Multi-objective optimisation and decision-making of space station logistics strategies
NASA Astrophysics Data System (ADS)
Zhu, Yue-he; Luo, Ya-zhong
2016-10-01
Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.
NASA Astrophysics Data System (ADS)
Jia, Zhao-hong; Pei, Ming-li; Leung, Joseph Y.-T.
2017-12-01
In this paper, we investigate the batch-scheduling problem with rejection on parallel machines with non-identical job sizes and arbitrary job-rejected weights. If a job is rejected, the corresponding penalty has to be paid. Our objective is to minimise the makespan of the processed jobs and the total rejection cost of the rejected jobs. Based on the selected multi-objective optimisation approaches, two problems, P1 and P2, are considered. In P1, the two objectives are linearly combined into one single objective. In P2, the two objectives are simultaneously minimised and the Pareto non-dominated solution set is to be found. Based on the ant colony optimisation (ACO), two algorithms, called LACO and PACO, are proposed to address the two problems, respectively. Two different objective-oriented pheromone matrices and heuristic information are designed. Additionally, a local optimisation algorithm is adopted to improve the solution quality. Finally, simulated experiments are conducted, and the comparative results verify the effectiveness and efficiency of the proposed algorithms, especially on large-scale instances.
Optimisation of lateral car dynamics taking into account parameter uncertainties
NASA Astrophysics Data System (ADS)
Busch, Jochen; Bestle, Dieter
2014-02-01
Simulation studies on an active all-wheel-steering car show that disturbance of vehicle parameters have high influence on lateral car dynamics. This motivates the need of robust design against such parameter uncertainties. A specific parametrisation is established combining deterministic, velocity-dependent steering control parameters with partly uncertain, velocity-independent vehicle parameters for simultaneous use in a numerical optimisation process. Model-based objectives are formulated and summarised in a multi-objective optimisation problem where especially the lateral steady-state behaviour is improved by an adaption strategy based on measurable uncertainties. The normally distributed uncertainties are generated by optimal Latin hypercube sampling and a response surface based strategy helps to cut down time consuming model evaluations which offers the possibility to use a genetic optimisation algorithm. Optimisation results are discussed in different criterion spaces and the achieved improvements confirm the validity of the proposed procedure.
Ceberio, Josu; Calvo, Borja; Mendiburu, Alexander; Lozano, Jose A
2018-02-15
In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multi-objective algorithms in their optimisation. In this article, we follow up this idea by presenting a methodology for multi-objectivising combinatorial optimisation problems based on elementary landscape decompositions of their objective function. Under this framework, each of the elementary landscapes obtained from the decomposition is considered as an independent objective function to optimise. In order to illustrate this general methodology, we consider four problems from different domains: the quadratic assignment problem and the linear ordering problem (permutation domain), the 0-1 unconstrained quadratic optimisation problem (binary domain), and the frequency assignment problem (integer domain). We implemented two widely known multi-objective algorithms, NSGA-II and SPEA2, and compared their performance with that of a single-objective GA. The experiments conducted on a large benchmark of instances of the four problems show that the multi-objective algorithms clearly outperform the single-objective approaches. Furthermore, a discussion on the results suggests that the multi-objective space generated by this decomposition enhances the exploration ability, thus permitting NSGA-II and SPEA2 to obtain better results in the majority of the tested instances.
A New Computational Technique for the Generation of Optimised Aircraft Trajectories
NASA Astrophysics Data System (ADS)
Chircop, Kenneth; Gardi, Alessandro; Zammit-Mangion, David; Sabatini, Roberto
2017-12-01
A new computational technique based on Pseudospectral Discretisation (PSD) and adaptive bisection ɛ-constraint methods is proposed to solve multi-objective aircraft trajectory optimisation problems formulated as nonlinear optimal control problems. This technique is applicable to a variety of next-generation avionics and Air Traffic Management (ATM) Decision Support Systems (DSS) for strategic and tactical replanning operations. These include the future Flight Management Systems (FMS) and the 4-Dimensional Trajectory (4DT) planning and intent negotiation/validation tools envisaged by SESAR and NextGen for a global implementation. In particular, after describing the PSD method, the adaptive bisection ɛ-constraint method is presented to allow an efficient solution of problems in which two or multiple performance indices are to be minimized simultaneously. Initial simulation case studies were performed adopting suitable aircraft dynamics models and addressing a classical vertical trajectory optimisation problem with two objectives simultaneously. Subsequently, a more advanced 4DT simulation case study is presented with a focus on representative ATM optimisation objectives in the Terminal Manoeuvring Area (TMA). The simulation results are analysed in-depth and corroborated by flight performance analysis, supporting the validity of the proposed computational techniques.
NASA Astrophysics Data System (ADS)
Grundmann, J.; Schütze, N.; Heck, V.
2014-09-01
Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.
NASA Astrophysics Data System (ADS)
Luo, Bin; Lin, Lin; Zhong, ShiSheng
2018-02-01
In this research, we propose a preference-guided optimisation algorithm for multi-criteria decision-making (MCDM) problems with interval-valued fuzzy preferences. The interval-valued fuzzy preferences are decomposed into a series of precise and evenly distributed preference-vectors (reference directions) regarding the objectives to be optimised on the basis of uniform design strategy firstly. Then the preference information is further incorporated into the preference-vectors based on the boundary intersection approach, meanwhile, the MCDM problem with interval-valued fuzzy preferences is reformulated into a series of single-objective optimisation sub-problems (each sub-problem corresponds to a decomposed preference-vector). Finally, a preference-guided optimisation algorithm based on MOEA/D (multi-objective evolutionary algorithm based on decomposition) is proposed to solve the sub-problems in a single run. The proposed algorithm incorporates the preference-vectors within the optimisation process for guiding the search procedure towards a more promising subset of the efficient solutions matching the interval-valued fuzzy preferences. In particular, lots of test instances and an engineering application are employed to validate the performance of the proposed algorithm, and the results demonstrate the effectiveness and feasibility of the algorithm.
Multi-objective optimization of radiotherapy: distributed Q-learning and agent-based simulation
NASA Astrophysics Data System (ADS)
Jalalimanesh, Ammar; Haghighi, Hamidreza Shahabi; Ahmadi, Abbas; Hejazian, Hossein; Soltani, Madjid
2017-09-01
Radiotherapy (RT) is among the regular techniques for the treatment of cancerous tumours. Many of cancer patients are treated by this manner. Treatment planning is the most important phase in RT and it plays a key role in therapy quality achievement. As the goal of RT is to irradiate the tumour with adequately high levels of radiation while sparing neighbouring healthy tissues as much as possible, it is a multi-objective problem naturally. In this study, we propose an agent-based model of vascular tumour growth and also effects of RT. Next, we use multi-objective distributed Q-learning algorithm to find Pareto-optimal solutions for calculating RT dynamic dose. We consider multiple objectives and each group of optimizer agents attempt to optimise one of them, iteratively. At the end of each iteration, agents compromise the solutions to shape the Pareto-front of multi-objective problem. We propose a new approach by defining three schemes of treatment planning created based on different combinations of our objectives namely invasive, conservative and moderate. In invasive scheme, we enforce killing cancer cells and pay less attention about irradiation effects on normal cells. In conservative scheme, we take more care of normal cells and try to destroy cancer cells in a less stressed manner. The moderate scheme stands in between. For implementation, each of these schemes is handled by one agent in MDQ-learning algorithm and the Pareto optimal solutions are discovered by the collaboration of agents. By applying this methodology, we could reach Pareto treatment plans through building different scenarios of tumour growth and RT. The proposed multi-objective optimisation algorithm generates robust solutions and finds the best treatment plan for different conditions.
Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.
Trianni, Vito; López-Ibáñez, Manuel
2015-01-01
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
NASA Astrophysics Data System (ADS)
van Haveren, Rens; Ogryczak, Włodzimierz; Verduijn, Gerda M.; Keijzer, Marleen; Heijmen, Ben J. M.; Breedveld, Sebastiaan
2017-06-01
Previously, we have proposed Erasmus-iCycle, an algorithm for fully automated IMRT plan generation based on prioritised (lexicographic) multi-objective optimisation with the 2-phase ɛ-constraint (2pɛc) method. For each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto optimal plan. The 2pɛc method uses a list of objective functions that are consecutively optimised, following a strict, user-defined prioritisation. The novel lexicographic reference point method (LRPM) is capable of solving multi-objective problems in a single optimisation, using a fuzzy prioritisation of the objectives. Trade-offs are made globally, aiming for large favourable gains for lower prioritised objectives at the cost of only slight degradations for higher prioritised objectives, or vice versa. In this study, the LRPM is validated for 15 head and neck cancer patients receiving bilateral neck irradiation. The generated plans using the LRPM are compared with the plans resulting from the 2pɛc method. Both methods were capable of automatically generating clinically relevant treatment plans for all patients. For some patients, the LRPM allowed large favourable gains in some treatment plan objectives at the cost of only small degradations for the others. Moreover, because of the applied single optimisation instead of multiple optimisations, the LRPM reduced the average computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 2pɛc method.
Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST
NASA Astrophysics Data System (ADS)
Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2018-04-01
We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.
Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics
Trianni, Vito; López-Ibáñez, Manuel
2015-01-01
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. PMID:26295151
The use of surrogates for an optimal management of coupled groundwater-agriculture hydrosystems
NASA Astrophysics Data System (ADS)
Grundmann, J.; Schütze, N.; Brettschneider, M.; Schmitz, G. H.; Lennartz, F.
2012-04-01
For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system regarding water quality and water quantity we develop appropriate surrogate models by combining physically based process modelling with methods of artificial intelligence. Thereby we use an artificial neural network for modelling the aquifer response, inclusive the seawater interface, which was trained on a scenario database generated by a numerical density depended groundwater flow model. For simulating the behaviour of high productive agricultural farms crop water production functions are generated by means of soil-vegetation-atmosphere-transport (SVAT)-models, adapted to the regional climate conditions, and a novel evolutionary optimisation algorithm for optimal irrigation scheduling and control. We apply both surrogates exemplarily within a simulation based optimisation environment using the characteristics of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into the coastal aquifer due to excessive groundwater withdrawal for irrigated agriculture. We demonstrate the effectiveness of our methodology for the evaluation and optimisation of different irrigation practices, cropping pattern and resulting abstraction scenarios. Due to contradicting objectives like profit-oriented agriculture vs. aquifer sustainability a multi-criterial optimisation is performed.
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
SLA-based optimisation of virtualised resource for multi-tier web applications in cloud data centres
NASA Astrophysics Data System (ADS)
Bi, Jing; Yuan, Haitao; Tie, Ming; Tan, Wei
2015-10-01
Dynamic virtualised resource allocation is the key to quality of service assurance for multi-tier web application services in cloud data centre. In this paper, we develop a self-management architecture of cloud data centres with virtualisation mechanism for multi-tier web application services. Based on this architecture, we establish a flexible hybrid queueing model to determine the amount of virtual machines for each tier of virtualised application service environments. Besides, we propose a non-linear constrained optimisation problem with restrictions defined in service level agreement. Furthermore, we develop a heuristic mixed optimisation algorithm to maximise the profit of cloud infrastructure providers, and to meet performance requirements from different clients as well. Finally, we compare the effectiveness of our dynamic allocation strategy with two other allocation strategies. The simulation results show that the proposed resource allocation method is efficient in improving the overall performance and reducing the resource energy cost.
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
NASA Astrophysics Data System (ADS)
Kaliszewski, M.; Mazuro, P.
2016-09-01
Simulated Annealing Method of optimisation for the sealing piston ring geometry is tested. The aim of optimisation is to develop ring geometry which would exert demanded pressure on a cylinder just while being bended to fit the cylinder. Method of FEM analysis of an arbitrary piston ring geometry is applied in an ANSYS software. The demanded pressure function (basing on formulae presented by A. Iskra) as well as objective function are introduced. Geometry definition constructed by polynomials in radial coordinate system is delivered and discussed. Possible application of Simulated Annealing Method in a piston ring optimisation task is proposed and visualised. Difficulties leading to possible lack of convergence of optimisation are presented. An example of an unsuccessful optimisation performed in APDL is discussed. Possible line of further optimisation improvement is proposed.
NASA Astrophysics Data System (ADS)
Vasquez Padilla, Ricardo; Soo Too, Yen Chean; Benito, Regano; McNaughton, Robbie; Stein, Wes
2018-01-01
In this paper, optimisation of the supercritical CO? Brayton cycles integrated with a solar receiver, which provides heat input to the cycle, was performed. Four S-CO? Brayton cycle configurations were analysed and optimum operating conditions were obtained by using a multi-objective thermodynamic optimisation. Four different sets, each including two objective parameters, were considered individually. The individual multi-objective optimisation was performed by using Non-dominated Sorting Genetic Algorithm. The effect of reheating, solar receiver pressure drop and cycle parameters on the overall exergy and cycle thermal efficiency was analysed. The results showed that, for all configurations, the overall exergy efficiency of the solarised systems achieved at maximum value between 700°C and 750°C and the optimum value is adversely affected by the solar receiver pressure drop. In addition, the optimum cycle high pressure was in the range of 24.2-25.9 MPa, depending on the configurations and reheat condition.
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
CAMELOT: Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox
NASA Astrophysics Data System (ADS)
Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano
2018-03-01
Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox (CAMELOT) is a toolbox for the fast preliminary design and optimisation of low-thrust trajectories. It solves highly complex combinatorial problems to plan multi-target missions characterised by long spirals including different perturbations. To do so, CAMELOT implements a novel multi-fidelity approach combining analytical surrogate modelling and accurate computational estimations of the mission cost. Decisions are then made using two optimisation engines included in the toolbox, a single-objective global optimiser, and a combinatorial optimisation algorithm. CAMELOT has been applied to a variety of case studies: from the design of interplanetary trajectories to the optimal de-orbiting of space debris and from the deployment of constellations to on-orbit servicing. In this paper, the main elements of CAMELOT are described and two examples, solved using the toolbox, are presented.
Optimisation study of a vehicle bumper subsystem with fuzzy parameters
NASA Astrophysics Data System (ADS)
Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.
2012-10-01
This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).
NASA Astrophysics Data System (ADS)
Montazeri, A.; West, C.; Monk, S. D.; Taylor, C. J.
2017-04-01
This paper concerns the problem of dynamic modelling and parameter estimation for a seven degree of freedom hydraulic manipulator. The laboratory example is a dual-manipulator mobile robotic platform used for research into nuclear decommissioning. In contrast to earlier control model-orientated research using the same machine, the paper develops a nonlinear, mechanistic simulation model that can subsequently be used to investigate physically meaningful disturbances. The second contribution is to optimise the parameters of the new model, i.e. to determine reliable estimates of the physical parameters of a complex robotic arm which are not known in advance. To address the nonlinear and non-convex nature of the problem, the research relies on the multi-objectivisation of an output error single-performance index. The developed algorithm utilises a multi-objective genetic algorithm (GA) in order to find a proper solution. The performance of the model and the GA is evaluated using both simulated (i.e. with a known set of 'true' parameters) and experimental data. Both simulation and experimental results show that multi-objectivisation has improved convergence of the estimated parameters compared to the single-objective output error problem formulation. This is achieved by integrating the validation phase inside the algorithm implicitly and exploiting the inherent structure of the multi-objective GA for this specific system identification problem.
NASA Astrophysics Data System (ADS)
Ghasemy Yaghin, R.; Fatemi Ghomi, S. M. T.; Torabi, S. A.
2015-10-01
In most markets, price differentiation mechanisms enable manufacturers to offer different prices for their products or services in different customer segments; however, the perfect price discrimination is usually impossible for manufacturers. The importance of accounting for uncertainty in such environments spurs an interest to develop appropriate decision-making tools to deal with uncertain and ill-defined parameters in joint pricing and lot-sizing problems. This paper proposes a hybrid bi-objective credibility-based fuzzy optimisation model including both quantitative and qualitative objectives to cope with these issues. Taking marketing and lot-sizing decisions into account simultaneously, the model aims to maximise the total profit of manufacturer and to improve service aspects of retailing simultaneously to set different prices with arbitrage consideration. After applying appropriate strategies to defuzzify the original model, the resulting non-linear multi-objective crisp model is then solved by a fuzzy goal programming method. An efficient stochastic search procedure using particle swarm optimisation is also proposed to solve the non-linear crisp model.
Distributed optimisation problem with communication delay and external disturbance
NASA Astrophysics Data System (ADS)
Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu
2017-12-01
This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.
Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context
NASA Astrophysics Data System (ADS)
Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian
2016-05-01
The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations. A brief overview of atmospheric and weather modelling is also included. Key equations describing the optimality criteria are presented, with a focus on the latest advancements in the respective application areas. In the sixth section, a number of MOTO implementations in the CNS+A systems context are mentioned with relevant simulation case studies addressing different operational tasks. The final section draws some conclusions and outlines guidelines for future research on MOTO and associated CNS+A system implementations.
Integration of environmental aspects in modelling and optimisation of water supply chains.
Koleva, Mariya N; Calderón, Andrés J; Zhang, Di; Styan, Craig A; Papageorgiou, Lazaros G
2018-04-26
Climate change becomes increasingly more relevant in the context of water systems planning. Tools are necessary to provide the most economic investment option considering the reliability of the infrastructure from technical and environmental perspectives. Accordingly, in this work, an optimisation approach, formulated as a spatially-explicit multi-period Mixed Integer Linear Programming (MILP) model, is proposed for the design of water supply chains at regional and national scales. The optimisation framework encompasses decisions such as installation of new purification plants, capacity expansion, and raw water trading schemes. The objective is to minimise the total cost incurring from capital and operating expenditures. Assessment of available resources for withdrawal is performed based on hydrological balances, governmental rules and sustainable limits. In the light of the increasing importance of reliability of water supply, a second objective, seeking to maximise the reliability of the supply chains, is introduced. The epsilon-constraint method is used as a solution procedure for the multi-objective formulation. Nash bargaining approach is applied to investigate the fair trade-offs between the two objectives and find the Pareto optimality. The models' capability is addressed through a case study based on Australia. The impact of variability in key input parameters is tackled through the implementation of a rigorous global sensitivity analysis (GSA). The findings suggest that variations in water demand can be more disruptive for the water supply chain than scenarios in which rainfalls are reduced. The frameworks can facilitate governmental multi-aspect decision making processes for the adequate and strategic investments of regional water supply infrastructure. Copyright © 2018. Published by Elsevier B.V.
A supportive architecture for CFD-based design optimisation
NASA Astrophysics Data System (ADS)
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture and developed algorithms have performed successfully and efficiently in dealing with the design optimisation with over 200 design variables.
Sweetapple, Christine; Fu, Guangtao; Butler, David
2014-05-15
This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Haworth, Annette; Mears, Christopher; Betts, John M; Reynolds, Hayley M; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A
2016-01-07
Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The 'biological optimisation' considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.
NASA Astrophysics Data System (ADS)
Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.
Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.
2010-05-01
Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.
Multi-Optimisation Consensus Clustering
NASA Astrophysics Data System (ADS)
Li, Jian; Swift, Stephen; Liu, Xiaohui
Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.
Automation of route identification and optimisation based on data-mining and chemical intuition.
Lapkin, A A; Heer, P K; Jacob, P-M; Hutchby, M; Cunningham, W; Bull, S D; Davidson, M G
2017-09-21
Data-mining of Reaxys and network analysis of the combined literature and in-house reactions set were used to generate multiple possible reaction routes to convert a bio-waste feedstock, limonene, into a pharmaceutical API, paracetamol. The network analysis of data provides a rich knowledge-base for generation of the initial reaction screening and development programme. Based on the literature and the in-house data, an overall flowsheet for the conversion of limonene to paracetamol was proposed. Each individual reaction-separation step in the sequence was simulated as a combination of the continuous flow and batch steps. The linear model generation methodology allowed us to identify the reaction steps requiring further chemical optimisation. The generated model can be used for global optimisation and generation of environmental and other performance indicators, such as cost indicators. However, the identified further challenge is to automate model generation to evolve optimal multi-step chemical routes and optimal process configurations.
A target recognition method for maritime surveillance radars based on hybrid ensemble selection
NASA Astrophysics Data System (ADS)
Fan, Xueman; Hu, Shengliang; He, Jingbo
2017-11-01
In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.
A soft computing-based approach to optimise queuing-inventory control problem
NASA Astrophysics Data System (ADS)
Alaghebandha, Mohammad; Hajipour, Vahid
2015-04-01
In this paper, a multi-product continuous review inventory control problem within batch arrival queuing approach (MQr/M/1) is developed to find the optimal quantities of maximum inventory. The objective function is to minimise summation of ordering, holding and shortage costs under warehouse space, service level and expected lost-sales shortage cost constraints from retailer and warehouse viewpoints. Since the proposed model is Non-deterministic Polynomial-time hard, an efficient imperialist competitive algorithm (ICA) is proposed to solve the model. To justify proposed ICA, both ganetic algorithm and simulated annealing algorithm are utilised. In order to determine the best value of algorithm parameters that result in a better solution, a fine-tuning procedure is executed. Finally, the performance of the proposed ICA is analysed using some numerical illustrations.
Statistical methods for convergence detection of multi-objective evolutionary algorithms.
Trautmann, H; Wagner, T; Naujoks, B; Preuss, M; Mehnen, J
2009-01-01
In this paper, two approaches for estimating the generation in which a multi-objective evolutionary algorithm (MOEA) shows statistically significant signs of convergence are introduced. A set-based perspective is taken where convergence is measured by performance indicators. The proposed techniques fulfill the requirements of proper statistical assessment on the one hand and efficient optimisation for real-world problems on the other hand. The first approach accounts for the stochastic nature of the MOEA by repeating the optimisation runs for increasing generation numbers and analysing the performance indicators using statistical tools. This technique results in a very robust offline procedure. Moreover, an online convergence detection method is introduced as well. This method automatically stops the MOEA when either the variance of the performance indicators falls below a specified threshold or a stagnation of their overall trend is detected. Both methods are analysed and compared for two MOEA and on different classes of benchmark functions. It is shown that the methods successfully operate on all stated problems needing less function evaluations while preserving good approximation quality at the same time.
NASA Astrophysics Data System (ADS)
Liu, Ming; Zhao, Lindu
2012-08-01
Demand for emergency resources is usually uncertain and varies quickly in anti-bioterrorism system. Besides, emergency resources which had been allocated to the epidemic areas in the early rescue cycle will affect the demand later. In this article, an integrated and dynamic optimisation model with time-varying demand based on the epidemic diffusion rule is constructed. The heuristic algorithm coupled with the MATLAB mathematical programming solver is adopted to solve the optimisation model. In what follows, the application of the optimisation model as well as a short sensitivity analysis of the key parameters in the time-varying demand forecast model is presented. The results show that both the model and the solution algorithm are useful in practice, and both objectives of inventory level and emergency rescue cost can be controlled effectively. Thus, it can provide some guidelines for decision makers when coping with emergency rescue problem with uncertain demand, and offers an excellent reference when issues pertain to bioterrorism.
NASA Astrophysics Data System (ADS)
Zhong, Shuya; Pantelous, Athanasios A.; Beer, Michael; Zhou, Jian
2018-05-01
Offshore wind farm is an emerging source of renewable energy, which has been shown to have tremendous potential in recent years. In this blooming area, a key challenge is that the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy the power supply without failure. In this direction, two significant goals should be considered simultaneously as a trade-off. One is to maximise the system reliability and the other is to minimise the maintenance related cost. Thus, a non-linear multi-objective programming model is proposed including two newly defined objectives with thirteen families of constraints suitable for the preventive maintenance of offshore wind farms. In order to solve our model effectively, the nondominated sorting genetic algorithm II, especially for the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules can be obtained to offer adequate support to decision-makers. Finally, an example is given to illustrate the performances of the devised model and algorithm, and explore the relationships of the two targets with the help of a contrast model.
NASA Astrophysics Data System (ADS)
Behera, Kishore Kumar; Pal, Snehanshu
2018-03-01
This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.
Green supplier selection: a new genetic/immune strategy with industrial application
NASA Astrophysics Data System (ADS)
Kumar, Amit; Jain, Vipul; Kumar, Sameer; Chandra, Charu
2016-10-01
With the onset of the 'climate change movement', organisations are striving to include environmental criteria into the supplier selection process. This article hybridises a Green Data Envelopment Analysis (GDEA)-based approach with a new Genetic/Immune Strategy for Data Envelopment Analysis (GIS-DEA). A GIS-DEA approach provides a different view to solving multi-criteria decision making problems using data envelopment analysis (DEA) by considering DEA as a multi-objective optimisation problem with efficiency as one objective and proximity of solution to decision makers' preferences as the other objective. The hybrid approach called GIS-GDEA is applied here to a well-known automobile spare parts manufacturer in India and the results presented. User validation developed based on specific set of criteria suggests that the supplier selection process with GIS-GDEA is more practical than other approaches in a current industrial scenario with multiple decision makers.
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
NASA Astrophysics Data System (ADS)
Haworth, Annette; Mears, Christopher; Betts, John M.; Reynolds, Hayley M.; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A.
2016-01-01
Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The ‘biological optimisation’ considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.
Reservoir optimisation using El Niño information. Case study of Daule Peripa (Ecuador)
NASA Astrophysics Data System (ADS)
Gelati, Emiliano; Madsen, Henrik; Rosbjerg, Dan
2010-05-01
The optimisation of water resources systems requires the ability to produce runoff scenarios that are consistent with available climatic information. We approach stochastic runoff modelling with a Markov-modulated autoregressive model with exogenous input, which belongs to the class of Markov-switching models. The model assumes runoff parameterisation to be conditioned on a hidden climatic state following a Markov chain, whose state transition probabilities depend on climatic information. This approach allows stochastic modeling of non-stationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We calibrate the model on the inflows of the Daule Peripa reservoir located in western Ecuador, where the occurrence of El Niño leads to anomalously heavy rainfall caused by positive sea surface temperature anomalies along the coast. El Niño - Southern Oscillation (ENSO) information is used to condition the runoff parameterisation. Inflow predictions are realistic, especially at the occurrence of El Niño events. The Daule Peripa reservoir serves a hydropower plant and a downstream water supply facility. Using historical ENSO records, synthetic monthly inflow scenarios are generated for the period 1950-2007. These scenarios are used as input to perform stochastic optimisation of the reservoir rule curves with a multi-objective Genetic Algorithm (MOGA). The optimised rule curves are assumed to be the reservoir base policy. ENSO standard indices are currently forecasted at monthly time scale with nine-month lead time. These forecasts are used to perform stochastic optimisation of reservoir releases at each monthly time step according to the following procedure: (i) nine-month inflow forecast scenarios are generated using ENSO forecasts; (ii) a MOGA is set up to optimise the upcoming nine monthly releases; (iii) the optimisation is carried out by simulating the releases on the inflow forecasts, and by applying the base policy on a subsequent synthetic inflow scenario in order to account for long-term costs; (iv) the optimised release for the first month is implemented; (v) the state of the system is updated and (i), (ii), (iii), and (iv) are iterated for the following time step. The results highlight the advantages of using a climate-driven stochastic model to produce inflow scenarios and forecasts for reservoir optimisation, showing potential improvements with respect to the current management. Dynamic programming was used to find the best possible release time series given the inflow observations, in order to benchmark any possible operational improvement.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
NASA Astrophysics Data System (ADS)
Rebelo Kornmeier, Joana; Ostermann, Andreas; Hofmann, Michael; Gibmeier, Jens
2014-02-01
Neutron strain diffractometers usually use slits to define a gauge volume within engineering samples. In this study a multi-channel parabolic neutron guide was developed to be used instead of the primary slit to minimise the loss of intensity and vertical definition of the gauge volume when using slits placed far away from the measurement position in bulky components. The major advantage of a focusing guide is that the maximum flux is not at the exit of the guide as for a slit system but at the focal point relatively far away from the exit of the guide. Monte Carlo simulations were used to optimise the multi-channel parabolic guide with respect to the instrument characteristics of the diffractometer STRESS-SPEC at the FRM II neutron source. Also the simulations are in excellent agreement with experimental measurements using the optimised multi-channel parabolic guide at the neutron diffractometer. In addition the performance of the guide was compared to the standard slit setup at STRESS-SPEC using a single bead weld sample used in earlier round robin tests for residual strain measurements.
EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.
Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos
2015-01-01
Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.
Multi-agent modelling framework for water, energy and other resource networks
NASA Astrophysics Data System (ADS)
Knox, S.; Selby, P. D.; Meier, P.; Harou, J. J.; Yoon, J.; Lachaut, T.; Klassert, C. J. A.; Avisse, N.; Mohamed, K.; Tomlinson, J.; Khadem, M.; Tilmant, A.; Gorelick, S.
2015-12-01
Bespoke modelling tools are often needed when planning future engineered interventions in the context of various climate, socio-economic and geopolitical futures. Such tools can help improve system operating policies or assess infrastructure upgrades and their risks. A frequently used approach is to simulate and/or optimise the impact of interventions in engineered systems. Modelling complex infrastructure systems can involve incorporating multiple aspects into a single model, for example physical, economic and political. This presents the challenge of combining research from diverse areas into a single system effectively. We present the Pynsim 'Python Network Simulator' framework, a library for building simulation models capable of representing, the physical, institutional and economic aspects of an engineered resources system. Pynsim is an open source, object oriented code aiming to promote integration of different modelling processes through a single code library. We present two case studies that demonstrate important features of Pynsim's design. The first is a large interdisciplinary project of a national water system in the Middle East with modellers from fields including water resources, economics, hydrology and geography each considering different facets of a multi agent system. It includes: modelling water supply and demand for households and farms; a water tanker market with transfer of water between farms and households, and policy decisions made by government institutions at district, national and international level. This study demonstrates that a well-structured library of code can provide a hub for development and act as a catalyst for integrating models. The second focuses on optimising the location of new run-of-river hydropower plants. Using a multi-objective evolutionary algorithm, this study analyses different network configurations to identify the optimal placement of new power plants within a river network. This demonstrates that Pynsim can be used to evaluate a multitude of topologies for identifying the optimal location of infrastructure investments. Pynsim is available on GitHub or via standard python installer packages such as pip. It comes with several examples and online documentation, making it attractive for those less experienced in software engineering.
2007-09-17
been proposed; these include a combination of variable fidelity models, parallelisation strategies and hybridisation techniques (Coello, Veldhuizen et...Coello et al (Coello, Veldhuizen et al. 2002). 4.4.2 HIERARCHICAL POPULATION TOPOLOGY A hierarchical population topology, when integrated into...to hybrid parallel Multi-Objective Evolutionary Algorithms (pMOEA) (Cantu-Paz 2000; Veldhuizen , Zydallis et al. 2003); it uses a master slave
NASA Astrophysics Data System (ADS)
Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.
2017-09-01
There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud
2015-01-01
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309
Breuer, Christian; Lucas, Martin; Schütze, Frank-Walter; Claus, Peter
2007-01-01
A multi-criteria optimisation procedure based on genetic algorithms is carried out in search of advanced heterogeneous catalysts for total oxidation. Simple but flexible software routines have been created to be applied within a search space of more then 150,000 individuals. The general catalyst design includes mono-, bi- and trimetallic compositions assembled out of 49 different metals and depleted on an Al2O3 support in up to nine amount levels. As an efficient tool for high-throughput screening and perfectly matched to the requirements of heterogeneous gas phase catalysis - especially for applications technically run in honeycomb structures - the multi-channel monolith reactor is implemented to evaluate the catalyst performances. Out of a multi-component feed-gas, the conversion rates of carbon monoxide (CO) and a model hydrocarbon (HC) are monitored in parallel. In combination with further restrictions to preparation and pre-treatment a primary screening can be conducted, promising to provide results close to technically applied catalysts. Presented are the resulting performances of the optimisation process for the first catalyst generations and the prospect of its auto-adaptation to specified optimisation goals.
Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe
2014-02-26
Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.
Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system
NASA Astrophysics Data System (ADS)
Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian
2017-08-01
The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.
NASA Astrophysics Data System (ADS)
Faizrahnemoon, Mahsa; Schlote, Arieh; Maggi, Lorenzo; Crisostomi, Emanuele; Shorten, Robert
2015-11-01
This paper describes a Markov-chain-based approach to modelling multi-modal transportation networks. An advantage of the model is the ability to accommodate complex dynamics and handle huge amounts of data. The transition matrix of the Markov chain is built and the model is validated using the data extracted from a traffic simulator. A realistic test-case using multi-modal data from the city of London is given to further support the ability of the proposed methodology to handle big quantities of data. Then, we use the Markov chain as a control tool to improve the overall efficiency of a transportation network, and some practical examples are described to illustrate the potentials of the approach.
NASA Astrophysics Data System (ADS)
Hurford, Anthony; Harou, Julien
2014-05-01
Water related eco-system services are important to the livelihoods of the poorest sectors of society in developing countries. Degradation or loss of these services can increase the vulnerability of people decreasing their capacity to support themselves. New approaches to help guide water resources management decisions are needed which account for the non-market value of ecosystem goods and services. In case studies from Brazil and Kenya we demonstrate the capability of many objective Pareto-optimal trade-off analysis to help decision makers balance economic and non-market benefits from the management of existing multi-reservoir systems. A multi-criteria search algorithm is coupled to a water resources management simulator of each basin to generate a set of Pareto-approximate trade-offs representing the best case management decisions. In both cases, volume dependent reservoir release rules are the management decisions being optimised. In the Kenyan case we further assess the impacts of proposed irrigation investments, and how the possibility of new investments impacts the system's trade-offs. During the multi-criteria search (optimisation), performance of different sets of management decisions (policies) is assessed against case-specific objective functions representing provision of water supply and irrigation, hydropower generation and maintenance of ecosystem services. Results are visualised as trade-off surfaces to help decision makers understand the impacts of different policies on a broad range of stakeholders and to assist in decision-making. These case studies show how the approach can reveal unexpected opportunities for win-win solutions, and quantify the trade-offs between investing to increase agricultural revenue and negative impacts on protected ecosystems which support rural livelihoods.
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Wei
2016-10-01
An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
Gorjanc, Gregor; Hickey, John M
2018-05-02
AlphaMate is a flexible program that optimises selection, maintenance of genetic diversity, and mate allocation in breeding programs. It can be used in animal and cross- and self-pollinating plant populations. These populations can be subject to selective breeding or conservation management. The problem is formulated as a multi-objective optimisation of a valid mating plan that is solved with an evolutionary algorithm. A valid mating plan is defined by a combination of mating constraints (the number of matings, the maximal number of parents, the minimal/equal/maximal number of contributions per parent, or allowance for selfing) that are gender specific or generic. The optimisation can maximize genetic gain, minimize group coancestry, minimize inbreeding of individual matings, or maximize genetic gain for a given increase in group coancestry or inbreeding. Users provide a list of candidate individuals with associated gender and selection criteria information (if applicable) and coancestry matrix. Selection criteria and coancestry matrix can be based on pedigree or genome-wide markers. Additional individual or mating specific information can be included to enrich optimisation objectives. An example of rapid recurrent genomic selection in wheat demonstrates how AlphaMate can double the efficiency of converting genetic diversity into genetic gain compared to truncation selection. Another example demonstrates the use of genome editing to expand the gain-diversity frontier. Executable versions of AlphaMate for Windows, Mac, and Linux platforms are available at http://www.AlphaGenes.roslin.ed.ac.uk/AlphaMate. gregor.gorjanc@roslin.ed.ack.uk.
NASA Astrophysics Data System (ADS)
Chen, CHAI; Yiik Diew, WONG
2017-02-01
This study provides an integrated strategy, encompassing microscopic simulation, safety assessment, and multi-attribute decision-making, to optimize traffic performance at downstream merging area of signalized intersections. A Fuzzy Cellular Automata (FCA) model is developed to replicate microscopic movement and merging behavior. Based on simulation experiment, the proposed FCA approach is able to provide capacity and safety evaluation of different traffic scenarios. The results are then evaluated through data envelopment analysis (DEA) and analytic hierarchy process (AHP). Optimized geometric layout and control strategies are then suggested for various traffic conditions. An optimal lane-drop distance that is dependent on traffic volume and speed limit can thus be established at the downstream merging area.
NASA Astrophysics Data System (ADS)
Ighravwe, D. E.; Oke, S. A.; Adebiyi, K. A.
2016-06-01
The growing interest in technicians' workloads research is probably associated with the recent surge in competition. This was prompted by unprecedented technological development that triggers changes in customer tastes and preferences for industrial goods. In a quest for business improvement, this worldwide intense competition in industries has stimulated theories and practical frameworks that seek to optimise performance in workplaces. In line with this drive, the present paper proposes an optimisation model which considers technicians' reliability that complements factory information obtained. The information used emerged from technicians' productivity and earned-values using the concept of multi-objective modelling approach. Since technicians are expected to carry out routine and stochastic maintenance work, we consider these workloads as constraints. The influence of training, fatigue and experiential knowledge of technicians on workload management was considered. These workloads were combined with maintenance policy in optimising reliability, productivity and earned-values using the goal programming approach. Practical datasets were utilised in studying the applicability of the proposed model in practice. It was observed that our model was able to generate information that practicing maintenance engineers can apply in making more informed decisions on technicians' management.
Multiobjective optimisation of bogie suspension to boost speed on curves
NASA Astrophysics Data System (ADS)
Milad Mousavi-Bideleh, Seyed; Berbyuk, Viktor
2016-01-01
To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5 m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.
Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme
2018-06-01
Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.
Formalizing Knowledge in Multi-Scale Agent-Based Simulations
Somogyi, Endre; Sluka, James P.; Glazier, James A.
2017-01-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063
Formalizing Knowledge in Multi-Scale Agent-Based Simulations.
Somogyi, Endre; Sluka, James P; Glazier, James A
2016-10-01
Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.
NASA Astrophysics Data System (ADS)
Hurford, Anthony; Harou, Julien
2015-04-01
Climate change has challenged conventional methods of planning water resources infrastructure investment, relying on stationarity of time-series data. It is not clear how to best use projections of future climatic conditions. Many-objective simulation-optimisation and trade-off analysis using evolutionary algorithms has been proposed as an approach to addressing complex planning problems with multiple conflicting objectives. The search for promising assets and policies can be carried out across a range of climate projections, to identify the configurations of infrastructure investment shown by model simulation to be robust under diverse future conditions. Climate projections can be used in different ways within a simulation model to represent the range of possible future conditions and understand how optimal investments vary according to the different hydrological conditions. We compare two approaches, optimising over an ensemble of different 20-year flow and PET timeseries projections, and separately for individual future scenarios built synthetically from the original ensemble. Comparing trade-off curves and surfaces generated by the two approaches helps understand the limits and benefits of optimising under different sets of conditions. The comparison is made for the Tana Basin in Kenya, where climate change combined with multiple conflicting objectives of water management and infrastructure investment mean decision-making is particularly challenging.
Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring
NASA Astrophysics Data System (ADS)
Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Letang, J. M.; Ray, C.; Roellinghoff, F.; Testa, E.
2014-12-01
Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.
NASA Astrophysics Data System (ADS)
du Feu, R. J.; Funke, S. W.; Kramer, S. C.; Hill, J.; Piggott, M. D.
2016-12-01
The installation of tidal turbines into the ocean will inevitably affect the environment around them. However, due to the relative infancy of this sector the extent and severity of such effects is unknown. The layout of an array of turbines is an important factor in determining not only the array's final yield but also how it will influence regional hydrodynamics. This in turn could affect, for example, sediment transportation or habitat suitability. The two potentially competing objectives of extracting energy from the tidal current, and of limiting any environmental impact consequent to influencing that current, are investigated here. This relationship is posed as a multi-objective optimisation problem. OpenTidalFarm, an array layout optimisation tool, and MaxEnt, habitat sustainability modelling software, are used to evaluate scenarios off the coast of the UK. MaxEnt is used to estimate the likelihood of finding a species in a given location based upon environmental input data and presence data of the species. Environmental features which are known to impact habitat, specifically those affected by the presence of an array, such as bed shear stress, are chosen as inputs. MaxEnt then uses a maximum-entropy modelling approach to estimate population distribution across the modelled area. OpenTidalFarm is used to maximise the power generated by an array, or multiple arrays, through adjusting the position and number of turbines within them. It uses a 2D shallow water model with turbine arrays represented as adjustable friction fields. It has the capability to also optimise for user created functionals that can be expressed mathematically. This work uses two functionals; power extracted by the array, and the suitability of habitat as predicted by MaxEnt. A gradient-based local optimisation is used to adjust the array layout at each iteration. This work presents arrays that are optimised for both yield and the viability of habitat for chosen species. In each scenario studied, a range of array formations is found expressing varying preferences for either functional. Further analyses then allow for the identification of trade-offs between the two key societal objectives of energy production and conservation. This in turn produces information valuable to stakeholders and policymakers when making decisions on array design.
NASA Astrophysics Data System (ADS)
Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza
2017-08-01
Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.
Airfoil Shape Optimization based on Surrogate Model
NASA Astrophysics Data System (ADS)
Mukesh, R.; Lingadurai, K.; Selvakumar, U.
2018-02-01
Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.
Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L
2016-01-01
An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.
NASA Astrophysics Data System (ADS)
Pan, S.; Liu, L.; Xu, Y. P.
2017-12-01
Abstract: In physically based distributed hydrological model, large number of parameters, representing spatial heterogeneity of watershed and various processes in hydrologic cycle, are involved. For lack of calibration module in Distributed Hydrology Soil Vegetation Model, this study developed a multi-objective calibration module using Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) and based on parallel computing of Linux cluster for DHSVM (ɛP-DHSVM). In this study, two hydrologic key elements (i.e., runoff and evapotranspiration) are used as objectives in multi-objective calibration of model. MODIS evapotranspiration obtained by SEBAL is adopted to fill the gap of lack of observation for evapotranspiration. The results show that good performance of runoff simulation in single objective calibration cannot ensure good simulation performance of other hydrologic key elements. Self-developed ɛP-DHSVM model can make multi-objective calibration more efficiently and effectively. The running speed can be increased by more than 20-30 times via applying ɛP-DHSVM. In addition, runoff and evapotranspiration can be simulated very well simultaneously by ɛP-DHSVM, with superior values for two efficiency coefficients (0.74 for NS of runoff and 0.79 for NS of evapotranspiration, -10.5% and -8.6% for PBIAS of runoff and evapotranspiration respectively).
Multi-tasking arbitration and behaviour design for human-interactive robots
NASA Astrophysics Data System (ADS)
Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei
2013-05-01
Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
An adaptive evolutionary multi-objective approach based on simulated annealing.
Li, H; Landa-Silva, D
2011-01-01
A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.
An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets
NASA Astrophysics Data System (ADS)
Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.
2016-06-01
Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.
Method and system for fault accommodation of machines
NASA Technical Reports Server (NTRS)
Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)
2011-01-01
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
Extended behavioural modelling of FET and lattice-mismatched HEMT devices
NASA Astrophysics Data System (ADS)
Khawam, Yahya; Albasha, Lutfi
2017-07-01
This study presents an improved large signal model that can be used for high electron mobility transistors (HEMTs) and field effect transistors using measurement-based behavioural modelling techniques. The steps for accurate large and small signal modelling for transistor are also discussed. The proposed DC model is based on the Fager model since it compensates between the number of model's parameters and accuracy. The objective is to increase the accuracy of the drain-source current model with respect to any change in gate or drain voltages. Also, the objective is to extend the improved DC model to account for soft breakdown and kink effect found in some variants of HEMT devices. A hybrid Newton's-Genetic algorithm is used in order to determine the unknown parameters in the developed model. In addition to accurate modelling of a transistor's DC characteristics, the complete large signal model is modelled using multi-bias s-parameter measurements. The way that the complete model is performed is by using a hybrid multi-objective optimisation technique (Non-dominated Sorting Genetic Algorithm II) and local minimum search (multivariable Newton's method) for parasitic elements extraction. Finally, the results of DC modelling and multi-bias s-parameters modelling are presented, and three-device modelling recommendations are discussed.
Optimisation of logistics processes of energy grass collection
NASA Astrophysics Data System (ADS)
Bányai, Tamás.
2010-05-01
The collection of energy grass is a logistics-intensive process [1]. The optimal design and control of transportation and collection subprocesses is a critical point of the supply chain. To avoid irresponsible decisions by right of experience and intuition, the optimisation and analysis of collection processes based on mathematical models and methods is the scientific suggestible way. Within the frame of this work, the author focuses on the optimisation possibilities of the collection processes, especially from the point of view transportation and related warehousing operations. However the developed optimisation methods in the literature [2] take into account the harvesting processes, county-specific yields, transportation distances, erosion constraints, machinery specifications, and other key variables, but the possibility of more collection points and the multi-level collection were not taken into consideration. The possible areas of using energy grass is very wide (energetically use, biogas and bio alcohol production, paper and textile industry, industrial fibre material, foddering purposes, biological soil protection [3], etc.), so not only a single level but also a multi-level collection system with more collection and production facilities has to be taken into consideration. The input parameters of the optimisation problem are the followings: total amount of energy grass to be harvested in each region; specific facility costs of collection, warehousing and production units; specific costs of transportation resources; pre-scheduling of harvesting process; specific transportation and warehousing costs; pre-scheduling of processing of energy grass at each facility (exclusive warehousing). The model take into consideration the following assumptions: (1) cooperative relation among processing and production facilties, (2) capacity constraints are not ignored, (3) the cost function of transportation is non-linear, (4) the drivers conditions are ignored. The objective function of the optimisation is the maximisation of the profit which means the maximization of the difference between revenue and cost. The objective function trades off the income of the assigned transportation demands against the logistic costs. The constraints are the followings: (1) the free capacity of the assigned transportation resource is more than the re-quested capacity of the transportation demand; the calculated arrival time of the transportation resource to the harvesting place is not later than the requested arrival time of them; (3) the calculated arrival time of the transportation demand to the processing and production facility is not later than the requested arrival time; (4) one transportation demand is assigned to one transportation resource and one resource is assigned to one transportation resource. The decision variable of the optimisation problem is the set of scheduling variables and the assignment of resources to transportation demands. The evaluation parameters of the optimised system are the followings: total costs of the collection process; utilisation of transportation resources and warehouses; efficiency of production and/or processing facilities. However the multidimensional heuristic optimisation method is based on genetic algorithm, but the routing sequence of the optimisation works on the base of an ant colony algorithm. The optimal routes are calculated by the aid of the ant colony algorithm as a subroutine of the global optimisation method and the optimal assignment is given by the genetic algorithm. One important part of the mathematical method is the sensibility analysis of the objective function, which shows the influence rate of the different input parameters. Acknowledgements This research was implemented within the frame of the project entitled "Development and operation of the Technology and Knowledge Transfer Centre of the University of Miskolc". with support by the European Union and co-funding of the European Social Fund. References [1] P. R. Daniel: The Economics of Harvesting and Transporting Corn Stover for Conversion to Fuel Ethanol: A Case Study for Minnesota. University of Minnesota, Department of Applied Economics. 2006. http://ideas.repec.org/p/ags/umaesp/14213.html [2] T. G. Douglas, J. Brendan, D. Erin & V.-D. Becca: Energy and Chemicals from Native Grasses: Production, Transportation and Processing Technologies Considered in the Northern Great Plains. University of Minnesota, Department of Applied Economics. 2006. http://ideas.repec.org/p/ags/umaesp/13838.html [3] Homepage of energygrass. www.energiafu.hu
NASA Astrophysics Data System (ADS)
Akhtar, Taimoor; Shoemaker, Christine
2016-04-01
Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.
Distributed learning and multi-objectivity in traffic light control
NASA Astrophysics Data System (ADS)
Brys, Tim; Pham, Tong T.; Taylor, Matthew E.
2014-01-01
Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create enormous economic losses each year. Delays at traffic lights alone account for roughly 10% of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning (RL) approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Distributed constraint optimisation approaches (DCOP) have also been shown to be successful, but are limited to cases where the traffic flows are known. The distributed coordination of exploration and exploitation (DCEE) framework was recently proposed to introduce learning in the DCOP framework. In this paper, we present a study of DCEE and RL techniques in a complex simulator, illustrating the particular advantages of each, comparing them against standard isolated traffic actuated signals. We analyse how learning and coordination behave under different traffic conditions, and discuss the multi-objective nature of the problem. Finally we evaluate several alternative reward signals in the best performing approach, some of these taking advantage of the correlation between the problem-inherent objectives to improve performance.
NASA Astrophysics Data System (ADS)
Fourtakas, G.; Rogers, B. D.
2016-06-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.
Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C
2018-06-01
Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Yeh, Cheng-Ta
2013-05-01
From the perspective of supply chain management, the selected carrier plays an important role in freight delivery. This article proposes a new criterion of multi-commodity reliability and optimises the carrier selection based on such a criterion for logistics networks with routes and nodes, over which multiple commodities are delivered. Carrier selection concerns the selection of exactly one carrier to deliver freight on each route. The capacity of each carrier has several available values associated with a probability distribution, since some of a carrier's capacity may be reserved for various orders. Therefore, the logistics network, given any carrier selection, is a multi-commodity multi-state logistics network. Multi-commodity reliability is defined as a probability that the logistics network can satisfy a customer's demand for various commodities, and is a performance indicator for freight delivery. To solve this problem, this study proposes an optimisation algorithm that integrates genetic algorithm, minimal paths and Recursive Sum of Disjoint Products. A practical example in which multi-sized LCD monitors are delivered from China to Germany is considered to illustrate the solution procedure.
NASA Astrophysics Data System (ADS)
Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper
2015-05-01
In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.
Global Village as Virtual Community (On Writing, Thinking, and Teacher Education).
ERIC Educational Resources Information Center
Polin, Linda
1993-01-01
Describes virtual communities known as Multi-User Simulated Environment (MUSE) or Multi-User Object Oriented environment (MOO), text-based computer "communities" whose inhabitants are a combination of the real people and constructed objects that people agree to treat as real. Describes their uses in the classroom. (SR)
Automated model optimisation using the Cylc workflow engine (Cyclops v1.0)
NASA Astrophysics Data System (ADS)
Gorman, Richard M.; Oliver, Hilary J.
2018-06-01
Most geophysical models include many parameters that are not fully determined by theory, and can be tuned
to improve the model's agreement with available data. We might attempt to automate this tuning process in an objective way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in various programming languages, but interfacing such software to a complex geophysical model simulation presents certain challenges. To tackle this problem, we have developed an optimisation suite (Cyclops
) based on the Cylc workflow engine that implements a wide selection of optimisation algorithms from the NLopt Python toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the optimisation suite is particularly straightforward. As a test case, we applied the Cyclops to calibrate a global implementation of the WAVEWATCH III (v4.18) third-generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a 1-year period (1997), before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of the root mean square error of hindcast significant wave height compared with collocated altimeter records. We describe the results of a calibration in which up to 19 parameters were optimised.
NASA Astrophysics Data System (ADS)
Koziel, Slawomir; Bekasiewicz, Adrian
2016-10-01
Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.
Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators
NASA Astrophysics Data System (ADS)
Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.
2016-01-01
Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.
Multi-object detection and tracking technology based on hexagonal opto-electronic detector
NASA Astrophysics Data System (ADS)
Song, Yong; Hao, Qun; Li, Xiang
2008-02-01
A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.
Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C
2015-01-16
The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.
An improved PSO-SVM model for online recognition defects in eddy current testing
NASA Astrophysics Data System (ADS)
Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin
2013-12-01
Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.
Photonic simulation of entanglement growth and engineering after a spin chain quench.
Pitsios, Ioannis; Banchi, Leonardo; Rab, Adil S; Bentivegna, Marco; Caprara, Debora; Crespi, Andrea; Spagnolo, Nicolò; Bose, Sougato; Mataloni, Paolo; Osellame, Roberto; Sciarrino, Fabio
2017-11-17
The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.
Analysis of the car body stability performance after coupler jack-knifing during braking
NASA Astrophysics Data System (ADS)
Guo, Lirong; Wang, Kaiyun; Chen, Zaigang; Shi, Zhiyong; Lv, Kaikai; Ji, Tiancheng
2018-06-01
This paper aims to improve car body stability performance by optimising locomotive parameters when coupler jack-knifing occurs during braking. In order to prevent car body instability behaviour caused by coupler jack-knifing, a multi-locomotive simulation model and a series of field braking tests are developed to analyse the influence of the secondary suspension and the secondary lateral stopper on the car body stability performance during braking. According to simulation and test results, increasing secondary lateral stiffness contributes to limit car body yaw angle during braking. However, it seriously affects the dynamic performance of the locomotive. For the secondary lateral stopper, its lateral stiffness and free clearance have a significant influence on improving the car body stability capacity, and have less effect on the dynamic performance of the locomotive. An optimised measure was proposed and adopted on the test locomotive. For the optimised locomotive, the lateral stiffness of secondary lateral stopper is increased to 7875 kN/m, while its free clearance is decreased to 10 mm. The optimised locomotive has excellent dynamic and safety performance. Comparing with the original locomotive, the maximum car body yaw angle and coupler rotation angle of the optimised locomotive were reduced by 59.25% and 53.19%, respectively, according to the practical application. The maximum derailment coefficient was 0.32, and the maximum wheelset lateral force was 39.5 kN. Hence, reasonable parameters of secondary lateral stopper can improve the car body stability capacity and the running safety of the heavy haul locomotive.
Mutual information-based LPI optimisation for radar network
NASA Astrophysics Data System (ADS)
Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun
2015-07-01
Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.
Design Optimisation of a Magnetic Field Based Soft Tactile Sensor
Raske, Nicholas; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Culmer, Peter; Hewson, Robert
2017-01-01
This paper investigates the design optimisation of a magnetic field based soft tactile sensor, comprised of a magnet and Hall effect module separated by an elastomer. The aim was to minimise sensitivity of the output force with respect to the input magnetic field; this was achieved by varying the geometry and material properties. Finite element simulations determined the magnetic field and structural behaviour under load. Genetic programming produced phenomenological expressions describing these responses. Optimisation studies constrained by a measurable force and stable loading conditions were conducted; these produced Pareto sets of designs from which the optimal sensor characteristics were selected. The optimisation demonstrated a compromise between sensitivity and the measurable force, a fabricated version of the optimised sensor validated the improvements made using this methodology. The approach presented can be applied in general for optimising soft tactile sensor designs over a range of applications and sensing modes. PMID:29099787
Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration
NASA Astrophysics Data System (ADS)
Bai, P.
2017-12-01
Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.
Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph
Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less
UAV path planning using artificial potential field method updated by optimal control theory
NASA Astrophysics Data System (ADS)
Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long
2016-04-01
The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.
NASA Astrophysics Data System (ADS)
Kharbouch, Yassine; Mimet, Abdelaziz; El Ganaoui, Mohammed; Ouhsaine, Lahoucine
2018-07-01
This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs' integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.
An illustration of new methods in machine condition monitoring, Part I: stochastic resonance
NASA Astrophysics Data System (ADS)
Worden, K.; Antoniadou, I.; Marchesiello, S.; Mba, C.; Garibaldi, L.
2017-05-01
There have been many recent developments in the application of data-based methods to machine condition monitoring. A powerful methodology based on machine learning has emerged, where diagnostics are based on a two-step procedure: extraction of damage-sensitive features, followed by unsupervised learning (novelty detection) or supervised learning (classification). The objective of the current pair of papers is simply to illustrate one state-of-the-art procedure for each step, using synthetic data representative of reality in terms of size and complexity. The first paper in the pair will deal with feature extraction. Although some papers have appeared in the recent past considering stochastic resonance as a means of amplifying damage information in signals, they have largely relied on ad hoc specifications of the resonator used. In contrast, the current paper will adopt a principled optimisation-based approach to the resonator design. The paper will also show that a discrete dynamical system can provide all the benefits of a continuous system, but also provide a considerable speed-up in terms of simulation time in order to facilitate the optimisation approach.
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool
NASA Astrophysics Data System (ADS)
Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.
2014-05-01
Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.
Optimised analytical models of the dielectric properties of biological tissue.
Salahuddin, Saqib; Porter, Emily; Krewer, Finn; O' Halloran, Martin
2017-05-01
The interaction of electromagnetic fields with the human body is quantified by the dielectric properties of biological tissues. These properties are incorporated into complex numerical simulations using parametric models such as Debye and Cole-Cole, for the computational investigation of electromagnetic wave propagation within the body. These parameters can be acquired through a variety of optimisation algorithms to achieve an accurate fit to measured data sets. A number of different optimisation techniques have been proposed, but these are often limited by the requirement for initial value estimations or by the large overall error (often up to several percentage points). In this work, a novel two-stage genetic algorithm proposed by the authors is applied to optimise the multi-pole Debye parameters for 54 types of human tissues. The performance of the two-stage genetic algorithm has been examined through a comparison with five other existing algorithms. The experimental results demonstrate that the two-stage genetic algorithm produces an accurate fit to a range of experimental data and efficiently out-performs all other optimisation algorithms under consideration. Accurate values of the three-pole Debye models for 54 types of human tissues, over 500 MHz to 20 GHz, are also presented for reference. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Aungkulanon, Pasura; Luangpaiboon, Pongchanun
2016-01-01
Response surface methods via the first or second order models are important in manufacturing processes. This study, however, proposes different structured mechanisms of the vertical transportation systems or VTS embedded on a shuffled frog leaping-based approach. There are three VTS scenarios, a motion reaching a normal operating velocity, and both reaching and not reaching transitional motion. These variants were performed to simultaneously inspect multiple responses affected by machining parameters in multi-pass turning processes. The numerical results of two machining optimisation problems demonstrated the high performance measures of the proposed methods, when compared to other optimisation algorithms for an actual deep cut design.
Andrighetto, Luke M; Stevenson, Paul G; Pearson, James R; Henderson, Luke C; Conlan, Xavier A
2014-11-01
In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.
Optimisation of flight dynamic control based on many-objectives meta-heuristic: a comparative study
NASA Astrophysics Data System (ADS)
Bureerat, Sujin; Pholdee, Nantiwat; Radpukdee, Thana
2018-05-01
Development of many objective meta-heuristics (MnMHs) is a currently interesting topic as they are suitable to real applications of optimisation problems which usually require many ob-jectives. However, most of MnMHs have been mostly developed and tested based on stand-ard testing functions while the use of MnMHs to real applications is rare. Therefore, in this work, MnMHs are applied for optimisation design of flight dynamic control. The design prob-lem is posed to find control gains for minimising; the control effort, the spiral root, the damp-ing in roll root, sideslip angle deviation, and maximising; the damping ratio of the dutch-roll complex pair, the dutch-roll frequency, bank angle at pre-specified times 1 seconds and 2.8 second subjected to several constraints based on Military Specifications (1969) requirement. Several established many-objective meta-heuristics (MnMHs) are used to solve the problem while their performances are compared. With this research work, performance of several MnMHs for flight control is investigated. The results obtained will be the baseline for future development of flight dynamic and control.
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates
NASA Astrophysics Data System (ADS)
Todorovic, Andrijana; Plavsic, Jasna
2015-04-01
A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters. Correlation coefficients among optimised model parameters and total precipitation P, mean temperature T and mean flow Q are calculated to give an insight into parameter dependence on the hydrometeorological drivers. The results reveal high sensitivity of almost all model parameters towards calibration period. The highest variability is displayed by the refreezing coefficient, water holding capacity, and temperature gradient. The only statistically significant (decreasing) trend is detected in the evapotranspiration reduction threshold. Statistically significant correlation is detected between the precipitation gradient and precipitation depth, and between the time-area histogram base and flows. All other correlations are not statistically significant, implying that changes in optimised parameters cannot generally be linked to the changes in P, T or Q. As for the model performance, the model reproduces the observed runoff satisfactorily, though the runoff is slightly overestimated in wet periods. The Nash-Sutcliffe efficiency coefficient (NSE) ranges from 0.44 to 0.79. Higher NSE values are obtained over wetter periods, what is supported by statistically significant correlation between NSE and flows. Overall, no systematic variations in parameters or in model performance are detected. Parameter variability may therefore rather be attributed to errors in data or inadequacies in the model structure. Further research is required to examine the impact of the calibration strategy or model structure on the variability in optimised parameters in time.
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.
Circuit-level optimisation of a:Si TFT-based AMOLED pixel circuits for maximum hold current
NASA Astrophysics Data System (ADS)
Foroughi, Aidin; Mehrpoo, Mohammadreza; Ashtiani, Shahin J.
2013-11-01
Design of AMOLED pixel circuits has manifold constraints and trade-offs which provides incentive for circuit designers to seek optimal solutions for different objectives. In this article, we present a discussion on the viability of an optimal solution to achieve the maximum hold current. A compact formula for component sizing in a conventional 2T1C pixel is, therefore, derived. Compared to SPICE simulation results, for several pixel sizes, our predicted optimum sizing yields maximum currents with errors less than 0.4%.
Echtermeyer, Alexander; Amar, Yehia; Zakrzewski, Jacek; Lapkin, Alexei
2017-01-01
A recently described C(sp 3 )-H activation reaction to synthesise aziridines was used as a model reaction to demonstrate the methodology of developing a process model using model-based design of experiments (MBDoE) and self-optimisation approaches in flow. The two approaches are compared in terms of experimental efficiency. The self-optimisation approach required the least number of experiments to reach the specified objectives of cost and product yield, whereas the MBDoE approach enabled a rapid generation of a process model.
A Bayesian Alternative for Multi-objective Ecohydrological Model Specification
NASA Astrophysics Data System (ADS)
Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.
2015-12-01
Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
NASA Astrophysics Data System (ADS)
Müller, Ruben; Schütze, Niels
2014-05-01
Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A climate change assessment is performed for climate change scenarios based on the SRES emission scenarios A1B, B1 and A2 for a set of statistically downscaled meteorological data. The future performance of the multi-purpose multi-reservoir system is quantified and possible intensifications of trade-offs between management goals or reservoir utilizations are shown.
Sybil--efficient constraint-based modelling in R.
Gelius-Dietrich, Gabriel; Desouki, Abdelmoneim Amer; Fritzemeier, Claus Jonathan; Lercher, Martin J
2013-11-13
Constraint-based analyses of metabolic networks are widely used to simulate the properties of genome-scale metabolic networks. Publicly available implementations tend to be slow, impeding large scale analyses such as the genome-wide computation of pairwise gene knock-outs, or the automated search for model improvements. Furthermore, available implementations cannot easily be extended or adapted by users. Here, we present sybil, an open source software library for constraint-based analyses in R; R is a free, platform-independent environment for statistical computing and graphics that is widely used in bioinformatics. Among other functions, sybil currently provides efficient methods for flux-balance analysis (FBA), MOMA, and ROOM that are about ten times faster than previous implementations when calculating the effect of whole-genome single gene deletions in silico on a complete E. coli metabolic model. Due to the object-oriented architecture of sybil, users can easily build analysis pipelines in R or even implement their own constraint-based algorithms. Based on its highly efficient communication with different mathematical optimisation programs, sybil facilitates the exploration of high-dimensional optimisation problems on small time scales. Sybil and all its dependencies are open source. Sybil and its documentation are available for download from the comprehensive R archive network (CRAN).
