Science.gov

Sample records for multi-platform whole-genome microarray

  1. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    SciTech Connect

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  2. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  3. Comprehensive Analysis of Prokaryotes in Environmental Water Using DNA Microarray Analysis and Whole Genome Amplification

    PubMed Central

    Akama, Takeshi; Kawashima, Akira; Tanigawa, Kazunari; Hayashi, Moyuru; Ishido, Yuko; Luo, Yuqian; Hata, Akihisa; Fujitani, Noboru; Ishii, Norihisa; Suzuki, Koichi

    2013-01-01

    The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA), labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming. PMID:25437334

  4. Construction of Whole Genome Microarrays, and Expression Analysis of Desulfovibrio vulgaris cells in Metal-Reducing Conditions (Uranium and Chromium)

    SciTech Connect

    Fields, Matthew W.

    2005-06-01

    One of the major goals of the project is to construct whole-genome microarrays for Desulfovibrio vulgaris. Previous whole-genome microarrays constructed at ORNL have been PCR-amplimer based, and we wanted to re-evaluate the type of microarrays being built because oligonucleotide probes have several advantages. Microarrays have been generally constructed with two types of probes, PCR-generated probes that typically range in size between 200 and 2000 bp, and oligonucleotide probes with typical size of 20-70 nt. Producing PCR product-based DNA arrays can be a time-consuming procedure that includes PCR primer design, amplification, size verification, product purification, and product quantification. Also, some ORFs are difficult to amplify and thus the construction of comprehensive arrays can be a challenge. Recently, to alleviate some of the problems associated with PCR product-based microarrays, oligonucleotide microarrays that contain probes longer than 40 nt have been evaluated and used for whole genome expression studies. These microarrays should have higher specificity and are easy to construct, and can thus provide an important alternative approach to monitor gene expression. However, due to the smaller probe size, it is expected that the detection sensitivity of oligonucleotide arrays will be lower than PCR product-based probes.

  5. Effects of a Strong Static Magnetic Field on Bacterium Shewanellaoneidensis: An Assessment by Using Whole Genome Microarray.

    SciTech Connect

    Gao, W.; Liu, Y.; Zhou, J.-Z.; Hongjun, P.

    2007-04-02

    The effect of a strong static 14.1 T magnetic field on logphase cells of bacterial strain Shewanella oneidensis MR-1 was evaluatedby using whole genome microarray of this bacterium. Although differenceswere not observed between the treatment and control by measuring theoptical density (OD), colony forming unit (CFU), as well as post-exposuregrowth of cells, transcriptional expression levels of 65 genes werealtered according to our microarray data. Among these genes, 21 wereupregulated while other 44were downregulated, compared withcontrol.

  6. Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

    SciTech Connect

    Z. He; Q. He; L. Wu; M.E. Clark; J.D. Wall; Jizhong Zhou; Matthew W. Fields

    2004-03-17

    Desulfovibrio vulgaris Hildenborough has been the focus of biochemical and physiological studies in the laboratory, and the metabolic versatility of this organism has been largely recognized, particularly the reduction of sulfate, fumarate, iron, uranium and chromium. In addition, a Desulfovibrio sp. has been shown to utilize uranium as the sole electron acceptor. D. vulgaris is a d-Proteobacterium with a genome size of 3.6 Mb and 3584 ORFs. The whole-genome microarrays of D. vulgaris have been constructed using 70mer oligonucleotides. All ORFs in the genome were represented with 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes that may have cross-hybridization with other ORFs. In preparation for use of the experimental microarrays, artificial probes and targets were designed to assess specificity and sensitivity and identify optimal hybridization conditions for oligonucleotide microarrays. The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45 C to 50 C, washing at 37 C and a wash time of 2.5 to 5 minutes obtained specific and strong hybridization signals. In order to evaluate the performance of the experimental microarrays, growth conditions were selected that were expected to give significant hybridization differences for different sets of genes. The initial evaluations were performed using D. vulgaris cells grown at logarithmic and stationary phases. Transcriptional analysis of D. vulgaris cells sampled during logarithmic phase growth indicated that 25% of annotated ORFs were up-regulated and 3% of annotated ORFs were downregulated compared to stationary phase cells. The up-regulated genes included ORFs predicted to be involved with acyl chain biosynthesis, amino acid ABC transporter, translational initiation factors, and ribosomal proteins. In the stationary phase growth cells, the two most up-regulated ORFs (70-fold) were annotated as a carboxynorspermidine decarboxylase and a 2C-methyl-D-erythritol-2

  7. Mapping the C. elegans noncoding transcriptome with a whole-genome tiling microarray.

    PubMed

    He, Housheng; Wang, Jie; Liu, Tao; Liu, X Shirley; Li, Tiantian; Wang, Yunfei; Qian, Zuwei; Zheng, Haixia; Zhu, Xiaopeng; Wu, Tao; Shi, Baochen; Deng, Wei; Zhou, Wei; Skogerbø, Geir; Chen, Runsheng

    2007-10-01

    The number of annotated protein coding genes in the genome of Caenorhabditis elegans is similar to that of other animals, but the extent of its non-protein-coding transcriptome remains unknown. Expression profiling on whole-genome tiling microarrays applied to a mixed-stage C. elegans population verified the expression of 71% of all annotated exons. Only a small fraction (11%) of the polyadenylated transcription is non-annotated and appears to consist of approximately 3200 missed or alternative exons and 7800 small transcripts of unknown function (TUFs). Almost half (44%) of the detected transcriptional output is non-polyadenylated and probably not protein coding, and of this, 70% overlaps the boundaries of protein-coding genes in a complex manner. Specific analysis of small non-polyadenylated transcripts verified 97% of all annotated small ncRNAs and suggested that the transcriptome contains approximately 1200 small (<500 nt) unannotated noncoding loci. After combining overlapping transcripts, we estimate that at least 70% of the total C. elegans genome is transcribed.

  8. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    PubMed Central

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  9. Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology.

    PubMed

    Strauß, Lena; Ruffing, Ulla; Abdulla, Salim; Alabi, Abraham; Akulenko, Ruslan; Garrine, Marcelino; Germann, Anja; Grobusch, Martin Peter; Helms, Volkhard; Herrmann, Mathias; Kazimoto, Theckla; Kern, Winfried; Mandomando, Inácio; Peters, Georg; Schaumburg, Frieder; von Müller, Lutz; Mellmann, Alexander

    2016-04-01

    Staphylococcus aureusis a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed anin silicotyping scheme for the software SeqSphere(+)(Ridom GmbH, Münster, Germany). The implemented target genes (n= 182) correspond to those queried by the IdentibacS. aureusGenotyping DNA microarray (Alere Technologies, Jena, Germany). Thein silicoscheme was evaluated by comparing the typing results of microarray and of WGS for 154 humanS. aureusisolates. A total of 96.8% (n= 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosomemecelement types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences.

  10. Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology

    PubMed Central

    Strauß, Lena; Ruffing, Ulla; Abdulla, Salim; Alabi, Abraham; Akulenko, Ruslan; Garrine, Marcelino; Germann, Anja; Grobusch, Martin Peter; Helms, Volkhard; Herrmann, Mathias; Kazimoto, Theckla; Kern, Winfried; Mandomando, Inácio; Peters, Georg; Schaumburg, Frieder; von Müller, Lutz

    2016-01-01

    Staphylococcus aureus is a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed an in silico typing scheme for the software SeqSphere+ (Ridom GmbH, Münster, Germany). The implemented target genes (n = 182) correspond to those queried by the Identibac S. aureus Genotyping DNA microarray (Alere Technologies, Jena, Germany). The in silico scheme was evaluated by comparing the typing results of microarray and of WGS for 154 human S. aureus isolates. A total of 96.8% (n = 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosome mec element types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences. PMID:26818676

  11. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    PubMed Central

    Carter, Mark G; Sharov, Alexei A; VanBuren, Vincent; Dudekula, Dawood B; Carmack, Condie E; Nelson, Charlie; Ko, Minoru SH

    2005-01-01

    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance. PMID:15998450

  12. Construction and evaluation of an ORFeome-based Brucella whole-genome DNA microarray.

    PubMed

    Viadas, C; Rodríguez, M C; García-Lobo, J M; Sangari, F J; López-Goñi, I

    2009-10-01

    The genus Brucella contains bacteria producing a zoonosis of large sanitary and economical impact. The complete nucleotide sequence of eight Brucella isolates is currently available. This information can be used for high throughput approaches to the biology of this genus such as the construction of comprehensive collections of ORF clones or ORFeomes. The ORFeome of Brucella melitensis was a first contribution to this goal. Using the Brucella ORFeome as starting material we have amplified each ORF and printed them in duplicate onto coated glass slides along with the appropriate positive and negative controls. Quality control of the microarray was performed by image analysis after ethidium bromide staining. This Brucella DNA microarray was used to determine the global transcriptional profile of Brucella abortus grown under laboratory conditions. Two sets of genes representing strongly and poorly expressed genes have been defined. The occurrence of several genes of the same operon in the same data set has been taken as additional proof of the significance of the results. The two sets have been validated by RT-PCR of retrotranscribed RNA. Among the more abundant transcripts we found ribosomal proteins, Krebs cycle and oxidative phosphorylation enzymes. virB, flagellar components and other genes related with virulence and intracellular growth were in the poorly transcribed set. This report demonstrated the usefulness of the ORFeome for the construction of a PCR product microarray for the analysis of global gene expression in Brucella and also applicable to other microorganisms. The results provided here represent a comprehensive description of the global transcriptional profile of B. abortus grown under laboratory conditions and, at the same time, validate the use of this Brucella microarray for the study of the biology and pathogenesis of Brucella through the analysis of gene expression under any experimental conditions.

