphologies of epitaxial GaN at different growth stages were investigated by a series of growth interruption in detail. After 10- and 15-min three-dimensional growth, the nucleation sites are very important for the bulk GaN crystal quality. They have a close relationship with the nucleation layer thickness, as confirmed through the scanning electron microscope (SEM) analysis. Nucleation sites formed mainly on patterns are bad for bulk GaN crystal quality and nucleation sites formed mainly in the trenches of PSS mounds are good for bulk GaN crystal quality, as proved by X-ray diffraction analysis. Nucleation layer thickness can effectively control the nucleation sites and thus determine the crystal quality of bulk GaN.

  7. Crystal chemistry of hydrothermally grown ternary alkali rare earth fluorides.

    PubMed

    McMillen, Colin D; Comer, Sara; Fulle, Kyle; Sanjeewa, Liurukara D; Kolis, Joseph W

    2015-12-01

    The structural variations of several alkali metal rare earth fluoride single crystals are summarized. Two different stoichiometric formulations are considered, namely those of ARE2F7 and ARE3F10 (A = K, Rb, Cs; RE = Y, La-Lu), over a wide range of ionic radii of both the alkali and rare earth (RE) ions. Previously reported and several new single-crystal structures are considered. The new single crystals are grown using hydrothermal methods and the structures are compared with literature reports of structures grown from both melts and hydrothermal fluids. The data reported here are combined with the literature data to gain a greater understanding of structural subtleties surrounding these systems. The work underscores the importance of the size of the cations to the observed structure type and also introduces synthetic technique as a contributor to the same. New insights based on single-crystal structure analysis in the work introduce a new disordered structure type in the case of ARE2F7, and examine the trends and boundaries of the ARE3F10 stoichiometry. Such fundamental structural information is useful in understanding the potential applications of these compounds as optical materials. PMID:26634734

  8. Crystal chemistry of hydrothermally grown ternary alkali rare earth fluorides.

    PubMed

    McMillen, Colin D; Comer, Sara; Fulle, Kyle; Sanjeewa, Liurukara D; Kolis, Joseph W

    2015-12-01

    The structural variations of several alkali metal rare earth fluoride single crystals are summarized. Two different stoichiometric formulations are considered, namely those of ARE2F7 and ARE3F10 (A = K, Rb, Cs; RE = Y, La-Lu), over a wide range of ionic radii of both the alkali and rare earth (RE) ions. Previously reported and several new single-crystal structures are considered. The new single crystals are grown using hydrothermal methods and the structures are compared with literature reports of structures grown from both melts and hydrothermal fluids. The data reported here are combined with the literature data to gain a greater understanding of structural subtleties surrounding these systems. The work underscores the importance of the size of the cations to the observed structure type and also introduces synthetic technique as a contributor to the same. New insights based on single-crystal structure analysis in the work introduce a new disordered structure type in the case of ARE2F7, and examine the trends and boundaries of the ARE3F10 stoichiometry. Such fundamental structural information is useful in understanding the potential applications of these compounds as optical materials.

  9. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  10. Study of the Mechanical Behavior of Radially Grown Fivefold Twinned Nanowires on the Atomic Scale.

    PubMed

    Yue, Yonghai; Zhang, Qi; Yang, Zhenyu; Gong, Qihua; Guo, Lin

    2016-07-01

    In situ bending tests and dynamic modeling simulations are for the first time revealing the mechanical behavior of copper nanowires (NW) with radially grown fivefold twin structures on the atomic scale. Combining the simulations with the experimental results it is shown that both the twin boundaries (TBs) and the twin center act as dislocation sources. TB migration and L-locks are readily observed in these types of radially grown fivefold-twin structures. PMID:27231215

  11. Influences of group-III source preflow on the polarity, optical, and structural properties of GaN grown on nitridated sapphire substrates by metal-organic chemical vapor deposition

    SciTech Connect

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2015-03-28

    We report the influences of group-III source preflow, which were introduced prior to the growth of the low temperature GaN on the polarity, photoluminescence (PL), and crystallographic properties of GaN epilayers grown on nitridated c-plane sapphire substrates by metal-organic chemical vapor deposition. By studying the surface morphology evolutions under chemical etching in KOH, we found that with increasing the trimethyl-gallium (TMGa) preflow duration (t), the polarity of the GaN film can be changed from a complete N-polarity to a mixture of N- and Ga-polarity and further to a complete Ga-polarity. PL and high-resolution X-ray diffraction studies revealed that the impurity incorporation and the edge- and screw-type threading dislocations are strongly polarity dependent. A further study at the optimized t (i.e., 30 s for TMGa) shows that the polarity inversion of GaN can be realized not only by TMGa preflow but also by trimethyl-aluminium preflow and by trimethyl-indium preflow. A two-monolayer model was employed to explain the polarity inversion mechanism.

  12. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. Hierarchical Domain Structures in Relaxor 24Pb(In1/2Nb1/2)O3-46Pb(Mg1/3Nb2/3)O3-30PbTiO3 near a Morphotropic Phase Boundary Composition Grown by Bridgman Method

    NASA Astrophysics Data System (ADS)

    Yasuda, Naohiko; Fuwa, Tomohiro; Ohwa, Hidehiro; Tachi, Yoshihito; Yamashita, Yohachi; Fujita, Kazuhiko; Iwata, Makoto; Terauchi, Hikaru; Ishibashi, Yoshihiro

    2011-09-01

    The domain structures of the lead-based relaxor ferroelectric solid solution single crystal, 24Pb(In1/2Nb1/2)O3 (PIN)-46Pb(Mg1/3Nb2/3)O3 (PMN)-30PbTiO3 (PT), near a morphotropic phase boundary (MPB) composition grown by the Bridgeman method were studied by polarized light microscopy (PLM), piezoresponse force microscopy (PFM) and scanning electron microscopy (SEM). The change in domain structures with poling from rhombohedral spindlelike domains of 3-5 µm width to orthorhombic domains of ˜20 µm width with rectangular cells with a size of 3-5 µm, characterized with an antiferroelectic double hysteresis loop in the electric field-induced strain behavior, was found. Such domain structures were microscopically identified from SEM images as small circular tetragonal defects, planar monoclinic defects such as edge and screw dislocations with Burgers vector b along <110>cub and/or <100>cub directions and their agglomerate rectangular orthorhombic defects, also characterized by PFM. Hierarchical domain structures are discussed from the viewpoints of domain structures due to defects such as edge and screw dislocations originating in the chemical order region (COR) and the piezoelectric responses and dielectric properties.

  14. Columnar grown copper films on polyimides strained beyond 100%

    PubMed Central

    Sun, Jeong-Yun; Lee, Hae-Ryung; Hwan Oh, Kyu

    2015-01-01

    Many flexible electronic devices contain metal films on polymer substrates to satisfy requirements for both electrical conductivity and mechanical durability. Despite numerous trials to date, the stretchability of metal interconnects remains an issue. In this paper, we have demonstrated a stretchable metal interconnect through control of the texture of a copper film with columnar grown grains on a polyimide (PI) substrate. The columnar grown copper films (CGC films) were deposited by regulating radio frequency (RF) sputtering powers. CGC films were able to sustain their electrical conductivity at strains above 100%. Instead of ultimate electrical discontinuity by channel crack propagation, CGC films maintained their conductivity by forming ligament structures, or a ‘conductive net,’ through trapped micro-cracks. XRD, AFM and in situ SEM analysis were used to investigate these stretchable conductors. PMID:26337668

  15. Diffusion-limited aggregates grown on nonuniform substrates

    NASA Astrophysics Data System (ADS)

    Cornette, V.; Centres, P. M.; Ramirez-Pastor, A. J.; Nieto, F.

    2013-12-01

    In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform substrates are investigated by means of Monte Carlo simulations. We consider a nonuniform substrate as the largest percolation cluster of dropped particles with different structures and forms that occupy more than a single site on the lattice. The aggregates are grown on such clusters, in the range the concentration, p, from the percolation threshold, pc up to the jamming coverage, pj. At the percolation threshold, the aggregates are asymmetrical and the branches are relatively few. However, for larger values of p, the patterns change gradually to a pure DLA. Tiny qualitative differences in this behavior are observed for different k sizes. Correspondingly, the fractal dimension of the aggregates increases as p raises in the same range pc≤p≤pj. This behavior is analyzed and discussed in the framework of the existing theoretical approaches.

  16. Diffraction study of protein crystals grown in cryoloops and micromounts.

    PubMed

    Berger, Michael A; Decker, Johannes H; Mathews, Irimpan I

    2010-12-01

    Protein crystals are usually grown in hanging or sitting drops and generally get transferred to a loop or micromount for cryocooling and data collection. This paper describes a method for growing crystals on cryoloops for easier manipulation of the crystals for data collection. This study also investigates the steps for the automation of this process and describes the design of a new tray for the method. The diffraction patterns and the structures of three proteins grown by both the new method and the conventional hanging-drop method are compared. The new setup is optimized for the automation of the crystal mounting process. Researchers could prepare nanolitre drops under ordinary laboratory conditions by growing the crystals directly in loops or micromounts. As has been pointed out before, higher levels of supersaturation can be obtained in very small volumes, and the new method may help in the exploration of additional crystallization conditions.