Numerical Propulsion System Simulation Architecture
NASA Technical Reports Server (NTRS)
Naiman, Cynthia G.
2004-01-01
The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
2018-04-17
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
NASA Astrophysics Data System (ADS)
Yadav, Naresh Kumar; Kumar, Mukesh; Gupta, S. K.
2017-03-01
General strategic bidding procedure has been formulated in the literature as a bi-level searching problem, in which the offer curve tends to minimise the market clearing function and to maximise the profit. Computationally, this is complex and hence, the researchers have adopted Karush-Kuhn-Tucker (KKT) optimality conditions to transform the model into a single-level maximisation problem. However, the profit maximisation problem with KKT optimality conditions poses great challenge to the classical optimisation algorithms. The problem has become more complex after the inclusion of transmission constraints. This paper simplifies the profit maximisation problem as a minimisation function, in which the transmission constraints, the operating limits and the ISO market clearing functions are considered with no KKT optimality conditions. The derived function is solved using group search optimiser (GSO), a robust population-based optimisation algorithm. Experimental investigation is carried out on IEEE 14 as well as IEEE 30 bus systems and the performance is compared against differential evolution-based strategic bidding, genetic algorithm-based strategic bidding and particle swarm optimisation-based strategic bidding methods. The simulation results demonstrate that the obtained profit maximisation through GSO-based bidding strategies is higher than the other three methods.
Optimising electron microscopy experiment through electron optics simulation.
Kubo, Y; Gatel, C; Snoeck, E; Houdellier, F
2017-04-01
We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sundaramoorthy, Kumaravel
2017-02-01
The hybrid energy systems (HESs) based electricity generation system has become a more attractive solution for rural electrification nowadays. Economically feasible and technically reliable HESs are solidly based on an optimisation stage. This article discusses about the optimal unit sizing model with the objective function to minimise the total cost of the HES. Three typical rural sites from southern part of India have been selected for the application of the developed optimisation methodology. Feasibility studies and sensitivity analysis on the optimal HES are discussed elaborately in this article. A comparison has been carried out with the Hybrid Optimization Model for Electric Renewable optimisation model for three sites. The optimal HES is found with less total net present rate and rate of energy compared with the existing method
NASA Astrophysics Data System (ADS)
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Heydari, Ali; Balakrishnan, S. N.
2014-12-01
The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
NASA Astrophysics Data System (ADS)
Tabik, S.; Romero, L. F.; Mimica, P.; Plata, O.; Zapata, E. L.
2012-09-01
A broad area in astronomy focuses on simulating extragalactic objects based on Very Long Baseline Interferometry (VLBI) radio-maps. Several algorithms in this scope simulate what would be the observed radio-maps if emitted from a predefined extragalactic object. This work analyzes the performance and scaling of this kind of algorithms on multi-socket, multi-core architectures. In particular, we evaluate a sharing approach, a privatizing approach and a hybrid approach on systems with complex memory hierarchy that includes shared Last Level Cache (LLC). In addition, we investigate which manual processes can be systematized and then automated in future works. The experiments show that the data-privatizing model scales efficiently on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless of algorithmic and scheduling optimizations, the sharing approach is unable to reach acceptable scalability on more than one socket. However, the hybrid model with a specific level of data-sharing provides the best scalability over all used multi-socket, multi-core systems.
N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv
2012-01-01
Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.
NASA Astrophysics Data System (ADS)
Liu, Z.; Li, Y.
2018-04-01
This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.
Optimisation of the hybrid renewable energy system by HOMER, PSO and CPSO for the study area
NASA Astrophysics Data System (ADS)
Khare, Vikas; Nema, Savita; Baredar, Prashant
2017-04-01
This study is based on simulation and optimisation of the renewable energy system of the police control room at Sagar in central India. To analyse this hybrid system, the meteorological data of solar insolation and hourly wind speeds of Sagar in central India (longitude 78°45‧ and latitude 23°50‧) have been considered. The pattern of load consumption is studied and suitably modelled for optimisation of the hybrid energy system using HOMER software. The results are compared with those of the particle swarm optimisation and the chaotic particle swarm optimisation algorithms. The use of these two algorithms to optimise the hybrid system leads to a higher quality result with faster convergence. Based on the optimisation result, it has been found that replacing conventional energy sources by the solar-wind hybrid renewable energy system will be a feasible solution for the distribution of electric power as a stand-alone application at the police control room. This system is more environmentally friendly than the conventional diesel generator. The fuel cost reduction is approximately 70-80% more than that of the conventional diesel generator.
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
NASA Astrophysics Data System (ADS)
Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang
2018-04-01
This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.
Optimisation of sensing time and transmission time in cognitive radio-based smart grid networks
NASA Astrophysics Data System (ADS)
Yang, Chao; Fu, Yuli; Yang, Junjie
2016-07-01
Cognitive radio (CR)-based smart grid (SG) networks have been widely recognised as emerging communication paradigms in power grids. However, a sufficient spectrum resource and reliability are two major challenges for real-time applications in CR-based SG networks. In this article, we study the traffic data collection problem. Based on the two-stage power pricing model, the power price is associated with the efficient received traffic data in a metre data management system (MDMS). In order to minimise the system power price, a wideband hybrid access strategy is proposed and analysed, to share the spectrum between the SG nodes and CR networks. The sensing time and transmission time are jointly optimised, while both the interference to primary users and the spectrum opportunity loss of secondary users are considered. Two algorithms are proposed to solve the joint optimisation problem. Simulation results show that the proposed joint optimisation algorithms outperform the fixed parameters (sensing time and transmission time) algorithms, and the power cost is reduced efficiently.
Simulation studies promote technological development of radiofrequency phased array hyperthermia.
Wust, P; Seebass, M; Nadobny, J; Deuflhard, P; Mönich, G; Felix, R
1996-01-01
A treatment planning program package for radiofrequency hyperthermia has been developed. It consists of software modules for processing three-dimensional computerized tomography (CT) data sets, manual segmentation, generation of tetrahedral grids, numerical calculation and optimisation of three-dimensional E field distributions using a volume surface integral equation algorithm as well as temperature distributions using an adaptive multilevel finite-elements code, and graphical tools for simultaneous representation of CT data and simulation results. Heat treatments are limited by hot spots in healthy tissues caused by E field maxima at electrical interfaces (bone/muscle). In order to reduce or avoid hot spots suitable objective functions are derived from power deposition patterns and temperature distributions, and are utilised to optimise antenna parameters (phases, amplitudes). The simulation and optimisation tools have been applied to estimate the improvements that could be reached by upgrades of the clinically used SIGMA-60 applicator (consisting of a single ring of four antenna pairs). The investigated upgrades are increased number of antennas and channels (triple-ring of 3 x 8 antennas and variation of antenna inclination. Significant improvement of index temperatures (1-2 degrees C) is achieved by upgrading the single ring to a triple ring with free phase selection for every antenna or antenna pair. Antenna amplitudes and inclinations proved as less important parameters.
Distributed convex optimisation with event-triggered communication in networked systems
NASA Astrophysics Data System (ADS)
Liu, Jiayun; Chen, Weisheng
2016-12-01
This paper studies the distributed convex optimisation problem over directed networks. Motivated by practical considerations, we propose a novel distributed zero-gradient-sum optimisation algorithm with event-triggered communication. Therefore, communication and control updates just occur at discrete instants when some predefined condition satisfies. Thus, compared with the time-driven distributed optimisation algorithms, the proposed algorithm has the advantages of less energy consumption and less communication cost. Based on Lyapunov approaches, we show that the proposed algorithm makes the system states asymptotically converge to the solution of the problem exponentially fast and the Zeno behaviour is excluded. Finally, simulation example is given to illustrate the effectiveness of the proposed algorithm.
The C20C+ Detection and Attribution Project
NASA Astrophysics Data System (ADS)
Stone, D. A.; Angélil, O. M.; Cholia, S.; Christidis, N.; Dittus, A. J.; Folland, C. K.; King, A.; Kinter, J. L.; Krishnan, H.; Min, S. K.; Shiogama, H.; Wehner, M. F.; Wolski, P.
2015-12-01
Over the past decade there has been a remarkable growth in interest concerning the effects of anthropogenic emissions on extreme weather. However, research has been constrained by the lack of a public climate-model-based data product optimised for investigation of extreme weather in the context of climate change, relying instead on products designed for other purposes or on bespoke simulations designed for the particular study and not generally applicable to other extremes. The international Climate of the 20th Century Plus (C20C+) Detection and Attribution Project is filling this gap by producing the first large ensemble, multi-model, multi-year, and multi-scenario historical climate data product, specifically designed for resolving variations in the occurrence and characteristics of extreme weather from year to year and their differences from what might have been in the absence of anthropogenic emissions. Updates on project status and tens of terabytes of simulation output are available at http://portal.nersc.gov/c20c.Here we describe the experimental design of the first phase of the project, conducted with six atmospheric climate models, and discuss its various strengths and weaknesses with respect to various types of extreme weather. We also present analyses of the relative importance of climate model, estimate of anthropogenic ocean warming, spatial and temporal scale, and aspects of experimental design on estimates of how much emissions have affected extreme weather.
A Dynamic Finite Element Method for Simulating the Physics of Faults Systems
NASA Astrophysics Data System (ADS)
Saez, E.; Mora, P.; Gross, L.; Weatherley, D.
2004-12-01
We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.
A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.
Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien
2017-01-01
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
On the use of PGD for optimal control applied to automated fibre placement
NASA Astrophysics Data System (ADS)
Bur, N.; Joyot, P.
2017-10-01
Automated Fibre Placement (AFP) is an incipient manufacturing process for composite structures. Despite its concep-tual simplicity it involves many complexities related to the necessity of melting the thermoplastic at the interface tape-substrate, ensuring the consolidation that needs the diffusion of molecules and control the residual stresses installation responsible of the residual deformations of the formed parts. The optimisation of the process and the determination of the process window cannot be achieved in a traditional way since it requires a plethora of trials/errors or numerical simulations, because there are many parameters involved in the characterisation of the material and the process. Using reduced order modelling such as the so called Proper Generalised Decomposition method, allows the construction of multi-parametric solution taking into account many parameters. This leads to virtual charts that can be explored on-line in real time in order to perform process optimisation or on-line simulation-based control. Thus, for a given set of parameters, determining the power leading to an optimal temperature becomes easy. However, instead of controlling the power knowing the temperature field by particularizing an abacus, we propose here an approach based on optimal control: we solve by PGD a dual problem from heat equation and optimality criteria. To circumvent numerical issue due to ill-conditioned system, we propose an algorithm based on Uzawa's method. That way, we are able to solve the dual problem, setting the desired state as an extra-coordinate in the PGD framework. In a single computation, we get both the temperature field and the required heat flux to reach a parametric optimal temperature on a given zone.
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-01-01
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-12-04
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.
A methodology for the optimisation of a mm-wave scanner
NASA Astrophysics Data System (ADS)
Stec, L. Zoë; Podd, Frank J. W.; Peyton, Anthony J.
2016-10-01
The need to detect non-metallic items under clothes to prevent terrorism at transport hubs is becoming vital. Millimetre wave technology is able to penetrate clothing, yet able to interact with objects concealed underneath. This paper considers active illumination using multiple transmitter and receiver antennas. The positioning of these antennas must achieve full body coverage, whilst minimising the number of antenna elements and the number of required measurements. It sets out a rapid simulation methodology, based on the Kirchhoff equations, to explore different scenarios for scanner architecture optimisation. The paper assumes that the electromagnetic waves used are at lower frequencies (say, 10-30 GHz) where the body temperature does not need to be considered. This range allows better penetration of clothing than higher frequencies, yet still provides adequate resolution. Since passengers vary greatly in shape and size, the system needs to be able to work well with a range of body morphologies. Thus we have used two very differently shaped avatars to test the portal simulations. This simulation tool allows many different avatars to be generated quickly. Findings from these simulations indicated that the dimensions of the avatar did indeed have an effect on the pattern of illumination, and that the data for each antenna pair can easily be combined to compare different antenna geometries for a given portal architecture, resulting in useful insights into antenna placement. The data generated could be analysed both quantitatively and qualitatively, at various levels of scale.
The seasonal behaviour of carbon fluxes in the Amazon: fusion of FLUXNET data and the ORCHIDEE model
NASA Astrophysics Data System (ADS)
Verbeeck, H.; Peylin, P.; Bacour, C.; Ciais, P.
2009-04-01
Eddy covariance measurements at the Santarém (km 67) site revealed an unexpected seasonal pattern in carbon fluxes which could not be simulated by existing state-of-the-art global ecosystem models (Saleska et al., Sciece 2003). An unexpected high carbon uptake was measured during dry season. In contrast, carbon release was observed in the wet season. There are several possible (combined) underlying mechanisms of this phenomenon: (1) an increased soil respiration due to soil moisture in the wet season, (2) increased photosynthesis during the dry season due to deep rooting, hydraulic lift, increased radiation and/or a leaf flush. The objective of this study is to optimise the ORCHIDEE model using eddy covariance data in order to be able to mimic the seasonal response of carbon fluxes to dry/wet conditions in tropical forest ecosystems. By doing this, we try to identify the underlying mechanisms of this seasonal response. The ORCHIDEE model is a state of the art mechanistic global vegetation model that can be run at local or global scale. It calculates the carbon and water cycle in the different soil and vegetation pools and resolves the diurnal cycle of fluxes. ORCHIDEE is built on the concept of plant functional types (PFT) to describe vegetation. To bring the different carbon pool sizes to realistic values, spin-up runs are used. ORCHIDEE uses climate variables as drivers together with a number of ecosystem parameters that have been assessed from laboratory and in situ experiments. These parameters are still associated with a large uncertainty and may vary between and within PFTs in a way that is currently not informed or captured by the model. Recently, the development of assimilation techniques allows the objective use of eddy covariance data to improve our knowledge of these parameters in a statistically coherent approach. We use a Bayesian optimisation approach. This approach is based on the minimization of a cost function containing the mismatch between simulated model output and observations as well as the mismatch between a priori and optimized parameters. The parameters can be optimized on different time scales (annually, monthly, daily). For this study the model is optimised at local scale for 5 eddy flux sites: 4 sites in Brazil and one in French Guyana. The seasonal behaviour of C fluxes in response to wet and dry conditions differs among these sites. Key processes that are optimised include: the effect of the soil water on heterotrophic soil respiration, the effect of soil water availability on stomatal conductance and photosynthesis, and phenology. By optimising several key parameters we could improve the simulation of the seasonal pattern of NEE significantly. Nevertheless, posterior parameters should be interpreted with care, because resulting parameter values might compensate for uncertainties on the model structure or other parameters. Moreover, several critical issues appeared during this study e.g. how to assimilate latent and sensible heat data, when the energy balance is not closed in the data? Optimisation of the Q10 parameter showed that on some sites respiration was not sensitive at all to temperature, which show only small variations in this region. Considering this, one could question the reliability of the partitioned fluxes (GPP/Reco) at these sites. This study also tests if there is coherence between optimised parameter values of different sites within the tropical forest PFT and if the forward model response to climate variations is similar between sites.
NASA Astrophysics Data System (ADS)
Dağlarli, Evren; Temeltaş, Hakan
2007-04-01
This paper presents artificial emotional system based autonomous robot control architecture. Hidden Markov model developed as mathematical background for stochastic emotional and behavior transitions. Motivation module of architecture considered as behavioral gain effect generator for achieving multi-objective robot tasks. According to emotional and behavioral state transition probabilities, artificial emotions determine sequences of behaviors. Also motivational gain effects of proposed architecture can be observed on the executing behaviors during simulation.
Dshell++: A Component Based, Reusable Space System Simulation Framework
NASA Technical Reports Server (NTRS)
Lim, Christopher S.; Jain, Abhinandan
2009-01-01
This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.
Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes
NASA Astrophysics Data System (ADS)
Sheer, D. P.
2008-12-01
For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints, and short term objectives) as well. In the models operating rules represent different models of human behavior, and the objective of the modeling is to find rules for human behavior that perform well in terms of long term human objectives. The conceptual model used to represent human behavior incorporates economic multi-objective optimization for surrogate objectives, and rules that set those objectives based on current conditions and accounting for uncertainty, at least implicitly. The author asserts that real world operating rules follow this form and have evolved because they have been perceived as successful in the past. Thus, the modeling efforts focus on human behavior in much the same way that economic models focus on human behavior. This paper illustrates the above concepts with real world examples.
Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system.
Curto, Sergio; Prakash, Punit
2015-01-01
Currently available microwave hyperthermia systems for breast cancer treatment do not conform to the intact breast and provide limited control of heating patterns, thereby hindering an effective treatment. A compact patch antenna with a flared groundplane that may be integrated within a wearable hyperthermia system for the treatment of the intact breast disease is proposed. A 3D simulation-based approach was employed to optimise the antenna design with the objective of maximising the hyperthermia treatment volume (41 °C iso-therm) while maintaining good impedance matching. The optimised antenna design was fabricated and experimentally evaluated with ex vivo tissue measurements. The optimised compact antenna yielded a -10 dB bandwidth of 90 MHz centred at 915 MHz, and was capable of creating hyperthermia treatment volumes up to 14.4 cm(3) (31 mm × 28 mm × 32 mm) with an input power of 15 W. Experimentally measured reflection coefficient and transient temperature profiles were in good agreement with simulated profiles. Variations of + 50% in blood perfusion yielded variations in the treatment volume up to 11.5%. When compared to an antenna with a similar patch element employing a conventional rectangular groundplane, the antenna with flared groundplane afforded 22.3% reduction in required power levels to reach the same temperature, and yielded 2.4 times larger treatment volumes. The proposed patch antenna with a flared groundplane may be integrated within a wearable applicator for hyperthermia treatment of intact breast targets and has the potential to improve efficiency, increase patient comfort, and ultimately clinical outcomes.
NASA Astrophysics Data System (ADS)
Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.
2015-05-01
Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.
NASA Astrophysics Data System (ADS)
Alberding, Matthäus B.; Tjønnås, Johannes; Johansen, Tor A.
2014-12-01
This work presents an approach to rollover prevention that takes advantage of the modular structure and optimisation properties of the control allocation paradigm. It eliminates the need for a stabilising roll controller by introducing rollover prevention as a constraint on the control allocation problem. The major advantage of this approach is the control authority margin that remains with a high-level controller even during interventions for rollover prevention. In this work, the high-level control is assigned to a yaw stabilising controller. It could be replaced by any other controller. The constraint for rollover prevention could be replaced by or extended to different control objectives. This work uses differential braking for actuation. The use of additional or different actuators is possible. The developed control algorithm is computationally efficient and suitable for low-cost automotive electronic control units. The predictive design of the rollover prevention constraint does not require any sensor equipment in addition to the yaw controller. The method is validated using an industrial multi-body vehicle simulation environment.
Multi-Tasking Non-Destructive Laser Technology in Conservation Diagnostic Procedures
NASA Astrophysics Data System (ADS)
Tornari, V.; Tsiranidou, E.; Orphanos, Y.; Falldorf, C.; Klattenhof, R.; Esposito, E.; Agnani, A.; Dabu, R.; Stratan, A.; Anastassopoulos, A.; Schipper, D.; Hasperhoven, J.; Stefanaggi, M.; Bonnici, H.; Ursu, D.
Laser metrology provides techniques that have been successfully applied in industrial structural diagnostic fields but have not yet been refined and optimised for the special investigative requirements found in cultural heritage applications. A major impediment is the partial applicability of various optical coherent techniques, each one narrowing its use down to a specific application. This characteristic is not well suited for a field that encounters a great variety of diagnostic problems ranging from movable, multiple-composition museum objects, to immovable multi-layered wall paintings, statues and wood carvings, to monumental constructions and outdoor cultural heritage sites. Various diagnostic techniques have been suggested and are uniquely suited for each of the mentioned problems but it is this fragmented suitability that obstructs the technology transfer. Since optical coherent techniques for metrology are based on fundamental principles and take advantage of similar procedures for generation of informative signals for data collection, then the imposed limits elevate our aim to identify complementary capabilities to accomplish the needed functionality.
A Bayesian Approach for Sensor Optimisation in Impact Identification
Mallardo, Vincenzo; Sharif Khodaei, Zahra; Aliabadi, Ferri M. H.
2016-01-01
This paper presents a Bayesian approach for optimizing the position of sensors aimed at impact identification in composite structures under operational conditions. The uncertainty in the sensor data has been represented by statistical distributions of the recorded signals. An optimisation strategy based on the genetic algorithm is proposed to find the best sensor combination aimed at locating impacts on composite structures. A Bayesian-based objective function is adopted in the optimisation procedure as an indicator of the performance of meta-models developed for different sensor combinations to locate various impact events. To represent a real structure under operational load and to increase the reliability of the Structural Health Monitoring (SHM) system, the probability of malfunctioning sensors is included in the optimisation. The reliability and the robustness of the procedure is tested with experimental and numerical examples. Finally, the proposed optimisation algorithm is applied to a composite stiffened panel for both the uniform and non-uniform probability of impact occurrence. PMID:28774064
Digital fabrication of multi-material biomedical objects.
Cheung, H H; Choi, S H
2009-12-01
This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.
A Bayesian alternative for multi-objective ecohydrological model specification
NASA Astrophysics Data System (ADS)
Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori
2018-01-01
Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.
NASA Astrophysics Data System (ADS)
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
Thermal buckling optimisation of composite plates using firefly algorithm
NASA Astrophysics Data System (ADS)
Kamarian, S.; Shakeri, M.; Yas, M. H.
2017-07-01
Composite plates play a very important role in engineering applications, especially in aerospace industry. Thermal buckling of such components is of great importance and must be known to achieve an appropriate design. This paper deals with stacking sequence optimisation of laminated composite plates for maximising the critical buckling temperature using a powerful meta-heuristic algorithm called firefly algorithm (FA) which is based on the flashing behaviour of fireflies. The main objective of present work was to show the ability of FA in optimisation of composite structures. The performance of FA is compared with the results reported in the previous published works using other algorithms which shows the efficiency of FA in stacking sequence optimisation of laminated composite structures.
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
ERIC Educational Resources Information Center
Redshaw, Clare H; Frampton, Ian
2014-01-01
As the value of multi-disciplinary working in the business and research worlds is becoming more recognised, the number of inter-disciplinary postgraduate environmental and health sciences courses is also increasing. Equally, the popularity of problem-based learning (PBL) is expected to grow and influence instructional approaches in many…
A novel global Harmony Search method based on Ant Colony Optimisation algorithm
NASA Astrophysics Data System (ADS)
Fouad, Allouani; Boukhetala, Djamel; Boudjema, Fares; Zenger, Kai; Gao, Xiao-Zhi
2016-03-01
The Global-best Harmony Search (GHS) is a stochastic optimisation algorithm recently developed, which hybridises the Harmony Search (HS) method with the concept of swarm intelligence in the particle swarm optimisation (PSO) to enhance its performance. In this article, a new optimisation algorithm called GHSACO is developed by incorporating the GHS with the Ant Colony Optimisation algorithm (ACO). Our method introduces a novel improvisation process, which is different from that of the GHS in the following aspects. (i) A modified harmony memory (HM) representation and conception. (ii) The use of a global random switching mechanism to monitor the choice between the ACO and GHS. (iii) An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism. The proposed GHSACO algorithm has been applied to various benchmark functions and constrained optimisation problems. Simulation results demonstrate that it can find significantly better solutions when compared with the original HS and some of its variants.
An Evolutionary Optimization of the Refueling Simulation for a CANDU Reactor
NASA Astrophysics Data System (ADS)
Do, Q. B.; Choi, H.; Roh, G. H.
2006-10-01
This paper presents a multi-cycle and multi-objective optimization method for the refueling simulation of a 713 MWe Canada deuterium uranium (CANDU-6) reactor based on a genetic algorithm, an elitism strategy and a heuristic rule. The proposed algorithm searches for the optimal refueling patterns for a single cycle that maximizes the average discharge burnup, minimizes the maximum channel power and minimizes the change in the zone controller unit water fills while satisfying the most important safety-related neutronic parameters of the reactor core. The heuristic rule generates an initial population of individuals very close to a feasible solution and it reduces the computing time of the optimization process. The multi-cycle optimization is carried out based on a single cycle refueling simulation. The proposed approach was verified by a refueling simulation of a natural uranium CANDU-6 reactor for an operation period of 6 months at an equilibrium state and compared with the experience-based automatic refueling simulation and the generalized perturbation theory. The comparison has shown that the simulation results are consistent from each other and the proposed approach is a reasonable optimization method of the refueling simulation that controls all the safety-related parameters of the reactor core during the simulation
NASA Astrophysics Data System (ADS)
Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.
2017-09-01
The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.
NASA Astrophysics Data System (ADS)
Wang, Ping; Wu, Guangqiang
2013-03-01
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
Treatment planning optimisation in proton therapy
McGowan, S E; Burnet, N G; Lomax, A J
2013-01-01
ABSTRACT. The goal of radiotherapy is to achieve uniform target coverage while sparing normal tissue. In proton therapy, the same sources of geometric uncertainty are present as in conventional radiotherapy. However, an important and fundamental difference in proton therapy is that protons have a finite range, highly dependent on the electron density of the material they are traversing, resulting in a steep dose gradient at the distal edge of the Bragg peak. Therefore, an accurate knowledge of the sources and magnitudes of the uncertainties affecting the proton range is essential for producing plans which are robust to these uncertainties. This review describes the current knowledge of the geometric uncertainties and discusses their impact on proton dose plans. The need for patient-specific validation is essential and in cases of complex intensity-modulated proton therapy plans the use of a planning target volume (PTV) may fail to ensure coverage of the target. In cases where a PTV cannot be used, other methods of quantifying plan quality have been investigated. A promising option is to incorporate uncertainties directly into the optimisation algorithm. A further development is the inclusion of robustness into a multicriteria optimisation framework, allowing a multi-objective Pareto optimisation function to balance robustness and conformity. The question remains as to whether adaptive therapy can become an integral part of a proton therapy, to allow re-optimisation during the course of a patient's treatment. The challenge of ensuring that plans are robust to range uncertainties in proton therapy remains, although these methods can provide practical solutions. PMID:23255545
Genetic algorithm-based improved DOA estimation using fourth-order cumulants
NASA Astrophysics Data System (ADS)
Ahmed, Ammar; Tufail, Muhammad
2017-05-01
Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.
Optimisation of Healthcare Contracts: Tensions Between Standardisation and Innovation
Mikkers, Misja; Ryan, Padhraig
2016-01-01
An important determinant of health system performance is contracting. Providers often respond to financial incentives, despite the ethical underpinnings of medicine, and payers can craft contracts to influence performance. Yet contracting is highly imperfect in both single-payer and multi-payer health systems. Arguably, in a competitive, multi-payer environment, contractual innovation may occur more rapidly than in a single-payer system. This innovation in contract design could enhance performance. However, contractual innovation often fails to improve performance as payer incentives are misaligned with public policy objectives. Numerous countries seek to improve healthcare contracts, but thus far no health system has demonstrably crafted the necessary blend of incentives to stimulate optimal contracting. PMID:26927400
Use of a genetic algorithm to improve the rail profile on Stockholm underground
NASA Astrophysics Data System (ADS)
Persson, Ingemar; Nilsson, Rickard; Bik, Ulf; Lundgren, Magnus; Iwnicki, Simon
2010-12-01
In this paper, a genetic algorithm optimisation method has been used to develop an improved rail profile for Stockholm underground. An inverted penalty index based on a number of key performance parameters was generated as a fitness function and vehicle dynamics simulations were carried out with the multibody simulation package Gensys. The effectiveness of each profile produced by the genetic algorithm was assessed using the roulette wheel method. The method has been applied to the rail profile on the Stockholm underground, where problems with rolling contact fatigue on wheels and rails are currently managed by grinding. From a starting point of the original BV50 and the UIC60 rail profiles, an optimised rail profile with some shoulder relief has been produced. The optimised profile seems similar to measured rail profiles on the Stockholm underground network and although initial grinding is required, maintenance of the profile will probably not require further grinding.
A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning
NASA Astrophysics Data System (ADS)
Basdekas, L.; Stewart, N.; Triana, E.
2013-12-01
Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU evaluate tradeoffs in a continually changing world.
Application of multi-objective nonlinear optimization technique for coordinated ramp-metering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick, E-mail: abib.haj-salem@ifsttar.fr, E-mail: nadir.frahi@ifsttar.fr, E-mail: jean-patrick.lebacque@ifsttar.fr
2015-03-10
This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.
Dupont, Danielle; Beresniak, Ariel; Sundgren, Mats; Schmidt, Andreas; Ainsworth, John; Coorevits, Pascal; Kalra, Dipak; Dewispelaere, Marc; De Moor, Georges
2017-01-01
The Electronic Health Records for Clinical Research (EHR4CR) technological platform has been developed to enable the trustworthy reuse of hospital electronic health records data for clinical research. The EHR4CR platform can enhance and speed up clinical research scenarios: protocol feasibility assessment, patient identification for recruitment in clinical trials, and clinical data exchange, including for reporting serious adverse events. Our objective was to seed a multi-stakeholder ecosystem to enable the scalable exploitation of the EHR4CR platform in Europe, and to assess its economic sustainability. Market analyses were conducted by a multidisciplinary task force to define an EHR4CR emerging ecosystem and multi-stakeholder value chain. This involved mapping stakeholder groups and defining their unmet needs, incentives, potential barriers for adopting innovative solutions, roles and interdependencies. A comprehensive business model, value propositions, and sustainability strategies were developed accordingly. Using simulation modelling (including Monte Carlo simulations) and a 5-year horizon, the potential financial outcomes of the business model were forecasted from the perspective of an EHR4CR service provider. A business ecosystem was defined to leverage the EHR4CR multi-stakeholder value chain. Value propositions were developed describing the expected benefits of EHR4CR solutions for all stakeholders. From an EHR4CR service provider's viewpoint, the business model simulation estimated that a profitability ratio of up to 1.8 could be achieved at year 1, with potential for growth in subsequent years depending on projected market uptake. By enhancing and speeding up existing processes, EHR4CR solutions promise to transform the clinical research landscape. The ecosystem defined provides the organisational framework for optimising the value and benefits for all stakeholders involved, in a sustainable manner. Our study suggests that the exploitation of EHR4CR solutions appears profitable and sustainable in Europe, with a growth potential depending on the rates of market and hospital adoption. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima
2013-01-01
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm. PMID:23737718
Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.
Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima
2013-01-01
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.
Prior knowledge guided active modules identification: an integrated multi-objective approach.
Chen, Weiqi; Liu, Jing; He, Shan
2017-03-14
Active module, defined as an area in biological network that shows striking changes in molecular activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated with cellular or disease states. A prior information guided active module identification approach is proposed to detect modules that are both active and enriched by prior knowledge. We formulate the active module identification problem as a multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage of known biological pathways and the activity of the active module simultaneously. Network is constructed from protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to ensure the connectedness of the identified active modules. Application of proposed algorithm on a small yeast molecular network shows that it can identify modules with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions generated by the algorithm provides solutions with different trade-off between prior knowledge and novel information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene ontology analysis is applied to the identified modules for biological interpretation. Integrating knowledge of functional groups into the identification of active module is an effective method and provides a flexible control of balance between pure data-driven method and prior information guidance.