  13. A microarray whole-genome gene expression dataset in a rat model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Lindvall, Jessica M.; Xeroudaki, Maria; Peebo, Beatrice; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse Dahl Ejby; Lagali, Neil

    2016-01-01

    In angiogenesis with concurrent inflammation, many pathways are activated, some linked to VEGF and others largely VEGF-independent. Pathways involving inflammatory mediators, chemokines, and micro-RNAs may play important roles in maintaining a pro-angiogenic environment or mediating angiogenic regression. Here, we describe a gene expression dataset to facilitate exploration of pro-angiogenic, pro-inflammatory, and remodelling/normalization-associated genes during both an active capillary sprouting phase, and in the restoration of an avascular phenotype. The dataset was generated by microarray analysis of the whole transcriptome in a rat model of suture-induced inflammatory corneal neovascularisation. Regions of active capillary sprout growth or regression in the cornea were harvested and total RNA extracted from four biological replicates per group. High quality RNA was obtained for gene expression analysis using microarrays. Fold change of selected genes was validated by qPCR, and protein expression was evaluated by immunohistochemistry. We provide a gene expression dataset that may be re-used to investigate corneal neovascularisation, and may also have implications in other contexts of inflammation-mediated angiogenesis. PMID:27874850

  14. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    PubMed Central

    Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R

    2009-01-01

    Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437

  15. Whole Genome Comparison of Campylobacter jejuni Human Isolates Using a Low-Cost Microarray Reveals Extensive Genetic Diversity

    PubMed Central

    Dorrell, Nick; Mangan, Joseph A.; Laing, Kenneth G.; Hinds, Jason; Linton, Dennis; Al-Ghusein, Hasan; Barrell, Bart G.; Parkhill, Julian; Stoker, Neil G.; Karlyshev, Andrey V.; Butcher, Philip D.; Wren, Brendan W.

    2001-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne diarrhoeal disease throughout the world, and yet is still a poorly understood pathogen. Whole genome microarray comparisons of 11 C. jejuni strains of diverse origin identified genes in up to 30 NCTC 11168 loci ranging from 0.7 to 18.7 kb that are either absent or highly divergent in these isolates. Many of these regions are associated with the biosynthesis of surface structures including flagella, lipo-oligosaccharide, and the newly identified capsule. Other strain-variable genes of known function include those responsible for iron acquisition, DNA restriction/modification, and sialylation. In fact, at least 21% of genes in the sequenced strain appear dispensable as they are absent or highly divergent in one or more of the isolates tested, thus defining 1300 C. jejuni core genes. Such core genes contribute mainly to metabolic, biosynthetic, cellular, and regulatory processes, but many virulence determinants are also conserved. Comparison of the capsule biosynthesis locus revealed conservation of all the genes in this region in strains with the same Penner serotype as strain NCTC 11168. By contrast, between 5 and 17 NCTC 11168 genes in this region are either absent or highly divergent in strains of a different serotype from the sequenced strain, providing further evidence that the capsule accounts for Penner serotype specificity. These studies reveal extensive genetic diversity among C. jejuni strains and pave the way toward identifying correlates of pathogenicity and developing improved epidemiological tools for this problematic pathogen. PMID:11591647

  16. A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization.

    PubMed

    Chung, Yeun-Jun; Jonkers, Jos; Kitson, Hannah; Fiegler, Heike; Humphray, Sean; Scott, Carol; Hunt, Sarah; Yu, Yuejin; Nishijima, Ichiko; Velds, Arno; Holstege, Henne; Carter, Nigel; Bradley, Allan

    2004-01-01

    Microarray-based comparative genomic hybridization (CGH) has become a powerful method for the genome-wide detection of chromosomal imbalances. Although BAC microarrays have been used for mouse CGH studies, the resolving power of these analyses was limited because high-density whole-genome mouse BAC microarrays were not available. We therefore developed a mouse BAC microarray containing 2803 unique BAC clones from mouse genomic libraries at 1-Mb intervals. For the general amplification of BAC clone DNA prior to spotting, we designed a set of three novel degenerate oligonucleotide-primed (DOP) PCR primers that preferentially amplify mouse genomic sequences while minimizing unwanted amplification of contaminating Escherichia coli DNA. The resulting 3K mouse BAC microarrays reproducibly identified DNA copy number alterations in cell lines and primary tumors, such as single-copy deletions, regional amplifications, and aneuploidy.

  17. Final Report Construction of Whole Genome Microarrays, and Expression Analysis of Desulfovibrio vulgaris cells in Metal-Reducing Conditions

    SciTech Connect

    M.W. Fields; J.D. Wall; J. Keasling; J. Zhou

    2008-05-15

    We continue to utilize the oligonucleotide microarrays that were constructed through funding with this project to characterize growth responses of Desulfovibrio vulgaris relevant to metal-reducing conditions. To effectively immobilize heavy metals and radionuclides via sulfate-reduction, it is important to understand the cellular responses to adverse factors observed at contaminated subsurface environments (e.g., nutrients, pH, contaminants, growth requirements and products). One of the major goals of the project is to construct whole-genome microarrays for Desulfovibrio vulgaris. First, in order to experimentally establish the criteria for designing gene-specific oligonucleotide probes, an oligonucleotide array was constructed that contained perfect match (PM) and mismatch (MM) probes (50mers and 70mers) based upon 4 genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were examined. Little hybridization was observed at a probe-target identity of <85% for both 50mer and 70mer probes. 33 to 48% of the PM signal intensities were detected at a probe-target identity of 94% for 50mer oligonucleotides, and 43 to 55% for 70mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a non-stretch probe (< 15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50mer probes or a 50-base stretch for 70mer probes had approximately 55% of the PM signal. Mismatches should be as close to the middle position of an oligonucleotide probe as possible to minimize cross-hybridization. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50mer probes or -40 kcal/mol for 70mer probes. Based on the

  18. Development and Assessment of Whole-Genome Oligonucleotide Microarrays to Analyze an Anaerobic Microbial Community and its Responses to Oxidative Stress

    SciTech Connect

    Scholten, Johannes C.; Culley, David E.; Nie, Lei; Munn, Kyle J.; Chow, Lely; Brockman, Fred J.; Zhang, Weiwen

    2007-06-29

    The application of DNA microarray technology to investigate multiple-species microbial community presents great challenges. In this study, we reported the design and quality assessment of four whole genome oligonucleotide microarrays for two syntroph bacteria, Desulfovibrio vulgaris and Syntrophobacter fumaroxidans, and two archaeal methanogens, Methanosarcina barkeri and Methanospirillum hungatei, and their application to analyze global gene expression of this four-species microbial community in response to oxidative stress. In order to minimize the possible cross-hybridization, cross-genome comparison was performed to assure all probes unique to each genome so that the microarrays could provide species-level resolution. Microarray quality was validated by the good reproducibility of experimental measurements of multiple biological and analytical replicates. Microarray analysis showed that S. fumaroxidans and M. hungatei responded to the stress with up-regulation of several genes known to be involved in ROS detoxification, such as catalase and rubrerythrin in S. fumaroxidans and thioredoxin and heat shock protein Hsp20 in M. hungatei. Consistent with previous study in pure culture, the microarray analysis showed that genes involved in methane production and energy metabolism were down-regulated by oxidative stress in M. barkeri. However, D. vulgaris seemed less sensitive to the oxidative stress when grown in a community, with almost no gene up-regulated. The study demonstrated the successful application of microarray technology to multiple-species microbial community, and our preliminary results indicated that the approach can provide novel insights on the metabolic and regulatory networks within microbial communities.