  17. Neural signal registration and analysis of axons grown in microchannels

    NASA Astrophysics Data System (ADS)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  18. Laser alexandrite crystals grown by horizontal oriented crystallization technique

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.; Tsvetkov, E. G.; Yurkin, A. M.

    2008-05-01

    Comparative studies were performed for alexandrite crystals, Al 2BeO 4:Cr 3+, employed in solid state lasers and grown by the horizontal oriented crystallization (HOC) technique and alexandrite crystals grown by the Czochralski (Cz) method. It was shown that the structural quality and possibilities of generation of stimulated emission HOC-crystals are similar to Cz-crystals, whereas their damage threshold is about three times higher. The obtained results and considerably lower cost price of HOC-alexandrite crystals prove their advantageous application in powerful laser systems, which require large laser rods with a higher resistance to laser beam. It is emphasized that application of HOC technique is promising for growth of laser crystals of other high-temperature oxide compounds.

  19. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    SciTech Connect

    Ravikiran, L.; Radhakrishnan, K. Ng, G. I.; Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S.

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.

  20. Separation and Ultrastructure of Proplastids from Dark-grown Euglena Cells

    PubMed Central

    Ophir, Ilana; Ben-Shaul, Yehuda

    1973-01-01

    A procedure for the separation of proplastids free of mitochondria from dark-grown Euglena cells has been developed. A fraction enriched in proplastids was used for freeze-etching study of proplastid structure. The prolamellar body in freeze-etched replicas appeared sponge-like, with thylakoids, often vesicular, emerging from it. The prolamellar body and the thylakoids were covered by particles of about 100Å in diameter. No larger particles, typical of light-grown chloroplasts, were observed. Images PMID:16658476

  1. Separation and Ultrastructure of Proplastids from Dark-grown Euglena Cells.

    PubMed

    Ophir, I; Ben-Shaul, Y

    1973-06-01

    A procedure for the separation of proplastids free of mitochondria from dark-grown Euglena cells has been developed. A fraction enriched in proplastids was used for freeze-etching study of proplastid structure. The prolamellar body in freeze-etched replicas appeared sponge-like, with thylakoids, often vesicular, emerging from it. The prolamellar body and the thylakoids were covered by particles of about 100A in diameter. No larger particles, typical of light-grown chloroplasts, were observed.

  2. Diamond films grown from fullerene precursors

    SciTech Connect

    Gruen, D.M.; Zuiker, C.D.; Krauss, A.R.

    1995-07-01

    Fullerene precursors have been shown to result in the growth of diamond films from argon microwave plasmas. In contradistinction to most diamond films grown using conventional methane-hydrogen mixtures, the fullerene-generated films are nanocrystalline and smooth on the nanometer scale. They have recently been shown to have friction coefficients approaching the values of natural diamond. It is clearly important to understand the development of surface morphology during film growth from fullerene precursors and to elucidate the factors leading to surface roughness when hydrogen is present in the chemical vapor deposition (CVD) gas mixtures. To achieve these goals, we are measuring surface reflectivity of diamond films growing on silicon substrates over a wide range of plasma processing conditions. A model for the interpretation of the laser interferometric data has been developed, which allows one to determine film growth rate, rms surface roughness, and bulk losses due to scattering and absorption. The rms roughness values determined by reflectivity are in good agreement with atomic force microscope (AFM) measurements. A number of techniques, including high-resolution transmission electron microscopy (HRTEM) and near-edge x-ray absorption find structure (NEXAFS) measurements, have been used to characterize the films. A mechanism for diamond-film growth involving the C{sub 2} molecule as a growth species will be presented. The mechanism is based on (1) the observation that the optical emission spectra of the fullerene- containing plasmas are dominated by the Swan bands of C{sub 2} and (2) the ability of C{sub 2} to insert directly into C-H and C-C bonds with low activation barriers, as shown by recent theoretical calculations of reactions of C{sub 2} with carbon clusters.

  3. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  4. Photo-induced insulator-metal transition in Pr0.6Ca0.4MnO3 thin films grown by pulsed laser deposition: Effect of thickness dependent structural and transport properties

    NASA Astrophysics Data System (ADS)

    Elovaara, Tomi; Huhtinen, Hannu; Majumdar, Sayani; Paturi, Petriina

    2016-09-01

    We report photo-induced colossal magnetoresistive insulator-metal transition (IMT) in Pr0.6Ca0.4MnO3 thin films under much reduced applied magnetic field. The colossal effect was studied as a function of film thickness and thus with variable structural properties. Thorough structural, magnetic and magnetotransport characterization under light shows that the highest effect on the transition field can be obtained in the thinnest film (38 nm). However, due to the substrate induced strain of this film the required magnetic field for IMT is quite high. The best crystalline properties of the 110 nm film lead to the lowest IMT field under light and 109% change in resistance at 10 K. With increasing thickness, the film properties start to move more toward the bulk material and, hence, IMT is no more observed under the applied field of 9 T. Our results indicate that for obtaining large photo-induced CMR, the best epitaxial quality of thin films is essential.

  5. Arsenic incorporation in molecular beam epitaxy (MBE) grown (AlGaIn)(AsSb) layers for 2.0-2.5 μm laser structures on GaSb substrates

    NASA Astrophysics Data System (ADS)

    Simanowski, S.; Walther, M.; Schmitz, J.; Kiefer, R.; Herres, N.; Fuchs, F.; Maier, M.; Mermelstein, C.; Wagner, J.; Weimann, G.

    1999-05-01

    The incorporation of As and In during MBE growth in (AlGaIn)/(AsSb) layers used for the fabrication of diode lasers in the 2.0-2.5 μm wavelength range has been investigated. The As content was found to depend linearly on the beam equivalent pressure for As mole fractions between y=0.05 and y=0.20. Broad area AlGaAsSb/GaInAsSb single-quantum well laser diodes with quasi-cw output at room temperature at an emission wavelength of 2.03 μm and a threshold current density of 515 A/cm 2 for 1370 μm long and 70 μm wide devices have been fabricated. In order to shift the emission wavelength of the laser structures to longer wavelengths, the growth of lattice matched AlGaAsSb/GaInAsSb laser core structures with different In and As mole fractions in the quantum wells has been investigated.

  6. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    SciTech Connect

    Gladysiewicz, M.; Wartak, M. S.; Kudrawiec, R.

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  7. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  8. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  9. Cu2ZnSnSe4 Photovoltaic Absorber Grown by Vertical Gradient Freeze Technique

    NASA Astrophysics Data System (ADS)

    Das, Sandip; Mandal, Krishna C.

    2013-12-01

    High quality large grain single phase Cu2ZnSnSe4 (CZTSe) photovoltaic absorber material was grown by vertical gradient freeze (VGF) technique for the first time. Polycrystalline CZTSe ingot was grown in a vacuum sealed quartz ampoule inside a modified three-zone vertical Bridgman furnace employing a directional cooling. Structural and compositional analyses of the grown crystals were performed by X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The grown crystals exhibited highly crystalline tetragonal structure corresponding to kesterite Cu2ZnSnSe4 with lattice parameters of a = 5.696 Å and c = 11.338 Å as evidenced from XRD pattern. Raman spectra showed three characteristic peaks at 171.5, 194.6, and 231.1 cm-1 attributed to kesterite phase CZTSe. No other secondary phases were detected in the grown crystals. Thermoelectric probe measurements showed p-type conductivity of the grown crystals and energy dispersive X-ray spectroscopy (EDS) along the crystal growth direction showed uniform and stoichiometric elemental distribution. Our results show that VGF technique can be used to grow high quality kesterite compounds for photovoltaic application.

  10. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shukrullah, S.; Mohamed, N. M.; Shaharun, M. S.; Yasar, M.

    2014-10-01

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  11. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    SciTech Connect

    Shukrullah, S. E-mail: noranimuti-mohamed@petronas.com.my Mohamed, N. M. E-mail: noranimuti-mohamed@petronas.com.my Shaharun, M. S. E-mail: noranimuti-mohamed@petronas.com.my; Yasar, M.

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  12. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  13. Chirality of electrodeposits grown in a magnetic field.

    PubMed

    Mhíocháin, T R Ní; Coey, J M D

    2004-06-01

    Electrodeposits grown around a point cathode in a flat, horizontal electrochemical cell have fractal form. When grown in the presence of a perpendicular applied magnetic field, the deposits develop a spiral structure with chirality which reverses on switching the field direction. These structures are modeled numerically using biased variants of the diffusion limited aggregation (DLA) model. The effects of electric and magnetic fields are modeled successfully by varying the probabilities that a random walker will move in a given direction as a result of a Coulomb force and the Lorentz force-induced flow of electrolyte past the deposit surface. By contrast, a numerical model which considers only the effect of the Lorentz force on individual ions, without reference to the surface of the growing deposit, produces spiral structures with incorrect chirality. The modified DLA model is related to the differential equations for diffusion, migration, and convection. Length scales in the problem are understood by associating the step length of the random walker with the diffusion layer thickness, the lookup radius with the hydrodynamic boundary layer thickness and a point on the numerical deposit with a nucleation center for growth of a crystallite. PMID:15244565

  14. Structural and morphological properties of GaN buffer layers grown by ammonia molecular beam epitaxy on SiC substrates for AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Corrion, A. L.; Poblenz, C.; Wu, F.; Speck, J. S.