An object-relational model for structured representation of medical knowledge.
Koch, S; Risch, T; Schneider, W; Wagner, I V
2006-07-01
Domain specific knowledge is often not static but continuously evolving. This is especially true for the medical domain. Furthermore, the lack of standardized structures for presenting knowledge makes it difficult or often impossible to assess new knowledge in the context of existing knowledge. Possibilities to compare knowledge easily and directly are often not given. It is therefore of utmost importance to create a model that allows for comparability, consistency and quality assurance of medical knowledge in specific work situations. For this purpose, we have designed on object-relational model based on structured knowledge elements that are dynamically reusable by different multi-media-based tools for case-based documentation, disease course simulation, and decision support. With this model, high-level components, such as patient case reports or simulations of the course of a disease, and low-level components (e.g., diagnoses, symptoms or treatments) as well as the relationships between these components are modeled. The resulting schema has been implemented in AMOS II, on object-relational multi-database system supporting different views with regard to search and analysis depending on different work situations.
Selecting a climate model subset to optimise key ensemble properties
NASA Astrophysics Data System (ADS)
Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.
2018-02-01
End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
NASA Astrophysics Data System (ADS)
Xiao, Yan; Li, Yaoyu; Rotea, Mario A.
2016-09-01
The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca
2014-05-01
The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower production and flood control, is used as a case study. Preliminary results show that the RBF policy parametrization is more effective than the ANN one. In particular, the approximated Pareto front obtained with RBF control policies successfully explores the full tradeoff space between the two conflicting objectives, while most of the ANN solutions results to be Pareto-dominated by the RBF ones.
2011-02-07
Sensor UGVs (SUGV) or Disruptor UGVs, depending on their payload. The SUGVs included vision, GPS/IMU, and LIDAR systems for identifying and tracking...employed by all the MAGICian research groups. Objects of interest were tracked using standard LIDAR and Computer Vision template-based feature...tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous Locali- zation and Mapping ( SLAM ). Our system contains
Synthesis of concentric circular antenna arrays using dragonfly algorithm
NASA Astrophysics Data System (ADS)
Babayigit, B.
2018-05-01
Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.
NASA Astrophysics Data System (ADS)
Trindade, B. C.; Reed, P. M.
2017-12-01
The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.
Fish swarm intelligent to optimize real time monitoring of chips drying using machine vision
NASA Astrophysics Data System (ADS)
Hendrawan, Y.; Hawa, L. C.; Damayanti, R.
2018-03-01
This study attempted to apply machine vision-based chips drying monitoring system which is able to optimise the drying process of cassava chips. The objective of this study is to propose fish swarm intelligent (FSI) optimization algorithms to find the most significant set of image features suitable for predicting water content of cassava chips during drying process using artificial neural network model (ANN). Feature selection entails choosing the feature subset that maximizes the prediction accuracy of ANN. Multi-Objective Optimization (MOO) was used in this study which consisted of prediction accuracy maximization and feature-subset size minimization. The results showed that the best feature subset i.e. grey mean, L(Lab) Mean, a(Lab) energy, red entropy, hue contrast, and grey homogeneity. The best feature subset has been tested successfully in ANN model to describe the relationship between image features and water content of cassava chips during drying process with R2 of real and predicted data was equal to 0.9.
Control allocation-based adaptive control for greenhouse climate
NASA Astrophysics Data System (ADS)
Su, Yuanping; Xu, Lihong; Goodman, Erik D.
2018-04-01
This paper presents an adaptive approach to greenhouse climate control, as part of an integrated control and management system for greenhouse production. In this approach, an adaptive control algorithm is first derived to guarantee the asymptotic convergence of the closed system with uncertainty, then using that control algorithm, a controller is designed to satisfy the demands for heat and mass fluxes to maintain inside temperature, humidity and CO2 concentration at their desired values. Instead of applying the original adaptive control inputs directly, second, a control allocation technique is applied to distribute the demands of the heat and mass fluxes to the actuators by minimising tracking errors and energy consumption. To find an energy-saving solution, both single-objective optimisation (SOO) and multiobjective optimisation (MOO) in the control allocation structure are considered. The advantage of the proposed approach is that it does not require any a priori knowledge of the uncertainty bounds, and the simulation results illustrate the effectiveness of the proposed control scheme. It also indicates that MOO saves more energy in the control process.
Translating the Simulation of Procedural Drilling Techniques for Interactive Neurosurgical Training
Stredney, Don; Rezai, Ali R.; Prevedello, Daniel M.; Elder, J. Bradley; Kerwin, Thomas; Hittle, Bradley; Wiet, Gregory J.
2014-01-01
Background Through previous and concurrent efforts, we have developed a fully virtual environment to provide procedural training of otologic surgical technique. The virtual environment is based on high-resolution volumetric data of the regional anatomy. This volumetric data helps drive an interactive multi-sensory, i.e., visual (stereo), aural (stereo), and tactile simulation environment. Subsequently, we have extended our efforts to support the training of neurosurgical procedural technique as part of the CNS simulation initiative. Objective The goal of this multi-level development is to deliberately study the integration of simulation technologies into the neurosurgical curriculum and to determine their efficacy in teaching minimally invasive cranial and skull base approaches. Methods We discuss issues of biofidelity as well as our methods to provide objective, quantitative automated assessment for the residents. Results We conclude with a discussion of our experiences by reporting on preliminary formative pilot studies and proposed approaches to take the simulation to the next level through additional validation studies. Conclusion We have presented our efforts to translate an otologic simulation environment for use in the neurosurgical curriculum. We have demonstrated the initial proof of principles and define the steps to integrate and validate the system as an adjuvant to the neurosurgical curriculum. PMID:24051887
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
Pichardo, Samuel; Köhler, Max; Lee, Justin; Hynnyen, Kullervo
2014-12-01
In this in vivo study, the feasibility to perform hyperthermia treatments in the head and neck using magnetic resonance image-guided high intensity focused ultrasound (MRgHIFU) was established using a porcine acute model. Porcine specimens with a weight between 17 and 18 kg were treated in the omohyoid muscle in the neck. Hyperthermia was applied with a target temperature of 41 °C for 30 min using a Sonalleve MRgHIFU system. MR-based thermometry was calculated using water-proton resonance frequency shift and multi-baseline look-up tables indexed by peak-to-peak displacement (Dpp) measurements using a pencil-beam navigator. Three hyperthermia experiments were conducted at different Dpp values of 0.2, 1.0 and 3.0 mm. An optimisation study was carried out to establish the optimal parameters controlling the multi-baseline method that ensured a minimisation of spatial-average peak-to-peak temperature (TSA-pp) and temperature direct current bias (TSA-DC). The multi-baseline technique reduced considerably the noise on both TSA-pp and TSA-DC. The reduction of noise was more important when Dpp was higher. For Dpp = 3 mm the average (±standard deviation (SD)) of TSA-pp and TSA-DC was reduced from 4.5 (± 2.5) and 2.5 (±0.6) °C, respectively, to 0.8 (± 0.7) and 0.09 (± 0.2) °C. This in vivo study showed the level of noise in PRFS-based thermometry introduced by respiratory motion in the context of MRgHIFU hyperthermia treatment for head and neck and the feasibility of reducing this noise using a multi-baseline technique.
NASA Astrophysics Data System (ADS)
Joseph, R.; Courbin, F.; Starck, J.-L.
2016-05-01
We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Xiao, Fuyuan; Aritsugi, Masayoshi; Wang, Qing; Zhang, Rong
2016-09-01
For efficient and sophisticated analysis of complex event patterns that appear in streams of big data from health care information systems and support for decision-making, a triaxial hierarchical model is proposed in this paper. Our triaxial hierarchical model is developed by focusing on hierarchies among nested event pattern queries with an event concept hierarchy, thereby allowing us to identify the relationships among the expressions and sub-expressions of the queries extensively. We devise a cost-based heuristic by means of the triaxial hierarchical model to find an optimised query execution plan in terms of the costs of both the operators and the communications between them. According to the triaxial hierarchical model, we can also calculate how to reuse the results of the common sub-expressions in multiple queries. By integrating the optimised query execution plan with the reuse schemes, a multi-query optimisation strategy is developed to accomplish efficient processing of multiple nested event pattern queries. We present empirical studies in which the performance of multi-query optimisation strategy was examined under various stream input rates and workloads. Specifically, the workloads of pattern queries can be used for supporting monitoring patients' conditions. On the other hand, experiments with varying input rates of streams can correspond to changes of the numbers of patients that a system should manage, whereas burst input rates can correspond to changes of rushes of patients to be taken care of. The experimental results have shown that, in Workload 1, our proposal can improve about 4 and 2 times throughput comparing with the relative works, respectively; in Workload 2, our proposal can improve about 3 and 2 times throughput comparing with the relative works, respectively; in Workload 3, our proposal can improve about 6 times throughput comparing with the relative work. The experimental results demonstrated that our proposal was able to process complex queries efficiently which can support health information systems and further decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.
2018-01-01
The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Multi-metric calibration of hydrological model to capture overall flow regimes
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian
2016-08-01
Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.
Post Pareto optimization-A case
NASA Astrophysics Data System (ADS)
Popov, Stoyan; Baeva, Silvia; Marinova, Daniela
2017-12-01
Simulation performance may be evaluated according to multiple quality measures that are in competition and their simultaneous consideration poses a conflict. In the current study we propose a practical framework for investigating such simulation performance criteria, exploring the inherent conflicts amongst them and identifying the best available tradeoffs, based upon multi-objective Pareto optimization. This approach necessitates the rigorous derivation of performance criteria to serve as objective functions and undergo vector optimization. We demonstrate the effectiveness of our proposed approach by applying it with multiple stochastic quality measures. We formulate performance criteria of this use-case, pose an optimization problem, and solve it by means of a simulation-based Pareto approach. Upon attainment of the underlying Pareto Frontier, we analyze it and prescribe preference-dependent configurations for the optimal simulation training.
NASA Astrophysics Data System (ADS)
Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng
2018-04-01
It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.
Undermining and Strengthening Social Networks through Network Modification
Mellon, Jonathan; Yoder, Jordan; Evans, Daniel
2016-01-01
Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention. PMID:27703198
Undermining and Strengthening Social Networks through Network Modification.
Mellon, Jonathan; Yoder, Jordan; Evans, Daniel
2016-10-05
Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.
Undermining and Strengthening Social Networks through Network Modification
NASA Astrophysics Data System (ADS)
Mellon, Jonathan; Yoder, Jordan; Evans, Daniel
2016-10-01
Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.
Optimisation of SIW bandpass filter with wide and sharp stopband using space mapping
NASA Astrophysics Data System (ADS)
Xu, Juan; Bi, Jun Jian; Li, Zhao Long; Chen, Ru shan
2016-12-01
This work presents a substrate integrated waveguide (SIW) bandpass filter with wide and precipitous stopband, which is different from filters with a direct input/output coupling structure. Higher modes in the SIW cavities are used to generate the finite transmission zeros for improved stopband performance. The design of SIW filters requires full wave electromagnetic simulation and extensive optimisation. If a full wave solver is used for optimisation, the design process is very time consuming. The space mapping (SM) approach has been called upon to alleviate this problem. In this case, the coarse model is optimised using an equivalent circuit model-based representation of the structure for fast computations. On the other hand, the verification of the design is completed with an accurate fine model full wave simulation. A fourth-order filter with a passband of 12.0-12.5 GHz is fabricated on a single layer Rogers RT/Duroid 5880 substrate. The return loss is better than 17.4 dB in the passband and the rejection is more than 40 dB in the stopband. The stopband is from 2 to 11 GHz and 13.5 to 17.3 GHz, demonstrating a wide bandwidth performance.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Weiyong; Zhu, Jian
2012-04-01
The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.
NASA Astrophysics Data System (ADS)
Fouladi, Ehsan; Mojallali, Hamed
2018-01-01
In this paper, an adaptive backstepping controller has been tuned to synchronise two chaotic Colpitts oscillators in a master-slave configuration. The parameters of the controller are determined using shark smell optimisation (SSO) algorithm. Numerical results are presented and compared with those of particle swarm optimisation (PSO) algorithm. Simulation results show better performance in terms of accuracy and convergence for the proposed optimised method compared to PSO optimised controller or any non-optimised backstepping controller.
Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei
2016-01-01
Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.
NASA Astrophysics Data System (ADS)
Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza
2017-09-01
This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.
NASA Astrophysics Data System (ADS)
Raei, Ehsan; Nikoo, Mohammad Reza; Pourshahabi, Shokoufeh
2017-08-01
In the present study, a BIOPLUME III simulation model is coupled with a non-dominating sorting genetic algorithm (NSGA-II)-based model for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Ministry of Energy (MOE), Department of Environment (DOE), and National Disaster Management Organization (NDMO) are three stakeholders in the groundwater bioremediation problem in Iran. Based on the preferences of these stakeholders, the multi-objective optimization model tries to minimize: (1) cost; (2) sum of contaminant concentrations that violate standard; (3) contaminant plume fragmentation. The NSGA-II multi-objective optimization method gives Pareto-optimal solutions. A compromised solution is determined using fallback bargaining with impasse to achieve a consensus among the stakeholders. In this study, two different approaches are investigated and compared based on two different domains for locations of injection and extraction wells. At the first approach, a limited number of predefined locations is considered according to previous similar studies. At the second approach, all possible points in study area are investigated to find optimal locations, arrangement, and flow rate of injection and extraction wells. Involvement of the stakeholders, investigating all possible points instead of a limited number of locations for wells, and minimizing the contaminant plume fragmentation during bioremediation are new innovations in this research. Besides, the simulation period is divided into smaller time intervals for more efficient optimization. Image processing toolbox in MATLAB® software is utilized for calculation of the third objective function. In comparison with previous studies, cost is reduced using the proposed methodology. Dispersion of the contaminant plume is reduced in both presented approaches using the third objective function. Considering all possible points in the study area for determining the optimal locations of the wells in the second approach leads to more desirable results, i.e. decreasing the contaminant concentrations to a standard level and 20% to 40% cost reduction.
Multi-energy x-ray detectors to improve air-cargo security
NASA Astrophysics Data System (ADS)
Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck
2017-05-01
X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.
NASA Astrophysics Data System (ADS)
Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise
2018-05-01
Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.
Evolving optimised decision rules for intrusion detection using particle swarm paradigm
NASA Astrophysics Data System (ADS)
Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.
2012-12-01
The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.
Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system
NASA Astrophysics Data System (ADS)
Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei
2017-08-01
The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.
NASA Astrophysics Data System (ADS)
Subagadis, Y. H.; Schütze, N.; Grundmann, J.
2014-09-01
The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.
TOWARDS A MULTI-SCALE AGENT-BASED PROGRAMMING LANGUAGE METHODOLOGY
Somogyi, Endre; Hagar, Amit; Glazier, James A.
2017-01-01
Living tissues are dynamic, heterogeneous compositions of objects, including molecules, cells and extra-cellular materials, which interact via chemical, mechanical and electrical process and reorganize via transformation, birth, death and migration processes. Current programming language have difficulty describing the dynamics of tissues because: 1: Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be either continuous or discrete, and their activity may be conditional, 3: Objects and processes form complex, heterogeneous relationships and structures, 4: Objects and processes may be hierarchically composed, 5: Processes may create, destroy and transform objects and processes. Some modeling languages support these concepts, but most cannot translate models into executable simulations. We present a new hybrid executable modeling language paradigm, the Continuous Concurrent Object Process Methodology (CCOPM) which naturally expresses tissue models, enabling users to visually create agent-based models of tissues, and also allows computer simulation of these models. PMID:29282379
TOWARDS A MULTI-SCALE AGENT-BASED PROGRAMMING LANGUAGE METHODOLOGY.
Somogyi, Endre; Hagar, Amit; Glazier, James A
2016-12-01
Living tissues are dynamic, heterogeneous compositions of objects , including molecules, cells and extra-cellular materials, which interact via chemical, mechanical and electrical process and reorganize via transformation, birth, death and migration processes . Current programming language have difficulty describing the dynamics of tissues because: 1: Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be either continuous or discrete, and their activity may be conditional, 3: Objects and processes form complex, heterogeneous relationships and structures, 4: Objects and processes may be hierarchically composed, 5: Processes may create, destroy and transform objects and processes. Some modeling languages support these concepts, but most cannot translate models into executable simulations. We present a new hybrid executable modeling language paradigm, the Continuous Concurrent Object Process Methodology ( CCOPM ) which naturally expresses tissue models, enabling users to visually create agent-based models of tissues, and also allows computer simulation of these models.
Distributing Planning and Control for Teams of Cooperating Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
2004-07-19
This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of our control approaches for distributed planning and cooperation in multi-robot teams. The primary objectives of this researchmore » project were to: (1) Develop autonomous control technologies to enable multiple vehicles to work together cooperatively, (2) Provide the foundational capabilities for a human operator to exercise oversight and guidance during the multi-vehicle task execution, and (3) Integrate these capabilities to the ALLIANCE-based autonomous control approach for multi-robot teams. These objectives have been successfully met with the results implemented and demonstrated in a near real-time multi-vehicle simulation of up to four vehicles performing mission-relevant tasks.« less
On the design and optimisation of new fractal antenna using PSO
NASA Astrophysics Data System (ADS)
Rani, Shweta; Singh, A. P.
2013-10-01
An optimisation technique for newly shaped fractal structure using particle swarm optimisation with curve fitting is presented in this article. The aim of particle swarm optimisation is to find the geometry of the antenna for the required user-defined frequency. To assess the effectiveness of the presented method, a set of representative numerical simulations have been done and the results are compared with the measurements from experimental prototypes built according to the design specifications coming from the optimisation procedure. The proposed fractal antenna resonates at the 5.8 GHz industrial, scientific and medical band which is suitable for wireless telemedicine applications. The antenna characteristics have been studied using extensive numerical simulations and are experimentally verified. The antenna exhibits well-defined radiation patterns over the band.
Prediction of multi performance characteristics of wire EDM process using grey ANFIS
NASA Astrophysics Data System (ADS)
Kumanan, Somasundaram; Nair, Anish
2017-09-01
Super alloys are used to fabricate components in ultra-supercritical power plants. These hard to machine materials are processed using non-traditional machining methods like Wire cut electrical discharge machining and needs attention. This paper details about multi performance optimization of wire EDM process using Grey ANFIS. Experiments are designed to establish the performance characteristics of wire EDM such as surface roughness, material removal rate, wire wear rate and geometric tolerances. The control parameters are pulse on time, pulse off time, current, voltage, flushing pressure, wire tension, table feed and wire speed. Grey relational analysis is employed to optimise the multi objectives. Analysis of variance of the grey grades is used to identify the critical parameters. A regression model is developed and used to generate datasets for the training of proposed adaptive neuro fuzzy inference system. The developed prediction model is tested for its prediction ability.
Design of penicillin fermentation process simulation system
NASA Astrophysics Data System (ADS)
Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi
2011-10-01
Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.
NASA Astrophysics Data System (ADS)
Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.
2017-11-01
Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.
Bio-inspired benchmark generator for extracellular multi-unit recordings
Mondragón-González, Sirenia Lizbeth; Burguière, Eric
2017-01-01
The analysis of multi-unit extracellular recordings of brain activity has led to the development of numerous tools, ranging from signal processing algorithms to electronic devices and applications. Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth databases of neural signals. These databases must be parameterisable, easy to generate and bio-inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards that end, this article introduces an original computational approach to create fully annotated and parameterised benchmark datasets, generated from the summation of three components: neural signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, and a variety of different types of artefacts. We present three application examples. (1) We reproduced in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. (3) Last, we also conducted a series of simulations to study the impact of different level of artefacts on extracellular recordings and their influence in the frequency domain. Beyond the results presented here, such a benchmark dataset generator has many applications such as calibration, evaluation and development of both hardware and software architectures. PMID:28233819
Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.
Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E
2014-01-01
Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.
NASA Astrophysics Data System (ADS)
Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2016-07-01
This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
NASA Astrophysics Data System (ADS)
Hazwan, M. H. M.; Shayfull, Z.; Sharif, S.; Nasir, S. M.; Zainal, N.
2017-09-01
In injection moulding process, quality and productivity are notably important and must be controlled for each product type produced. Quality is measured as the extent of warpage of moulded parts while productivity is measured as a duration of moulding cycle time. To control the quality, many researchers have introduced various of optimisation approaches which have been proven enhanced the quality of the moulded part produced. In order to improve the productivity of injection moulding process, some of researches have proposed the application of conformal cooling channels which have been proven reduced the duration of moulding cycle time. Therefore, this paper presents an application of alternative optimisation approach which is Response Surface Methodology (RSM) with Glowworm Swarm Optimisation (GSO) on the moulded part with straight-drilled and conformal cooling channels mould. This study examined the warpage condition of the moulded parts before and after optimisation work applied for both cooling channels. A front panel housing have been selected as a specimen and the performance of proposed optimisation approach have been analysed on the conventional straight-drilled cooling channels compared to the Milled Groove Square Shape (MGSS) conformal cooling channels by simulation analysis using Autodesk Moldflow Insight (AMI) 2013. Based on the results, melt temperature is the most significant factor contribute to the warpage condition and warpage have optimised by 39.1% after optimisation for straight-drilled cooling channels and cooling time is the most significant factor contribute to the warpage condition and warpage have optimised by 38.7% after optimisation for MGSS conformal cooling channels. In addition, the finding shows that the application of optimisation work on the conformal cooling channels offers the better quality and productivity of the moulded part produced.
Design of 3D simulation engine for oilfield safety training
NASA Astrophysics Data System (ADS)
Li, Hua-Ming; Kang, Bao-Sheng
2015-03-01
Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.
Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.
Scharfe, Michael; Pielot, Rainer; Schreiber, Falk
2010-01-11
Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
Comprehensive evaluation of garment assembly line with simulation
NASA Astrophysics Data System (ADS)
Xu, Y.; Thomassey, S.; Chen, Y.; Zeng, X.
2017-10-01
In this paper, a comprehensive evaluation system is established to assess the garment production performance. It is based on performance indicators and supported with the corresponding results obtained by manual calculation or computer simulation. The assembly lines of a typical men’s shirt are taken as the study objects. With the comprehensive evaluation results, garments production arrangement scenarios are better analysed and then the appropriate one is supposed to be put into actual production. This will be a guidance given to companies on quick decision-making and multi-objective optimization of garment production.
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre
2010-06-01
The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples demonstrate the method versatility. They include billet shape optimization of a common rail, the cogging of a bar and a wire drawing problem.
Signature modelling and radiometric rendering equations in infrared scene simulation systems
NASA Astrophysics Data System (ADS)
Willers, Cornelius J.; Willers, Maria S.; Lapierre, Fabian
2011-11-01
The development and optimisation of modern infrared systems necessitates the use of simulation systems to create radiometrically realistic representations (e.g. images) of infrared scenes. Such simulation systems are used in signature prediction, the development of surveillance and missile sensors, signal/image processing algorithm development and aircraft self-protection countermeasure system development and evaluation. Even the most cursory investigation reveals a multitude of factors affecting the infrared signatures of realworld objects. Factors such as spectral emissivity, spatial/volumetric radiance distribution, specular reflection, reflected direct sunlight, reflected ambient light, atmospheric degradation and more, all affect the presentation of an object's instantaneous signature. The signature is furthermore dynamically varying as a result of internal and external influences on the object, resulting from the heat balance comprising insolation, internal heat sources, aerodynamic heating (airborne objects), conduction, convection and radiation. In order to accurately render the object's signature in a computer simulation, the rendering equations must therefore account for all the elements of the signature. In this overview paper, the signature models, rendering equations and application frameworks of three infrared simulation systems are reviewed and compared. The paper first considers the problem of infrared scene simulation in a framework for simulation validation. This approach provides concise definitions and a convenient context for considering signature models and subsequent computer implementation. The primary radiometric requirements for an infrared scene simulator are presented next. The signature models and rendering equations implemented in OSMOSIS (Belgian Royal Military Academy), DIRSIG (Rochester Institute of Technology) and OSSIM (CSIR & Denel Dynamics) are reviewed. In spite of these three simulation systems' different application focus areas, their underlying physics-based approach is similar. The commonalities and differences between the different systems are investigated, in the context of their somewhat different application areas. The application of an infrared scene simulation system towards the development of imaging missiles and missile countermeasures are briefly described. Flowing from the review of the available models and equations, recommendations are made to further enhance and improve the signature models and rendering equations in infrared scene simulators.
Vallejo Valdezate, Luis A; Hidalgo Otamendi, Antonio; Hernández, Alberto; Lobo, Fernando; Gil-Carcedo Sañudo, Elisa; Gil-Carcedo García, Luis M
2015-01-01
Many designs of prostheses are available for middle ear surgery. In this study we propose a design for a new prosthesis, which optimises mechanical performance in the human middle ear and improves some deficiencies in the prostheses currently available. Our objective was to design and assess the theoretical acoustic-mechanical behaviour of this new total ossicular replacement prosthesis. The design of this new prosthesis was based on an animal model (an iguana). For the modelling and mechanical analysis of the new prosthesis, we used a dynamic 3D computer model of the human middle ear, based on the finite elements method (FEM). The new malleovestibulopexy prosthesis design demonstrates an acoustical-mechanical performance similar to that of the healthy human middle ear. This new design also has additional advantages, such as ease of implantation and stability in the middle ear. This study shows that computer simulation can be used to design and optimise the vibroacoustic characteristics of middle ear implants and demonstrates the effectiveness of a new malleovestibulopexy prosthesis in reconstructing the ossicular chain. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.
Irvine, Alistair G; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R P; Pervushin, Konstantin
2014-02-01
Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community. Copyright © 2013 Elsevier Inc. All rights reserved.
Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li
2017-03-01
The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn
2010-06-01
This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.
Smart Grid as Multi-layer Interacting System for Complex Decision Makings
NASA Astrophysics Data System (ADS)
Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico
This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.
NASA Astrophysics Data System (ADS)
Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong
2017-10-01
This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.
Scoring functions for protein-protein interactions.
Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan
2013-12-01
The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ribera, Esteban; Martínez-Sesmero, José Manuel; Sánchez-Rubio, Javier; Rubio, Rafael; Pasquau, Juan; Poveda, José Luis; Pérez-Mitru, Alejandro; Roldán, Celia; Hernández-Novoa, Beatriz
2018-03-01
The objective of this study is to estimate the economic impact associated with the optimisation of triple antiretroviral treatment (ART) in patients with undetectable viral load according to the recommendations from the GeSIDA/PNS (2015) Consensus and their applicability in the Spanish clinical practice. A pharmacoeconomic model was developed based on data from a National Hospital Prescription Survey on ART (2014) and the A-I evidence recommendations for the optimisation of ART from the GeSIDA/PNS (2015) consensus. The optimisation model took into account the willingness to optimise a particular regimen and other assumptions, and the results were validated by an expert panel in HIV infection (Infectious Disease Specialists and Hospital Pharmacists). The analysis was conducted from the NHS perspective, considering the annual wholesale price and accounting for deductions stated in the RD-Law 8/2010 and the VAT. The expert panel selected six optimisation strategies, and estimated that 10,863 (13.4%) of the 80,859 patients in Spain currently on triple ART, would be candidates to optimise their ART, leading to savings of €15.9M/year (2.4% of total triple ART drug cost). The most feasible strategies (>40% of patients candidates for optimisation, n=4,556) would be optimisations to ATV/r+3TC therapy. These would produce savings between €653 and €4,797 per patient per year depending on baseline triple ART. Implementation of the main optimisation strategies recommended in the GeSIDA/PNS (2015) Consensus into Spanish clinical practice would lead to considerable savings, especially those based in dual therapy with ATV/r+3TC, thus contributing to the control of pharmaceutical expenditure and NHS sustainability. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Mills, Chris; Yeadon, Maurice R; Pain, Matthew T G
2010-09-01
This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat's stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.
NASA Astrophysics Data System (ADS)
Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.
2014-12-01
The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.
Raman Monte Carlo simulation for light propagation for tissue with embedded objects
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit
2018-02-01
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
NASA Astrophysics Data System (ADS)
Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.
2012-11-01
Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.
Mixing formula for tissue-mimicking silicone phantoms in the near infrared
NASA Astrophysics Data System (ADS)
Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg
2015-03-01
The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.
Solving multi-objective water management problems using evolutionary computation.
Lewis, A; Randall, M
2017-12-15
Water as a resource is becoming increasingly more valuable given the changes in global climate. In an agricultural sense, the role of water is vital to ensuring food security. Therefore the management of it has become a subject of increasing attention and the development of effective tools to support participative decision-making in water management will be a valuable contribution. In this paper, evolutionary computation techniques and Pareto optimisation are incorporated in a model-based system for water management. An illustrative test case modelling optimal crop selection across dry, average and wet years based on data from the Murrumbidgee Irrigation Area in Australia is presented. It is shown that sets of trade-off solutions that provide large net revenues, or minimise environmental flow deficits can be produced rapidly, easily and automatically. The system is capable of providing detailed information on optimal solutions to achieve desired outcomes, responding to a variety of factors including climate conditions and economics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vafaee, Fatemeh; Diakos, Connie; Kirschner, Michaela B; Reid, Glen; Michael, Michael Z; Horvath, Lisa G; Alinejad-Rokny, Hamid; Cheng, Zhangkai Jason; Kuncic, Zdenka; Clarke, Stephen
2018-01-01
Recent advances in high-throughput technologies have provided an unprecedented opportunity to identify molecular markers of disease processes. This plethora of complex-omics data has simultaneously complicated the problem of extracting meaningful molecular signatures and opened up new opportunities for more sophisticated integrative and holistic approaches. In this era, effective integration of data-driven and knowledge-based approaches for biomarker identification has been recognised as key to improving the identification of high-performance biomarkers, and necessary for translational applications. Here, we have evaluated the role of circulating microRNA as a means of predicting the prognosis of patients with colorectal cancer, which is the second leading cause of cancer-related death worldwide. We have developed a multi-objective optimisation method that effectively integrates a data-driven approach with the knowledge obtained from the microRNA-mediated regulatory network to identify robust plasma microRNA signatures which are reliable in terms of predictive power as well as functional relevance. The proposed multi-objective framework has the capacity to adjust for conflicting biomarker objectives and to incorporate heterogeneous information facilitating systems approaches to biomarker discovery. We have found a prognostic signature of colorectal cancer comprising 11 circulating microRNAs. The identified signature predicts the patients' survival outcome and targets pathways underlying colorectal cancer progression. The altered expression of the identified microRNAs was confirmed in an independent public data set of plasma samples of patients in early stage vs advanced colorectal cancer. Furthermore, the generality of the proposed method was demonstrated across three publicly available miRNA data sets associated with biomarker studies in other diseases.