  19. A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization

    PubMed Central

    Talla, Emmanuel; Tekaia, Fredj; Brino, Laurent; Dujon, Bernard

    2003-01-01

    Background Numerous DNA microarray hybridization experiments have been performed in yeast over the last years using either synthetic oligonucleotides or PCR-amplified coding sequences as probes. The design and quality of the microarray probes are of critical importance for hybridization experiments as well as subsequent analysis of the data. Results We present here a novel design of Saccharomyces cerevisiae microarrays based on a refined annotation of the genome and with the aim of reducing cross-hybridization between related sequences. An effort was made to design probes of similar lengths, preferably located in the 3'-end of reading frames. The sequence of each gene was compared against the entire yeast genome and optimal sub-segments giving no predicted cross-hybridization were selected. A total of 5660 novel probes (more than 97% of the yeast genes) were designed. For the remaining 143 genes, cross-hybridization was unavoidable. Using a set of 18 deletant strains, we have experimentally validated our cross-hybridization procedure. Sensitivity, reproducibility and dynamic range of these new microarrays have been measured. Based on this experience, we have written a novel program to design long oligonucleotides for microarray hybridizations of complete genome sequences. Conclusions A validated procedure to predict cross-hybridization in microarray probe design was defined in this work. Subsequently, a novel Saccharomyces cerevisiae microarray (which minimizes cross-hybridization) was designed and constructed. Arrays are available at Eurogentec S. A. Finally, we propose a novel design program, OliD, which allows automatic oligonucleotide design for microarrays. The OliD program is available from authors. PMID:14499002

  20. Whole-Genome DNA Microarray Analysis of a Hyperthermophile and an Archaeon: Pyrococcus furiosus Grown on Carbohydrates or Peptides

    PubMed Central

    Schut, Gerrit J.; Brehm, Scott D.; Datta, Susmita; Adams, Michael W. W.

    2003-01-01

    The first complete-genome DNA microarray was constructed for a hyperthermophile or a nonhalophilic archaeon by using the 2,065 open reading frames (ORFs) that have been annotated in the genome of Pyrococcus furiosus (optimal growth temperature, 100°C). This was used to determine relative transcript levels in cells grown at 95°C with either peptides or a carbohydrate (maltose) used as the primary carbon source. Approximately 20% (398 of 2065) of the ORFs did not appear to be significantly expressed under either growth condition. Of the remaining 1,667 ORFs, the expression of 125 of them (8%) differed by more than fivefold between the two cultures, and 82 of the 125 (65%) appear to be part of operons, indicating extensive coordinate regulation. Of the 27 operons that are regulated, 5 of them encode (conserved) hypothetical proteins. A total of 18 operons are up-regulated (greater than fivefold) in maltose-grown cells, including those responsible for maltose transport and for the biosynthesis of 12 amino acids, of ornithine, and of citric acid cycle intermediate products. A total of nine operons are up-regulated (greater than fivefold) in peptide-grown cells, including those encoding enzymes involved in the production of acyl and aryl acids and 2-ketoacids, which are used for energy conservation. Analyses of the spent growth media confirmed the production of branched-chain and aromatic acids during growth on peptides. In addition, six nonlinked enzymes in the pathways of sugar metabolism were regulated more than fivefold—three in maltose-grown cells that are unique to the unusual glycolytic pathway and three in peptide-grown cells that are unique to gluconeogenesis. The catalytic activities of 16 metabolic enzymes whose expression appeared to be highly regulated in the two cell types correlated very well with the microarray data. The degree of coordinate regulation revealed by the microarray data was unanticipated and shows that P. furiosus can readily adapt to a

  1. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study

    PubMed Central

    SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH

    2014-01-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141

  2. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study.

    PubMed

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Chiriotti, Sabina; Tabury, Kevin; Michaux, Arlette; Grégoire, Vincent; Baatout, Sarah

    2014-04-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/µm) at the beam of the Grand Accélérateur National d'Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy.

  3. Shared clonal cytogenetic abnormalities in aberrant mast cells and leukemic myeloid blasts detected by single nucleotide polymorphism microarray-based whole-genome scanning.

    PubMed

    Frederiksen, John K; Shao, Lina; Bixby, Dale L; Ross, Charles W

    2016-04-01

    Systemic mastocytosis (SM) is characterized by a clonal proliferation of aberrant mast cells within extracutaneous sites. In a subset of SM cases, a second associated hematologic non-mast cell disease (AHNMD) is also present, usually of myeloid origin. Polymerase chain reaction and targeted fluorescence in situ hybridization studies have provided evidence that, in at least some cases, the aberrant mast cells are related clonally to the neoplastic cells of the AHNMD. In this work, a single nucleotide polymorphism microarray (SNP-A) was used to characterize the cytogenetics of the aberrant mast cells from a patient with acute myeloid leukemia and concomitant mast cell leukemia associated with a KIT D816A mutation. The results demonstrate the presence of shared cytogenetic abnormalities between the mast cells and myeloid blasts, as well as additional abnormalities within mast cells (copy-neutral loss of heterozygosity) not detectable by routine karyotypic analysis. To our knowledge, this work represents the first application of SNP-A whole-genome scanning to the detection of shared cytogenetic abnormalities between the two components of a case of SM-AHNMD. The findings provide additional evidence of a frequent clonal link between aberrant mast cells and cells of myeloid AHNMDs, and also highlight the importance of direct sequencing for identifying uncommon activating KIT mutations.

  4. Case of 7p22.1 Microduplication Detected by Whole Genome Microarray (REVEAL) in Workup of Child Diagnosed with Autism

    PubMed Central

    Goitia, Veronica; Oquendo, Marcial; Stratton, Robert

    2015-01-01

    Introduction. More than 60 cases of 7p22 duplications and deletions have been reported with over 16 of them occurring without concomitant chromosomal abnormalities. Patient and Methods. We report a 29-month-old male diagnosed with autism. Whole genome chromosome SNP microarray (REVEAL) demonstrated a 1.3 Mb interstitial duplication of 7p22.1 ->p22.1 arr 7p22.1 (5,436,367–6,762,394), the second smallest interstitial 7p duplication reported to date. This interval included 14 OMIM annotated genes (FBXL18, ACTB, FSCN1, RNF216, OCM, EIF2AK1, AIMP2, PMS2, CYTH3, RAC1, DAGLB, KDELR2, GRID2IP, and ZNF12). Results. Our patient presented features similar to previously reported cases with 7p22 duplication, including brachycephaly, prominent ears, cryptorchidism, speech delay, poor eye contact, and outburst of aggressive behavior with autism-like features. Among the genes located in the duplicated segment, ACTB gene has been proposed as a candidate gene for the alteration of craniofacial development. Overexpression of RNF216L has been linked to autism. FSCN1 may play a role in neurodevelopmental disease. Conclusion. Characterization of a possible 7p22.1 Duplication Syndrome has yet to be made. Recognition of the clinical spectrum in patients with a smaller duplication of 7p should prove valuable for determining the minimal critical region, helping delineate a better prediction of outcome and genetic counseling PMID:25893121

  5. Whole genome sequence typing and microarray profiling of nasal and blood stream methicillin-resistant Staphylococcus aureus isolates: Clues to phylogeny and invasiveness.

    PubMed

    Hamed, Mohamed; Nitsche-Schmitz, Daniel Patric; Ruffing, Ulla; Steglich, Matthias; Dordel, Janina; Nguyen, Duy; Brink, Jan-Hendrik; Chhatwal, Gursharan Singh; Herrmann, Mathias; Nübel, Ulrich; Helms, Volkhard; von Müller, Lutz

    2015-12-01

    Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) infections are frequently caused by predominant clusters of closely related isolates that cannot be discriminated by conventional diagnostic typing methods. Whole genome sequencing (WGS) and DNA microarray (MA) now allow for better discrimination within a prevalent clonal complex (CC). This single center exploratory study aims to distinguish invasive (blood stream infection) and non-invasive (nasal colonization) MRSA isolates of the same CC5 into phylogenetic- and virulence-associated genotypic subgroups by WGS and MA. A cohort of twelve blood stream and fifteen nasal MRSA isolates of CC5 (spa-types t003 and t504) was selected. Isolates were propagated at the same period of time from unrelated patients treated at the University of Saarland Medical Center, Germany. Rooted phylotyping based on WGS with core-genome single nucleotide polymorphism (SNP) analysis revealed two local clusters of closely related CC5 subgroups (t504 and Clade1 t003) which were separated from other local t003 isolates and from unrelated CC5 MRSA reference isolates of German origin. Phylogenetic subtyping was not associated with invasiveness when comparing blood stream and nasal isolates. Clustering based on MA profiles was not concordant with WGS phylotyping, but MA profiles may identify subgroups of isolates with nasal and blood stream origin. Among the new putative virulence associated genes identified by WGS, the strongest association with blood stream infections was shown for ebhB mutants. Analysis of the core-genome together with the accessory genome enables subtyping of closely related MRSA isolates according to phylogeny and presumably also to the potential virulence capacity of isolates.