    2008-05-01

    The impact of growth conditions on the surface morphology and structural properties of ammonia molecular beam epitaxy GaN buffers layers on SiC substrates was investigated. The threading dislocation (TD) density was found to decrease with decreasing NH{sub 3}:Ga flux ratio, which corresponded to an increase in surface roughness and reduction in residual compressive lattice mismatch stress. Furthermore, the dislocation density and compressive stress decreased for increasing buffer thickness. TD inclination was proposed to account for these observations. Optimized surface morphologies were realized at high NH{sub 3}:Ga flux ratios and were characterized by monolayer-high steps, spiral hillocks, and pyramidal mounds, with rms roughness of {approx}1.0 nm over 2x2 {mu}m{sup 2} atomic force microscopy images. Smooth surface morphologies were realized over a large range of growth temperatures and fluxes, and growth rates of up to 1 {mu}m/h were achieved. TD densities in the buffers as low as 3x10{sup 9} cm{sup -2} were demonstrated. These buffers were highly insulating and were used in recently reported AlGaN/GaN HEMTs with power densities of >11 W/mm at 4 and 10 GHz.

  15. Grown-ups Ought To Know Better.

    ERIC Educational Resources Information Center

    Brightman, Samuel C.

    Among the articles by Sam Brightman collected in this volume from the newsletter, "Adult & Continuing Education Today (ACET)" are the following: "Grown-Ups Ought to Know Better"; "Adult Education: The Only Sure Factor Is Growth"; "Adult Education Important in This Election Year"; "Will Nursery School External Degree Programs Come Next?";…

  16. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  17. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    NASA Astrophysics Data System (ADS)

    Byrappa, Shayan M.

    Silicon Carbide [SiC] which exists as more than 200 different polytypes is known for superior high temperature and high power applications in comparison to conventional semiconductor materials like Silicon and Germanium. The material finds plethora of applications in a diverse fields due to its unique properties like large energy bandgap, high thermal conductivity and high electric breakdown field. Though inundated with superior properties the potential of this material has not been utilized fully due to impeding factors such as defects especially the crystalline ones which limit their performance greatly. Lots of research has been going on for decades to reduce these defects and there has been subsequent improvement in the quality as the diameter of SiC commercial wafers has reached 150mm from 25mm since its inception. The main focus of this thesis has been to study yield limiting defect structures in conjunction with several leading companies and national labs using advanced characterization tools especially the Synchrotron source. The in depth analysis of SiC has led to development of strategies to reduce or eliminate the density of defects by studying how the defects nucleate, replicate and interact in the material. The strategies discussed to reduce defects were proposed after careful deliberation and analysis of PVT grown bulk crystals and CVD grown epilayers. Following are some of the results of the study: [1] Macrostep overgrowth mechanism in SiC was used to study the deflection of threading defects onto the basal plane resulting in stacking faults. Four types of stacking faults associated with deflection of c/c+a threading defects have been observed to be present in 76mm, 100mm and 150mm diameter wafers. The PVT grown bulk crystals and CVD grown epilayers in study were subjected to contrast studies using synchrotron white beam X-ray topography [SWBXT]. The SWBXT image contrast studies of these stacking faults with comparison of calculated phase shifts for

  18. InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2014-04-24

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl{sub 3} and 0.03M SbCl{sub 3}, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm{sup −1} corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  19. GaAsP Nanowires Grown by Aerotaxy.

    PubMed

    Metaferia, Wondwosen; Persson, Axel R; Mergenthaler, Kilian; Yang, Fangfang; Zhang, Wei; Yartsev, Arkady; Wallenberg, Reine; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H

    2016-09-14

    We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.

  20. Magnesium diffusion profile in GaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Benzarti, Z.; Halidou, I.; Bougrioua, Z.; Boufaden, T.; El Jani, B.

    2008-07-01

    The diffusion of magnesium has been studied in GaN layers grown on sapphire substrate by atmospheric pressure metalorganic vapor-phase-epitaxy (MOVPE) in a "home-made" reactor. Secondary Ion Mass Spectroscopy (SIMS) was used to visualise the Mg profiles in two kinds of multi-sublayer GaN structures. One structure was grown with a variable flow of Ga precursor (TMG) and the second one with a variable growth temperature. In both cases, the Mg dopant precursor (Cp 2Mg) flow was kept constant. Using the second Fick's law to fit the experimental SIMS data, we have deduced an increasing then a saturating Mg diffusion coefficient versus the Mg concentration. Mg incorporation was found to get higher for lower growth rate, i.e. when TMG flow is reduced. Furthermore, based on the temperature-related behaviour we have found that the activation energy for Mg diffusion coefficient in GaN was 1.9 eV. It is suggested that Mg diffuses via substitutional sites.

  1. GaAsP Nanowires Grown by Aerotaxy.

    PubMed

    Metaferia, Wondwosen; Persson, Axel R; Mergenthaler, Kilian; Yang, Fangfang; Zhang, Wei; Yartsev, Arkady; Wallenberg, Reine; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H

    2016-09-14

    We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires. PMID:27564139

  2. InSb thin films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Rajaram, P.

    2014-04-01

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl3 and 0.03M SbCl3, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm-1 corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  3. Properties of diamond grown from CO2 containing gas chemistries

    NASA Astrophysics Data System (ADS)

    Mollart, Tim P.; Lewis, Keith L.; Williams, G. M.

    1999-07-01

    The structural, optical and mechanical properties of CVD diamond grown using chemistries on the H-CO tie line have been investigated. A microwave plasma CVD system has been used with methane and ethylene containing gas chemistries to grow free standing optical quality diamond layers. When these feed stock gases are combined with carbon dioxide and hydrogen they enable the H-CO tie line to be traversed up to the central region of the Bachmann growth diagram. The structural properties were assessed using SEM, cathodoluminescence, Raman spectroscopy and x-ray diffraction techniques. The optical properties were assessed using several techniques including measurements of spectral emissivity over a range of temperatures and the role of nitrogen impurities identified. The trends in the optical characteristics will be discussed in relation to differences in mechanical properties with a view of evaluating the viability of using oxygen-based chemistries for the fabrication of diamond components.

  4. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    DOE PAGES

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; et al

    2014-03-12

    Epimore » taxial La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie ≈ 190 K and a large low-temperature saturation moment of about 3.5 (1) μB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant

  5. Spectral, optical and mechanical studies on L-histidine hydrochloride monohydrate (LHC) single crystals grown by unidirectional growth technique

    NASA Astrophysics Data System (ADS)

    Robert, R.; Justin Raj, C.; Krishnan, S.; Uthrakumar, R.; Dinakaran, S.; Jerome Das, S.

    2010-08-01

    Single crystals of nonlinear optical L-histidine hydrochloride monohydrate (LHC) were grown in an aqueous solution by the unidirectional crystal growth method within a period of 45 days along (1 0 1) plane. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their orthorhombic structure having space group P2 12 12 1. Values of several physical parameters were determined for the grown crystal. Optical transmission studies revealed very low absorption and band gap energy was calculated for the LHC crystals. Further, some optical constant were also determined for the grown crystals. Anisotropy in Vicker's microhardness led to the assessment of fracture toughness, brittleness index and yield strength for the synthesized crystals. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found to be three times that of KDP crystals.

  6. Lethal photosensitization of biofilm-grown bacteria

    NASA Astrophysics Data System (ADS)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  7. The breakdown of fibrous structures in directionally grown monotectic alloys

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Hellawell, A.

    1984-01-01

    The breakdown of aligned steady-state metallic growth products from the reversible monotectic reaction liquid (L1) yields solid (S1) + liquid (L2) is analyzed experimentally. Consideration is given to the temperatures of the monotectic horizontal, to upper consolute temperature of the liquid miscibility gap which through the relative liquid and solid surface energies determines whether the reaction is capable of steady-state growth; the growth characteristics of the solid (faceted or nonfaceted); and the relative whetting characteristics of parent and product phases with the glass cell walls. Schematic drawings and composite photographs are provided which illustrate the development of steady-state growth and the related changes in phase sickness of the reaction product.

  8. Mineral composition of organically grown tomato

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  9. Nucleolus in clinostat-grown plants

    SciTech Connect

    Shen-Miller, J.; Dannenhoffer, J. ); Hinchman, R. )

    1991-05-01

    The clinostat is an apparatus that is used to mimic zero gravity in studies of plant growth in the absence of gravitropic response. Clinostat-grown tissue cultures of carrot exhibit significant increases both in the number of nuclei containing more than one nucleolus and in nucleolar volume. Oat seedlings germinated and grown on clinostats exhibit a decreased rate of shoot elongation, increased tissue sensitivity to applied auxin, and an increased response to gravitropic stimulation. Clinostat treatment clearly affects plant metabolism. The nucleolus is the region in the nucleus where ribosome synthesis and assembly take place. The 18S, 5.8S, and 25S ribosomal genes, in tandem units, are located in the nucleolus. Ribosomes orchestrate the production of all proteins that are necessary for the maintenance of cell growth, development, and survival. A full study of the effects of nullification of gravitropism, by clinostat rotation, on nucleolar development in barley has been initiated. The authors study developmental changes of nucleolar number and diameter in clinostat-grown root tissues. Preliminary results show that barley roots exhibit changes in nucleolar number and diameter. Growth rates of barley root and shoot also appear to be reduced, in measurements of both length and weight.

  10. Chemical and microstructural characterization of thermally grown alumina scales

    SciTech Connect

    Natesan, K.; Richier, C.; Veal, B.W.