The faint intergalactic-medium red-shifted emission balloon: future UV observations with EMCCDs
NASA Astrophysics Data System (ADS)
Kyne, Gillian; Hamden, Erika T.; Lingner, Nicole; Morrissey, Patrick; Nikzad, Shouleh; Martin, D. Christopher
2016-08-01
We present the latest developments in our joint NASA/CNES suborbital project. This project is a balloon-borne UV multi-object spectrograph, which has been designed to detect faint emission from the circumgalactic medium (CGM) around low redshift galaxies. One major change from FIREBall-1 has been the use of a delta-doped Electron Multiplying CCD (EMCCD). EMCCDs can be used in photon-counting (PC) mode to achieve extremely low readout noise (¡ 1e-). Our testing initially focused on reducing clock-induced-charge (CIC) through wave shaping and well depth optimisation with the CCD Controller for Counting Photons (CCCP) from Nüvü. This optimisation also includes methods for reducing dark current, via cooling and substrate voltage adjustment. We present result of laboratory noise measurements including dark current. Furthermore, we will briefly present some initial results from our first set of on-sky observations using a delta-doped EMCCD on the 200 inch telescope at Palomar using the Palomar Cosmic Web Imager (PCWI).
Optimisation of driver actions in RWD race car including tyre thermodynamics
NASA Astrophysics Data System (ADS)
Maniowski, Michal
2016-04-01
The paper presents an innovative method for a lap time minimisation by using genetic algorithms for a multi objective optimisation of a race driver-vehicle model. The decision variables consist of 16 parameters responsible for actions of a professional driver (e.g. time traces for brake, accelerator and steering wheel) on a race track part with RH corner. Purpose-built, high fidelity, multibody vehicle model (called 'miMa') is described by 30 generalised coordinates and 440 parameters, crucial in motorsport. Focus is put on modelling of the tyre tread thermodynamics and its influence on race vehicle dynamics. Numerical example considers a Rear Wheel Drive BMW E36 prepared for track day events. In order to improve the section lap time (by 5%) and corner exit velocity (by 4%) a few different driving strategies are found depending on thermal conditions of semi-slick tyres. The process of the race driver adaptation to initially cold or hot tyres is explained.
NASA Astrophysics Data System (ADS)
Navadeh, N.; Goroshko, I. O.; Zhuk, Y. A.; Fallah, A. S.
2017-11-01
An approach to construction of a beam-type simplified model of a horizontal axis wind turbine composite blade based on the finite element method is proposed. The model allows effective and accurate description of low vibration bending modes taking into account the effects of coupling between flapwise and lead-lag modes of vibration transpiring due to the non-uniform distribution of twist angle in the blade geometry along its length. The identification of model parameters is carried out on the basis of modal data obtained by more detailed finite element simulations and subsequent adoption of the 'DIRECT' optimisation algorithm. Stable identification results were obtained using absolute deviations in frequencies and in modal displacements in the objective function and additional a priori information (boundedness and monotony) on the solution properties.
NASA Astrophysics Data System (ADS)
Jin, Yi; Gu, Yonggang; Zhai, Chao
2012-09-01
Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.
NASA Astrophysics Data System (ADS)
Baumgart, M.; Druml, N.; Consani, M.
2018-05-01
This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.
Optimisation of a propagation-based x-ray phase-contrast micro-CT system
NASA Astrophysics Data System (ADS)
Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.
2018-03-01
Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.
Optimising the Parallelisation of OpenFOAM Simulations
2014-06-01
UNCLASSIFIED UNCLASSIFIED Optimising the Parallelisation of OpenFOAM Simulations Shannon Keough Maritime Division Defence...Science and Technology Organisation DSTO-TR-2987 ABSTRACT The OpenFOAM computational fluid dynamics toolbox allows parallel computation of...performance of a given high performance computing cluster with several OpenFOAM cases, running using a combination of MPI libraries and corresponding MPI
The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.
Development and validation of real-time simulation of X-ray imaging with respiratory motion.
Vidal, Franck P; Villard, Pierre-Frédéric
2016-04-01
We present a framework that combines evolutionary optimisation, soft tissue modelling and ray tracing on GPU to simultaneously compute the respiratory motion and X-ray imaging in real-time. Our aim is to provide validated building blocks with high fidelity to closely match both the human physiology and the physics of X-rays. A CPU-based set of algorithms is presented to model organ behaviours during respiration. Soft tissue deformation is computed with an extension of the Chain Mail method. Rigid elements move according to kinematic laws. A GPU-based surface rendering method is proposed to compute the X-ray image using the Beer-Lambert law. It is provided as an open-source library. A quantitative validation study is provided to objectively assess the accuracy of both components: (i) the respiration against anatomical data, and (ii) the X-ray against the Beer-Lambert law and the results of Monte Carlo simulations. Our implementation can be used in various applications, such as interactive medical virtual environment to train percutaneous transhepatic cholangiography in interventional radiology, 2D/3D registration, computation of digitally reconstructed radiograph, simulation of 4D sinograms to test tomography reconstruction tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
The development and optimisation of 3D black-blood R2* mapping of the carotid artery wall.
Yuan, Jianmin; Graves, Martin J; Patterson, Andrew J; Priest, Andrew N; Ruetten, Pascal P R; Usman, Ammara; Gillard, Jonathan H
2017-12-01
To develop and optimise a 3D black-blood R 2 * mapping sequence for imaging the carotid artery wall, using optimal blood suppression and k-space view ordering. Two different blood suppression preparation methods were used; Delay Alternating with Nutation for Tailored Excitation (DANTE) and improved Motion Sensitive Driven Equilibrium (iMSDE) were each combined with a three-dimensional (3D) multi-echo Fast Spoiled GRadient echo (ME-FSPGR) readout. Three different k-space view-order designs: Radial Fan-beam Encoding Ordering (RFEO), Distance-Determined Encoding Ordering (DDEO) and Centric Phase Encoding Order (CPEO) were investigated. The sequences were evaluated through Bloch simulation and in a cohort of twenty volunteers. The vessel wall Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR) and R 2 *, and the sternocleidomastoid muscle R 2 * were measured and compared. Different numbers of acquisitions-per-shot (APS) were evaluated to further optimise the effectiveness of blood suppression. All sequences resulted in comparable R 2 * measurements to a conventional, i.e. non-blood suppressed sequence in the sternocleidomastoid muscle of the volunteers. Both Bloch simulations and volunteer data showed that DANTE has a higher signal intensity and results in a higher image SNR than iMSDE. Blood suppression efficiency was not significantly different when using different k-space view orders. Smaller APS achieved better blood suppression. The use of blood-suppression preparation methods does not affect the measurement of R 2 *. DANTE prepared ME-FSPGR sequence with a small number of acquisitions-per-shot can provide high quality black-blood R 2 * measurements of the carotid vessel wall. Copyright © 2017 Elsevier Inc. All rights reserved.
Systemic solutions for multi-benefit water and environmental management.
Everard, Mark; McInnes, Robert
2013-09-01
The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and researchers working on ways to quantify and optimise delivery of ecosystem services. Copyright © 2013 Elsevier B.V. All rights reserved.
Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets
2010-01-01
Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262
Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems
NASA Astrophysics Data System (ADS)
Conti, R.; Galardi, E.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A.
2015-05-01
Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
Close packing in curved space by simulated annealing
NASA Astrophysics Data System (ADS)
Wille, L. T.
1987-12-01
The problem of packing spheres of a maximum radius on the surface of a four-dimensional hypersphere is considered. It is shown how near-optimal solutions can be obtained by packing soft spheres, modelled as classical particles interacting under an inverse power potential, followed by a subsequent hardening of the interaction. In order to avoid trapping in high-lying local minima, the simulated annealing method is used to optimise the soft-sphere packing. Several improvements over other work (based on local optimisation of random initial configurations of hard spheres) have been found. The freezing behaviour of this system is discussed as a function of particle number, softness of the potential and cooling rate. Apart from their geometric interest, these results are useful in the study of topological frustration, metallic glasses and quasicrystals.
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
Rönner-Holm, S G E; Kaufmann Alves, I; Steinmetz, H; Holm, N C
2009-01-01
Integrated dynamic simulation analysis of a full-scale municipal sequential batch reactor (SBR) wastewater treatment plant (WWTP) was performed using the KOSMO pollution load simulation model for the combined sewer system (CSS) and the ASM3 + EAWAG-BioP model for the WWTP. Various optimising strategies for dry and storm weather conditions were developed to raise the purification and hydraulic performance and to reduce operation costs based on simulation studies with the calibrated WWTP model. The implementation of some strategies on the plant led to lower effluent values and an average annual saving of 49,000 euro including sewage tax, which is 22% of the total running costs. Dynamic simulation analysis of CSS for an increased WWTP influent over a period of one year showed high potentials for reducing combined sewer overflow (CSO) volume by 18-27% and CSO loads for COD by 22%, NH(4)-N and P(total) by 33%. In addition, the SBR WWTP could easily handle much higher influents without exceeding the monitoring values. During the integrated simulation of representative storm events, the total emission load for COD dropped to 90%, the sewer system emitted 47% less, whereas the pollution load in the WWTP effluent increased to only 14% with 2% higher running costs.
NASA Astrophysics Data System (ADS)
Najafi, Ali; Acar, Erdem; Rais-Rohani, Masoud
2014-02-01
The stochastic uncertainties associated with the material, process and product are represented and propagated to process and performance responses. A finite element-based sequential coupled process-performance framework is used to simulate the forming and energy absorption responses of a thin-walled tube in a manner that both material properties and component geometry can evolve from one stage to the next for better prediction of the structural performance measures. Metamodelling techniques are used to develop surrogate models for manufacturing and performance responses. One set of metamodels relates the responses to the random variables whereas the other relates the mean and standard deviation of the responses to the selected design variables. A multi-objective robust design optimization problem is formulated and solved to illustrate the methodology and the influence of uncertainties on manufacturability and energy absorption of a metallic double-hat tube. The results are compared with those of deterministic and augmented robust optimization problems.
NASA Technical Reports Server (NTRS)
Malik, Waqar
2016-01-01
Provide an overview of algorithms used in SARDA (Spot and Runway Departure Advisor) HITL (Human-in-the-Loop) simulation for Dallas Fort-Worth International Airport and Charlotte Douglas International airport. Outline a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the single runway scheduling (SRS) problem, and discuss heuristics to restrict the search space for the DP based algorithm and provide improvements.
Differential evolution-simulated annealing for multiple sequence alignment
NASA Astrophysics Data System (ADS)
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
NASA Astrophysics Data System (ADS)
Eleiwi, Fadi; Laleg-Kirati, Taous Meriem
2018-06-01
An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.
Bahia, Daljit; Cheung, Robert; Buchs, Mirjam; Geisse, Sabine; Hunt, Ian
2005-01-01
This report describes a method to culture insects cells in 24 deep-well blocks for the routine small-scale optimisation of baculovirus-mediated protein expression experiments. Miniaturisation of this process provides the necessary reduction in terms of resource allocation, reagents, and labour to allow extensive and rapid optimisation of expression conditions, with the concomitant reduction in lead-time before commencement of large-scale bioreactor experiments. This therefore greatly simplifies the optimisation process and allows the use of liquid handling robotics in much of the initial optimisation stages of the process, thereby greatly increasing the throughput of the laboratory. We present several examples of the use of deep-well block expression studies in the optimisation of therapeutically relevant protein targets. We also discuss how the enhanced throughput offered by this approach can be adapted to robotic handling systems and the implications this has on the capacity to conduct multi-parallel protein expression studies.
Image fusion based on Bandelet and sparse representation
NASA Astrophysics Data System (ADS)
Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi
2018-04-01
Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.
Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy
NASA Astrophysics Data System (ADS)
Bernatowicz, Kinga; Zhang, Ye; Perrin, Rosalind; Weber, Damien C.; Lomax, Antony J.
2017-08-01
We report on development of a new four-dimensional (4D) optimisation approach for scanned proton beams, which incorporates both irregular motion patterns and the delivery dynamics of the treatment machine into the plan optimiser. Furthermore, we assess the effectiveness of this technique to reduce dose to critical structures in proximity to moving targets, while maintaining effective target dose homogeneity and coverage. The proposed approach has been tested using both a simulated phantom and a clinical liver cancer case, and allows for realistic 4D calculations and optimisation using irregular breathing patterns extracted from e.g. 4DCT-MRI (4D computed tomography-magnetic resonance imaging). 4D dose distributions resulting from our 4D optimisation can achieve almost the same quality as static plans, independent of the studied geometry/anatomy or selected motion (regular and irregular). Additionally, current implementation of the 4D optimisation approach requires less than 3 min to find the solution for a single field planned on 4DCT of a liver cancer patient. Although 4D optimisation allows for realistic calculations using irregular breathing patterns, it is very sensitive to variations from the planned motion. Based on a sensitivity analysis, target dose homogeneity comparable to static plans (D5-D95 <5%) has been found only for differences in amplitude of up to 1 mm, for changes in respiratory phase <200 ms and for changes in the breathing period of <20 ms in comparison to the motions used during optimisation. As such, methods to robustly deliver 4D optimised plans employing 4D intensity-modulated delivery are discussed.
Collision detection and modeling of rigid and deformable objects in laparoscopic simulator
NASA Astrophysics Data System (ADS)
Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru
2015-03-01
Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.
A future Outlook: Web based Simulation of Hydrodynamic models
NASA Astrophysics Data System (ADS)
Islam, A. S.; Piasecki, M.
2003-12-01
Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML
Design and optimisation of novel configurations of stormwater constructed wetlands
NASA Astrophysics Data System (ADS)
Kiiza, Christopher
2017-04-01
Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.
Novel high-fidelity realistic explosion damage simulation for urban environments
NASA Astrophysics Data System (ADS)
Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya
2010-04-01
Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.
A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization.
Zhai, Zhaoyu; Martínez Ortega, José-Fernán; Lucas Martínez, Néstor; Rodríguez-Molina, Jesús
2018-06-02
As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.
Stochastic optimisation of water allocation on a global scale
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Straatsma, Menno; Karssenberg, Derek; Bierkens, Marc F. P.
2014-05-01
Climate change, increasing population and further economic developments are expected to increase water scarcity for many regions of the world. Optimal water management strategies are required to minimise the water gap between water supply and domestic, industrial and agricultural water demand. A crucial aspect of water allocation is the spatial scale of optimisation. Blue water supply peaks at the upstream parts of large catchments, whereas demands are often largest at the industrialised downstream parts. Two extremes exist in water allocation: (i) 'First come, first serve,' which allows the upstream water demands to be fulfilled without considerations of downstream demands, and (ii) 'All for one, one for all' that satisfies water allocation over the whole catchment. In practice, water treaties govern intermediate solutions. The objective of this study is to determine the effect of these two end members on water allocation optimisation with respect to water scarcity. We conduct this study on a global scale with the year 2100 as temporal horizon. Water supply is calculated using the hydrological model PCR-GLOBWB, operating at a 5 arcminutes resolution and a daily time step. PCR-GLOBWB is forced with temperature and precipitation fields from the Hadgem2-ES global circulation model that participated in the latest coupled model intercomparison project (CMIP5). Water demands are calculated for representative concentration pathway 6.0 (RCP 6.0) and shared socio-economic pathway scenario 2 (SSP2). To enable the fast computation of the optimisation, we developed a hydrologically correct network of 1800 basin segments with an average size of 100 000 square kilometres. The maximum number of nodes in a network was 140 for the Amazon Basin. Water demands and supplies are aggregated to cubic kilometres per month per segment. A new open source implementation of the water allocation is developed for the stochastic optimisation of the water allocation. We apply a Genetic Algorithm for each segment to estimate the set of parameters that distribute the water supply for each node. We use the Python programming language and a flexible software architecture allowing to straightforwardly 1) exchange the process description for the nodes such that different water allocation schemes can be tested 2) exchange the objective function 3) apply the optimisation either to the whole catchment or to different sub-levels and 4) use multi-core CPUs concurrently and therefore reducing computation time. We demonstrate the application of the scientific workflow to the model outputs of PCR-GLOBWB and present first results on how water scarcity depends on the choice between the two extremes in water allocation.
pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data
NASA Astrophysics Data System (ADS)
Shkurti, Ardita; Goni, Ramon; Andrio, Pau; Breitmoser, Elena; Bethune, Iain; Orozco, Modesto; Laughton, Charles A.
The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of software tools for compression and analysis of molecular dynamics (MD) simulation data. The software is compatible with trajectory file formats generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced) written in Python.
Optimising, generalising and integrating educational practice using neuroscience
NASA Astrophysics Data System (ADS)
Colvin, Robert
2016-07-01
Practical collaboration at the intersection of education and neuroscience research is difficult because the combined discipline encompasses both the activity of microscopic neurons and the complex social interactions of teachers and students in a classroom. Taking a pragmatic view, this paper discusses three education objectives to which neuroscience can be effectively applied: optimising, generalising and integrating instructional techniques. These objectives are characterised by: (1) being of practical importance; (2) building on existing education and cognitive research; and (3) being infeasible to address based on behavioural experiments alone. The focus of the neuroscientific aspect of collaborative research should be on the activity of the brain before, during and after learning a task, as opposed to performance of a task. The objectives are informed by literature that highlights possible pitfalls with educational neuroscience research, and are described with respect to the static and dynamic aspects of brain physiology that can be measured by current technology.
Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
Li, Min; Sareh, Sina; Xu, Guanghua; Ridzuan, Maisarah Binti; Luo, Shan; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar
2016-01-01
This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user.
A simulation-optimization model for effective water resources management in the coastal zone
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Kampanis, Nikolaos
2015-04-01
Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. The refined model is based on the finite volume method using a cell-centred structured grid, providing thus flexibility and accuracy in simulating irregular boundary geometries. For addressing water resources management problems, simulation models are usually externally coupled with optimisation-based management models. However this usually requires a very large number of iterations between the optimisation and simulation models in order to obtain the optimal management solution. As an alternative approach, for improved computational efficiency, an Artificial Neural Network (ANN) is trained as an approximate simulator of IRENE. The trained ANN is then linked to a Genetic Algorithm (GA) based optimisation model for managing salinisation problems in the coastal zone. The linked simulation-optimisation model is applied to a hypothetical study area for performance evaluation. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece.
NASA Astrophysics Data System (ADS)
Nickless, A.; Rayner, P. J.; Erni, B.; Scholes, R. J.
2018-05-01
The design of an optimal network of atmospheric monitoring stations for the observation of carbon dioxide (CO2) concentrations can be obtained by applying an optimisation algorithm to a cost function based on minimising posterior uncertainty in the CO2 fluxes obtained from a Bayesian inverse modelling solution. Two candidate optimisation methods assessed were the evolutionary algorithm: the genetic algorithm (GA), and the deterministic algorithm: the incremental optimisation (IO) routine. This paper assessed the ability of the IO routine in comparison to the more computationally demanding GA routine to optimise the placement of a five-member network of CO2 monitoring sites located in South Africa. The comparison considered the reduction in uncertainty of the overall flux estimate, the spatial similarity of solutions, and computational requirements. Although the IO routine failed to find the solution with the global maximum uncertainty reduction, the resulting solution had only fractionally lower uncertainty reduction compared with the GA, and at only a quarter of the computational resources used by the lowest specified GA algorithm. The GA solution set showed more inconsistency if the number of iterations or population size was small, and more so for a complex prior flux covariance matrix. If the GA completed with a sub-optimal solution, these solutions were similar in fitness to the best available solution. Two additional scenarios were considered, with the objective of creating circumstances where the GA may outperform the IO. The first scenario considered an established network, where the optimisation was required to add an additional five stations to an existing five-member network. In the second scenario the optimisation was based only on the uncertainty reduction within a subregion of the domain. The GA was able to find a better solution than the IO under both scenarios, but with only a marginal improvement in the uncertainty reduction. These results suggest that the best use of resources for the network design problem would be spent in improvement of the prior estimates of the flux uncertainties rather than investing these resources in running a complex evolutionary optimisation algorithm. The authors recommend that, if time and computational resources allow, that multiple optimisation techniques should be used as a part of a comprehensive suite of sensitivity tests when performing such an optimisation exercise. This will provide a selection of best solutions which could be ranked based on their utility and practicality.
Improved NSGA model for multi objective operation scheduling and its evaluation
NASA Astrophysics Data System (ADS)
Li, Weining; Wang, Fuyu
2017-09-01
Reasonable operation can increase the income of the hospital and improve the patient’s satisfactory level. In this paper, by using multi object operation scheduling method with improved NSGA algorithm, it shortens the operation time, reduces the operation costand lowers the operation risk, the multi-objective optimization model is established for flexible operation scheduling, through the MATLAB simulation method, the Pareto solution is obtained, the standardization of data processing. The optimal scheduling scheme is selected by using entropy weight -Topsis combination method. The results show that the algorithm is feasible to solve the multi-objective operation scheduling problem, and provide a reference for hospital operation scheduling.
An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system
NASA Astrophysics Data System (ADS)
Palanimuthu, Senthilkumar Jayalakshmi; Muthial, Chandrasekaran
2017-04-01
Channel estimation and optimisation are the main challenging tasks in Multi Input Multi Output (MIMO) wireless communication systems. In this work, a Multi-Channel Bacterial Foraging Optimization Algorithm approach is proposed for the selection of antenna in a transmission area. The main advantage of this method is, it reduces the loss of bandwidth during data transmission effectively. Here, we considered the channel estimation and optimisation for improving the transmission speed and reducing the unused bandwidth. Initially, the message is given to the input of the communication system. Then, the symbol mapping process is performed for converting the message into signals. It will be encoded based on the space-time encoding technique. Here, the single signal is divided into multiple signals and it will be given to the input of space-time precoder. Hence, the multiplexing is applied to transmission channel estimation. In this paper, the Rayleigh channel is selected based on the bandwidth range. This is the Gaussian distribution type channel. Then, the demultiplexing is applied on the obtained signal that is the reverse function of multiplexing, which splits the combined signal arriving from a medium into the original information signal. Furthermore, the long-term evolution technique is used for scheduling the time to channels during transmission. Here, the hidden Markov model technique is employed to predict the status information of the channel. Finally, the signals are decoded and the reconstructed signal is obtained after performing the scheduling process. The experimental results evaluate the performance of the proposed MIMO communication system in terms of bit error rate, mean squared error, average throughput, outage capacity and signal to interference noise ratio.
A risk-based multi-objective model for optimal placement of sensors in water distribution system
NASA Astrophysics Data System (ADS)
Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein
2018-02-01
In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value of losses in WDS.
Xia, Yin; Liu, Dianfeng; Liu, Yaolin; He, Jianhua; Hong, Xiaofeng
2014-01-01
Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e., maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation. PMID:25170679
NASA Astrophysics Data System (ADS)
Hadade, Ioan; di Mare, Luca
2016-08-01
Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.
Zhang, Yifei; Kang, Jian
2017-11-01
The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation
NASA Astrophysics Data System (ADS)
Du, Jiaoman; Yu, Lean; Li, Xiang
2016-04-01
Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.
Multi Sector Planning Tools for Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mainini, Matthew; Brasil, Connie
2010-01-01
This paper discusses a suite of multi sector planning tools for trajectory-based operations that were developed and evaluated in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The toolset included tools for traffic load and complexity assessment as well as trajectory planning and coordination. The situation assessment tools included an integrated suite of interactive traffic displays, load tables, load graphs, and dynamic aircraft filters. The planning toolset allowed for single and multi aircraft trajectory planning and data communication-based coordination of trajectories between operators. Also newly introduced was a real-time computation of sector complexity into the toolset that operators could use in lieu of aircraft count to better estimate and manage sector workload, especially in situations with convective weather. The tools were used during a joint NASA/FAA multi sector planner simulation in the AOL in 2009 that had multiple objectives with the assessment of the effectiveness of the tools being one of them. Current air traffic control operators who were experienced as area supervisors and traffic management coordinators used the tools throughout the simulation and provided their usefulness and usability ratings in post simulation questionnaires. This paper presents these subjective assessments as well as the actual usage data that was collected during the simulation. The toolset was rated very useful and usable overall. Many elements received high scores by the operators and were used frequently and successfully. Other functions were not used at all, but various requests for new functions and capabilities were received that could be added to the toolset.
Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning
Rouet-Leduc, Bertrand; Barros, Kipton Marcos; Lookman, Turab; ...
2016-04-26
A fundamental challenge in the design of LEDs is to maximise electro-luminescence efficiency at high current densities. We simulate GaN-based LED structures that delay the onset of efficiency droop by spreading carrier concentrations evenly across the active region. Statistical analysis and machine learning effectively guide the selection of the next LED structure to be examined based upon its expected efficiency as well as model uncertainty. This active learning strategy rapidly constructs a model that predicts Poisson-Schrödinger simulations of devices, and that simultaneously produces structures with higher simulated efficiencies.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Metaheuristic simulation optimisation for the stochastic multi-retailer supply chain
NASA Astrophysics Data System (ADS)
Omar, Marina; Mustaffa, Noorfa Haszlinna H.; Othman, Siti Norsyahida
2013-04-01
Supply Chain Management (SCM) is an important activity in all producing facilities and in many organizations to enable vendors, manufacturers and suppliers to interact gainfully and plan optimally their flow of goods and services. A simulation optimization approach has been widely used in research nowadays on finding the best solution for decision-making process in Supply Chain Management (SCM) that generally faced a complexity with large sources of uncertainty and various decision factors. Metahueristic method is the most popular simulation optimization approach. However, very few researches have applied this approach in optimizing the simulation model for supply chains. Thus, this paper interested in evaluating the performance of metahueristic method for stochastic supply chains in determining the best flexible inventory replenishment parameters that minimize the total operating cost. The simulation optimization model is proposed based on the Bees algorithm (BA) which has been widely applied in engineering application such as training neural networks for pattern recognition. BA is a new member of meta-heuristics. BA tries to model natural behavior of honey bees in food foraging. Honey bees use several mechanisms like waggle dance to optimally locate food sources and to search new ones. This makes them a good candidate for developing new algorithms for solving optimization problems. This model considers an outbound centralised distribution system consisting of one supplier and 3 identical retailers and is assumed to be independent and identically distributed with unlimited supply capacity at supplier.
O'Brien, Rosaleen; Fitzpatrick, Bridie; Higgins, Maria; Guthrie, Bruce; Watt, Graham; Wyke, Sally
2016-01-01
Objectives To develop and optimise a primary care-based complex intervention (CARE Plus) to enhance the quality of life of patients with multimorbidity in the deprived areas. Methods Six co-design discussion groups involving 32 participants were held separately with multimorbid patients from the deprived areas, voluntary organisations, general practitioners and practice nurses working in the deprived areas. This was followed by piloting in two practices and further optimisation based on interviews with 11 general practitioners, 2 practice nurses and 6 participating multimorbid patients. Results Participants endorsed the need for longer consultations, relational continuity and a holistic approach. All felt that training and support of the health care staff was important. Most participants welcomed the idea of additional self-management support, though some practitioners were dubious about whether patients would use it. The pilot study led to changes including a revised care plan, the inclusion of mindfulness-based stress reduction techniques in the support of practitioners and patients, and the stream-lining of the written self-management support material for patients. Discussion We have co-designed and optimised an augmented primary care intervention involving a whole-system approach to enhance quality of life in multimorbid patients living in the deprived areas. CARE Plus will next be tested in a phase 2 cluster randomised controlled trial. PMID:27068113
Simulation-based artifact correction (SBAC) for metrological computed tomography
NASA Astrophysics Data System (ADS)
Maier, Joscha; Leinweber, Carsten; Sawall, Stefan; Stoschus, Henning; Ballach, Frederic; Müller, Tobias; Hammer, Michael; Christoph, Ralf; Kachelrieß, Marc
2017-06-01
Computed tomography (CT) is a valuable tool for the metrolocical assessment of industrial components. However, the application of CT to the investigation of highly attenuating objects or multi-material components is often restricted by the presence of CT artifacts caused by beam hardening, x-ray scatter, off-focal radiation, partial volume effects or the cone-beam reconstruction itself. In order to overcome this limitation, this paper proposes an approach to calculate a correction term that compensates for the contribution of artifacts and thus enables an appropriate assessment of these components using CT. Therefore, we make use of computer simulations of the CT measurement process. Based on an appropriate model of the object, e.g. an initial reconstruction or a CAD model, two simulations are carried out. One simulation considers all physical effects that cause artifacts using dedicated analytic methods as well as Monte Carlo-based models. The other one represents an ideal CT measurement i.e. a measurement in parallel beam geometry with a monochromatic, point-like x-ray source and no x-ray scattering. Thus, the difference between these simulations is an estimate for the present artifacts and can be used to correct the acquired projection data or the corresponding CT reconstruction, respectively. The performance of the proposed approach is evaluated using simulated as well as measured data of single and multi-material components. Our approach yields CT reconstructions that are nearly free of artifacts and thereby clearly outperforms commonly used artifact reduction algorithms in terms of image quality. A comparison against tactile reference measurements demonstrates the ability of the proposed approach to increase the accuracy of the metrological assessment significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rilling, M; Centre de Recherche sur le Cancer, Hôtel-Dieu de Québec, Quebec City, QC; Département de radio-oncologie, CHU de Québec, Quebec City, QC
2015-06-15
Purpose: The purpose of this work is to simulate a multi-focus plenoptic camera used as the measuring device in a real-time three-dimensional scintillation dosimeter. Simulating and optimizing this realistic optical system will bridge the technological gap between concept validation and a clinically viable tool that can provide highly efficient, accurate and precise measurements for dynamic radiotherapy techniques. Methods: The experimental prototype, previously developed for proof of concept purposes, uses an off-the-shelf multi-focus plenoptic camera. With an array of interleaved microlenses of different focal lengths, this camera records spatial and angular information of light emitted by a plastic scintillator volume. Themore » three distinct microlens focal lengths were determined experimentally for use as baseline parameters by measuring image-to-object magnification for different distances in object space. A simulated plenoptic system was implemented using the non-sequential ray tracing software Zemax: this tool allows complete simulation of multiple optical paths by modeling interactions at interfaces such as scatter, diffraction, reflection and refraction. The active sensor was modeled based on the camera manufacturer specifications by a 2048×2048, 5 µm-pixel pitch sensor. Planar light sources, simulating the plastic scintillator volume, were employed for ray tracing simulations. Results: The microlens focal lengths were determined to be 384, 327 and 290 µm. A realistic multi-focus plenoptic system, with independently defined and optimizable specifications, was fully simulated. A f/2.9 and 54 mm-focal length Double Gauss objective was modeled as the system’s main lens. A three-focal length hexagonal microlens array of 250-µm thickness was designed, acting as an image-relay system between the main lens and sensor. Conclusion: Simulation of a fully modeled multi-focus plenoptic camera enables the decoupled optimization of the main lens and microlens specifications. This work leads the way to improving the 3D dosimeter’s achievable resolution, efficiency and build for providing a quality assurance tool fully meeting clinical needs. M.R. is financially supported by a Master’s Canada Graduate Scholarship from the NSERC. This research is also supported by the NSERC Industrial Research Chair in Optical Design.« less
A new bio-inspired optimisation algorithm: Bird Swarm Algorithm
NASA Astrophysics Data System (ADS)
Meng, Xian-Bing; Gao, X. Z.; Lu, Lihua; Liu, Yu; Zhang, Hengzhen
2016-07-01
A new bio-inspired algorithm, namely Bird Swarm Algorithm (BSA), is proposed for solving optimisation applications. BSA is based on the swarm intelligence extracted from the social behaviours and social interactions in bird swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance behaviour and flight behaviour. Birds may forage for food and escape from the predators by the social interactions to obtain a high chance of survival. By modelling these social behaviours, social interactions and the related swarm intelligence, four search strategies associated with five simplified rules are formulated in BSA. Simulations and comparisons based on eighteen benchmark problems demonstrate the effectiveness, superiority and stability of BSA. Some proposals for future research about BSA are also discussed.