  6. Integration of cytogenomic data for furthering the characterization of pediatric B-ALL: a multi-institution, multi-platform microarray study

    PubMed Central

    Baughn, LB; Biegel, JA; South, ST; Smolarek, T; Volkert, S; Carroll, A; Heerema, NA; Rabin, KR; Zweidler-McKay, PA; Loh, M; Hirsch, B

    2017-01-01

    It is well documented that among subgroups of B-ALL, the genetic profile of the leukemic blasts has significant impact on prognosis and stratification for therapy. Recent studies have documented the power of microarrays to screen genome-wide for copy number aberrations (CNAs) and regions of copy number neutral loss of heterozygosity (CNLOH) that are not detectable by G-banding or FISH. These studies have involved application of a single array platform for the respective cases. The present investigation demonstrates the feasibility and usefulness of integrating array results from multiple laboratories (ARUP, Children's Hospital of Philadelphia, Cincinnati Children's Hospital Medical Center, and University of Minnesota Medical Center) that utilize different array platforms (Affymetrix, Agilent, or Illumina) in their respective clinical settings. Sixty five patients enrolled on the Children's Oncology Group (COG) study AALL08B1 were identified for study, as cytogenetic and fluorescence-in-situ hybridization studies had also been performed on these patients, with central review of those results available for comparison. Microarray data were first analyzed by the individual laboratories with their respective software systems; raw data files were then centrally validated using NEXUS software. The results demonstrated the added value of integrating multi-platform data with cytogenetic and FISH data and highlight novel findings identified by array including the co-occurrence of low and high risk abnormalities not previously reported to coexist within a clone, novel regions of chromosomal amplification, clones characterized by numerous whole chromosome LOH that do not meet criteria for doubling of a near-haploid, and characterization of array profiles associated with IKZF1 deletion. Each of these findings raises questions that are clinically relevant to risk stratification. PMID:25678190

  7. Prenatal Whole Genome Sequencing

    PubMed Central

    Donley, Greer; Hull, Sara Chandros; Berkman, Benjamin E.

    2014-01-01

    With whole genome sequencing set to become the preferred method of prenatal screening, we need to pay more attention to the massive amount of information it will deliver to parents—and the fact that we don't yet understand what most of it means. PMID:22777977

  8. A Whole-Genome Microarray Study of Arabidopsis thaliana Semisolid Callus Cultures Exposed to Microgravity and Nonmicrogravity Related Spaceflight Conditions for 5 Days on Board of Shenzhou 8

    PubMed Central

    Neef, Maren; Ecke, Margret; Hampp, Rüdiger

    2015-01-01

    The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production. PMID:25654111

  9. High Resolution Copy Number Variation Data in the NCI-60 Cancer Cell Lines from Whole Genome Microarrays Accessible through CellMiner

    PubMed Central

    Varma, Sudhir; Pommier, Yves; Sunshine, Margot; Weinstein, John N.; Reinhold, William C.

    2014-01-01

    Array-based comparative genomic hybridization (aCGH) is a powerful technique for detecting gene copy number variation. It is generally considered to be robust and convenient since it measures DNA rather than RNA. In the current study, we combine copy number estimates from four different platforms (Agilent 44 K, NimbleGen 385 K, Affymetrix 500 K and Illumina Human1Mv1_C) to compute a reliable, high-resolution, easy to understand output for the measure of copy number changes in the 60 cancer cells of the NCI-DTP (the NCI-60). We then relate the results to gene expression. We explain how to access that database using our CellMiner web-tool and provide an example of the ease of comparison with transcript expression, whole exome sequencing, microRNA expression and response to 20,000 drugs and other chemical compounds. We then demonstrate how the data can be analyzed integratively with transcript expression data for the whole genome (26,065 genes). Comparison of copy number and expression levels shows an overall medium high correlation (median r = 0.247), with significantly higher correlations (median r = 0.408) for the known tumor suppressor genes. That observation is consistent with the hypothesis that gene loss is an important mechanism for tumor suppressor inactivation. An integrated analysis of concurrent DNA copy number and gene expression change is presented. Limiting attention to focal DNA gains or losses, we identify and reveal novel candidate tumor suppressors with matching alterations in transcript level. PMID:24670534

  10. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    SciTech Connect

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  11. The Whole Genome Expression Analysis using Two Microarray Technologies to Identify Gene Networks That Mediate the Myocardial Phenotype of CD36 Deficiency

    PubMed Central

    Sabaouni, Imane; Moussa, Ahmed; Vannier, Brigitte; Semlali, Oussama; Pietka, Terri A; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    We have previously shown that CD36 is a membrane protein that facilitates long chain fatty acid (FA) transport by muscle tissues. We also documented the significant impact of muscle CD36 expression on heart function, skeletal muscle insulin sensitivity as well as on overall metabolism. To identify a comprehensive set of genes that are differentially regulated by CD36 expression in the heart, we used two microarray technologies (Affymetrix and Agilent) to compare gene expression in heart tissues from CD36 KnocK-Out (KO-CD36) versus wild type (WT-CD36) mice. The obtained results using the two technologies were similar with around 35 genes differentially expressed using both technologies. Absence of CD36 led to down-regulation of the expression of three groups of genes involved in pathways of FA metabolism, angiogenesis/apoptosis and structure. These data are consistent with the fact that the CD36 protein binds FA and thrombospondin 1 invoved respectively in lipid metabolism and anti-angiogenic activities. In conclusion, our findings led to validate our data analysis workflow and identify specific pathways, possibly underlying the phenotypic abnormalities in CD36 Knock -Out hearts. PMID:24250110

  12. The Whole Genome Expression Analysis using Two Microarray Technologies to Identify Gene Networks That Mediate the Myocardial Phenotype of CD36 Deficiency.

    PubMed

    Sabaouni, Imane; Moussa, Ahmed; Vannier, Brigitte; Semlali, Oussama; Pietka, Terri A; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    We have previously shown that CD36 is a membrane protein that facilitates long chain fatty acid (FA) transport by muscle tissues. We also documented the significant impact of muscle CD36 expression on heart function, skeletal muscle insulin sensitivity as well as on overall metabolism. To identify a comprehensive set of genes that are differentially regulated by CD36 expression in the heart, we used two microarray technologies (Affymetrix and Agilent) to compare gene expression in heart tissues from CD36 KnocK-Out (KO-CD36) versus wild type (WT-CD36) mice. The obtained results using the two technologies were similar with around 35 genes differentially expressed using both technologies. Absence of CD36 led to down-regulation of the expression of three groups of genes involved in pathways of FA metabolism, angiogenesis/apoptosis and structure. These data are consistent with the fact that the CD36 protein binds FA and thrombospondin 1 invoved respectively in lipid metabolism and anti-angiogenic activities. In conclusion, our findings led to validate our data analysis workflow and identify specific pathways, possibly underlying the phenotypic abnormalities in CD36 Knock -Out hearts.

  13. A Whole-Genome Microarray Study of Arabidopis Thaliana Cell Cultures Exposed to Real and Simulated Partial-G Forces: A Comparison of Parabolic Flight and Clinostat Data

    NASA Astrophysics Data System (ADS)

    Fengler, S.; Spirer, I.; Neef, M.; Ecke, M.; Hauslage, J.; Hampp, R.

    2015-09-01

    Cell cultures of the plant model organism Arabidopsis thaliana were exposed to partial-g forces during parabolic flight and clinostat experiments (0.38 g, 0. 16 g and 0.5 g). To investigate gravity-dependent alterations in gene expression, samples were metabolically quenched and used for microarray analysis. An attempt to identify the potential threshold acceleration showed that the smaller the experienced g-force, the greater was the susceptibility of the cell cultures. Compared to short-term ~sg during a regular parabolic flight, the number of differentially expressed genes under partial-g was lower. In addition, the effect on the alteration of amounts of transcripts decreased during partial-g parabolic flight due to the sequence of the different parabolas (0.38 g, 0.16 g and ~sg). A time-dependent analysis under simulated 0.5 g indicates that adaptation occurs within minutes. Differentially expressed genes (at least 2-fold altered in expression) under real flight conditions were to some extent identical with those affected by clinorotation. The highest number of identical genes was detected within seconds of exposure to 0.38 g.

  14. Applications of DNA tiling arrays for whole-genome analysis.

    PubMed

    Mockler, Todd C; Chan, Simon; Sundaresan, Ambika; Chen, Huaming; Jacobsen, Steven E; Ecker, Joseph R

    2005-01-01

    DNA microarrays are a well-established technology for measuring gene expression levels. Microarrays designed for this purpose use relatively few probes for each gene and are biased toward known and predicted gene structures. Recently, high-density oligonucleotide-based whole-genome microarrays have emerged as a preferred platform for genomic analysis beyond simple gene expression profiling. Potential uses for such whole-genome arrays include empirical annotation of the transcriptome, chromatin-immunoprecipitation-chip studies, analysis of alternative splicing, characterization of the methylome (the methylation state of the genome), polymorphism discovery and genotyping, comparative genome hybridization, and genome resequencing. Here we review different whole-genome microarray designs and applications of this technology to obtain a wide variety of genomic scale information.