    1995-09-01

    An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales.

  11. InAsP quantum dot lasers grown by MOVPE.

    PubMed

    Karomi, Ivan; Smowton, Peter M; Shutts, Samuel; Krysa, Andrey B; Beanland, Richard

    2015-10-19

    We report on InAsP quantum dot lasers grown by MOVPE for 730-780 nm wavelength emission and compare performance with InP dot samples grown under similar conditions and with similar structures. 1-4 mm long, uncoated facet InAsP dot lasers emit between 760 and 775 nm and 2 mm long lasers with uncoated facets have threshold current density of 260 Acm(-2), compared with 150 Acm(-2) for InP quantum dot samples, which emit at shorter wavelengths, 715-725 nm. Pulsed lasing is demonstrated for InAsP dots up to 380 K with up to 200 mW output power. Measured absorption spectra indicate the addition of Arsenic to the dots has shifted the available transitions to longer wavelengths but also results in a much larger degree of spectral broadening. These spectra and transmission electron microscopy images indicate that the InAsP dots have a much larger degree of inhomogeneous broadening due to dot size variation, both from layer to layer and within a layer.

  12. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  13. 7 CFR 51.1356 - Pears grown from late blooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Pears grown from late blooms. 51.1356 Section 51.1356... STANDARDS) United States Standards for Pears for Canning Definitions § 51.1356 Pears grown from late blooms. Pears grown from late blooms. Such pears often have excessively long stems (commonly termed “rat...

  14. 7 CFR 51.1356 - Pears grown from late blooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Pears grown from late blooms. 51.1356 Section 51.1356... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Pears for Canning Definitions § 51.1356 Pears grown from late blooms. Pears grown from late blooms. Such pears often have excessively long...

  15. 7 CFR 51.1356 - Pears grown from late blooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Pears grown from late blooms. 51.1356 Section 51.1356... STANDARDS) United States Standards for Pears for Canning Definitions § 51.1356 Pears grown from late blooms. Pears grown from late blooms. Such pears often have excessively long stems (commonly termed “rat...

  16. 7 CFR 51.1356 - Pears grown from late blooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Pears grown from late blooms. 51.1356 Section 51.1356... STANDARDS) United States Standards for Pears for Canning Definitions § 51.1356 Pears grown from late blooms. Pears grown from late blooms. Such pears often have excessively long stems (commonly termed “rat...

  17. 7 CFR 51.1356 - Pears grown from late blooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Pears grown from late blooms. 51.1356 Section 51.1356... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Pears for Canning Definitions § 51.1356 Pears grown from late blooms. Pears grown from late blooms. Such pears often have excessively long...

  18. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction.

    PubMed

    Liang, Ji; Du, Xin; Gibson, Christopher; Du, Xi Wen; Qiao, Shi Zhang

    2013-11-20

    A novel nitrogen doped hybrid material composed of in situ-formed graphene natively grown on hierarchical ordered porous carbon is prepared, which successfully combines the advantages of both materials, such as high surface area, high mass transfer, and high conductivity. The outstanding structural properties of the resultant material render it an excellent metal-free catalyst for electrochemical oxygen reduction. PMID:23963824

  19. Features of AlN film grown by ion-plasma sputtering

    NASA Astrophysics Data System (ADS)

    Lubyanskiy, Ya V.; Bondarev, A. D.; Soshnikov, I. P.; Kotlyar, K. P.; Kirilenko, D. A.; Bert, N. A.; Ayusheva, K. R.; Tarasov, I. S.

    2016-08-01

    The work under consideration presents research of structure, composition and optical properties of aluminium nitride thin films grown by reactive ion plasma sputtering. Aluminium nitride films are shown to contain amorphous and polycrystalline phases. Amorphous phase presence influences on refraction and absorption indexes. Conditions of polycrystalline films with primary (dedicated) orientation synthesis are revealed.

  20. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  1. High resolution synchrotron X-radiation diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Fripp, Archibald; Simchik, Richard

    1991-01-01

    Irregularities in three crystals grown in space and in four terrestrial crystals grown under otherwise comparable conditions have been observed in high resolution diffraction imaging. The images provide important new clues to the nature and origins of irregularities in each crystal. For two of the materials, mercuric iodide and lead tin telluride, more than one phase (an array of non-diffracting inclusions) was observed in terrestrial samples; but the formation of these multiple phases appears to have been suppressed in directly comparable crystals grown in microgravity. The terrestrial seed crystal of triglycine sulfate displayed an unexpected layered structure, which propagated during directly comparable space growth. Terrestrial Bridgman regrowth of gallium arsenide revealed a mesoscopic structure substantially different from that of the original Czochralski material. A directly comparable crystal is to be grown shortly in space.

  2. Monocrystalline molybdenum silicide based quantum dot superlattices grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Savelli, Guillaume; Silveira Stein, Sergio; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent

    2016-09-01

    This paper presents the growth of doped monocrystalline molybdenum-silicide-based quantum dot superlattices (QDSL). This is the first time that such nanostructured materials integrating molybdenum silicide nanodots have been grown. QDSL are grown by reduced pressure chemical vapor deposition (RPCVD). We present here their crystallographic structures and chemical properties, as well as the influence of the nanostructuration on their thermal and electrical properties. Particularly, it will be shown some specific characteristics for these QDSL, such as a localization of nanodots between the layers, unlike other silicide based QDSL, an accumulation of doping atoms near the nanodots, and a strong decrease of the thermal conductivity obtained thanks to the nanostructuration.

  3. Ultra high density three dimensional capacitors based on Si nanowires array grown on a metal layer

    NASA Astrophysics Data System (ADS)

    Morel, P. H.; Haberfehlner, G.; Lafond, D.; Audoit, G.; Jousseaume, V.; Leroux, C.; Fayolle-Lecocq, M.; Baron, T.; Ernst, T.

    2012-08-01

    We report the fabrication and the characterization of chemical vapor deposition (CVD) grown silicon nanowires capacitors using a complementary-metal-oxide-semiconductor (CMOS) circuit interconnect level compatible process. Silicon nanowires have been grown by CVD on metallic interconnect lines used in today's CMOS circuits at low temperature (<425 °C) and using copper as catalyst. The nanowire assembly develops a huge surface leading to very high measured capacitance densities reaching 18 μF/cm2, and featuring a ×23 gain when compared to the same structure without nanowires. This opens the path toward embedded capacitances technologies by using bottom-up nanowires.

  4. (Ga,In)P nanowires grown without intentional catalyst

    NASA Astrophysics Data System (ADS)

    Cerqueira, Carolina F.; Viana, Bartolomeu C.; Luz-Lima, Cleanio da; Perea-Lopez, Nestor; Terrones, Mauricio; Falcão, Eduardo H. L.; Gomes, Anderson S. L.; Chassagnon, Remi; Pinto, André L.; Sampaio, Luiz C.; Sacilotti, Marco

    2015-12-01

    We have grown (Ga,In)P nanowires through the MOCVD method without a intentional catalyst. The organometallic precursor triethylgallium ((C2H5)3 Ga), used as Ga source, is transported by the N2 gas carrier to the reactor chamber where reacts with the InP vapor pressure producing the nanowires. Two different reactor pressures (70 and 740 Torr) were used leading to nanowires with different In contents. The nanowires are straight or wool-like and exhibit a twinned structure. They emit an intense orange to red color visible even to the naked eyes. Interface tunneling process at Ga1-xInx P /Ga1-yIny P interfaces (x ≠ y) is proposed to explain this efficient light emission mechanism.

  5. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOEpatents

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  6. Solution-grown cadium sulfide films for photovoltaic devices

    SciTech Connect

    Chu, T.L.; Chu, S.S. ); Schultz, N.; Wang, C.; Wu, C.Q. . Dept. of Electrical Engineering)

    1992-09-01

    This paper reports on thin films of cadmium sulfide (CdS) which have major applications in optoelectronic devices. Several techniques have been developed for the deposition of CdS films. Among these, growth of CdS films from an aqueous solution is the low-cost technique suitable for many applications. In this work, the deposition of device quality CdS films on glass and SnO[sub 2]:F/glass substrates from an aqueous solution containing cadmium acetate, ammonia, ammonium acetate, and thiourea has been investigated. The structural and electrical properties of CdS films have been characterized. The doping of CdS films with boron and the properties of boron-doped CdS films have also been studied. High efficiency thin film CdS/CdTe solar cells have been prepared from solution-grown CdS films.

  7. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  8. Active protein and calcium hydroxyapatite bilayers grown by laser techniques for therapeutic applications.

    PubMed

    Motoc, M M; Axente, E; Popescu, C; Sima, L E; Petrescu, S M; Mihailescu, I N; Gyorgy, E

    2013-09-01

    Active protein and bioceramic calcium hydroxyapatite (HA) bilayers were grown by combining conventional pulsed laser deposition (PLD) and matrix-assisted pulsed laser evaporation (MAPLE) techniques. A pulsed UV KrF* excimer laser was used for the irradiations. The HA layers were grown by PLD. Proteins with antimicrobial action were attached to the bioceramic layers using MAPLE. The composite MAPLE targets were obtained by dissolving the proteins powder in distilled water. The crystalline status and chemical composition of the obtained structures were studied by X-ray diffractometry and Fourier transform infrared spectroscopy. The layers were grown for the design of advanced future metal implants coatings, ensuring both enhanced bone formation and localized antimicrobial therapy. Our results demonstrated that protein coatings improve bone cell proliferation in vitro. Immunofluorescence experiments show that actin filaments stretch throughout bone cells and sustain their optimal spreading.