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Multiple Criteria Evaluation of Quality and Optimisation of e-Learning System Components
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Dagiene, Valentina
2010-01-01
The main research object of the paper is investigation and proposal of the comprehensive Learning Object Repositories (LORs) quality evaluation tool suitable for their multiple criteria decision analysis, evaluation and optimisation. Both LORs "internal quality" and "quality in use" evaluation (decision making) criteria are analysed in the paper.…
Image charge multi-role and function detectors
NASA Astrophysics Data System (ADS)
Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon
2009-06-01
The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.
Yu Wei; Erin J. Belval; Matthew P. Thompson; Dave E. Calkin; Crystal S. Stonesifer
2016-01-01
Sharing fire engines and crews between fire suppression dispatch zones may help improve the utilisation of fire suppression resources. Using the Resource Ordering and Status System, the Predictive Servicesâ Fire Potential Outlooks and the Rocky Mountain Region Preparedness Levels from 2010 to 2013, we tested a simulation and optimisation procedure to transfer crews and...
NASA Astrophysics Data System (ADS)
Sridhar, R.; Jeevananthan, S.; Dash, S. S.; Vishnuram, Pradeep
2017-05-01
Maximum Power Point Trackers (MPPTs) are power electronic conditioners used in photovoltaic (PV) system to ensure that PV structures feed maximum power for the given ambient temperature and sun's irradiation. When the PV panels are shaded by a fraction due to any environment hindrances then, conventional MPPT trackers may fail in tracking the appropriate peak power as there will be multi power peaks. In this work, a shuffled frog leap algorithm (SFLA) is proposed and it successfully identifies the global maximum power point among other local maxima. The SFLA MPPT is compared with a well-entrenched conventional perturb and observe (P&O) MPPT algorithm and a global search particle swarm optimisation (PSO) MPPT. The simulation results reveal that the proposed algorithm is highly advantageous than P&O, as it tracks nearly 30% more power for a given shading pattern. The credible nature of the proposed SFLA is ensured when it outplays PSO MPPT in convergence. The whole system is realised in MATLAB/Simulink environment.
Alvarez-Segura, T; Gómez-Díaz, A; Ortiz-Bolsico, C; Torres-Lapasió, J R; García-Alvarez-Coque, M C
2015-08-28
Getting useful chemical information from samples containing many compounds is still a challenge to analysts in liquid chromatography. The highest complexity corresponds to samples for which there is no prior knowledge about their chemical composition. Computer-based methodologies are currently considered as the most efficient tools to optimise the chromatographic resolution, and further finding the optimal separation conditions. However, most chromatographic objective functions (COFs) described in the literature to measure the resolution are based on mathematical models fitted with the information obtained from standards, and cannot be applied to samples with unknown compounds. In this work, a new COF based on the automatic measurement of the protruding part of the chromatographic peaks (or peak prominences) that indicates the number of perceptible peaks and global resolution, without the need of standards, is developed. The proposed COF was found satisfactory with regard to the peak purity criterion when applied to artificial peaks and simulated chromatograms of mixtures built using the information of standards. The approach was applied to mixtures of drugs containing unknown impurities and degradation products and to extracts of medicinal herbs, eluted with acetonitrile-water mixtures using isocratic and gradient elution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.
2012-08-01
In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.
NASA Astrophysics Data System (ADS)
Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan
2018-04-01
Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to complymore » with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.« less
MultiMiTar: a novel multi objective optimization based miRNA-target prediction method.
Mitra, Ramkrishna; Bandyopadhyay, Sanghamitra
2011-01-01
Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level. In the proposed article, we introduce an efficient miRNA-target prediction system MultiMiTar, a Support Vector Machine (SVM) based classifier integrated with a multiobjective metaheuristic based feature selection technique. The robust performance of the proposed method is mainly the result of using high quality negative examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived Multi-Objective Simulated Annealing (AMOSA) and SVM. MultiMiTar is found to achieve much higher Matthew's correlation coefficient (MCC) of 0.583 and average class-wise accuracy (ACA) of 0.8 compared to the others target prediction methods for a completely independent test data set. The obtained MCC and ACA values of these algorithms range from -0.269 to 0.155 and 0.321 to 0.582, respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall) for the translationally repressed data set as compared to all the other existing methods. An important aspect is that the true positive predictions are distributed preferentially at the top of the ranked list that makes MultiMiTar reliable for the biologists. MultiMiTar is now available as an online tool at www.isical.ac.in/~bioinfo_miu/multimitar.htm. MultiMiTar software can be downloaded from www.isical.ac.in/~bioinfo_miu/multimitar-download.htm.
Alejo, L; Corredoira, E; Sánchez-Muñoz, F; Huerga, C; Aza, Z; Plaza-Núñez, R; Serrada, A; Bret-Zurita, M; Parrón, M; Prieto-Areyano, C; Garzón-Moll, G; Madero, R; Guibelalde, E
2018-04-09
Objective: The new 2013/59 EURATOM Directive (ED) demands dosimetric optimisation procedures without undue delay. The aim of this study was to optimise paediatric conventional radiology examinations applying the ED without compromising the clinical diagnosis. Automatic dose management software (ADMS) was used to analyse 2678 studies of children from birth to 5 years of age, obtaining local diagnostic reference levels (DRLs) in terms of entrance surface air kerma. Given local DRL for infants and chest examinations exceeded the European Commission (EC) DRL, an optimisation was performed decreasing the kVp and applying the automatic control exposure. To assess the image quality, an analysis of high-contrast resolution (HCSR), signal-to-noise ratio (SNR) and figure of merit (FOM) was performed, as well as a blind test based on the generalised estimating equations method. For newborns and chest examinations, the local DRL exceeded the EC DRL by 113%. After the optimisation, a reduction of 54% was obtained. No significant differences were found in the image quality blind test. A decrease in SNR (-37%) and HCSR (-68%), and an increase in FOM (42%), was observed. ADMS allows the fast calculation of local DRLs and the performance of optimisation procedures in babies without delay. However, physical and clinical analyses of image quality remain to be needed to ensure the diagnostic integrity after the optimisation process. Advances in knowledge: ADMS are useful to detect radiation protection problems and to perform optimisation procedures in paediatric conventional imaging without undue delay, as ED requires.
Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming.
García-Gen, Santiago; Rodríguez, Jorge; Lema, Juan M
2014-12-01
Anaerobic co-digestion of multiple substrates has the potential to enhance biogas productivity by making use of the complementary characteristics of different substrates. A blending strategy based on a linear programming optimisation method is proposed aiming at maximising COD conversion into methane, but simultaneously maintaining a digestate and biogas quality. The method incorporates experimental and heuristic information to define the objective function and the linear restrictions. The active constraints are continuously adapted (by relaxing the restriction boundaries) such that further optimisations in terms of methane productivity can be achieved. The feasibility of the blends calculated with this methodology was previously tested and accurately predicted with an ADM1-based co-digestion model. This was validated in a continuously operated pilot plant, treating for several months different mixtures of glycerine, gelatine and pig manure at organic loading rates from 1.50 to 4.93 gCOD/Ld and hydraulic retention times between 32 and 40 days at mesophilic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moir, H.; Bowles, C.; Campbell, C.; Sawyer, A.; Comins, L.; Werritty, A.
2010-12-01
The sustainable management of river corridors requires an understanding of the linkages between geomorphic, hydrologic, ecologic and socio-economic factors across a hierarchy of spatial and temporal scales. Therefore, in order to be genuinely sustainable, management must ideally be set within a catchment/watershed context. However, in practice, this rarely occurs due to obstacles imposed by fragmented land ownership/governance and an incomplete understanding of bio-physical process linkages. We present our experience on a project with the goal of optimising physical objectives at the catchment scale within a framework influenced by environmental legislation and conflicting land-use pressures. The project was carried out on the Eddleston Water in the Scottish Borders and had the primary objective of providing sustainable flood risk management to settlements on the water course while also providing ecological benefit to the river corridor. These co-objectives had to be met while considering the constraints imposed by land-use (predominantly arable agriculture) and transport infrastructure on the floodplain. The Eddleston Water has been heavily impacted by many human activities for over 200 years although a modified upland drainage, markedly canalised main-stem channel and floodplain disconnection are most significant to present-day physical and ecological processes. Catchment-scale restoration plans aim to restore broad-scale hydrological processes in conjunction with re-naturalisation of the river corridor at the reach-scale (including floodbank set-back, floodplain reconnection, regeneration of riparian vegetation, large wood placement). In addition, these measures also had to accommodate the objective of sustainable flood risk management, through the combination of a re-naturalised run-off regime and the encouragement of floodplain water storage. We present the output from 1D and 2D hydraulic models of a 1km stretch of the Eddleston Water that jointly assesses the benefit to flood hydrograph attenuation and bio-physical processes of a suite of restoration designs within the floodplain. Although the models produced an optimised design based on these environmental objectives, the ‘real world’ situation of constraints imposed by ‘socio-economic’ factors (particularly agricultural and urban infrastructure pressures) subsequently modified this. In this way the project demonstrated the compromises that have to be made in implementing these type of idealised physical objectives.
NASA Astrophysics Data System (ADS)
van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François
2016-07-01
Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.
NASA Astrophysics Data System (ADS)
Majumdar, S.; Miller, G. R.; Smith, B.; Sheng, Z.
2017-12-01
Aquifer Storage and Recovery (ASR) system is a powerful tool for managing our present and future freshwater supplies. It involves injection of excess water into an aquifer, storing and later recovering it when needed, such as in a drought or during peak demand periods. Multi-well ASR systems, such as the Twin Oaks Facility in San Antonio, consist of a group of wells that are used for simultaneous injection and extraction of stored water. While significant research has gone into examining the effects of hydraulic and operational factors on recovery efficiency for single ASR well, little is known about how multi-well systems respond to these factors and how energy uses may vary. In this study, we created a synthetic ASR model in MODFLOW to test a range of multi-well scenarios. We altered design parameters (well spacing, pumping capacity, well configuration), hydrogeologic factors (regional hydraulic gradient, hydraulic conductivity, dispersivity), and operational variables (injection and withdrawal durations; pumping rates) to determine the response of the system across a realistic range of interrelated parameters. We then computed energy use for each simulation, based on the hydraulic head in each well and standard pump factors, as well as recovery efficiency, based on tracer concentration in recovered water from the wells. The tracer concentration in the groundwater was determined using MT3DMS. We observed that the recovery and energy efficiencies for the Multi-well ASR system decrease with the increase in well spacing and hydraulic gradient. When longitudinal dispersivity was doubled, the recovery and energy efficiencies were nearly halved. Another finding from our study suggests that we can recover nearly 90% of the water after two successive cycles of operation. The results will be used to develop generalized operational guidelines for meeting freshwater demands and also optimise the energy consumed during pumping.
An approximate dynamic programming approach to resource management in multi-cloud scenarios
NASA Astrophysics Data System (ADS)
Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo
2017-03-01
The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.
Kane, J.S.
1988-01-01
A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.
NASA Astrophysics Data System (ADS)
Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.
2018-02-01
The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.
Optimisation of confinement in a fusion reactor using a nonlinear turbulence model
NASA Astrophysics Data System (ADS)
Highcock, E. G.; Mandell, N. R.; Barnes, M.
2018-04-01
The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.
Use of the Inverse Approach for the Manufacture and Decoration of Food Cans
NASA Astrophysics Data System (ADS)
Duffett, G. A.; Forgas, A.; Neamtu, L.; Naceur, H.; Batoz, J. L.; Guo, Y. Q.
2005-08-01
Innovation is a key objective in the metal packaging industry in order to produce new concepts, designs, shapes and printing. Simulation technology now allows both the can design as well as the manufacturing process to be carefully analysed before any physical prototypes or dies have been manufactured. These simulations are traditionally carried out using incremental simulation methodologies. However, much information may also be attained by using the inverse approach: the initial blank format for the can body as well as its lid may be optimised much faster, the actual decoration of the can may be evaluated and even calculated when deformation printing techniques are utilised. This paper presents some of the technical details relating to the inverse approach employed in Stampack to carry out simulations important for the manufacture of food cans that are shown via industrial.
NASA Astrophysics Data System (ADS)
Sreekanth, J.; Datta, Bithin
2011-07-01
Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.
Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien
2014-01-01
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148
Refinement procedure for the image alignment in high-resolution electron tomography.
Houben, L; Bar Sadan, M
2011-01-01
High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.
Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine.
Dreischarf, Marcel; Rohlmann, Antonius; Bergmann, Georg; Zander, Thomas
2012-07-01
In in vitro studies of the lumbar spine simplified loading modes (compressive follower force, pure moment) are usually employed to simulate the standard load cases flexion-extension, axial rotation and lateral bending of the upper body. However, the magnitudes of these loads vary widely in the literature. Thus the results of current studies may lead to unrealistic values and are hardly comparable. It is still unknown which load magnitudes lead to a realistic simulation of maximum lateral bending. A validated finite element model of the lumbar spine was used in an optimisation study to determine which magnitudes of the compressive follower force and bending moment deliver results that fit best with averaged in vivo data. The best agreement with averaged in vivo measured data was found for a compressive follower force of 700 N and a lateral bending moment of 7.8 Nm. These results show that loading modes that differ strongly from the optimised one may not realistically simulate maximum lateral bending. The simplified but in vitro applicable loading cannot perfectly mimic the in vivo situation. However, the optimised magnitudes are those which agree best with averaged in vivo measured data. Its consequent application would lead to a better comparability of different investigations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
Alex, J; Kolisch, G; Krause, K
2002-01-01
The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.
2015-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
NASA Astrophysics Data System (ADS)
Kolyaie, S.; Yaghooti, M.; Majidi, G.
2011-12-01
This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.
Battery Cell Balancing Optimisation for Battery Management System
NASA Astrophysics Data System (ADS)
Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.
2017-03-01
Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.
Using Optimisation Techniques to Granulise Rough Set Partitions
NASA Astrophysics Data System (ADS)
Crossingham, Bodie; Marwala, Tshilidzi
2007-11-01
This paper presents an approach to optimise rough set partition sizes using various optimisation techniques. Three optimisation techniques are implemented to perform the granularisation process, namely, genetic algorithm (GA), hill climbing (HC) and simulated annealing (SA). These optimisation methods maximise the classification accuracy of the rough sets. The proposed rough set partition method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey. The three techniques are compared in terms of their computational time, accuracy and number of rules produced when applied to the Human Immunodeficiency Virus (HIV) data set. The optimised methods results are compared to a well known non-optimised discretisation method, equal-width-bin partitioning (EWB). The accuracies achieved after optimising the partitions using GA, HC and SA are 66.89%, 65.84% and 65.48% respectively, compared to the accuracy of EWB of 59.86%. In addition to rough sets providing the plausabilities of the estimated HIV status, they also provide the linguistic rules describing how the demographic parameters drive the risk of HIV.
A 0.4-2.3 GHz broadband power amplifier extended continuous class-F design technology
NASA Astrophysics Data System (ADS)
Chen, Peng; He, Songbai
2015-08-01
A 0.4-2.3 GHz broadband power amplifier (PA) extended continuous class-F design technology is proposed in this paper. Traditional continuous class-F PA performs in high-efficiency only in one octave bandwidth. With the increasing development of wireless communication, the PA is in demand to cover the mainstream communication standards' working frequencies from 0.4 GHz to 2.2 GHz. In order to achieve this objective, the bandwidths of class-F and continuous class-F PA are analysed and discussed by Fourier series. Also, two criteria, which could reduce the continuous class-F PA's implementation complexity, are presented and explained to investigate the overlapping area of the transistor's current and voltage waveforms. The proposed PA design technology is based on the continuous class-F design method and divides the bandwidth into two parts: the first part covers the bandwidth from 1.3 GHz to 2.3 GHz, where the impedances are designed by the continuous class-F method; the other part covers the bandwidth from 0.4 GHz to 1.3 GHz, where the impedance to guarantee PA to be in high-efficiency over this bandwidth is selected and controlled. The improved particle swarm optimisation is employed for realising the multi-impedances of output and input network. A PA based on a commercial 10 W GaN high electron mobility transistor is designed and fabricated to verify the proposed design method. The simulation and measurement results show that the proposed PA could deliver 40-76% power added efficiency and more than 11 dB power gain with more than 40 dBm output power over the bandwidth from 0.4-2.3 GHz.
INDIVIDUAL-BASED MODELS: POWERFUL OR POWER STRUGGLE?
Willem, L; Stijven, S; Hens, N; Vladislavleva, E; Broeckhove, J; Beutels, P
2015-01-01
Individual-based models (IBMs) offer endless possibilities to explore various research questions but come with high model complexity and computational burden. Large-scale IBMs have become feasible but the novel hardware architectures require adapted software. The increased model complexity also requires systematic exploration to gain thorough system understanding. We elaborate on the development of IBMs for vaccine-preventable infectious diseases and model exploration with active learning. Investment in IBM simulator code can lead to significant runtime reductions. We found large performance differences due to data locality. Sorting the population once, reduced simulation time by a factor two. Storing person attributes separately instead of using person objects also seemed more efficient. Next, we improved model performance up to 70% by structuring potential contacts based on health status before processing disease transmission. The active learning approach we present is based on iterative surrogate modelling and model-guided experimentation. Symbolic regression is used for nonlinear response surface modelling with automatic feature selection. We illustrate our approach using an IBM for influenza vaccination. After optimizing the parameter spade, we observed an inverse relationship between vaccination coverage and the clinical attack rate reinforced by herd immunity. These insights can be used to focus and optimise research activities, and to reduce both dimensionality and decision uncertainty.
2008-03-01
computational version of the CASIE architecture serves to demonstrate the functionality of our primary theories. However, implementation of several other...following facts. First, based on Theorem 3 and Theorem 5, the objective function is non -increasing under updating rule (6); second, by the criteria for...reassignment in updating rule (7), it is trivial to show that the objective function is non -increasing under updating rule (7). A Unified View to Graph
NASA Astrophysics Data System (ADS)
Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao
2017-10-01
Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however, Phase III can only de-silt after the release at spillway reaches 827 m3/s, and before reservoir discharge reaches 1924 m3/s, with corresponding maximum desiltation ratio being 0.221 and 0.323, respectively. Moreover, the model construction results demonstrated that the self-adaption/fuzzy inference of ANFIS can effectively simulate the SC hydrograph in an unsteady state for suspended load-dominated water bodies, and that the real-time recurrent deterministic routing of RTRLNN can accurately simulate that of a bedload-dominated flow regime.
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
NASA Astrophysics Data System (ADS)
Dal Bianco, N.; Lot, R.; Matthys, K.
2018-01-01
This works regards the design of an electric motorcycle for the annual Isle of Man TT Zero Challenge. Optimal control theory was used to perform lap time simulation and design optimisation. A bespoked model was developed, featuring 3D road topology, vehicle dynamics and electric power train, composed of a lithium battery pack, brushed DC motors and motor controller. The model runs simulations over the entire ? or ? of the Snaefell Mountain Course. The work is validated using experimental data from the BX chassis of the Brunel Racing team, which ran during the 2009 to 2015 TT Zero races. Optimal control is used to improve drive train and power train configurations. Findings demonstrate computational efficiency, good lap time prediction and design optimisation potential, achieving a 2 minutes reduction of the reference lap time through changes in final drive gear ratio, battery pack size and motor configuration.
PyEvolve: a toolkit for statistical modelling of molecular evolution.
Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A
2004-01-05
Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences - ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from approximately 10 days to approximately 6 hours. PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be used interactively or by writing and executing scripts. The toolkit uses efficient processes for specifying the parameterisation of statistical models, and implements numerous optimisations that make highly parameter rich likelihood functions solvable within hours on multi-cpu hardware. PyEvolve can be readily adapted in response to changing computational demands and hardware configurations to maximise performance. PyEvolve is released under the GPL and can be downloaded from http://cbis.anu.edu.au/software.
New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration
NASA Astrophysics Data System (ADS)
Keshavarz, Kasra; Alizadeh, Hossein
2017-04-01
Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other hand, knowing that there is no multi-objective optimization mechanism in SUFI-2, are the final estimations Pareto-optimal? Can systematic methods be applied to select the final estimations? Dealing with these questions, a new auto-calibration algorithm was proposed where the uncertainty measures were considered as two objectives to find non-dominated interval estimations of parameters by means of coupling Monte Carlo simulation and Multi-Objective Particle Swarm Optimization. Both the proposed algorithm and SUFI-2 were applied to calibrate parameters of water resources planning model of Helleh river basin, Iran. The model is a comprehensive water quantity-quality model developed in the previous researches using WEAP software in order to analyze the impacts of different water resources management strategies including dam construction, increasing cultivation area, utilization of more efficient irrigation technologies, changing crop pattern, etc. Comparing the Pareto frontier resulted from the proposed auto-calibration algorithm with SUFI-2 results, it was revealed that the new algorithm leads to a better and also continuous Pareto frontier, even though it is more computationally expensive. Finally, Nash and Kalai-Smorodinsky bargaining methods were used to choose compromised interval estimation regarding Pareto frontier.
Research a Novel Integrated and Dynamic Multi-object Trade-Off Mechanism in Software Project
NASA Astrophysics Data System (ADS)
Jiang, Weijin; Xu, Yuhui
Aiming at practical requirements of present software project management and control, the paper presented to construct integrated multi-object trade-off model based on software project process management, so as to actualize integrated and dynamic trade-oil of the multi-object system of project. Based on analyzing basic principle of dynamic controlling and integrated multi-object trade-off system process, the paper integrated method of cybernetics and network technology, through monitoring on some critical reference points according to the control objects, emphatically discussed the integrated and dynamic multi- object trade-off model and corresponding rules and mechanism in order to realize integration of process management and trade-off of multi-object system.
Vanderschuren, Marianne
2008-03-01
Intelligent Transport Systems (ITS) can facilitate the delivery of a wide range of policy objectives. There are six main objectives/benefits identified in the international literature: Safety (reduction of (potential) crashes), mobility (reduction of delays and travel times), efficiency (optimise the use of existing infrastructure), productivity (cost saving), energy/environment and customer satisfaction [Mitretek Systems, 2001. Intelligent Transport System Benefits: 2001 update, Under Contract to the Federal Highway Administration, US Department of Transportation, Washington, DC, US]. In the South African context, there is an interest for measures that can reduce (potential) crashes. In South Africa the number of year on year traffic related fatalities is still increasing. In 2005 the number of fatalities was 15393 (from 14135 in 2004) while the estimated costs for the same period increased from R8.89-billion to R9.99-billion [RTMC, 2007. Interim Road Traffic and Fatal Crash Report 2006, Road Traffic Management Corporation, Pretoria, SA]. Given the extent of the road safety problem and the potential benefits of ITS, the need for further research is apparent. A study with regards to the potential of different types of models (macroscopic, mesoscopic and miscroscopic simulation models) led to the use of Paramics. Two corridors and three types of ITS measures were investigated and safety benefits were estimated.
NASA Astrophysics Data System (ADS)
Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin
The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.
NASA Astrophysics Data System (ADS)
Comot, Pierre
L'industrie aeronautique, cherche a etudier la possibilite d'utiliser de maniere structurelle des joints brases, dans une optique de reduction de poids et de cout. Le developpement d'une methode d'evaluation rapide, fiable et peu couteuse pour evaluer l'integrite structurelle des joints apparait donc indispensable. La resistance mecanique d'un joint brase dependant principalement de la quantite de phase fragile dans sa microstructure. Les ondes guidees ultrasonores permettent de detecter ce type de phase lorsqu'elles sont couplees a une mesure spatio-temporelle. De plus la nature de ce type d'ondes permet l'inspection de joints ayant des formes complexes. Ce memoire se concentre donc sur le developpement d'une technique basee sur l'utilisation d'ondes guidees ultrasonores pour l'inspection de joints brases a recouvrement d'Inconel 625 avec comme metal d'apport du BNi-2. Dans un premiers temps un modele elements finis du joint a ete utilise pour simuler la propagation des ultrasons et optimiser les parametres d'inspection, la simulation a permis egalement de demontrer la faisabilite de la technique pour la detection de la quantite de phase fragile dans ce type de joints. Les parametres optimises sont la forme de signal d'excitation, sa frequence centrale et la direction d'excitation. Les simulations ont montre que l'energie de l'onde ultrasonore transmise a travers le joint aussi bien que celle reflechie, toutes deux extraites des courbes de dispersion, etaient proportionnelles a la quantite de phase fragile presente dans le joint et donc cette methode permet d'identifier la presence ou non d'une phase fragile dans ce type de joint. Ensuite des experimentations ont ete menees sur trois echantillons typiques presentant differentes quantites de phase fragile dans le joint, pour obtenir ce type d'echantillons differents temps de brasage ont ete utilises (1, 60 et 180 min). Pour cela un banc d'essai automatise a ete developpe permettant d'effectuer une analyse similaire a celle utilisee en simulation. Les parametres experimentaux ayant ete choisis en accord avec l'optimisation effectuee lors des simulations et apres une premiere optimisation du procede experimental. Finalement les resultats experimentaux confirment les resultats obtenus en simulation, et demontrent le potentiel de la methode developpee.
A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits
NASA Astrophysics Data System (ADS)
Moradi, Behzad; Mirzaei, Abdolreza
2016-11-01
A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.
Liu, Y; Allen, R
2002-09-01
The study aimed to model the cerebrovascular system, using a linear ARX model based on data simulated by a comprehensive physiological model, and to assess the range of applicability of linear parametric models. Arterial blood pressure (ABP) and middle cerebral arterial blood flow velocity (MCAV) were measured from 11 subjects non-invasively, following step changes in ABP, using the thigh cuff technique. By optimising parameters associated with autoregulation, using a non-linear optimisation technique, the physiological model showed a good performance (r=0.83+/-0.14) in fitting MCAV. An additional five sets of measured ABP of length 236+/-154 s were acquired from a subject at rest. These were normalised and rescaled to coefficients of variation (CV=SD/mean) of 2% and 10% for model comparisons. Randomly generated Gaussian noise with standard deviation (SD) from 1% to 5% was added to both ABP and physiologically simulated MCAV (SMCAV), with 'normal' and 'impaired' cerebral autoregulation, to simulate the real measurement conditions. ABP and SMCAV were fitted by ARX modelling, and cerebral autoregulation was quantified by a 5 s recovery percentage R5% of the step responses of the ARX models. The study suggests that cerebral autoregulation can be assessed by computing the R5% of the step response of an ARX model of appropriate order, even when measurement noise is considerable.
Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A
2017-01-01
Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
NASA Technical Reports Server (NTRS)
Darmofal, David L.
2003-01-01
The use of computational simulations in the prediction of complex aerodynamic flows is becoming increasingly prevalent in the design process within the aerospace industry. Continuing advancements in both computing technology and algorithmic development are ultimately leading to attempts at simulating ever-larger, more complex problems. However, by increasing the reliance on computational simulations in the design cycle, we must also increase the accuracy of these simulations in order to maintain or improve the reliability arid safety of the resulting aircraft. At the same time, large-scale computational simulations must be made more affordable so that their potential benefits can be fully realized within the design cycle. Thus, a continuing need exists for increasing the accuracy and efficiency of computational algorithms such that computational fluid dynamics can become a viable tool in the design of more reliable, safer aircraft. The objective of this research was the development of an error estimation and grid adaptive strategy for reducing simulation errors in integral outputs (functionals) such as lift or drag from from multi-dimensional Euler and Navier-Stokes simulations. In this final report, we summarize our work during this grant.
NASA Astrophysics Data System (ADS)
Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh
2016-09-01
In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Mustafa Sacit; none,; Flanagan, George F.
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less
ATLAS software configuration and build tool optimisation
NASA Astrophysics Data System (ADS)
Rybkin, Grigory; Atlas Collaboration
2014-06-01
ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of multi-core computing resources utilisation, and considerably improved software developer and user experience.
NASA Astrophysics Data System (ADS)
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
Design and analysis of magneto rheological fluid brake for an all terrain vehicle
NASA Astrophysics Data System (ADS)
George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.
2018-02-01
This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.
Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Liu, Qiang; Wang, Chengen
2012-08-01
Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.
Koo, B K; O'Connell, P E
2006-04-01
The site-specific land use optimisation methodology, suggested by the authors in the first part of this two-part paper, has been applied to the River Kennet catchment at Marlborough, Wiltshire, UK, for a case study. The Marlborough catchment (143 km(2)) is an agriculture-dominated rural area over a deep chalk aquifer that is vulnerable to nitrate pollution from agricultural diffuse sources. For evaluation purposes, the catchment was discretised into a network of 1 kmx1 km grid cells. For each of the arable-land grid cells, seven land use alternatives (four arable-land alternatives and three grassland alternatives) were evaluated for their environmental and economic potential. For environmental evaluation, nitrate leaching rates of land use alternatives were estimated using SHETRAN simulations and groundwater pollution potential was evaluated using the DRASTIC index. For economic evaluation, economic gross margins were estimated using a simple agronomic model based on nitrogen response functions and agricultural land classification grades. In order to see whether the site-specific optimisation is efficient at the catchment scale, land use optimisation was carried out for four optimisation schemes (i.e. using four sets of criterion weights). Consequently, four land use scenarios were generated and the site-specifically optimised land use scenario was evaluated as the best compromise solution between long term nitrate pollution and agronomy at the catchment scale.
A multi-objective model for sustainable recycling of municipal solid waste.
Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz
2017-04-01
The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.
A Homogenization Approach for Design and Simulation of Blast Resistant Composites
NASA Astrophysics Data System (ADS)
Sheyka, Michael
Structural composites have been used in aerospace and structural engineering due to their high strength to weight ratio. Composite laminates have been successfully and extensively used in blast mitigation. This dissertation examines the use of the homogenization approach to design and simulate blast resistant composites. Three case studies are performed to examine the usefulness of different methods that may be used in designing and optimizing composite plates for blast resistance. The first case study utilizes a single degree of freedom system to simulate the blast and a reliability based approach. The first case study examines homogeneous plates and the optimal stacking sequence and plate thicknesses are determined. The second and third case studies use the homogenization method to calculate the properties of composite unit cell made of two different materials. The methods are integrated with dynamic simulation environments and advanced optimization algorithms. The second case study is 2-D and uses an implicit blast simulation, while the third case study is 3-D and simulates blast using the explicit blast method. Both case studies 2 and 3 rely on multi-objective genetic algorithms for the optimization process. Pareto optimal solutions are determined in case studies 2 and 3. Case study 3 is an integrative method for determining optimal stacking sequence, microstructure and plate thicknesses. The validity of the different methods such as homogenization, reliability, explicit blast modeling and multi-objective genetic algorithms are discussed. Possible extension of the methods to include strain rate effects and parallel computation is also examined.
Automatic trajectory planning for low-thrust active removal mission in low-earth orbit
NASA Astrophysics Data System (ADS)
Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano
2017-03-01
In this paper two strategies are proposed to de-orbit up to 10 non-cooperative objects per year from the region within 800 and 1400 km altitude in Low Earth Orbit (LEO). The underlying idea is to use a single servicing spacecraft to de-orbit several objects applying two different approaches. The first strategy is analogous to the Traveling Salesman Problem: the servicing spacecraft rendezvous with multiple objects in order to physically attach a de-orbiting kit that reduces the perigee of the orbit. The second strategy is analogous to the Vehicle Routing Problem: the servicing spacecraft rendezvous and docks with an object, spirals it down to a lower altitude orbit, undocks, and then spirals up to the next target. In order to maximise the number of de-orbited objects with minimum propellant consumption, an optimal sequence of targets is identified using a bio-inspired incremental automatic planning and scheduling discrete optimisation algorithm. The optimisation of the resulting sequence is realised using a direct transcription method based on an asymptotic analytical solution of the perturbed Keplerian motion. The analytical model takes into account the perturbations deriving from the J2 gravitational effect and the atmospheric drag.