  15. Phospholipidosis in rats treated with amiodarone: serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP.

    PubMed

    Mesens, Natalie; Desmidt, Miek; Verheyen, Geert R; Starckx, Sofie; Damsch, Siegrid; De Vries, Ronald; Verhemeldonck, Marc; Van Gompel, Jacky; Lampo, Ann; Lammens, Lieve

    2012-04-01

    To provide mechanistic insight in the induction of phospholipidosis and the appearance of the proposed biomarker di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP), rats were treated with 150 mg/kg amiodarone for 12 consecutive days and analyzed at three different time points (day 4, 9, and 12). Biochemical analysis of the serum revealed a significant increase in cholesterol and phospholipids at the three time points. Bio-analysis on the serum and urine detected a time-dependent increase in BMP, as high as 10-fold compared to vehicle-treated animals on day 12. Paralleling these increases, micro-array analysis on the liver of treated rats identified cholesterol biosynthesis and glycerophospholipid metabolism as highly modulated pathways. This modulation indicates that during phospholipidosis-induction interactions take place between the cationic amphiphilic drug and phospholipids at the level of BMP-rich internal membranes of endosomes, impeding cholesterol sorting and leading to an accumulation of internal membranes, converting into multilamellar bodies. This process shows analogy to Niemann-Pick disease type C (NPC). Whereas the NPC-induced lipid traffic jam is situated at the cholesterol sorting proteins NPC1 and NPC2, the amiodarone-induced traffic jam is thought to be located at the BMP level, demonstrating its role in the mechanism of phospholipidosis-induction and its significance for use as a biomarker.

  16. Whole-Genome Sequencing: Manual Library Preparation.

    PubMed

    Mardis, Elaine; McCombie, W Richard

    2017-01-03

    This protocol describes a manual approach for the preparation of genomic DNA libraries suitable for Illumina sequencing. Genomic DNA fragments produced by shearing by sonication are ligated to adaptors and amplified by polymerase chain reaction (PCR). The amplified DNA, separated by size and gel-purified, is suitable for use as template in whole-genome sequencing.

  17. Whole genome linkage disequilibrium maps in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides bac...

  18. Microarrays

    ERIC Educational Resources Information Center

    Plomin, Robert; Schalkwyk, Leonard C.

    2007-01-01

    Microarrays are revolutionizing genetics by making it possible to genotype hundreds of thousands of DNA markers and to assess the expression (RNA transcripts) of all of the genes in the genome. Microarrays are slides the size of a postage stamp that contain millions of DNA sequences to which single-stranded DNA or RNA can hybridize. This…

  19. Signal Reception via Multi-Platform Receivers

    DTIC Science & Technology

    2012-09-01

    interference cancellation, multi-platform receivers, signal collection, signal interception 15. NUMBER OF PAGES 71 16. PRICE CODE 17. SECURITY ...CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified...Quadrature Phase Shift Keying SIC Successive Interference Cancellation SNR Signal-To-Noise Ratio SOI Signal Of Interest WLAN Wireless Local Area

  20. Whole genome sequence analysis of Mycobacterium suricattae.

    PubMed

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; van der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah Musa; Siame, Kabengele Keith; Gey van Pittius, Nicolaas Claudius; van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-12-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  1. Strategies and tools for whole genome alignments

    SciTech Connect

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  2. Microbial species delineation using whole genome sequences

    SciTech Connect

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  3. Benchmark dataset for Whole Genome sequence compression.

    PubMed

    C L, Biji; Nair, Achuthsankar

    2016-05-16

    The research in DNA data compression lacks a standard dataset to test out compression tools specific to DNA. This paper argues that the current state of achievement in DNA compression is unable to be bench marked in the absence of such scientifically compiled whole genome sequence dataset and proposes a bench mark dataset using multistage sampling procedure. Considering the genome sequence of organisms available in the National Centre for Biotechnology and Information (NCBI) as the universe, the proposed dataset selects 1105 prokaryotes, 200 plasmids, 164 viruses and 65 eukaryotes. This paper reports the results of using 3 established tools on the newly compiled dataset and show that their strength and weakness are evident only with a comparison based on the scientifically compiled bench mark data set.

  4. Whole-Genome Sequencing in Outbreak Analysis

    PubMed Central

    Turner, Stephen D.; Riley, Margaret F.; Petri, William A.; Hewlett, Erik L.

    2015-01-01

    SUMMARY In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed. PMID:25876885

  5. Small Sample Whole-Genome Amplification

    SciTech Connect

    Hara, C A; Nguyen, C P; Wheeler, E K; Sorensen, K J; Arroyo, E S; Vrankovich, G P; Christian, A T

    2005-09-20

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  6. Small sample whole-genome amplification

    NASA Astrophysics Data System (ADS)

    Hara, Christine; Nguyen, Christine; Wheeler, Elizabeth; Sorensen, Karen; Arroyo, Erin; Vrankovich, Greg; Christian, Allen

    2005-11-01

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  7. Rapid whole genome sequencing and precision neonatology.

    PubMed

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care.

  8. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    SciTech Connect

    Fröhlich, Eleonore; Meindl, Claudia; Wagner, Karin; Leitinger, Gerd; Roblegg, Eva

    2014-10-15

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.

  9. Whole Genome Sequence of a Turkish Individual

    PubMed Central

    Dogan, Haluk; Can, Handan; Otu, Hasan H.

    2014-01-01

    Although whole human genome sequencing can be done with readily available technical and financial resources, the need for detailed analyses of genomes of certain populations still exists. Here we present, for the first time, sequencing and analysis of a Turkish human genome. We have performed 35x coverage using paired-end sequencing, where over 95% of sequencing reads are mapped to the reference genome covering more than 99% of the bases. The assembly of unmapped reads rendered 11,654 contigs, 2,168 of which did not reveal any homology to known sequences, resulting in ∼1 Mbp of unmapped sequence. Single nucleotide polymorphism (SNP) discovery resulted in 3,537,794 SNP calls with 29,184 SNPs identified in coding regions, where 106 were nonsense and 259 were categorized as having a high-impact effect. The homo/hetero zygosity (1,415,123∶2,122,671 or 1∶1.5) and transition/transversion ratios (2,383,204∶1,154,590 or 2.06∶1) were within expected limits. Of the identified SNPs, 480,396 were potentially novel with 2,925 in coding regions, including 48 nonsense and 95 high-impact SNPs. Functional analysis of novel high-impact SNPs revealed various interaction networks, notably involving hereditary and neurological disorders or diseases. Assembly results indicated 713,640 indels (1∶1.09 insertion/deletion ratio), ranging from −52 bp to 34 bp in length and causing about 180 codon insertion/deletions and 246 frame shifts. Using paired-end- and read-depth-based methods, we discovered 9,109 structural variants and compared our variant findings with other populations. Our results suggest that whole genome sequencing is a valuable tool for understanding variations in the human genome across different populations. Detailed analyses of genomes of diverse origins greatly benefits research in genetics and medicine and should be conducted on a larger scale. PMID:24416366

  10. Post-Fragmentation Whole Genome Amplification-Based Method

    NASA Technical Reports Server (NTRS)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have

  11. Integrating whole-genome expression results into metabolic networks with Pathway Processor.

    PubMed

    Cavalieri, Duccio; Grosu, Paul

    2004-05-01

    Genes never act alone in a biological system, but participate in a cascade of networks. As a result, analyzing microarray data from a pathway perspective leads to a new level of understanding the system. The authors' group has recently developed Pathway Processor (http://cgr.harvard.edu/cavalieri/pp.html), an automatic statistical method to determine which pathways are most affected by transcriptional changes and to map expression data from multiple whole-genome expression experiments on metabolic pathways. This unit presents applications of the Pathway Processor software.

  12. Multiple Whole Genome Alignments Without a Reference Organism

    SciTech Connect

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  13. Multiple whole-genome alignments without a reference organism.

    PubMed

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-04-01

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and six Drosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families-perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  14. Isprs Benchmark for Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.; Remondino, F.; Przybilla, H.-J.; Bäumker, M.; Zurhorst, A.