  9. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    PubMed Central

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  10. Epitaxially grown layered MFI-bulk MFI hybrid zeolitic materials.

    PubMed

    Kim, Wun-gwi; Zhang, Xueyi; Lee, Jong Suk; Tsapatsis, Michael; Nair, Sankar

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N(2) physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO(2) and good CO(2)/CH(4) selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO(2) and CH(4) gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface.

  11. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    SciTech Connect

    McHugo, S.A.; Krueger, J.; Kisielowski, C.

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  12. Phytochemical phenolics in organically grown vegetables.

    PubMed

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p < 0.01), and seemed to be associated with a greater attack the plants in organic plots by flea beetles. These results indicated that although organic production method alone did not enhance biosynthesis of phytochemicals in lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  13. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  14. Structuralism.

    ERIC Educational Resources Information Center

    Piaget, Jean

    Provided is an overview of the analytical method known as structuralism. The first chapter discusses the three key components of the concept of a structure: the view of a system as a whole instead of so many parts; the study of the transformations in the system; and the fact that these transformations never lead beyond the system but always…

  15. Exceptional gettering response of epitaxially grown kerfless silicon

    DOE PAGES

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less

  16. Exceptional gettering response of epitaxially grown kerfless silicon

    NASA Astrophysics Data System (ADS)

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.

    2016-02-01

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500× during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentration of point defects (likely Pt) is "locked in" during fast (60 °C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomerates at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. Device simulations suggest a solar-cell efficiency potential of this material >23%.

  17. Hexagonal boron nitride grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Akasaka, T.; Makimoto, T.

    2008-11-01

    Hexagonal boron nitride (h-BN) has a potential for optical device applications in the deep ultraviolet spectral region. For several decades, only amorphous and turbostratic boron nitride (BN) films had been grown by chemical vapor deposition and metalorganic vapor phase epitaxy. By introducing flow-rate modulation epitaxy (FME), which enables us to reduce parasitic reactions and lower the optimal growth temperature, we have succeeded in growing single-phase h-BN epitaxial films on nearly lattice-matched (1 1 1) Ni substrates. The h-BN epitaxial films exhibit near-band-gap ultraviolet luminescence at a wavelength of 227 nm in cathodoluminescence at room temperature. The combination of FME and the lattice-matched substrate paves the way for the epitaxial growth of high-quality h-BN.

  18. Nanoelectronic biosensors based on CVD grown graphene

    NASA Astrophysics Data System (ADS)

    Huang, Yinxi; Dong, Xiaochen; Shi, Yumeng; Li, Chang Ming; Li, Lain-Jong; Chen, Peng

    2010-08-01

    Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors. Electronic supplementary information (ESI) available: AFM images of graphene film before and after functionalization, transfer curves of graphene after every step, SEM image of CNT-net, and detection results using CNT-net devices. See DOI: 10.1039/c0nr00142b

  19. High reflectance III-nitride Bragg reflectors grown by molecular beam epitaxy

    SciTech Connect

    Ng, H.M.; Moustakas, T.D.

    2000-07-01

    Distributed Bragg reflector (DBR) structures based on AlN/GaN have been grown on (0001) sapphire by electron-cyclotron-resonance plasma-assisted molecular-beam epitaxy (ECR-MBE). The design of the structures was predetermined by simulations using the transmission matrix method. A number of structures have been grown with 20.5--25.5 periods showing peak reflectance ranging form the near-UV to the green wavelength regions. For the best sample, peak reflectance up to 99% was observed centered at 467 nm with a bandwidth of 45 nm. The experimental reflectance data were compared with the simulations and show excellent agreement with respect to peak reflectance, bandwidth of high reflectance and the locations of the sidelobes.

  20. AgBiS2 single crystal grown using slow cooling method and its characterization

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaru; Nakamura, Hiroaki; Ohsawa, Takeo; Imura, Masataka; Shimamura, Kiyoshi; Ohashi, Naoki

    2015-02-01

    Silver bismuth sulfide (AgBiS2) single crystal was successfully grown using the slow cooling method. Characterization of a grown crystal using power X-ray diffraction (XRD) revealed a single AgBiS2 phase and a cubic structure with lattice parameter a=5.641 Å. The crystal was found to have a high-temperature phase with a cubic structure. XRD measurement and composition analysis showed that the stoichiometric composition of the AgBiS2 was equivalent to the congruent melt composition. The grown AgBiS2 crystal was confirmed to be single crystal by observing the Laue X-ray backscattering pattern. Differential thermal analysis showed that the melting point of the AgBiS2 was 805 °C. The grown crystal had n-type conductivity, a carrier concentration of 2.6×1018 cm-3, electrical resistivity of 2.1 Ω cm, and hole mobility of 1.1 cm2/V s at room temperature.

  1. TEM studies of laterally overgrown GaN layers grown on non-polarsubstrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2006-01-05

    Transmission electron microscopy (TEM) was used to study pendeo-epitaxial GaN layers grown on polar and non-polar 4H SiC substrates. The structural quality of the overgrown layers was evaluated using a number of TEM methods. Growth of pendeo-epitaxial layers on polar substrates leads to better structural quality of the overgrown areas, however edge-on dislocations are found at the meeting fronts of two wings. Some misorientation between the 'seed' area and wing area was detected by Convergent Beam Electron Diffraction. Growth of pendeo-epitaxial layers on non-polar substrates is more difficult. Two wings on the opposite site of the seed area grow in two different polar directions with different growth rates. Most dislocations in a wing grown with Ga polarity are 10 times wider than wings grown with N-polarity making coalescence of these layers difficult. Most dislocations in a wing grown with Ga polarity bend in a direction parallel to the substrate, but some of them also propagate to the sample surface. Stacking faults formed on the c-plane and prismatic plane occasionally were found. Some misorientation between the wings and seed was detected using Large Angle Convergent Beam Diffraction.

  2. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum.

    PubMed

    Li, Tao; Liu, Li-Na; Jiang, Chuang-Dao; Liu, Yu-Jun; Shi, Lei

    2014-08-01

    In the field, close planting inevitably causes mutual shading and depression of leaf photosynthesis. To clarify the regulative mechanisms of photosynthesis under these conditions, the effects of planting density on leaf structure, gas exchange and proteomics were carefully studied in field-grown sorghum. In the absence of mineral deficiency, (1) close planting induced a significant decrease in light intensity within populations, which further resulted in much lower stomatal density and other anatomical characteristics associated with shaded leaves; (2) sorghum grown at high planting density had a lower net photosynthetic rate and stomatal conductance than those grown at low planting density; (3) approximately 62 protein spots changed their expression levels under the high planting density conditions, and 22 proteins associated with photosynthesis were identified by mass spectrometry. Further analysis revealed the depression of photosynthesis caused by mutual shading involves the regulation of leaf structure, absorption and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. Additionally, heat shock protein and oxygen-evolving enhancer protein play important roles in photoprotection in field-grown sorghum. A model for the regulation of photosynthesis under mutual shading was suggested based on our results.

  3. Optical investigations on Tb3+ doped L-Histidine hydrochloride mono hydrate single crystals grown by low temperature solution techniques

    NASA Astrophysics Data System (ADS)

    Rajyalakshmi, S.; Ramachandra Rao, K.; Brahmaji, B.; Samatha, K.; Visweswara Rao, T. K.; Bhagavannarayana, G.

    2016-04-01

    The potential nonlinear optical material of Terbium (Tb3+) ion doped L-Histidine hydrochloride monohydrate (LHHC) single crystals were successfully grown. Tb3+:LHHC crystals of 7 mm × 5 mm × 3 mm and 59 mm length and 15 mm diameter have been grown by the slow solvent evaporation and Sankaranarayanan-Ramasamy (SR) techniques respectively. The grown crystals were characterized by single crystal X-ray diffraction analysis to confirm the crystalline structure and morphology. High resolution X-ray diffraction (HRXRD) studies revealed that the SR grown sample shows relatively good crystalline nature with 9″ full-width at half-maximum (FWHM) for the diffraction curve. Functional groups were identified by Fourier transform infra-red spectroscopy (FTIR). The optical transparency and band gaps of grown crystals were measured by UV-Vis spectroscopy. Thermogravimetric and differential thermal analysis (TG/DTA) studies reveal that the crystal was thermally stable up to 155 °C in SR grown crystal. Surface morphology of the growth plane was observed using scanning electron microscopy (SEM). The incorporation of Tb ion was estimated by EDAX. The frequency-dependent dielectric properties of the crystals were carried out for different temperatures. Vickers hardness study carried out on (1 0 0) face at room temperature shows increased hardness of the SR method grown crystal. Second harmonic generation efficiency of SEST and SR grown crystals are 3.2 and 3.5 times greater than that of pure KDP. The Photoluminescence (PL) studies of Tb3+ ions result from the radiative intra-configurational f-f transitions that occur from the 5D4 excited state to the 7Fj (j = 6, 5, 4, 3) ground states. The decay curve of the 5D4 level of emission was observed with a long life time of 319.2041 μs for the SR grown Tb3+:LHHC crystal.