Uncertainty in simulating wheat yields under climate change
NASA Astrophysics Data System (ADS)
Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.
2013-09-01
Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.
2014-09-23
conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere
NASA Technical Reports Server (NTRS)
Houck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
NASA Technical Reports Server (NTRS)
Rhouck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina P.; Costa, Lino
2012-09-01
In this paper, a study based on sensitivity analysis is performed for a gait multi-objective optimization system that combines bio-inspired Central Patterns Generators (CPGs) and a multi-objective evolutionary algorithm based on NSGA-II. In this system, CPGs are modeled as autonomous differential equations, that generate the necessary limb movement to perform the required walking gait. In order to optimize the walking gait, a multi-objective problem with three conflicting objectives is formulated: maximization of the velocity, the wide stability margin and the behavioral diversity. The experimental results highlight the effectiveness of this multi-objective approach and the importance of the objectives to find different walking gait solutions for the quadruped robot.
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-12-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-02-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
Modeling Land Use/Cover Changes in an African Rural Landscape
NASA Astrophysics Data System (ADS)
Kamusoko, C.; Aniya, M.
2006-12-01
Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata
3D Reconstruction of Space Objects from Multi-Views by a Visible Sensor
Zhang, Haopeng; Wei, Quanmao; Jiang, Zhiguo
2017-01-01
In this paper, a novel 3D reconstruction framework is proposed to recover the 3D structural model of a space object from its multi-view images captured by a visible sensor. Given an image sequence, this framework first estimates the relative camera poses and recovers the depths of the surface points by the structure from motion (SFM) method, then the patch-based multi-view stereo (PMVS) algorithm is utilized to generate a dense 3D point cloud. To resolve the wrong matches arising from the symmetric structure and repeated textures of space objects, a new strategy is introduced, in which images are added to SFM in imaging order. Meanwhile, a refining process exploiting the structural prior knowledge that most sub-components of artificial space objects are composed of basic geometric shapes is proposed and applied to the recovered point cloud. The proposed reconstruction framework is tested on both simulated image datasets and real image datasets. Experimental results illustrate that the recovered point cloud models of space objects are accurate and have a complete coverage of the surface. Moreover, outliers and points with severe noise are effectively filtered out by the refinement, resulting in an distinct improvement of the structure and visualization of the recovered points. PMID:28737675
Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation
2006-09-01
risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level
Tail mean and related robust solution concepts
NASA Astrophysics Data System (ADS)
Ogryczak, Włodzimierz
2014-01-01
Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.
Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu
2018-05-01
The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A.; Christensen, Dane T.
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A; Isley, Steven C
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
A compatible control algorithm for greenhouse environment control based on MOCC strategy.
Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua
2011-01-01
Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.
A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy
Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua
2011-01-01
Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system. PMID:22163799
Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems
NASA Astrophysics Data System (ADS)
Luis, Raul Fernandes
Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
NASA Astrophysics Data System (ADS)
Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian
2017-08-01
With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
NASA Astrophysics Data System (ADS)
Stavroulakis, Petros I.; Chen, Shuxiao; Sims-Waterhouse, Danny; Piano, Samanta; Southon, Nicholas; Bointon, Patrick; Leach, Richard
2017-06-01
In non-rigid fringe projection 3D measurement systems, where either the camera or projector setup can change significantly between measurements or the object needs to be tracked, self-calibration has to be carried out frequently to keep the measurements accurate1. In fringe projection systems, it is common to use methods developed initially for photogrammetry for the calibration of the camera(s) in the system in terms of extrinsic and intrinsic parameters. To calibrate the projector(s) an extra correspondence between a pre-calibrated camera and an image created by the projector is performed. These recalibration steps are usually time consuming and involve the measurement of calibrated patterns on planes, before the actual object can continue to be measured after a motion of a camera or projector has been introduced in the setup and hence do not facilitate fast 3D measurement of objects when frequent experimental setup changes are necessary. By employing and combining a priori information via inverse rendering, on-board sensors, deep learning and leveraging a graphics processor unit (GPU), we assess a fine camera pose estimation method which is based on optimising the rendering of a model of a scene and the object to match the view from the camera. We find that the success of this calibration pipeline can be greatly improved by using adequate a priori information from the aforementioned sources.
Topography of hidden objects using THz digital holography with multi-beam interferences.
Valzania, Lorenzo; Zolliker, Peter; Hack, Erwin
2017-05-15
We present a method for the separation of the signal scattered from an object hidden behind a THz-transparent sample in the framework of THz digital holography in reflection. It combines three images of different interference patterns to retrieve the amplitude and phase distribution of the object beam. Comparison of simulated with experimental images obtained from a metallic resolution target behind a Teflon plate demonstrates that the interference patterns can be described in the simple form of three-beam interference. Holographic reconstructions after the application of the method show a considerable improvement compared to standard reconstructions exclusively based on Fourier transform phase retrieval.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
NASA Astrophysics Data System (ADS)
Hussein, Rafid M.; Chandrashekhara, K.
2017-11-01
A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
NASA Astrophysics Data System (ADS)
Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.
On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.
Bai, Shun; Skafidas, Stan
2014-01-01
Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis.
Multi Robot Path Planning for Budgeted Active Perception with Self-Organising Maps
2016-10-04
Multi- Robot Path Planning for Budgeted Active Perception with Self-Organising Maps Graeme Best1, Jan Faigl2 and Robert Fitch1 Abstract— We propose a...optimise paths for a multi- robot team that aims to maximally observe a set of nodes in the environment. The selected nodes are observed by visiting...regions, each node has an observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik
2016-08-01
We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.
Mission planning optimization of video satellite for ground multi-object staring imaging
NASA Astrophysics Data System (ADS)
Cui, Kaikai; Xiang, Junhua; Zhang, Yulin
2018-03-01
This study investigates the emergency scheduling problem of ground multi-object staring imaging for a single video satellite. In the proposed mission scenario, the ground objects require a specified duration of staring imaging by the video satellite. The planning horizon is not long, i.e., it is usually shorter than one orbit period. A binary decision variable and the imaging order are used as the design variables, and the total observation revenue combined with the influence of the total attitude maneuvering time is regarded as the optimization objective. Based on the constraints of the observation time windows, satellite attitude adjustment time, and satellite maneuverability, a constraint satisfaction mission planning model is established for ground object staring imaging by a single video satellite. Further, a modified ant colony optimization algorithm with tabu lists (Tabu-ACO) is designed to solve this problem. The proposed algorithm can fully exploit the intelligence and local search ability of ACO. Based on full consideration of the mission characteristics, the design of the tabu lists can reduce the search range of ACO and improve the algorithm efficiency significantly. The simulation results show that the proposed algorithm outperforms the conventional algorithm in terms of optimization performance, and it can obtain satisfactory scheduling results for the mission planning problem.
An open, object-based modeling approach for simulating subsurface heterogeneity
NASA Astrophysics Data System (ADS)
Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.
2017-12-01
Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Andrs; Ray Berry; Derek Gaston
The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less
Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems
NASA Astrophysics Data System (ADS)
Kwag, Shinyoung
Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.
Collaborative simulation method with spatiotemporal synchronization process control
NASA Astrophysics Data System (ADS)
Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian
2016-10-01
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
NASA Astrophysics Data System (ADS)
Li, Chengcheng; Li, Yuefeng; Wang, Guanglin
2017-07-01
The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.
The System of Simulation and Multi-objective Optimization for the Roller Kiln
NASA Astrophysics Data System (ADS)
Huang, He; Chen, Xishen; Li, Wugang; Li, Zhuoqiu
It is somewhat a difficult researching problem, to get the building parameters of the ceramic roller kiln simulation model. A system integrated of evolutionary algorithms (PSO, DE and DEPSO) and computational fluid dynamics (CFD), is proposed to solve the problem. And the temperature field uniformity and the environment disruption are studied in this paper. With the help of the efficient parallel calculation, the ceramic roller kiln temperature field uniformity and the NOx emissions field have been researched in the system at the same time. A multi-objective optimization example of the industrial roller kiln proves that the system is of excellent parameter exploration capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINSTERLE, STEFAN; JUNG, YOOJIN; KOWALSKY, MICHAEL
2016-09-15
iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. iTOUGH2 performs sensitivity analyses, data-worth analyses, parameter estimation, and uncertainty propagation analyses in geosciences and reservoir engineering and other application areas. iTOUGH2 supports a number of different combinations of fluids and components (equation-of-state (EOS) modules). In addition, the optimization routines implemented in iTOUGH2 can also be used for sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files using the PEST protocol. iTOUGH2 solves the inverse problem bymore » minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative-free, gradient-based, and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlo simulations for uncertainty propagation analyses. A detailed residual and error analysis is provided. This upgrade includes (a) global sensitivity analysis methods, (b) dynamic memory allocation (c) additional input features and output analyses, (d) increased forward simulation capabilities, (e) parallel execution on multicore PCs and Linux clusters, and (f) bug fixes. More details can be found at http://esd.lbl.gov/iTOUGH2.« less
Radiation exposure in X-ray-based imaging techniques used in osteoporosis
Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.
2010-01-01
Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834
The role of predictive uncertainty in the operational management of reservoirs
NASA Astrophysics Data System (ADS)
Todini, E.
2014-09-01
The present work deals with the operational management of multi-purpose reservoirs, whose optimisation-based rules are derived, in the planning phase, via deterministic (linear and nonlinear programming, dynamic programming, etc.) or via stochastic (generally stochastic dynamic programming) approaches. In operation, the resulting deterministic or stochastic optimised operating rules are then triggered based on inflow predictions. In order to fully benefit from predictions, one must avoid using them as direct inputs to the reservoirs, but rather assess the "predictive knowledge" in terms of a predictive probability density to be operationally used in the decision making process for the estimation of expected benefits and/or expected losses. Using a theoretical and extremely simplified case, it will be shown why directly using model forecasts instead of the full predictive density leads to less robust reservoir management decisions. Moreover, the effectiveness and the tangible benefits for using the entire predictive probability density instead of the model predicted values will be demonstrated on the basis of the Lake Como management system, operational since 1997, as well as on the basis of a case study on the lake of Aswan.
Development of a numerical model for the electric current in burner-stabilised methane-air flames
NASA Astrophysics Data System (ADS)
Speelman, N.; de Goey, L. P. H.; van Oijen, J. A.
2015-03-01
This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson's equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage-current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.
Twist limits for late twisting double somersaults on trampoline.
Yeadon, M R; Hiley, M J
2017-06-14
An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fast simulation of the NICER instrument
NASA Astrophysics Data System (ADS)
Doty, John P.; Wampler-Doty, Matthew P.; Prigozhin, Gregory Y.; Okajima, Takashi; Arzoumanian, Zaven; Gendreau, Keith
2016-07-01
The NICER1 mission uses a complicated physical system to collect information from objects that are, by x-ray timing science standards, rather faint. To get the most out of the data we will need a rigorous understanding of all instrumental effects. We are in the process of constructing a very fast, high fidelity simulator that will help us to assess instrument performance, support simulation-based data reduction, and improve our estimates of measurement error. We will combine and extend existing optics, detector, and electronics simulations. We will employ the Compute Unified Device Architecture (CUDA2) to parallelize these calculations. The price of suitable CUDA-compatible multi-giga op cores is about $0.20/core, so this approach will be very cost-effective.
NASA Astrophysics Data System (ADS)
Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.
2015-12-01
We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop
NASA Astrophysics Data System (ADS)
Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud
2013-09-01
The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.
NASA Astrophysics Data System (ADS)
Vrba, Tomas; Fojtik, Pavel
2014-11-01
In the case of an accidental release of 131I, a system for large-scale monitoring of the population for the radionuclide intake is needed. A monitoring system is required to be capable of measuring adult as well as child subjects across a wide range of ages. Such system has been developed by the National Radiation Protection Institute in Prague (NRPI) and the Evinet company (member of the Nuvia Group). This paper describes the optimisation of the NaI(Tl) detector chosen for this system. The design of the crystal was based on Monte Carlo (MC) simulations, and supported by literature. These simulations examined three different crystal shapes and several dimensions. Based on the MC study, two prototype detectors, with crystal diameters 80 and 73 mm, were manufactured and compared with the crystals having dimensions ∅45×40 mm used for thyroid measurement at NRPI and with a standard NaI(Tl) probe (∅76.2×76.2 mm). The detector with a crystal of 80 mm diameter gave the best results and was chosen for further production.
NASA Astrophysics Data System (ADS)
Zarchi, Milad; Attaran, Behrooz
2017-11-01
This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun
2017-02-01
Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.
On simulated annealing phase transitions in phylogeny reconstruction.
Strobl, Maximilian A R; Barker, Daniel
2016-08-01
Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Ławryńczuk, Maciej
2017-03-01
This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Hastings, Gareth D.; Marsack, Jason D.; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A.
2017-01-01
Purpose To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Methods Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. Results For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ±SD was −0.06 ±0.04 with both refractions; dilated was −0.05 ±0.04 with the objective, and −0.05 ±0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. Conclusions A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred over subjective refraction. Subjective refraction was preferred by habitually undercorrected hyperopic eyes. PMID:28370389
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia
2018-05-01
The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.
NASA Astrophysics Data System (ADS)
Hu, X. F.; Wang, L. G.; Wu, H.; Liu, S. S.
2017-12-01
For the forging process of the swash plate, the author designed a kind of multi-index orthogonal experiment. Based on the Archard wear model, the influences of billet temperature, die temperature, forming speed, top die hardness and friction coefficient on forming load and die wear were numerically simulated by DEFORM software. Through the analysis of experimental results, the best forging process parameters were optimized and determined, which could effectively reduce the die wear and prolong the die service life. It is significant to increase the practical production of enterprise, especially to reduce the production cost and to promote enterprise profit.
Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.
Pasquier, M; Quek, C; Toh, M
2001-10-01
This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.
Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation
NASA Technical Reports Server (NTRS)
Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean
2001-01-01
Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
A Multi-object Exoplanet Detecting Technique
NASA Astrophysics Data System (ADS)
Zhang, K.
2011-05-01
Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.
Deeming, Simon; Searles, Andrew; Reeves, Penny; Nilsson, Michael
2017-03-21
Realising the economic potential of research institutions, including medical research institutes, represents a policy imperative for many Organisation for Economic Co-operation and Development nations. The assessment of research impact has consequently drawn increasing attention. Research impact assessment frameworks (RIAFs) provide a structure to assess research translation, but minimal research has examined whether alternative RIAFs realise the intended policy outcomes. This paper examines the objectives presented for RIAFs in light of economic imperatives to justify ongoing support for health and medical research investment, leverage productivity via commercialisation and outcome-efficiency gains in health systems, and ensure that translation and impact considerations are embedded into the research process. This paper sought to list the stated objectives for RIAFs, to identify existing frameworks and to evaluate whether the identified frameworks possessed the capabilities necessary to address the specified objectives. A scoping review of the literature to identify objectives specified for RIAFs, inform upon descriptive criteria for each objective and identify existing RIAFs. Criteria were derived for each objective. The capability for the existing RIAFs to realise the alternative objectives was evaluated based upon these criteria. The collated objectives for RIAFs included accountability (top-down), transparency/accountability (bottom-up), advocacy, steering, value for money, management/learning and feedback/allocation, prospective orientation, and speed of translation. Of the 25 RIAFs identified, most satisfied objectives such as accountability and advocacy, which are largely sufficient for the first economic imperative to justify research investment. The frameworks primarily designed to optimise the speed of translation or enable the prospective orientation of research possessed qualities most likely to optimise the productive outcomes from research. However, the results show that few frameworks met the criteria for these objectives. It is imperative that the objective(s) for an assessment framework are explicit and that RIAFs are designed to realise these objectives. If the objectives include the capability to pro-actively drive productive research impacts, the potential for prospective orientation and a focus upon the speed of translation merits prioritisation. Frameworks designed to optimise research translation and impact, rather than simply assess impact, offer greater promise to contribute to the economic imperatives compelling their implementation.
Validation of Storm Water Management Model Storm Control Measures Modules
NASA Astrophysics Data System (ADS)
Simon, M. A.; Platz, M. C.
2017-12-01
EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.
Acquisition of business intelligence from human experience in route planning
NASA Astrophysics Data System (ADS)
Bello Orgaz, Gema; Barrero, David F.; R-Moreno, María D.; Camacho, David
2015-04-01
The logistic sector raises a number of highly challenging problems. Probably one of the most important ones is the shipping planning, i.e. plan the routes that the shippers have to follow to deliver the goods. In this article, we present an artificial intelligence-based solution that has been designed to help a logistic company to improve its routes planning process. In order to achieve this goal, the solution uses the knowledge acquired by the company drivers to propose optimised routes. Hence, the proposed solution gathers the experience of the drivers, processes it and optimises the delivery process. The solution uses data mining to extract knowledge from the company information systems and prepares it for analysis with a case-based reasoning (CBR) algorithm. The CBR obtains critical business intelligence knowledge from the drivers experience that is needed by the planner. The design of the routes is done by a genetic algorithm that, given the processed information, optimises the routes following several objectives, such as minimise the distance or time. Experimentation shows that the proposed approach is able to find routes that improve, on average, the routes made by the human experts.
NASA Astrophysics Data System (ADS)
Hauth, T.; Innocente and, V.; Piparo, D.
2012-12-01
The processing of data acquired by the CMS detector at LHC is carried out with an object-oriented C++ software framework: CMSSW. With the increasing luminosity delivered by the LHC, the treatment of recorded data requires extraordinary large computing resources, also in terms of CPU usage. A possible solution to cope with this task is the exploitation of the features offered by the latest microprocessor architectures. Modern CPUs present several vector units, the capacity of which is growing steadily with the introduction of new processor generations. Moreover, an increasing number of cores per die is offered by the main vendors, even on consumer hardware. Most recent C++ compilers provide facilities to take advantage of such innovations, either by explicit statements in the programs sources or automatically adapting the generated machine instructions to the available hardware, without the need of modifying the existing code base. Programming techniques to implement reconstruction algorithms and optimised data structures are presented, that aim to scalable vectorization and parallelization of the calculations. One of their features is the usage of new language features of the C++11 standard. Portions of the CMSSW framework are illustrated which have been found to be especially profitable for the application of vectorization and multi-threading techniques. Specific utility components have been developed to help vectorization and parallelization. They can easily become part of a larger common library. To conclude, careful measurements are described, which show the execution speedups achieved via vectorised and multi-threaded code in the context of CMSSW.
A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow
NASA Astrophysics Data System (ADS)
Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati
2010-06-01
The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.
3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture
NASA Astrophysics Data System (ADS)
Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben
2016-12-01
This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.
Structural Optimization for Reliability Using Nonlinear Goal Programming
NASA Technical Reports Server (NTRS)
El-Sayed, Mohamed E.
1999-01-01
This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.
Optimisation of phase ratio in the triple jump using computer simulation.
Allen, Sam J; King, Mark A; Yeadon, M R Fred
2016-04-01
The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity. Copyright © 2016 Elsevier B.V. All rights reserved.
Zeinali-Davarani, Shahrokh; Shirazi-Adl, Aboulfazl; Dariush, Behzad; Hemami, Hooshang; Parnianpour, Mohamad
2011-07-01
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.
H2/H∞ control for grid-feeding converter considering system uncertainty
NASA Astrophysics Data System (ADS)
Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin; Li, Shuhui; Fu, Xingang
2017-05-01
Three-phase grid-feeding converters are key components to integrate distributed generation and renewable power sources to the power utility. Conventionally, proportional integral and proportional resonant-based control strategies are applied to control the output power or current of a GFC. But, those control strategies have poor transient performance and are not robust against uncertainties and volatilities in the system. This paper proposes a H2/H∞-based control strategy, which can mitigate the above restrictions. The uncertainty and disturbance are included to formulate the GFC system state-space model, making it more accurate to reflect the practical system conditions. The paper uses a convex optimisation method to design the H2/H∞-based optimal controller. Instead of using a guess-and-check method, the paper uses particle swarm optimisation to search a H2/H∞ optimal controller. Several case studies implemented by both simulation and experiment can verify the superiority of the proposed control strategy than the traditional PI control methods especially under dynamic and variable system conditions.
On the performance of energy detection-based CR with SC diversity over IG channel
NASA Astrophysics Data System (ADS)
Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka
2017-12-01
Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.
Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data.
Bishop, Steven M; Ercole, Ari
2018-01-01
The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.
Uncertainty in Simulating Wheat Yields Under Climate Change
NASA Technical Reports Server (NTRS)
Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.;
2013-01-01
Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Temporal optimisation of fuel treatment design in blue gum (Eucalyptus globulus) plantations
Ana Martin; Brigite Botequim; Tiago M. Oliveira; Alan Ager; Francesco Pirotti
2016-01-01
This study was conducted to support fire and forest management planning in eucalypt plantations based on economic, ecological and fire prevention criteria, with a focus on strategic prioritisation of fuel treatments over time. The central objective was to strategically locate fuel treatments to minimise losses from wildfire while meeting budget constraints and demands...
NASA Astrophysics Data System (ADS)
Hurford, A. P.; Harou, J. J.
2014-08-01
Competition for water between key economic sectors and the environment means agreeing allocations is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks firstly to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly, it seeks to show how trade-offs between achievable benefits shift with the implementation of proposed new rice, cotton and biofuel irrigation projects. To approximate the Pareto-optimal trade-offs we link a water resources management simulation model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume-dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for eight objectives covering the provision of water supply and irrigation, energy generation and maintenance of ecosystem services. Trade-off plots allow decision-makers to assess multi-reservoir rule-sets and irrigation investment options by visualising their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against the disturbance of ecosystems and local livelihoods that depend on them. Full implementation of the proposed schemes is shown to come at a high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of "water-energy-food nexus" resource security issues.
Haering, Diane; Huchez, Aurore; Barbier, Franck; Holvoët, Patrice; Begon, Mickaël
2017-01-01
Introduction Teaching acrobatic skills with a minimal amount of repetition is a major challenge for coaches. Biomechanical, statistical or computer simulation tools can help them identify the most determinant factors of performance. Release parameters, change in moment of inertia and segmental momentum transfers were identified in the prediction of acrobatics success. The purpose of the present study was to evaluate the relative contribution of these parameters in performance throughout expertise or optimisation based improvements. The counter movement forward in flight (CMFIF) was chosen for its intrinsic dichotomy between the accessibility of its attempt and complexity of its mastery. Methods Three repetitions of the CMFIF performed by eight novice and eight advanced female gymnasts were recorded using a motion capture system. Optimal aerial techniques that maximise rotation potential at regrasp were also computed. A 14-segment-multibody-model defined through the Rigid Body Dynamics Library was used to compute recorded and optimal kinematics, and biomechanical parameters. A stepwise multiple linear regression was used to determine the relative contribution of these parameters in novice recorded, novice optimised, advanced recorded and advanced optimised trials. Finally, fixed effects of expertise and optimisation were tested through a mixed-effects analysis. Results and discussion Variation in release state only contributed to performances in novice recorded trials. Moment of inertia contribution to performance increased from novice recorded, to novice optimised, advanced recorded, and advanced optimised trials. Contribution to performance of momentum transfer to the trunk during the flight prevailed in all recorded trials. Although optimisation decreased transfer contribution, momentum transfer to the arms appeared. Conclusion Findings suggest that novices should be coached on both contact and aerial technique. Inversely, mainly improved aerial technique helped advanced gymnasts increase their performance. For both, reduction of the moment of inertia should be focused on. The method proposed in this article could be generalized to any aerial skill learning investigation. PMID:28422954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, Stefan A.
2010-11-01
iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional , multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. It performs sensitivity analysis, parameter estimation, and uncertainty propagation, analysis in geosciences and reservoir engineering and other application areas. It supports a number of different combination of fluids and components [equation-of-state (EOS) modules]. In addition, the optimization routines implemented in iTOUGH2 can also be used or sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files. This link is achieved by means of the PEST application programmingmore » interface. iTOUGH2 solves the inverse problem by minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative fee, gradient-based and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlos simulation for uncertainty propagation analysis. A detailed residual and error analysis is provided. This upgrade includes new EOS modules (specifically EOS7c, ECO2N and TMVOC), hysteretic relative permeability and capillary pressure functions and the PEST API. More details can be found at http://esd.lbl.gov/iTOUGH2 and the publications cited there. Hardware Req.: Multi-platform; Related/auxiliary software PVM (if running in parallel).« less
NASA Astrophysics Data System (ADS)
Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.
2010-07-01
Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.
Wickham, Fred; McMeekin, Helena; Burniston, Maria; McCool, Daniel; Pencharz, Deborah; Skillen, Annah; Wagner, Thomas
2017-12-01
The purpose of this study is to identify a method for optimising the administered activity and acquisition time for 18 F-FDG PET imaging, yielding images of consistent quality for patients with varying body sizes and compositions, while limiting radiation doses to patients and staff. Patients referred for FDG scans had bioimpedance measurements. They were injected with 3 MBq/kg of 18 F up to 370 MBq and scanned on a Siemens Biograph mCT at 3 or 4 min per bed position. Data were rebinned to simulate 2- and 1-min acquisitions. Subjective assessments of image quality made by an experienced physician were compared with objective measurements based on signal-to-noise ratio and noise equivalent counts (NEC). A target objective measure of image quality was identified. The activity and acquisition time required to achieve this were calculated for each subject. Multiple regression analysis was used to identify expressions for the activity and acquisition time required in terms of easily measurable patient characteristics. One hundred and eleven patients were recruited, and subjective and objective assessments of image quality were compared for 321 full and reduced time scans. NEC-per-metre was identified as the objective measure which best correlated with the subjective assessment (Spearman rank correlation coefficient 0.77) and the best discriminator for images with a subjective assessment of "definitely adequate" (area under the ROC curve 0.94). A target of 37 Mcount/m was identified. Expressions were identified in terms of patient sex, height and weight for the activity and acquisition time required to achieve this target. Including measurements of body composition in these expressions was not useful. Using these expressions would reduce the mean activity administered to this patient group by 66 MBq compared to the current protocol. Expressions have been identified for the activity and acquisition times required to achieve consistent image quality in FDG imaging with reduced patient and staff doses. These expressions might need to be adapted for other systems and reconstruction protocols.
Simulation of DKIST solar adaptive optics system
NASA Astrophysics Data System (ADS)
Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk
2016-07-01
Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.
Generic simulation of multi-element ladar scanner kinematics in USU LadarSIM
NASA Astrophysics Data System (ADS)
Omer, David; Call, Benjamin; Pack, Robert; Fullmer, Rees
2006-05-01
This paper presents a generic simulation model for a ladar scanner with up to three scan elements, each having a steering, stabilization and/or pattern-scanning role. Of interest is the development of algorithms that automatically generate commands to the scan elements given beam-steering objectives out of the ladar aperture, and the base motion of the sensor platform. First, a straight-forward single-element body-fixed beam-steering methodology is presented. Then a unique multi-element redirective and reflective space-fixed beam-steering methodology is explained. It is shown that standard direction cosine matrix decomposition methods fail when using two orthogonal, space-fixed rotations, thus demanding the development of a new algorithm for beam steering. Finally, a related steering control methodology is presented that uses two separate optical elements mathematically combined to determine the necessary scan element commands. Limits, restrictions, and results on this methodology are presented.
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.
2016-01-01
The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.
Kassem, Abdulsalam M; Ibrahim, Hany M; Samy, Ahmed M
2017-05-01
The objective of this study was to develop and optimise self-nanoemulsifying drug delivery system (SNEDDS) of atorvastatin calcium (ATC) for improving dissolution rate and eventually oral bioavailability. Ternary phase diagrams were constructed on basis of solubility and emulsification studies. The composition of ATC-SNEDDS was optimised using the Box-Behnken optimisation design. Optimised ATC-SNEDDS was characterised for various physicochemical properties. Pharmacokinetic, pharmacodynamic and histological findings were performed in rats. Optimised ATC-SNEDDS resulted in droplets size of 5.66 nm, zeta potential of -19.52 mV, t 90 of 5.43 min and completely released ATC within 30 min irrespective of pH of the medium. Area under the curve of optimised ATC-SNEDDS in rats was 2.34-folds higher than ATC suspension. Pharmacodynamic studies revealed significant reduction in serum lipids of rats with fatty liver. Photomicrographs showed improvement in hepatocytes structure. In this study, we confirmed that ATC-SNEDDS would be a promising approach for improving oral bioavailability of ATC.
Multi-objective decision-making model based on CBM for an aircraft fleet
NASA Astrophysics Data System (ADS)
Luo, Bin; Lin, Lin
2018-04-01
Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.
Material Identification Algorithm
2007-09-01
realistic scenes composed of uneven ground, trees, and reflecting objects. The simulation includes effects of ionospheric dispersion on the radar pulses...effects of ionospheric dispersion on the SAR returns. Summary - Part 1I The objective of this effort was to perform numerical simulations for large...study," Radiology, vol. 216, pp. 279-283, 2000. [9] M. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacous- tic tomography using multi-sector
Development and evaluation of a home enteral nutrition team.
Dinenage, Sarah; Gower, Morwenna; Van Wyk, Joanna; Blamey, Anne; Ashbolt, Karen; Sutcliffe, Michelle; Green, Sue M
2015-03-05
The organisation of services to support the increasing number of people receiving enteral tube feeding (ETF) at home varies across regions. There is evidence that multi-disciplinary primary care teams focussed on home enteral nutrition (HEN) can provide cost-effective care. This paper describes the development and evaluation of a HEN Team in one UK city. A HEN Team comprising dietetians, nurses and a speech and language therapist was developed with the aim of delivering a quality service for people with gastrostomy tubes living at home. Team objectives were set and an underpinning framework of organisation developed including a care pathway and a schedule of training. Impact on patient outcomes was assessed in a pre-post test evaluation design. Patients and carers reported improved support in managing their ETF. Cost savings were realised through: (1) prevention of hospital admission and related transport for ETF related issues; (2) effective management and reduction of waste of feed and thickener; (3) balloon gastrostomy tube replacement by the HEN Team in the patient's home, and optimisation of nutritional status. This service evaluation demonstrated that the establishment of a dedicated multi-professional HEN Team focussed on achievement of key objectives improved patient experience and, although calculation of cost savings were estimates, provided evidence of cost-effectiveness.
Astroinformatics in the Age of LSST: Analyzing the Summer 2012 Data Release
NASA Astrophysics Data System (ADS)
Borne, Kirk D.; De Lee, N. M.; Stassun, K.; Paegert, M.; Cargile, P.; Burger, D.; Bloom, J. S.; Richards, J.