    2015-03-01

    Airborne high resolution oblique imagery systems and RPAS/UAVs are very promising technologies that will keep on influencing the development of geomatics in the future years closing the gap between terrestrial and classical aerial acquisitions. These two platforms are also a promising solution for National Mapping and Cartographic Agencies (NMCA) as they allow deriving complementary mapping information. Although the interest for the registration and integration of aerial and terrestrial data is constantly increasing, only limited work has been truly performed on this topic. Several investigations still need to be undertaken concerning algorithms ability for automatic co-registration, accurate point cloud generation and feature extraction from multiplatform image data. One of the biggest obstacles is the non-availability of reliable and free datasets to test and compare new algorithms and procedures. The Scientific Initiative "ISPRS benchmark for multi-platform photogrammetry", run in collaboration with EuroSDR, aims at collecting and sharing state-of-the-art multi-sensor data (oblique airborne, UAV-based and terrestrial images) over an urban area. These datasets are used to assess different algorithms and methodologies for image orientation and dense matching. As ground truth, Terrestrial Laser Scanning (TLS), Aerial Laser Scanning (ALS) as well as topographic networks and GNSS points were acquired to compare 3D coordinates on check points (CPs) and evaluate cross sections and residuals on generated point cloud surfaces. In this paper, the acquired data, the pre-processing steps, the evaluation procedures as well as some preliminary results achieved with commercial software will be presented.

  15. Whole-Genome Sequencing of Two Bartonella bacilliformis Strains

    PubMed Central

    Guillen, Yolanda; Casadellà, Maria; García-de-la-Guarda, Ruth; Espinoza-Culupú, Abraham; Paredes, Roger; Ruiz, Joaquim

    2016-01-01

    Bartonella bacilliformis is the causative agent of Carrion’s disease, a highly endemic human bartonellosis in Peru. We performed a whole-genome assembly of two B. bacilliformis strains isolated from the blood of infected patients in the acute phase of Carrion’s disease from the Cusco and Piura regions in Peru. PMID:27389274

  16. Whole-Genome Sequences of 26 Vibrio cholerae Isolates

    PubMed Central

    Watve, Samit S.; Chande, Aroon T.; Rishishwar, Lavanya; Jordan, I. King

    2016-01-01

    The human pathogen Vibrio cholerae employs several adaptive mechanisms for environmental persistence, including natural transformation and type VI secretion, creating a reservoir for the spread of disease. Here, we report whole-genome sequences of 26 diverse V. cholerae isolates, significantly increasing the sequence diversity of publicly available V. cholerae genomes. PMID:28007852

  17. Supercomputing for the parallelization of whole genome analysis

    PubMed Central

    Puckelwartz, Megan J.; Pesce, Lorenzo L.; Nelakuditi, Viswateja; Dellefave-Castillo, Lisa; Golbus, Jessica R.; Day, Sharlene M.; Cappola, Thomas P.; Dorn, Gerald W.; Foster, Ian T.; McNally, Elizabeth M.

    2014-01-01

    Motivation: The declining cost of generating DNA sequence is promoting an increase in whole genome sequencing, especially as applied to the human genome. Whole genome analysis requires the alignment and comparison of raw sequence data, and results in a computational bottleneck because of limited ability to analyze multiple genomes simultaneously. Results: We now adapted a Cray XE6 supercomputer to achieve the parallelization required for concurrent multiple genome analysis. This approach not only markedly speeds computational time but also results in increased usable sequence per genome. Relying on publically available software, the Cray XE6 has the capacity to align and call variants on 240 whole genomes in ∼50 h. Multisample variant calling is also accelerated. Availability and implementation: The MegaSeq workflow is designed to harness the size and memory of the Cray XE6, housed at Argonne National Laboratory, for whole genome analysis in a platform designed to better match current and emerging sequencing volume. Contact: emcnally@uchicago.edu PMID:24526712

  18. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing.

    PubMed

    Park, Sang Tae; Kim, Jayoung

    2016-11-01

    This article is a mini-review that provides a general overview for next-generation sequencing (NGS) and introduces one of the most popular NGS applications, whole genome sequencing (WGS), developed from the expansion of human genomics. NGS technology has brought massively high throughput sequencing data to bear on research questions, enabling a new era of genomic research. Development of bioinformatic software for NGS has provided more opportunities for researchers to use various applications in genomic fields. De novo genome assembly and large scale DNA resequencing to understand genomic variations are popular genomic research tools for processing a tremendous amount of data at low cost. Studies on transcriptomes are now available, from previous-hybridization based microarray methods. Epigenetic studies are also available with NGS applications such as whole genome methylation sequencing and chromatin immunoprecipitation followed by sequencing. Human genetics has faced a new paradigm of research and medical genomics by sequencing technologies since the Human Genome Project. The trend of NGS technologies in human genomics has brought a new era of WGS by enabling the building of human genomes databases and providing appropriate human reference genomes, which is a necessary component of personalized medicine and precision medicine.

  19. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing

    PubMed Central

    2016-01-01

    This article is a mini-review that provides a general overview for next-generation sequencing (NGS) and introduces one of the most popular NGS applications, whole genome sequencing (WGS), developed from the expansion of human genomics. NGS technology has brought massively high throughput sequencing data to bear on research questions, enabling a new era of genomic research. Development of bioinformatic software for NGS has provided more opportunities for researchers to use various applications in genomic fields. De novo genome assembly and large scale DNA resequencing to understand genomic variations are popular genomic research tools for processing a tremendous amount of data at low cost. Studies on transcriptomes are now available, from previous-hybridization based microarray methods. Epigenetic studies are also available with NGS applications such as whole genome methylation sequencing and chromatin immunoprecipitation followed by sequencing. Human genetics has faced a new paradigm of research and medical genomics by sequencing technologies since the Human Genome Project. The trend of NGS technologies in human genomics has brought a new era of WGS by enabling the building of human genomes databases and providing appropriate human reference genomes, which is a necessary component of personalized medicine and precision medicine. PMID:27915479

  20. Antigen discovery using whole-genome phage display libraries.

    PubMed

    Beghetto, Elisa; Gargano, Nicola

    2013-01-01

    In the last two decades phage display technology has been used for investigating complex biological processes and isolating molecules of practical value in several applications. Bacteriophage lambda, representing a classical cloning and expression system, has also been exploited for generating display libraries of small peptides and protein domains. More recently, large cDNA and whole-genome lambda-display libraries of human pathogens have been generated for the discovery of new antigens for biomedical applications. Here, we describe the construction of a whole-genome library of a common pathogen-Streptococcus pneumoniae-and the use of this library for the molecular dissection of the human B-cell response against bacterial infection and colonization.

  1. Whole genome amplification - Review of applications and advances

    SciTech Connect

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  2. Whole genome sequencing of clinical isolates of Giardia lamblia.

    PubMed

    Hanevik, K; Bakken, R; Brattbakk, H R; Saghaug, C S; Langeland, N

    2015-02-01

    Clinical isolates from protozoan parasites such as Giardia lamblia are at present practically impossible to culture. By using simple cyst purification methods, we show that Giardia whole genome sequencing of clinical stool samples is possible. Immunomagnetic separation after sucrose gradient flotation gave superior results compared to sucrose gradient flotation alone. The method enables detailed analysis of a wide range of genes of interest for genotyping, virulence and drug resistance.

  3. Estimating telomere length from whole genome sequence data.

    PubMed

    Ding, Zhihao; Mangino, Massimo; Aviv, Abraham; Spector, Tim; Durbin, Richard

    2014-05-01

    Telomeres play a key role in replicative ageing and undergo age-dependent attrition in vivo. Here, we report a novel method, TelSeq, to measure average telomere length from whole genome or exome shotgun sequence data. In 260 leukocyte samples, we show that TelSeq results correlate with Southern blot measurements of the mean length of terminal restriction fragments (mTRFs) and display age-dependent attrition comparably well as mTRFs.

  4. Estimating telomere length from whole genome sequence data

    PubMed Central

    Ding, Zhihao; Mangino, Massimo; Aviv, Abraham; Spector, Tim; Durbin, Richard

    2014-01-01

    Telomeres play a key role in replicative ageing and undergo age-dependent attrition in vivo. Here, we report a novel method, TelSeq, to measure average telomere length from whole genome or exome shotgun sequence data. In 260 leukocyte samples, we show that TelSeq results correlate with Southern blot measurements of the mean length of terminal restriction fragments (mTRFs) and display age-dependent attrition comparably well as mTRFs. PMID:24609383

  5. Whole-genome shotgun optical mapping of rhodospirillumrubrum

    SciTech Connect

    Reslewic, Susan; Zhou, Shiguo; Place, Mike; Zhang, Yaoping; Briska, Adam; Goldstein, Steve; Churas, Chris; Runnheim, Rod; Forrest,Dan; Lim, Alex; Lapidus, Alla; Han, Cliff S.; Roberts, Gary P.; Schwartz,David C.