  4. Video of Tissue Grown in Space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Principal investigator Leland Chung grew prostate cancer and bone stromal cells aboard the Space Shuttle Columbia during the STS-107 mission. Although the experiment samples were lost along with the ill-fated spacecraft and crew, he did obtain downlinked video of the experiment that indicates the enormous potential of growing tissues in microgravity. Cells grown aboard Columbia had grown far larger tissue aggregates at day 5 than did the cells grown in a NASA bioreactor on the ground.

  5. Silicon samples grown under reduced melt convection

    NASA Astrophysics Data System (ADS)

    Binetti, S.; Gonik, M.; Le Donne, A.; Croel, A.

    2015-05-01

    In any crystallization process, convection rules the formation and distribution of impurities and precipitates. Silicon is actually a well studied material; however the distribution of impurities and their related precipitation processes are still not investigated from the point of view of diffusion and segregation phenomena. In principle, experimentation under microgravity can contribute to a better understanding of the processes occurring during solidification since the chemical segregation and distribution of impurities can be studied under purely diffusive transport conditions. In ground experiments, the effect of a reduced melt convection growth process and its effect on the crystal quality could be studied growing silicon by the Axial Heating Process (AHP). For this purpose, a modified Float Zone (FZ) technique using an additional AHP heater submerged into the melt was applied in this work to grow silicon single crystal. The obtained samples were inspected by resistivity measurements and spectroscopic techniques (PL, FT-IR). The spatial distribution of the dopant along the ingot obtained by local resistivity measurements was compared with a theoretical distribution of dopant. PL measurements confirm the high quality level of the grown ingots and infrared spectroscopy reveals low carbon and oxygen concentration. Such an approach seems to be very promising also for solar grade Si solidification for PV applications.

  6. Influence of shading on container-grown flowering dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bare root dogwoods can be successfully grown when transplanted into a container production system. Shade treatments regardless of color or density did have an effect on the plant growth of Cherokee Brave™ and Cherokee Princess dogwood. Plants grown under 50% black and 50% white shade had more heigh...

  7. Systemic regulation of photosynthetic function in field-grown sorghum.

    PubMed

    Li, Tao; Liu, Yujun; Shi, Lei; Jiang, Chuangdao

    2015-09-01

    The photosynthetic characteristics of developing leaves of plants grown under artificial conditions are, to some extent, regulated systemically by mature leaves; however, whether systemic regulation of photosynthesis occurs in field-grown crops is unclear. To explore this question, we investigated the effects of planting density on growth characteristics, gas exchange, leaf nitrogen concentration and chlorophyll a fluorescence in field-grown sorghum (Sorghum bicolor L.). Our results showed that close planting resulted in a marked decline in light intensity in lower canopy. Sorghum plants grown at a high planting density had lower net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E) than plants grown at a low planting density. Moreover, in the absence of mineral deficiency, close planting induced a slight increase in leaf nitrogen concentration. The decreased photosynthesis in leaves of the lower canopy at high planting density was caused mainly by the low light. However, newly developed leaves exposed to high light in the upper canopy of plants grown at high planting density also exhibited a distinct decline in photosynthesis relative to plants grown at low planting density. Based on these results, the photosynthetic function of the newly developed leaves in the upper canopy was not determined fully by their own high light environment. Accordingly, we suggest that the photosynthetic function of newly developed leaves in the upper canopy of field-grown sorghum plants is regulated systemically by the lower canopy leaves. The differences in systemic regulation of photosynthesis were also discussed between field conditions and artificial conditions.

  8. 78 FR 28120 - Tomatoes Grown in Florida; Decreased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Agricultural Marketing Service 7 CFR Part 966 Tomatoes Grown in Florida; Decreased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Affirmation of interim rule as final rule. SUMMARY: The... locally administers the marketing order which regulates the handling of tomatoes grown in Florida....

  9. Electron localization in self-assembled Si quantum dots grown on Ge(111)

    NASA Astrophysics Data System (ADS)

    Stepina, N. P.; Zinovieva, A. F.; Zinovyev, V. A.; Deryabin, A. S.; Kulik, L. V.; Dvurechenskii, A. V.

    2015-12-01

    Electron localization in a Si/Ge heterosystem with Si quantum dots (QDs) was studied by transport and electron spin resonance (ESR) measurements. For Si QD structures grown on Ge(111) substrates, the ESR signal with a g-factor g=2.0022+/- 0.0001 and ESR line width {{Δ }}H≈ 1.2 Oe was observed and attributed to the electrons localized in QDs. The g-factor value was explained taking into account the energy band modification due to both strain and quantum confinement. The transport behavior confirms the efficient electron localization in QDs for a Si/Ge(111) system. A strong Ge-Si intermixing in QD structures grown on Ge(001) is assumed to be the main reason for an unobserved ESR signal from the QDs.

  10. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  11. An integrated method for quantifying root architecture of field-grown maize

    PubMed Central

    Wu, Jie; Guo, Yan

    2014-01-01

    Background and Aims A number of techniques have recently been developed for studying the root system architecture (RSA) of seedlings grown in various media. In contrast, methods for sampling and analysis of the RSA of field-grown plants, particularly for details of the lateral root components, are generally inadequate. Methods An integrated methodology was developed that includes a custom-made root-core sampling system for extracting intact root systems of individual maize plants, a combination of proprietary software and a novel program used for collecting individual RSA information, and software for visualizing the measured individual nodal root architecture. Key Results Example experiments show that large root cores can be sampled, and topological and geometrical structure of field-grown maize root systems can be quantified and reconstructed using this method. Second- and higher order laterals are found to contribute substantially to total root number and length. The length of laterals of distinct orders varies significantly. Abundant higher order laterals can arise from a single first-order lateral, and they concentrate in the proximal axile branching zone. Conclusions The new method allows more meaningful sampling than conventional methods because of its easily opened, wide corer and sampling machinery, and effective analysis of RSA using the software. This provides a novel technique for quantifying RSA of field-grown maize and also provides a unique evaluation of the contribution of lateral roots. The method also offers valuable potential for parameterization of root architectural models. PMID:24532646

  12. Carboxylate metabolism in sugar beet plants grown with excess Zn.

    PubMed

    Sagardoy, R; Morales, F; Rellán-Álvarez, R; Abadía, A; Abadía, J; López-Millán, A F

    2011-05-01

    The effects of Zn excess on carboxylate metabolism were investigated in sugar beet (Beta vulgaris L.) plants grown hydroponically in a growth chamber. Root extracts of plants grown with 50 or 100μM Zn in the nutrient solution showed increases in several enzymatic activities related to organic acid metabolism, including citrate synthase and phosphoenolpyruvate carboxylase, when compared to activities in control root extracts. Root citric and malic acid concentrations increased in plants grown with 100μM Zn, but not in plants grown with 50μM Zn. In the xylem sap, plants grown with 50 and 100μM Zn showed increases in the concentrations of citrate and malate compared to the controls. Leaves of plants grown with 50 or 100μM Zn showed increases in the concentrations of citric and malic acid and in the activities of citrate synthase and fumarase. Leaf isocitrate dehydrogenase increased only in plants grown with 50μM Zn when compared to the controls. In plants grown with 300μM Zn, the only enzyme showing activity increases in root extracts was citrate synthase, whereas the activities of other enzymes decreased compared to the controls, and root citrate concentrations increased. In the 300μM Zn-grown plants, the xylem concentrations of citric and malic acids were higher than those of controls, whereas in leaf extracts the activity of fumarase increased markedly, and the leaf citric acid concentration was higher than in the controls. Based on our data, a metabolic model of the carboxylate metabolism in sugar beet plants grown under Zn excess is proposed.

  13. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films

    NASA Astrophysics Data System (ADS)

    Jing, Yang; De-Gang, Zhao; De-Sheng, Jiang; Ping, Chen; Zong-Shun, Liu; Jian-Jun, Zhu; Ling-Cong, Le; Xiao-Jing, Li; Xiao-Guang, He; Li-Qun, Zhang; Hui, Yang

    2016-02-01

    Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition (MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film. These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately, leading to the different variation behaviors of resistivity for HT- and LT-grown ones. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Natural Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  14. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  15. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    SciTech Connect

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-28

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  16. MOCVD grown hexagonal BN epilayers for DUV photonics

    NASA Astrophysics Data System (ADS)

    Majety, Sashikanth; Li, Jing; Lin, Jingyu; Jiang, Hongxing

    2013-03-01

    Hexagonal boron nitride (hBN) has attracted a lot of interest recently owing to its excellent physical properties and its potential use as a template in graphene electronics. We report on the successful growth of hBN epilayers using metal organic chemical vapor deposition (MOCVD) on sapphire and n-AlGaN substrates. P-type conductivity control was also achieved by in-situ Mg doping. This provides us with an opportunity to solve the problem of low quantum efficiency of DUV devices using Al-rich AlGaN alloys due to their extremely low p-type conductivity. Mg doped hBN epilayers grown on insulating templates were p-type with an in-plane resistivity of 2.3 Ω cm. Diode behavior in the p-n structures of p-hBN/n-Al0.62Ga0.38N has been demonstrated. Our results indicate that hBN epilayers have potential for DUV optoelectronic devices and also demonstrate the feasibility of using highly conductive p-type hBN as electron blocking and p-contact layers for AlGaN based deep UV emitters. This work is supported by DOE.