2013-01-01
The Large Synoptic Survey Telescope (LSST) will image the visible southern sky every three nights. This multi-band, multi-epoch survey will produce a torrent of data, which traditional methods of object-by-object data analysis will not be able to accommodate. Thus the need for new astroinformatics tools to visualize, simulate, mine, and analyze this quantity of data. The Berkeley Center for Time-Domain Informatics (CTDI) is building the informatics infrastructure for generic light curve classification, including the innovation of new algorithms for feature generation and machine learning. The CTDI portal (http://dotastro.org) contains one of the largest collections of public light curves, with visualization and exploration tools. The group has also published the first calibrated probabilistic classification catalog of 50k variable stars along with a data exploration portal called http://bigmacc.info. Twice a year, the LSST collaboration releases simulated LSST data, in order to aid software development. This poster also showcases a suite of new tools from the Vanderbilt Initiative in Data-instensive Astrophysics (VIDA), designed to take advantage of these large data sets. VIDA's Filtergraph interactive web tool allows one to instantly create an interactive data portal for fast, real-time visualization of large data sets. Filtergraph enables quick selection of interesting objects by easily filtering on many different columns, 2-D and 3-D representations, and on-the-fly arithmetic calculations on the data. It also makes sharing the data and the tool with collaborators very easy. The EB/RRL Factory is a neural-network based variable star classifier, which is designed to quickly identify variable stars in a variety of classes from LSST light curve data (currently tuned to Eclipsing Binaries and RR Lyrae stars), and to provide likelihood-based orbital elements or stellar parameters as appropriate. Finally the LCsimulator software allows one to create simulated light curves of multiple types of variable stars based on an LSST cadence.
Floating-to-Fixed-Point Conversion for Digital Signal Processors
NASA Astrophysics Data System (ADS)
Menard, Daniel; Chillet, Daniel; Sentieys, Olivier
2006-12-01
Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
NASA Astrophysics Data System (ADS)
Lee, H.
2016-12-01
Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.
Path scheduling for multiple mobile actors in wireless sensor network
NASA Astrophysics Data System (ADS)
Trapasiya, Samir D.; Soni, Himanshu B.
2017-05-01
In wireless sensor network (WSN), energy is the main constraint. In this work we have addressed this issue for single as well as multiple mobile sensor actor network. In this work, we have proposed Rendezvous Point Selection Scheme (RPSS) in which Rendezvous Nodes are selected by set covering problem approach and from that, Rendezvous Points are selected in a way to reduce the tour length. The mobile actors tour is scheduled to pass through those Rendezvous Points as per Travelling Salesman Problem (TSP). We have also proposed novel rendezvous node rotation scheme for fair utilisation of all the nodes. We have compared RPSS with Stationery Actor scheme as well as RD-VT, RD-VT-SMT and WRP-SMT for performance metrics like energy consumption, network lifetime, route length and found the better outcome in all the cases for single actor. We have also applied RPSS for multiple mobile actor case like Multi-Actor Single Depot (MASD) termination and Multi-Actor Multiple Depot (MAMD) termination and observed by extensive simulation that MAMD saves the network energy in optimised way and enhance network lifetime compared to all other schemes.
Lu, Jia-Yang; Cheung, Michael Lok-Man; Huang, Bao-Tian; Wu, Li-Li; Xie, Wen-Jia; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi
2015-01-01
To assess the performance of a simple optimisation method for improving target coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) for cervical oesophageal cancer. For 20 selected patients, clinically acceptable original IMRT plans (Original plans) were created, and two optimisation methods were adopted to improve the plans: 1) a base dose function (BDF)-based method, in which the treatment plans were re-optimised based on the original plans, and 2) a dose-controlling structure (DCS)-based method, in which the original plans were re-optimised by assigning additional constraints for hot and cold spots. The Original, BDF-based and DCS-based plans were compared with regard to target dose homogeneity, conformity, OAR sparing, planning time and monitor units (MUs). Dosimetric verifications were performed and delivery times were recorded for the BDF-based and DCS-based plans. The BDF-based plans provided significantly superior dose homogeneity and conformity compared with both the DCS-based and Original plans. The BDF-based method further reduced the doses delivered to the OARs by approximately 1-3%. The re-optimisation time was reduced by approximately 28%, but the MUs and delivery time were slightly increased. All verification tests were passed and no significant differences were found. The BDF-based method for the optimisation of IMRT for cervical oesophageal cancer can achieve significantly better dose distributions with better planning efficiency at the expense of slightly more MUs.
A class of multi-period semi-variance portfolio for petroleum exploration and development
NASA Astrophysics Data System (ADS)
Guo, Qiulin; Li, Jianzhong; Zou, Caineng; Guo, Yujuan; Yan, Wei
2012-10-01
Variance is substituted by semi-variance in Markowitz's portfolio selection model. For dynamic valuation on exploration and development projects, one period portfolio selection is extended to multi-period. In this article, a class of multi-period semi-variance exploration and development portfolio model is formulated originally. Besides, a hybrid genetic algorithm, which makes use of the position displacement strategy of the particle swarm optimiser as a mutation operation, is applied to solve the multi-period semi-variance model. For this class of portfolio model, numerical results show that the mode is effective and feasible.
Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.
Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen
2015-04-01
In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.
A versatile multi-objective FLUKA optimization using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vlachoudis, Vasilis; Antoniucci, Guido Arnau; Mathot, Serge; Kozlowska, Wioletta Sandra; Vretenar, Maurizio
2017-09-01
Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution.
Shokati, Elnaz; Granpayeh, Nosrat; Danaeifar, Mohammad
2017-04-10
The ultrathin graphene metasurface is proposed as a mantle cloak to achieve wideband tunable scattering reduction around the spherical (three-dimensional) objects. The cloaking shell over the metallic or dielectric sphere is structured by a periodic array of graphene nanodisks that operate at infrared frequencies. By using the polarizability of the graphene nanodisks and equivalent conductivity method, the metasurface reactance is obtained. To achieve the cloaking shell for both dielectric and conducting spheres, the metasurface reactance as a function of nanodisks dimensions, graphene's Fermi energy, and permittivity of the surrounding areas can be tuned from the inductive to capacitive situation. Inhomogeneous metasurfaces including graphene nanodisks with different radii provide wideband invisibility due to extra resonances. We could significantly increase the 3-dB bandwidth more than the homogenous case by simpler realistic designs compared to the multi-layer structures. The analytical results are confirmed with full-wave numerical simulations.
Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; ...
2014-10-23
Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres
Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less
NASA Astrophysics Data System (ADS)
Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen
2017-11-01
Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.
3D Reconstruction of human bones based on dictionary learning.
Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin
2017-11-01
An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films.
Kramar, A; Turk, S; Vrecer, F
2003-04-30
The objective of the present study was to evaluate three formulation parameters for the application of polymethacrylic films from aqueous dispersions in order to obtain multiparticulate sustained release of diclofenac sodium. Film coating of pellet cores was performed in a laboratory fluid bed apparatus. The chosen independent variables, i.e. the concentration of plasticizer (triethyl citrate), methacrylate polymers ratio (Eudragit RS:Eudragit RL) and the quantity of coating dispersion were optimised with a three-factor, three-level Box-Behnken design. The chosen dependent variables were cumulative percentage values of diclofenac dissolved in 3, 4 and 6 h. Based on the experimental design, different diclofenac release profiles were obtained. Response surface plots were used to relate the dependent and the independent variables. The optimisation procedure generated an optimum of 40% release in 3 h. The levels of plasticizer concentration, quantity of coating dispersion and polymer to polymer ratio (Eudragit RS:Eudragit RL) were 25% w/w, 400 g and 3/1, respectively. The optimised formulation prepared according to computer-determined levels provided a release profile, which was close to the predicted values. We also studied thermal and surface characteristics of the polymethacrylic films to understand the influence of plasticizer concentration on the drug release from the pellets.
The development of response surface pathway design to reduce animal numbers in toxicity studies
2014-01-01
Background This study describes the development of Response Surface Pathway (RSP) design, assesses its performance and effectiveness in estimating LD50, and compares RSP with Up and Down Procedures (UDPs) and Random Walk (RW) design. Methods A basic 4-level RSP design was used on 36 male ICR mice given intraperitoneal doses of Yessotoxin. Simulations were performed to optimise the design. A k-adjustment factor was introduced to ensure coverage of the dose window and calculate the dose steps. Instead of using equal numbers of mice on all levels, the number of mice was increased at each design level. Additionally, the binomial outcome variable was changed to multinomial. The performance of the RSP designs and a comparison of UDPs and RW were assessed by simulations. The optimised 4-level RSP design was used on 24 female NMRI mice given Azaspiracid-1 intraperitoneally. Results The in vivo experiment with basic 4-level RSP design estimated the LD50 of Yessotoxin to be 463 μg/kgBW (95% CI: 383–535). By inclusion of the k-adjustment factor with equal or increasing numbers of mice on increasing dose levels, the estimate changed to 481 μg/kgBW (95% CI: 362–566) and 447 μg/kgBW (95% CI: 378–504 μg/kgBW), respectively. The optimised 4-level RSP estimated the LD50 to be 473 μg/kgBW (95% CI: 442–517). A similar increase in power was demonstrated using the optimised RSP design on real Azaspiracid-1 data. The simulations showed that the inclusion of the k-adjustment factor, reduction in sample size by increasing the number of mice on higher design levels and incorporation of a multinomial outcome gave estimates of the LD50 that were as good as those with the basic RSP design. Furthermore, optimised RSP design performed on just three levels reduced the number of animals from 36 to 15 without loss of information, when compared with the 4-level designs. Simulated comparison of the RSP design with UDPs and RW design demonstrated the superiority of RSP. Conclusion Optimised RSP design reduces the number of animals needed. The design converges rapidly on the area of interest and is at least as efficient as both the UDPs and RW design. PMID:24661560
NASA Astrophysics Data System (ADS)
Yondo, Raul; Andrés, Esther; Valero, Eusebio
2018-01-01
Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-order) aerodynamic models or flight testing are some of the fundamental but complex steps in the various design phases of recent civil transport aircrafts. Current aircraft aerodynamic designs have increase in complexity (multidisciplinary, multi-objective or multi-fidelity) and need to address the challenges posed by the nonlinearity of the objective functions and constraints, uncertainty quantification in aerodynamic problems or the restrained computational budgets. With the aim to reduce the computational burden and generate low-cost but accurate models that mimic those full order models at different values of the design variables, Recent progresses have witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as rapid and cheaper to simulate models. In this paper, a comprehensive and state-of-the art survey on common surrogate modeling techniques and surrogate-based optimization methods is given, with an emphasis on models selection and validation, dimensionality reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, drawbacks and comparative discussions in applying those methods are described. Furthermore, the paper familiarizes the readers with surrogate models that have been successfully applied to the general field of fluid dynamics, but not yet in the aerospace industry. Additionally, the review revisits the most popular sampling strategies used in conducting physical and simulation-based experiments in aircraft aerodynamic design. Attractive or smart designs infrequently used in the field and discussions on advanced sampling methodologies are presented, to give a glance on the various efficient possibilities to a priori sample the parameter space. Closing remarks foster on future perspectives, challenges and shortcomings associated with the use of surrogate models by aircraft industrial aerodynamicists, despite their increased interest among the research communities.
ERIC Educational Resources Information Center
Pettinger, Clare; Parsons, Julie M.; Cunningham, Miranda; Withers, Lyndsey; D'Aprano, Gia; Letherby, Gayle; Sutton, Carole; Whiteford, Andrew; Ayres, Richard
2017-01-01
Objective: High levels of social and economic deprivation are apparent in many UK cities, where there is evidence of certain "marginalised" communities suffering disproportionately from poor nutrition, threatening health. Finding ways to engage with these communities is essential to identify strategies to optimise wellbeing and life…
Analysis on flexible manufacturing system layout using arena simulation software
NASA Astrophysics Data System (ADS)
Fadzly, M. K.; Saad, Mohd Sazli; Shayfull, Z.
2017-09-01
Flexible manufacturing system (FMS) was defined as highly automated group technology machine cell, consisting of a group of processing stations interconnected by an automated material handling and storage system, and controlled by an integrated computer system. FMS can produce parts or products are in the mid-volume, mid-variety production range. The layout system in FMS is an important criterion to design the FMS system to produce a part or product. This facility layout of an FMS involves the positioning of cells within given boundaries, so as to minimize the total projected travel time between cells. Defining the layout includes specifying the spatial coordinates of each cell, its orientation in either a horizontal or vertical position, and the location of its load or unloads point. There are many types of FMS layout such as In-line, loop ladder and robot centered cell layout. The research is concentrating on the design and optimization FMS layout. The final conclusion can be summarized that the objective to design and optimisation of FMS layout for this study is successful because the FMS In-line layout is the best layout based on effective time and cost using ARENA simulation software.
Optimisation of Critical Infrastructure Protection: The SiVe Project on Airport Security
NASA Astrophysics Data System (ADS)
Breiing, Marcus; Cole, Mara; D'Avanzo, John; Geiger, Gebhard; Goldner, Sascha; Kuhlmann, Andreas; Lorenz, Claudia; Papproth, Alf; Petzel, Erhard; Schwetje, Oliver
This paper outlines the scientific goals, ongoing work and first results of the SiVe research project on critical infrastructure security. The methodology is generic while pilot studies are chosen from airport security. The outline proceeds in three major steps, (1) building a threat scenario, (2) development of simulation models as scenario refinements, and (3) assessment of alternatives. Advanced techniques of systems analysis and simulation are employed to model relevant airport structures and processes as well as offences. Computer experiments are carried out to compare and optimise alternative solutions. The optimality analyses draw on approaches to quantitative risk assessment recently developed in the operational sciences. To exploit the advantages of the various techniques, an integrated simulation workbench is build up in the project.
Reactive power planning under high penetration of wind energy using Benders decomposition
Xu, Yan; Wei, Yanli; Fang, Xin; ...
2015-11-05
This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO
NASA Astrophysics Data System (ADS)
Crass, Jonathan; King, David; Mackay, Craig
2013-12-01
Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.
Advanced data management for optimising the operation of a full-scale WWTP.
Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo
2012-01-01
The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.
An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms
NASA Astrophysics Data System (ADS)
Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.
2015-10-01
Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.
Using Multi-Objective Optimization to Explore Robust Policies in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Alexander, E.; Kasprzyk, J. R.; Zagona, E. A.; Prairie, J. R.; Jerla, C.; Butler, A.
2017-12-01
The long term reliability of water deliveries in the Colorado River Basin has degraded due to the imbalance of growing demand and dwindling supply. The Colorado River meanders 1,450 miles across a watershed that covers seven US states and Mexico and is an important cultural, economic, and natural resource for nearly 40 million people. Its complex operating policy is based on the "Law of the River," which has evolved since the Colorado River Compact in 1922. Recent (2007) refinements to address shortage reductions and coordinated operations of Lakes Powell and Mead were negotiated with stakeholders in which thousands of scenarios were explored to identify operating guidelines that could ultimately be agreed on. This study explores a different approach to searching for robust operating policies to inform the policy making process. The Colorado River Simulation System (CRSS), a long-term water management simulation model implemented in RiverWare, is combined with the Borg multi-objective evolutionary algorithm (MOEA) to solve an eight objective problem formulation. Basin-wide performance metrics are closely tied to system health through incorporating critical reservoir pool elevations, duration, frequency and quantity of shortage reductions in the objective set. For example, an objective to minimize the frequency that Lake Powell falls below the minimum power pool elevation of 3,490 feet for Glen Canyon Dam protects a vital economic and renewable energy source for the southwestern US. The decision variables correspond to operating tiers in Lakes Powell and Mead that drive the implementation of various shortage and release policies, thus affecting system performance. The result will be a set of non-dominated solutions that can be compared with respect to their trade-offs based on the various objectives. These could inform policy making processes by eliminating dominated solutions and revealing robust solutions that could remain hidden under conventional analysis.
Rajan-Babu, Indhu-Shree; Lian, Mulias; Cheah, Felicia S H; Chen, Min; Tan, Arnold S C; Prasath, Ethiraj B; Loh, Seong Feei; Chong, Samuel S
2017-07-19
Fragile X mental retardation 1 (FMR1) full-mutation expansion causes fragile X syndrome. Trans-generational fragile X syndrome transmission can be avoided by preimplantation genetic diagnosis (PGD). We describe a robust PGD strategy that can be applied to virtually any couple at risk of transmitting fragile X syndrome. This novel strategy utilises whole-genome amplification, followed by triplet-primed polymerase chain reaction (TP-PCR) for robust detection of expanded FMR1 alleles, in parallel with linked multi-marker haplotype analysis of 13 highly polymorphic microsatellite markers located within 1 Mb of the FMR1 CGG repeat, and the AMELX/Y dimorphism for gender identification. The assay was optimised and validated on single lymphoblasts isolated from fragile X reference cell lines, and applied to a simulated PGD case and a clinical in vitro fertilisation (IVF)-PGD case. In the simulated PGD case, definitive diagnosis of the expected results was achieved for all 'embryos'. In the clinical IVF-PGD case, delivery of a healthy baby girl was achieved after transfer of an expansion-negative blastocyst. FMR1 TP-PCR reliably detects presence of expansion mutations and obviates reliance on informative normal alleles for determining expansion status in female embryos. Together with multi-marker haplotyping and gender determination, misdiagnosis and diagnostic ambiguity due to allele dropout is minimised, and couple-specific assay customisation can be avoided.
Lestini, Giulia; Dumont, Cyrielle; Mentré, France
2015-01-01
Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. when no adaptation is performed, using wrong prior parameters. Methods We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Results Estimation results of two-stage ADs and ξ* were close and much better than those obtained with ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three-and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement. PMID:26123680
Lestini, Giulia; Dumont, Cyrielle; Mentré, France
2015-10-01
In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e., when no adaptation is performed, using wrong prior parameters. We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Estimation results of two-stage ADs and ξ * were close and much better than those obtained with ξ 0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three- and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement.
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
NASA Technical Reports Server (NTRS)
Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.
1989-01-01
The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.
Multi objective decision making in hybrid energy system design
NASA Astrophysics Data System (ADS)
Merino, Gabriel Guillermo
The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component, dominated when the 'Environment' objective or the 'User/System compatibility' objectives were more important than the 'Financial' objectives and they also dominated when the three criteria were considered equally important.
Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
System-Wide Water Resources Program Nutrient Sub-Model (SWWRP-NSM) Version 1.1
2008-09-01
species including crops, native grasses, and trees . The process descriptions utilize a single plant growth model to simulate all types of land covers...characteristics: • Multi- species , multi-phase, and multi-reaction system • Fast (equilibrium-based) and slow (non-equilibrium-based or rate- based...Transformation and loading of N and P species in the overland flow • Simulation of the N and P cycle in the water column (both overland and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek
Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less
Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek; ...
2017-04-24
Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less
Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration
Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul
2015-01-01
This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392
Richard, Joshua; Galloway, Jack; Fensin, Michael; ...
2015-04-04
A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less
POCO-MOEA: Using Evolutionary Algorithms to Solve the Controller Placement Problem
2016-03-24
to gather data on POCO-MOEA performance to a series of iv model networks. The algorithm’s behavior is then evaluated and compared to ex- haustive... evaluation of a third heuristic based on a Multi 3 Objective Evolutionary Algorithm (MOEA). This heuristic is modeled after one of the most well known MOEAs...researchers to extend into more realistic evaluations of the performance characteristics of SDN controllers, such as the use of simulators or live
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.
Virtual Engine a Tool for Truck Reliability Increase
NASA Astrophysics Data System (ADS)
Stodola, Jiri; Novotny, Pavel
2017-06-01
The internal combustion engine development process requires CAD models which deliver results for the concept phase at a very early stage and which can be further detailed on the same program platform as the development process progresses. The vibratory and acoustic behaviour of the powertrain is highly complex, consisting of many components that are subject to loads that vary greatly in magnitude and which operate at a wide range of speeds. The interaction of the crank and crankcase is a major problem for powertrain designers when optimising the vibration and noise characteristics of the powertrain. The Finite Element Method (FEM) and Multi-Body Systems (MBS) are suitable for the creation of 3-D calculation models. Non-contact measurements make it possible to verify complex calculation models. All numerical simulations and measurements are performed on a Diesel six-cylinder in-line engine.
Multislice spiral CT simulator for dynamic cardiopulmonary studies
NASA Astrophysics Data System (ADS)
De Francesco, Silvia; Ferreira da Silva, Augusto M.
2002-04-01
We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.
Instant polysaccharide-based emulsions: impact of microstructure on lipolysis.
Torcello-Gómez, Amelia; Foster, Timothy J
2017-06-21
The development of emulsion-based products through optimisation of ingredients, reduction in energy-input during manufacture, while fulfilling healthy attributes, are major objectives within the food industry. Instant emulsions can meet these features, but comprehensive studies are necessary to investigate the effect of the initial formulation on the final microstructure and, in turn, on the in vitro lipolysis, comprising the double aim of this work. The instant emulsion is formed within 1.5-3 min after pouring the aqueous phase into the oil phase which contains a mixture of emulsifier (Tween 20), swelling particles (Sephadex) and thickeners (hydroxypropylmethylcellulose, HPMC, and guar gum, GG) under mild shearing (180 rpm). The creation of oil-in-water emulsions is monitored in situ by viscosity analysis, the final microstructure visualised by microscopy and the release of free fatty acids under simulated intestinal conditions quantified by titration. Increasing the concentration and molecular weight (M w ) of GG leads to smaller emulsion droplets due to increased bulk viscosity upon shearing. This droplet size reduction is magnified when increasing the M w of HPMC or swelling capacity of viscosifying particles. In addition, in the absence of the emulsifier Tween 20, the sole use of high-Mw HPMC is effective in emulsification due to combined increased bulk viscosity and interfacial activity. Hence, optimisation of the ingredient choice and usage level is possible when designing microstructures. Finally, emulsions with larger droplet size (>20 μm) display a slower rate and lower extent of lipolysis, while finer emulsions (droplet size ≤20 μm) exhibit maximum rate and extent profiles. This correlates with the extent of emulsion destabilisation observed under intestinal conditions.
Multi-Objective Lake Superior Regulation
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Razavi, S.; Tolson, B.
2011-12-01
At the direction of the International Joint Commission (IJC) the International Upper Great Lakes Study (IUGLS) Board is investigating possible changes to the present method of regulating the outflows of Lake Superior (SUP) to better meet the contemporary needs of the stakeholders. In this study, a new plan in the form of a rule curve that is directly interpretable for regulation of SUP is proposed. The proposed rule curve has 18 parameters that should be optimized. The IUGLS Board is also interested in a regulation strategy that considers potential effects of climate uncertainty. Therefore, the quality of the rule curve is assessed simultaneously for multiple supply sequences that represent various future climate scenarios. The rule curve parameters are obtained by solving a computationally intensive bi-objective simulation-optimization problem that maximizes the total increase in navigation and hydropower benefits of the new regulation plan and minimizes the sum of all normalized constraint violations. The objective and constraint values are obtained from a Microsoft Excel based Shared Vision Model (SVM) that compares any new SUP regulation plan with the current regulation policy. The underlying optimization problem is solved by a recently developed, highly efficient multi-objective optimization algorithm called Pareto Archived Dynamically Dimensioned Search (PA-DDS). To further improve the computational efficiency of the simulation-optimization problem, the model pre-emption strategy is used in a novel way to avoid the complete evaluation of regulation plans with low quality in both objectives. Results show that the generated rule curve is robust and typically more reliable when facing unpredictable climate conditions compared to other SUP regulation plans.
Hastings, Gareth D; Marsack, Jason D; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A
2017-05-01
To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ± S.D. was -0.06 ± 0.04 with both refractions; dilated was -0.05 ± 0.04 with the objective, and -0.05 ± 0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred over subjective refraction. Subjective refraction was preferred by habitually undercorrected hyperopic eyes. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Ogungbenro, Kayode; Aarons, Leon
2011-08-01
In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Thomas M.; Berndt, Markus; Baglietto, Emilio
The purpose of this report is to document a multi-year plan for enhancing turbulence modeling in Hydra-TH for the Consortium for Advanced Simulation of Light Water Reactors (CASL) program. Hydra-TH is being developed to the meet the high- fidelity, high-Reynolds number CFD based thermal hydraulic simulation needs of the program. This work is being conducted within the thermal hydraulics methods (THM) focus area. This report is an extension of THM CASL milestone L3:THM.CFD.P10.02 [33] (March, 2015) and picks up where it left off. It will also serve to meet the requirements of CASL THM level three milestone, L3:THM.CFD.P11.04, scheduled formore » completion September 30, 2015. The objectives of this plan will be met by: maturation of recently added turbulence models, strategic design/development of new models and systematic and rigorous testing of existing and new models and model extensions. While multi-phase turbulent flow simulations are important to the program, only single-phase modeling will be considered in this report. Large Eddy Simulation (LES) is also an important modeling methodology. However, at least in the first year, the focus is on steady-state Reynolds Averaged Navier-Stokes (RANS) turbulence modeling.« less
Modelling and simulating a crisis management system: an organisational perspective
NASA Astrophysics Data System (ADS)
Chaawa, Mohamed; Thabet, Inès; Hanachi, Chihab; Ben Said, Lamjed
2017-04-01
Crises are complex situations due to the dynamism of the environment, its unpredictability and the complexity of the interactions among several different and autonomous involved organisations. In such a context, establishing an organisational view as well as structuring organisations' communications and their functioning is a crucial requirement. In this article, we propose a multi-agent organisational model (OM) to abstract, simulate and analyse a crisis management system (CMS). The objective is to evaluate the CMS from an organisational view, to assess its strength as well as its weakness and to provide deciders with some recommendations for a more flexible and reactive CMS. The proposed OM is illustrated through a real case study: a snowstorm in a Tunisian region. More precisely, we made the following contribution: firstly, we provide an environmental model that identifies the concepts involved in the crisis. Then, we define a role model that copes with the involved actors. In addition, we specify the organisational structure and the interaction model that rule communications and structure actors' functioning. Those models, built following the GAIA methodology, abstract the CMS from an organisational perspective. Finally, we implemented a customisable multi-agent simulator based on the Janus platform to analyse, through several performed simulations, the organisational model.
ELTs adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules
NASA Astrophysics Data System (ADS)
Neichel, B.; Conan, J.-M.; Fusco, T.; Gendron, E.; Puech, M.; Rousset, G.; Hammer, F.
2006-06-01
In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65μm) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of an extremely low SC. For the LGS approach, the option of low order correction with a faint NGS is discussed. We demonstrate that, this last solution allows the scientific requirements to be met together with a quasi full SC.
Baseline process description for simulating plutonium oxide production for precalc project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J. A.
Savannah River National Laboratory (SRNL) started a multi-year project, the PreCalc Project, to develop a computational simulation of a plutonium oxide (PuO 2) production facility with the objective to study the fundamental relationships between morphological and physicochemical properties. This report provides a detailed baseline process description to be used by SRNL personnel and collaborators to facilitate the initial design and construction of the simulation. The PreCalc Project team selected the HB-Line Plutonium Finishing Facility as the basis for a nominal baseline process since the facility is operational and significant model validation data can be obtained. The process boundary as wellmore » as process and facility design details necessary for multi-scale, multi-physics models are provided.« less
Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm
NASA Astrophysics Data System (ADS)
Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana
2017-12-01
Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm ( GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.
Benchmarking nitrogen removal suspended-carrier biofilm systems using dynamic simulation.
Vanhooren, H; Yuan, Z; Vanrolleghem, P A
2002-01-01
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Computer Based Porosity Design by Multi Phase Topology Optimization
NASA Astrophysics Data System (ADS)
Burblies, Andreas; Busse, Matthias
2008-02-01
A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.
Laser Doppler pulp vitality measurements: simulation and measurement
NASA Astrophysics Data System (ADS)
Ertl, T.
2017-02-01
Frequently pulp vitality measurement is done in a dental practice by pressing a frozen cotton pellet on the tooth. This method is subjective, as the patient's response is required, sometimes painful and has moderate sensitivity and specificity. Other methods, based on optical or electrical measurement have been published, but didńt find wide spread application in the dental offices. Laser Doppler measurement of the blood flow in the pulp could be an objective method to measure pulp vitality, but the influence of the gingival blood flow on the measurements is a concern. Therefore experiments and simulations were done to learn more about the gingival blood flow in relation to the pulpal blood flow and how to minimize the influence. First patient measurements were done to show the feasibility clinically. Results: Monte Carlo simulations and bench experiments simulating the blood flow in and around a tooth show that both basic configurations, transmission and reflection measurements are possible. Most favorable is a multi-point measurement with different distances from the gingiva. Preliminary sensitivity / specificity are promising and might allow an objective and painless measurement of tooth vitality.
NASA Astrophysics Data System (ADS)
Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan
2017-05-01
In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.
Post-processing of multi-hydrologic model simulations for improved streamflow projections
NASA Astrophysics Data System (ADS)
khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid
2016-04-01
Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.
A method of solving tilt illumination for multiple distance phase retrieval
NASA Astrophysics Data System (ADS)
Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun
2018-07-01
Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.
Space Station Common Berthing Mechanism, a multi-body simulation application
NASA Technical Reports Server (NTRS)
Searle, Ian
1993-01-01
This paper discusses an application of multi-body dynamic analysis conducted at the Boeing Company in connection with the Space Station (SS) Common Berthing Mechanism (CBM). After introducing the hardware and analytical objectives we will focus on some of the day-to-day computational issues associated with this type of analysis.
Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data
NASA Astrophysics Data System (ADS)
Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed
2016-06-01
This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.
NASA Astrophysics Data System (ADS)
Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.
2008-07-01
A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schachtner, Michael, E-mail: michael.schachtner@ise.fraunhofer.de; Prado, Marcelo Loyo; Reichmuth, S. Kasimir
2015-09-28
It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.
NASA Astrophysics Data System (ADS)
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Virtual tryout planning in automotive industry based on simulation metamodels
NASA Astrophysics Data System (ADS)
Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.
2016-11-01
Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus achieving a robust manufacturing is often challenging. The fluctuation of process and material properties often lead to robustness problems. Therefore, numerical simulations are used to detect the critical regions. To enhance the agreement with the real process conditions, the material data are acquired through a variety of experiments. Furthermore, the force distribution is taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, virtual process windows can be displayed for different configurations. This helps to improve the operating point as well as to adjust process settings in case the process becomes unstable. Furthermore, the time of tool tryout can be shortened due to transfer of the virtual knowledge contained in the metamodels on the optimisation of the drawbeads. This allows the tool manufacturer to focus on the essential, to save time and to recognize complex relationships.
NASA Astrophysics Data System (ADS)
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
Cost-aware request routing in multi-geography cloud data centres using software-defined networking
NASA Astrophysics Data System (ADS)
Yuan, Haitao; Bi, Jing; Li, Bo Hu; Tan, Wei
2017-03-01
Current geographically distributed cloud data centres (CDCs) require gigantic energy and bandwidth costs to provide multiple cloud applications to users around the world. Previous studies only focus on energy cost minimisation in distributed CDCs. However, a CDC provider needs to deliver gigantic data between users and distributed CDCs through internet service providers (ISPs). Geographical diversity of bandwidth and energy costs brings a highly challenging problem of how to minimise the total cost of a CDC provider. With the recently emerging software-defined networking, we study the total cost minimisation problem for a CDC provider by exploiting geographical diversity of energy and bandwidth costs. We formulate the total cost minimisation problem as a mixed integer non-linear programming (MINLP). Then, we develop heuristic algorithms to solve the problem and to provide a cost-aware request routing for joint optimisation of the selection of ISPs and the number of servers in distributed CDCs. Besides, to tackle the dynamic workload in distributed CDCs, this article proposes a regression-based workload prediction method to obtain future incoming workload. Finally, this work evaluates the cost-aware request routing by trace-driven simulation and compares it with the existing approaches to demonstrate its effectiveness.
Ludwig, T; Kern, P; Bongards, M; Wolf, C
2011-01-01
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.