    2004-07-01

    Rhodospirillum rubrum is a phototrophic purple non-sulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems, and as a source of hydrogen and biodegradable plastics production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction maps (Xba I, Nhe I, and Hind III) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction maps from randomly sheared genomic DNA molecules extracted directly from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the Hind III map acted as a scaffold for high resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and validation of genome sequence, our work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a ''molecular cytogenetics'' approach to solving problems in genomic analysis.

  6. WGSQuikr: fast whole-genome shotgun metagenomic classification.

    PubMed

    Koslicki, David; Foucart, Simon; Rosen, Gail

    2014-01-01

    With the decrease in cost and increase in output of whole-genome shotgun technologies, many metagenomic studies are utilizing this approach in lieu of the more traditional 16S rRNA amplicon technique. Due to the large number of relatively short reads output from whole-genome shotgun technologies, there is a need for fast and accurate short-read OTU classifiers. While there are relatively fast and accurate algorithms available, such as MetaPhlAn, MetaPhyler, PhyloPythiaS, and PhymmBL, these algorithms still classify samples in a read-by-read fashion and so execution times can range from hours to days on large datasets. We introduce WGSQuikr, a reconstruction method which can compute a vector of taxonomic assignments and their proportions in the sample with remarkable speed and accuracy. We demonstrate on simulated data that WGSQuikr is typically more accurate and up to an order of magnitude faster than the aforementioned classification algorithms. We also verify the utility of WGSQuikr on real biological data in the form of a mock community. WGSQuikr is a Whole-Genome Shotgun QUadratic, Iterative, K-mer based Reconstruction method which extends the previously introduced 16S rRNA-based algorithm Quikr. A MATLAB implementation of WGSQuikr is available at: http://sourceforge.net/projects/wgsquikr.

  7. Whole-genome shotgun optical mapping of Rhodospirillum rubrum

    SciTech Connect

    Reslewic, S.; Zhou, S.; Place, M.; Zhang, Y.; Briska, A.; Goldstein, S.; Churas, C.; Runnheim, R.; Forrest, D.; Lim, A.; Lapidus, A.; Han, C. S.; Roberts, G. P.; Schwartz, D. C.

    2005-09-01

    Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.

  8. Priors in Whole-Genome Regression: The Bayesian Alphabet Returns

    PubMed Central

    Gianola, Daniel

    2013-01-01

    Whole-genome enabled prediction of complex traits has received enormous attention in animal and plant breeding and is making inroads into human and even Drosophila genetics. The term “Bayesian alphabet” denotes a growing number of letters of the alphabet used to denote various Bayesian linear regressions that differ in the priors adopted, while sharing the same sampling model. We explore the role of the prior distribution in whole-genome regression models for dissecting complex traits in what is now a standard situation with genomic data where the number of unknown parameters (p) typically exceeds sample size (n). Members of the alphabet aim to confront this overparameterization in various manners, but it is shown here that the prior is always influential, unless n ≫ p. This happens because parameters are not likelihood identified, so Bayesian learning is imperfect. Since inferences are not devoid of the influence of the prior, claims about genetic architecture from these methods should be taken with caution. However, all such procedures may deliver reasonable predictions of complex traits, provided that some parameters (“tuning knobs”) are assessed via a properly conducted cross-validation. It is concluded that members of the alphabet have a room in whole-genome prediction of phenotypes, but have somewhat doubtful inferential value, at least when sample size is such that n ≪ p. PMID:23636739

  9. Whole-genome sequence-based analysis of thyroid function

    PubMed Central

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J.; Traglia, Michela; Brown, Suzanne J.; Mullin, Benjamin H.; Shihab, Hashem A.; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R.; Beilby, John P.; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D.; Hui, Jennie; Lim, Ee M.; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R.B.; Bell, Jordana T.; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L.; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M.; Naitza, Silvia; Walsh, John P.; Spector, Tim; Davey Smith, George; Durbin, Richard; Brent Richards, J.; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J.; Wilson, Scott G.; Turki, Saeed Al; Anderson, Carl; Anney, Richard; Antony, Dinu; Artigas, Maria Soler; Ayub, Muhammad; Balasubramaniam, Senduran; Barrett, Jeffrey C.; Barroso, Inês; Beales, Phil; Bentham, Jamie; Bhattacharya, Shoumo; Birney, Ewan; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Bounds, Rebecca; Boustred, Chris; Breen, Gerome; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Ciampi, Antonio; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Day-Williams, Aaron; Day, Ian N.M.; Down, Thomas; Du, Yuanping; Dunham, Ian; Edkins, Sarah; Ellis, Peter; Evans, David; Faroogi, Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David R.; Flicek, Paul; Flyod, James; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Geihs, Matthias; Geschwind, Daniel; Griffin, Heather; Grozeva, Detelina; Guo, Xueqin; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Howie, Bryan; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro; Jackson, David K.; Jamshidi, Yalda; Jing, Tian; Joyce, Chris; Kaye, Jane; Keane, Thomas; Keogh, Julia; Kemp, John; Kennedy, Karen; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Liang, Jieqin; Lin, Hong; Li, Rui; Li, Yingrui; Liu, Ryan; Lönnqvist, Jouko; Lopes, Margarida; Lotchkova, Valentina; MacArthur, Daniel; Marchini, Jonathan; Maslen, John; Massimo, Mangino; Mathieson, Iain; Marenne, Gaëlle; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew G.; McQuillin, Andrew; Metrustry, Sarah; Mitchison, Hannah; Moayyeri, Alireza; Morris, James; Muntoni, Francesco; Northstone, Kate; O'Donnovan, Michael; Onoufriadis, Alexandros; O'Rahilly, Stephen; Oualkacha, Karim; Owen, Michael J.; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Pietilainen, Olli; Plagnol, Vincent; Quaye, Lydia; Quai, Michael A.; Raymond, Lucy; Rehnström, Karola; Richards, Brent; Ring, Susan; Ritchie, Graham R.S.; Roberts, Nicola; Savage, David B.; Scambler, Peter; Schiffels, Stephen; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shin, So-Youn; Skuse, David; Small, Kerrin; Southam, Lorraine; Spasic-Boskovic, Olivera; Clair, David St; Stalker, Jim; Stevens, Elizabeth; Pourcian, Beate St; Sun, Jianping; Suvisaari, Jaana; Tachmazidou, Ionna; Tobin, Martin D.; Valdes, Ana; Kogelenberg, Margriet Van; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walters, James T.R.; Wang, Guangbiao; Wang, Jun; Wang, Yu; Ward, Kirsten; Wheeler, Elanor; Whyte, Tamieka; Williams, Hywel; Williamson, Kathleen A.; Wilson, Crispian; Wong, Kim; Xu, ChangJiang; Yang, Jian; Zhang, Fend; Zhang, Pingbo

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10−9) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10−14). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10−9) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10−11). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function. PMID:25743335

  10. Whole-genome sequence-based analysis of thyroid function.

    PubMed

    Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J; Traglia, Michela; Brown, Suzanne J; Mullin, Benjamin H; Shihab, Hashem A; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R; Beilby, John P; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D; Hui, Jennie; Lim, Ee M; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R B; Bell, Jordana T; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M; Naitza, Silvia; Walsh, John P; Spector, Tim; Davey Smith, George; Durbin, Richard; Richards, J Brent; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J; Wilson, Scott G

    2015-03-06

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.

  11. Deep Whole-Genome Sequencing of 100 Southeast Asian Malays

    PubMed Central

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-01

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. PMID:23290073

  12. Deep whole-genome sequencing of 100 southeast Asian Malays.

    PubMed

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-10

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.

  13. Whole-Genome Sequencing: Automated, Nonindexed Library Preparation.

    PubMed

    Mardis, Elaine; McCombie, W Richard

    2017-03-01

    This protocol describes an automated procedure for constructing a nonindexed Illumina DNA library and relies on the use of a CyBi-SELMA automated pipetting machine, the Covaris E210 shearing instrument, and the epMotion 5075. With this method, genomic DNA fragments are produced by sonication, using high-frequency acoustic energy to shear DNA. Here, double-stranded DNA is fragmented when exposed to the energy of adaptive focused acoustic shearing (AFA). The resulting DNA fragments are ligated to adaptors, amplified by polymerase chain reaction (PCR), and subjected to size selection using magnetic beads. The product is suitable for use as template in whole-genome sequencing.

  14. Whole-Genome Sequencing: Automated, Indexed Library Preparation.

    PubMed

    Mardis, Elaine; McCombie, W Richard

    2017-03-01

    This protocol describes an automated procedure for constructing an indexed Illumina DNA library. With this method, genomic DNA fragments are produced by sonication, using high-frequency acoustic energy to shear DNA. Double-stranded DNA (dsDNA) will fragment when exposed to the energy of adaptive focused acoustic shearing (AFA). The resulting DNA fragments are ligated to adaptors, amplified by polymer chain reaction (PCR), and subjected to size selection using magnetic beads. The product is suitable for use as template in whole-genome sequencing.