  17. Nutritional Characteristics of Forage Grown in South of Benin

    PubMed Central

    Musco, Nadia; Koura, Ivan B.; Tudisco, Raffaella; Awadjihè, Ghislain; Adjolohoun, Sebastien; Cutrignelli, Monica I.; Mollica, Maria Pina; Houinato, Marcel; Infascelli, Federico; Calabrò, Serena

    2016-01-01

    In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content) and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability). The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM]) and crude protein level (16.10% vs 19.91% DM) and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM), respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins). Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries. PMID:26732328

  18. Nutritional Characteristics of Forage Grown in South of Benin.

    PubMed

    Musco, Nadia; Koura, Ivan B; Tudisco, Raffaella; Awadjihè, Ghislain; Adjolohoun, Sebastien; Cutrignelli, Monica I; Mollica, Maria Pina; Houinato, Marcel; Infascelli, Federico; Calabrò, Serena

    2016-01-01

    In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content) and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability). The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM]) and crude protein level (16.10% vs 19.91% DM) and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM), respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins). Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries. PMID:26732328

  19. Sun Oven Grown Cuprates Superconductivity and Periodic Lattice Distortions PLD

    NASA Astrophysics Data System (ADS)

    Acrivos, Juana V.; Chidvinadze, J. G.; Gulanova, D. D.; Loy, D.

    2011-03-01

    Bi 1.7 Pb 0.3 Sr 2 Ca n-1 Cu n O4 + 2 n + δ identified by the layer heavy element composition with substitution, s (2 s :2:n-1:n > 2) cuprates grown by green chemistry, transition temperatures to superconductivity Tc = 87 to 150K are related to their structure. Enhanced XRD at energies near but below the Cu K, and Pb and Bi L3-edges for pure n=2, 3 phases show Darwin shaped preferred [HKL] reflections that identify the magnitude of the allowed transition moment from the core state to extended unoccupied states determined by the electron density symmetry in that plane, confirmed by XAS of 3 μ m thick films. Weak PLD are still detected, but the stability gained by substitution of Bi by Pb is the formation of nearly symmetric Pb8 cubes in (2s : 2 : 1 : 2)13 and (2s < formula > < ? TeX super-lattices. The preferred 2D [HKL] reflection planes play the same role in the chemical activity of 3D solids as the linear bonds do in molecular reactions, governed by scattering dependent on the electron density symmetry in their highest and lowest unoccupied states. Supported by US NSF, Dreyfus, DOE Laboratories SSRL-SLAC, STUC-Ukraine and Georgia NSF.

  20. Epitaxially-Grown GaN Junction Field Effect Transistors

    SciTech Connect

    Baca, A.G.; Chang, P.C.; Denbaars, S.P.; Lester, L.F.; Mishra, U.K.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-05-19

    Junction field effect transistors (JFET) are fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition (MOCVD). The DC and microwave characteristics of the device are presented. A junction breakdown voltage of 56 V is obtained corresponding to the theoretical limit of the breakdown field in GaN for the doping levels used. A maximum extrinsic transconductance (gm) of 48 mS/mm and a maximum source-drain current of 270 mA/mm are achieved on a 0.8 µ m gate JFET device at VGS= 1 V and VDS=15 V. The intrinsic transconductance, calculated from the measured gm and the source series resistance, is 81 mS/mm. The fT and fmax for these devices are 6 GHz and 12 GHz, respectively. These JFETs exhibit a significant current reduction after a high drain bias is applied, which is attributed to a partially depleted channel caused by trapped hot-electrons in the semi-insulating GaN buffer layer. A theoretical model describing the current collapse is described, and an estimate for the length of the trapped electron region is given.

  1. Tensile stress and creep in thermally grown oxide.

    PubMed

    Veal, Boyd W; Paulikas, Arvydas P; Hou, Peggy Y

    2006-05-01

    Structural components that operate at high temperatures (for example, turbine blades) rely on thermally grown oxide (TGO), commonly alumina, for corrosion protection. Strains that develop in TGOs during operation can reduce the protectiveness of the TGO. However, the occurrence of growth strains in TGOs, and mechanisms that cause them, are poorly understood. It is accepted that compressive strains can develop as oxygen and metal atoms meet to form new growth within constrained oxide. More controversial is the experimental finding that large tensile stresses, close to 1 GPa, develop during isothermal growth conditions in alumina TGO formed on a FeCrAlY alloy. Using a novel technique based on synchrotron radiation, we have confirmed these previous results, and show that the tensile strain develops as the early oxide, (Fe,Cr,Al)(2)O(3), converts to alpha-Al2O3 during the growth process. This allows us to model the strain behaviour by including creep and this diffusion-controlled phase change. PMID:16604078

  2. Carbon Nanotubes Grown By CVD in Various Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C.; Cochrane, J. C.; Lehoczky. S. L.; Muntele, I.; Ila, D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT) could be used in numerous devices such as electronics and sensors, many efforts have been engaged in synthesizing particular structural or dimensional MWCNT. This presentation will illustrate MWCNT synthesized on silicon substrates by thermal CVD. On the substrate, an array of catalysts is coated using sputtering deposition. A thin Ti buffer layer is also coated on some Si substrates prior to depositing catalyst particles. Nickel, cobalt or iron transition metals are used as catalysts for the MWCNT growth. Since the diameter of MWCNT depends on the size of catalyst particles, the catalyst particle size is investigated after annealed at various temperatures. MWCNT are grown on the substrate in the temperature range of 700 to 1000 C and the pressure range of 100 torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the MWCNT synthesis. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  3. Auxin Transport Is Required for Hypocotyl Elongation in Light-Grown but Not Dark-Grown Arabidopsis1

    PubMed Central

    Jensen, Philip J.; Hangarter, Roger P.; Estelle, Mark

    1998-01-01

    Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 μm NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 μmol m−2 s−1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings. PMID:9489005

  4. Investigation of Annealing Atmospheres on Physical Properties of Cigs Films Grown by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Adel, Chihi; Fethi, Boujmil Mohamed; Brahim, Bessais

    2016-02-01

    This study investigated the effect of different annealing conditions (influence of the annealing temperature and atmosphere) on structural, microstructure, optical and electrical properties of electrodeposited CuIn1-xGaxSe2 (CIGS) thin films. X-ray diffraction analysis exhibited all the samples have grown preferentially in the [112] crystal orientation with the chalcopyrite structure and without unwanted secondary CIGS phases. With the increase of annealing temperature, energy band gap of the CIGS film decrease from 1.32 to 1.12eV. The electrical properties of the films distinctly upgraded after annealing in nitrogen+ Se vapor, and worsened when annealed in vacuum.

  5. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    PubMed

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures. PMID:23912253

  6. Nanowire LEDs grown directly on flexible metal foil

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Sarwar, A. T. M. Golam; Myers, Roberto C.

    2016-04-01

    Using molecular beam epitaxy, self-assembled AlGaN nanowires are grown directly on Ta and Ti foils. Scanning electron microscopy shows that the nanowires are locally textured with the underlying metallic grains. Photoluminescence spectra of GaN nanowires grown on metal foils are comparable to GaN nanowires grown on single crystal Si wafers. Similarly, photoluminescence lifetimes do not vary significantly between these samples. Operational AlGaN light emitting diodes are grown directly on flexible Ta foil with an electroluminescence peak emission of ˜350 nm and a turn-on voltage of ˜5 V. These results pave the way for roll-to-roll manufacturing of solid state optoelectronics.

  7. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  8. At last, a medical website designed for grown-ups

    MedlinePlus

    ... At last, a medical website designed for grown-ups Past Issues / Winter 2007 Table of Contents For ... U.S. Department of Health and Human Services. For up-to-date health information tailor-made just for ...

  9. Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Ali Abbasi, Mazhar; Hussain, Mushtaque; Hussain Ibupoto, Zafar; Wissting, Jonas; Nur, Omer; Willander, Magnus

    2012-11-01

    This investigation explores piezoelectricity generation from ZnO nanorods, which were grown on silver coated textile cotton fabrics using the low temperature aqueous chemical growth method. The morphology and crystal structure studies were carried out by x-ray diffraction, scanning electron microscopic and high resolution transmission electron microscopic techniques, respectively. ZnO nanorods were highly dense, well aligned, uniform in spatial distribution and exhibited good crystal quality. The generation of piezoelectricity from fabricated ZnO nanorods grown on textile cotton fabrics was measured using contact mode atomic force microscopy. The average output voltage generated from ZnO nanorods was measured to be around 9.5 mV. This investigation is an important achievement regarding the piezoelectricity generation on textile cotton fabric substrate. The fabrication of this device provides an alternative approach for a flexible substrate to develop devices for energy harvesting and optoelectronic technology on textiles.

  10. Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition

    PubMed Central

    2013-01-01

    Photoconductivities of monocrystalline vanadium pentoxide (V2O5) nanowires (NWs) with layered orthorhombic structure grown by physical vapor deposition (PVD) have been investigated from the points of view of device and material. Optimal responsivity and gain for single-NW photodetector are at 7,900 A W-1 and 30,000, respectively. Intrinsic photoconduction (PC) efficiency (i.e., normalized gain) of the PVD-grown V2O5 NWs is two orders of magnitude higher than that of the V2O5 counterpart prepared by hydrothermal approach. In addition, bulk and surface-controlled PC mechanisms have been observed respectively by above- and below-bandgap excitations. The coexistence of hole trapping and oxygen sensitization effects in this layered V2O5 nanostructure is proposed, which is different from conventional metal oxide systems, such as ZnO, SnO2, TiO2, and WO3. PMID:24160337

  11. Changes in Escherichia coli cells starved in seawater or grown in seawater-wastewater mixtures.

    PubMed Central

    Munro, P M; Gauthier, M J; Laumond, F M

    1987-01-01

    Some metabolic modifications of Escherichia coli cells during starvation in seawater were studied in laboratory microcosms. The apparent die-off of this bacterium under such conditions, as observed by comparing the enumeration of CFU in conventional freshwater media and direct epifluorescence counts, was partially prevented when cells were previously grown in salted organic medium or on seawater-wastewater agar. beta-Galactosidase activity of starved cells disappeared gradually with time, even though some other enzymatic activities, such as that of alkaline phosphatase, increased. Moreover, some modifications of sensitivity to antibiotics, heavy metals, and bacteriophages in seawater- and wastewater-grown cells suggested that the cells undergo structural changes under natural marine conditions. These results provide additional experimental data indicating the possible active adaptation of E. coli cells to seawater. PMID:3116927

  12. Conformable coating of SiO2 on hydrothermally grown ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Chu, B. H.; Leu, L. C.; Chang, C. Y.; Lugo, F.; Norton, D.; Lele, T.; Keselowsky, B.; Pearton, S. J.; Ren, F.

    2008-12-01

    Coating silicon dioxide on hydrothermally grown ZnO nanorods is demonstrated using a low temperature plasma enhanced chemical vapor deposition (PECVD) system. Wurtzite structured ZnO nanorods were prepared by spin coating ZnO nanocrystals onto plastics or glass substrates. Then, the nanorods were subsequently grown in a zinc nitrate solution. SiO2 was deposited by PECVD at 50 °C. No current could be measured through the patterned metal dots on the SiO2 coated sample, which indicates that SiO2 was covered seamlessly across the entire substrate. Photoluminescence measurements indicated that the SiO2 layer covering the nanorods did not alter the optical properties of the ZnO.

  13. Electron microscopy of an aluminum layer grown on the vicinal surface of a gallium arsenide substrate

    SciTech Connect

    Lovygin, M. V. Borgardt, N. I.; Kazakov, I. P.; Seibt, M.

    2015-03-15

    A thin Al layer grown by molecular-beam epitaxy on a misoriented GaAs (100) substrate is studied by transmission electron microscopy. Electron diffraction data and bright-field, dark-field, and high-resolution images show that, in the layer, there are Al grains of three types of crystallographic orientation: Al (100), Al (110), and Al (110)R. The specific structural features of the interfaces between the differently oriented grains and substrate are studied by digital processing of the high-resolution images. From quantitative analysis of the dark-field images, the relative content and sizes of the differently oriented grains are determined. It is found that atomic steps at the substrate surface cause an increase in the fraction and sizes of Al (110)R grains and a decrease in the fraction of Al (100) grains, compared to the corresponding fractions and sizes in the layer grown on a singular substrate surface.

  14. Inverted fractal analysis of TiOx thin layers grown by inverse pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Égerházi, L.; Smausz, T.; Bari, F.

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed fD = 1.83 ± 0.01 for TiOx layers grown at 5-50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of fD not only confirms the fractal structure of TiOx IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  15. X-ray characterization of bulk AIN single crystals grown by the sublimation technique

    NASA Astrophysics Data System (ADS)

    Raghothamachar, B.; Dudley, M.; Rojo, J. C.; Morgan, K.; Schowalter, L. J.

    2003-03-01

    Bulk AlN single crystal boules have been grown using the sublimation technique and several substrates have been prepared from them. Microstructural characterization of these substrates has been performed using synchrotron white beam X-ray topography (SWBXT) and high-resolution triple axis X-ray diffraction. Our study has revealed that AlN single crystal boules grown by the sublimation technique can possess a high structural quality with dislocation densities of 800-1000/cm 2 and rocking curves with a full-width at half-maximum of less than 10 arcsec. The distribution of dislocations is inhomogeneous with large areas of the wafer free from dislocations. Inclusions are also observed (density of the order of 10 5/cm 3) and their distribution is also inhomogeneous.

  16. Optical properties of microstructured surface-grown and transferred organic nanofibers

    NASA Astrophysics Data System (ADS)

    Kjelstrup-Hansen, Jakob; Tavares, Luciana; de Oliveira Hansen, Roana Melina; Liu, Xuhai; Bordo, Kirill; Rubahn, Horst-Günter

    2011-01-01

    Specially designed surface micro- and nanostructures allow one to steer the bottom up self-organized growth of crystalline nanoaggregates from wide bandgap organic molecules, which possess extraordinary optoelectronic properties. Polarized light-emitting para-hexaphenylene nanofiber arrays exemplify such ``self-growing'' nanophotonic devices. The methodology behind this growth is an alternative to transfer of nanofiber arrays from specific growth substrates onto device platforms. We compared the optical properties of transferred and in situ grown nanofibers in terms of polarization function and emission homogeneity and also studied the temperature dependence of the emission spectra of transferred nanofiber arrays. Both types of nanofibers show the same spatial emission characteristics along their long axes and also the same polarization ratio. However, in nanofiber arrays, the polarization ratio decreases in the case of structured surface-grown nanofibers since the mutual orientation of the nanofibers is less perfect than for transferred fibers.

  17. The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Xuhui; Li, Ke; Wu, Raymond; Wilhite, Patrick; Saito, Tsutomu; Gao, Jing; Yang, Cary Y.

    2010-01-01

    The growth behaviors and contact resistances of vertically aligned carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown on different underlayer metals are investigated. The average diameter, diameter distribution, density, growth rate and contact resistance exhibit strong correlation with the choice of catalyst/underlayer combination. These observations are analyzed in terms of interactions between the catalyst and the underlayer metal. The CNT via test structure has been designed and fabricated to make current-voltage measurements on single CNTs using a nanomanipulator under scanning electron microscopy (SEM) imaging. By analyzing the dependence of measured resistance on CNT diameter, the CNT-metal contact resistance can be extracted. The contact resistances between as-grown CNTs and different underlayer metals are determined. Relationships between contact resistances and various combinations of catalysts and underlayer metals are investigated.

  18. The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures.

    PubMed

    Sun, Xuhui; Li, Ke; Wu, Raymond; Wilhite, Patrick; Saito, Tsutomu; Gao, Jing; Yang, Cary Y

    2010-01-29

    The growth behaviors and contact resistances of vertically aligned carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown on different underlayer metals are investigated. The average diameter, diameter distribution, density, growth rate and contact resistance exhibit strong correlation with the choice of catalyst/underlayer combination. These observations are analyzed in terms of interactions between the catalyst and the underlayer metal. The CNT via test structure has been designed and fabricated to make current-voltage measurements on single CNTs using a nanomanipulator under scanning electron microscopy (SEM) imaging. By analyzing the dependence of measured resistance on CNT diameter, the CNT-metal contact resistance can be extracted. The contact resistances between as-grown CNTs and different underlayer metals are determined. Relationships between contact resistances and various combinations of catalysts and underlayer metals are investigated. PMID:20009172

  19. Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals.

    PubMed

    Liu, Yujing; Yuan, Wentao; Shi, Ye; Chen, Xiaoqiang; Wang, Yong; Chen, Hongzheng; Li, Hanying

    2014-04-14

    Synthetic single crystals are usually homogeneous solids. Biogenic single crystals, however, can incorporate biomacromolecules and become inhomogeneous solids so that their properties are also extrinsically regulated by the incorporated materials. The discrepancy between the properties of synthetic and biogenic single crystals leads to the idea to modify the internal structure of synthetic crystals to achieve nonintrinsic properties by incorporation of foreign material. Intrinsically colorless and diamagnetic calcite single crystals are turned into colored and paramagnetic solids, through incorporation of Au and Fe3O4 nanoparticles without significantly disrupting the crystalline lattice of calcite. The crystals incorporate the nanoparticles and gel fibers when grown in agarose gel media containing the nanoparticles, whereas the solution-grown crystals do not. As such, our work extends the long-history gel method for crystallization into a platform to functionalize single-crystalline materials.

  20. Low temperature magnetoresistance studies in MBE grown topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Guchhait, Samaresh; Sonde, Sushant; Rai, Amritesh; Majumder, Sarmita; Ghosh, Bahniman; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We studied low temperature magnetoresistance in molecular beam epitaxy grown topological insulator Bi2Se3andBi2Te3 thin films. The surface and structural characterization of the grown films showed smooth epitaxial growth on Si(111). The magnetoresistance has been measured at low temperatures (2 - 20 K) with magnetic fields upto 9 T. The full range perpendicular field magnetoresistance has been explained with the original Hikami-Larkin-Nagaoka theory. Altshuler-Aronov theory of localization has been used to understand the full range parallel field magnetoresistance. Various scattering times have been estimated by fitting the magnetoresistance data with the theory. It is shown that the Zeeman effect is not needed to explain the magnetoresistance and has not been considered in the theory either. The angle dependent anisotropic magnetoresistance has also been observed and explained using the above theories. This work is funded by NRI-SWAN.