  15. Whole genome comparison of donor and cloned dogs.

    PubMed

    Kim, Hak-Min; Cho, Yun Sung; Kim, Hyunmin; Jho, Sungwoong; Son, Bongjun; Choi, Joung Yoon; Kim, Sangsoo; Lee, Byeong Chun; Bhak, Jong; Jang, Goo

    2013-10-21

    Cloning is a process that produces genetically identical organisms. However, the genomic degree of genetic resemblance in clones needs to be determined. In this report, the genomes of a cloned dog and its donor were compared. Compared with a human monozygotic twin, the genome of the cloned dog showed little difference from the genome of the nuclear donor dog in terms of single nucleotide variations, chromosomal instability, and telomere lengths. These findings suggest that cloning by somatic cell nuclear transfer produced an almost identical genome. The whole genome sequence data of donor and cloned dogs can provide a resource for further investigations on epigenetic contributions in phenotypic differences.

  16. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  17. Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

    SciTech Connect

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey; McAdams, Harley H.; Andersen, Gary L.

    2005-09-21

    The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formation of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.

  18. Whole-genome amplification of single-cell genomes for next-generation sequencing.

    PubMed

    Korfhage, Christian; Fisch, Evelyn; Fricke, Evelyn; Baedker, Silke; Loeffert, Dirk

    2013-10-11

    DNA sequence analysis and genotyping of biological samples using next-generation sequencing (NGS), microarrays, or real-time PCR is often limited by the small amount of sample available. A single cell contains only one to four copies of the genomic DNA, depending on the organism (haploid or diploid organism) and the cell-cycle phase. The DNA content of a single cell ranges from a few femtograms in bacteria to picograms in mammalia. In contrast, a deep analysis of the genome currently requires a few hundred nanograms up to micrograms of genomic DNA for library formation necessary for NGS sequencing or labeling protocols (e.g., microarrays). Consequently, accurate whole-genome amplification (WGA) of single-cell DNA is required for reliable genetic analysis (e.g., NGS) and is particularly important when genomic DNA is limited. The use of single-cell WGA has enabled the analysis of genomic heterogeneity of individual cells (e.g., somatic genomic variation in tumor cells). This unit describes how the genome of single cells can be used for WGA for further genomic studies, such as NGS. Recommendations for isolation of single cells are given and common sources of errors are discussed.

  19. Whole-genome reconstruction and mutational signatures in gastric cancer

    PubMed Central

    2012-01-01

    Background Gastric cancer is the second highest cause of global cancer mortality. To explore the complete repertoire of somatic alterations in gastric cancer, we combined massively parallel short read and DNA paired-end tag sequencing to present the first whole-genome analysis of two gastric adenocarcinomas, one with chromosomal instability and the other with microsatellite instability. Results Integrative analysis and de novo assemblies revealed the architecture of a wild-type KRAS amplification, a common driver event in gastric cancer. We discovered three distinct mutational signatures in gastric cancer - against a genome-wide backdrop of oxidative and microsatellite instability-related mutational signatures, we identified the first exome-specific mutational signature. Further characterization of the impact of these signatures by combining sequencing data from 40 complete gastric cancer exomes and targeted screening of an additional 94 independent gastric tumors uncovered ACVR2A, RPL22 and LMAN1 as recurrently mutated genes in microsatellite instability-positive gastric cancer and PAPPA as a recurrently mutated gene in TP53 wild-type gastric cancer. Conclusions These results highlight how whole-genome cancer sequencing can uncover information relevant to tissue-specific carcinogenesis that would otherwise be missed from exome-sequencing data. PMID:23237666

  20. Performance Evaluation of NIPT in Detection of Chromosomal Copy Number Variants Using Low-Coverage Whole-Genome Sequencing of Plasma DNA

    PubMed Central

    Lin, Linhua; Yin, Xuyang; Wang, Jun; Chen, Dayang; Chen, Fang; Jiang, Hui; Ren, Jinghui; Wang, Wei

    2016-01-01

    Objectives The aim of this study was to assess the performance of noninvasively prenatal testing (NIPT) for fetal copy number variants (CNVs) in clinical samples, using a whole-genome sequencing method. Method A total of 919 archived maternal plasma samples with karyotyping/microarray results, including 33 CNVs samples and 886 normal samples from September 1, 2011 to May 31, 2013, were enrolled in this study. The samples were randomly rearranged and blindly sequenced by low-coverage (about 7M reads) whole-genome sequencing of plasma DNA. Fetal CNVs were detected by Fetal Copy-number Analysis through Maternal Plasma Sequencing (FCAPS) to compare to the karyotyping/microarray results. Sensitivity, specificity and were evaluated. Results 33 samples with deletions/duplications ranging from 1 to 129 Mb were detected with the consistent CNV size and location to karyotyping/microarray results in the study. Ten false positive results and two false negative results were obtained. The sensitivity and specificity of detection deletions/duplications were 84.21% and 98.42%, respectively. Conclusion Whole-genome sequencing-based NIPT has high performance in detecting genome-wide CNVs, in particular >10Mb CNVs using the current FCAPS algorithm. It is possible to implement the current method in NIPT to prenatally screening for fetal CNVs. PMID:27415003

  1. Whole genome sequencing in clinical and public health microbiology.

    PubMed

    Kwong, J C; McCallum, N; Sintchenko, V; Howden, B P

    2015-04-01

    Genomics and whole genome sequencing (WGS) have the capacity to greatly enhance knowledge and understanding of infectious diseases and clinical microbiology.The growth and availability of bench-top WGS analysers has facilitated the feasibility of genomics in clinical and public health microbiology.Given current resource and infrastructure limitations, WGS is most applicable to use in public health laboratories, reference laboratories, and hospital infection control-affiliated laboratories.As WGS represents the pinnacle for strain characterisation and epidemiological analyses, it is likely to replace traditional typing methods, resistance gene detection and other sequence-based investigations (e.g., 16S rDNA PCR) in the near future.Although genomic technologies are rapidly evolving, widespread implementation in clinical and public health microbiology laboratories is limited by the need for effective semi-automated pipelines, standardised quality control and data interpretation, bioinformatics expertise, and infrastructure.

  2. Whole-genome characterization of chemoresistant ovarian cancer.

    PubMed

    Patch, Ann-Marie; Christie, Elizabeth L; Etemadmoghadam, Dariush; Garsed, Dale W; George, Joshy; Fereday, Sian; Nones, Katia; Cowin, Prue; Alsop, Kathryn; Bailey, Peter J; Kassahn, Karin S; Newell, Felicity; Quinn, Michael C J; Kazakoff, Stephen; Quek, Kelly; Wilhelm-Benartzi, Charlotte; Curry, Ed; Leong, Huei San; Hamilton, Anne; Mileshkin, Linda; Au-Yeung, George; Kennedy, Catherine; Hung, Jillian; Chiew, Yoke-Eng; Harnett, Paul; Friedlander, Michael; Quinn, Michael; Pyman, Jan; Cordner, Stephen; O'Brien, Patricia; Leditschke, Jodie; Young, Greg; Strachan, Kate; Waring, Paul; Azar, Walid; Mitchell, Chris; Traficante, Nadia; Hendley, Joy; Thorne, Heather; Shackleton, Mark; Miller, David K; Arnau, Gisela Mir; Tothill, Richard W; Holloway, Timothy P; Semple, Timothy; Harliwong, Ivon; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Idrisoglu, Senel; Bruxner, Timothy J C; Christ, Angelika N; Poudel, Barsha; Holmes, Oliver; Anderson, Matthew; Leonard, Conrad; Lonie, Andrew; Hall, Nathan; Wood, Scott; Taylor, Darrin F; Xu, Qinying; Fink, J Lynn; Waddell, Nick; Drapkin, Ronny; Stronach, Euan; Gabra, Hani; Brown, Robert; Jewell, Andrea; Nagaraj, Shivashankar H; Markham, Emma; Wilson, Peter J; Ellul, Jason; McNally, Orla; Doyle, Maria A; Vedururu, Ravikiran; Stewart, Collin; Lengyel, Ernst; Pearson, John V; Waddell, Nicola; deFazio, Anna; Grimmond, Sean M; Bowtell, David D L

    2015-05-28

    Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.

  3. Nitrogen regulation in Sinorhizobium meliloti probed with whole genome arrays.

    PubMed

    Davalos, Marcela; Fourment, Joëlle; Lucas, Antoine; Bergès, Hélène; Kahn, Daniel

    2004-12-01

    Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.

  4. An Analysis of Adenovirus Genomes Using Whole Genome Software Tools

    PubMed Central

    Mahadevan, Padmanabhan

    2016-01-01

    The evolution of sequencing technology has lead to an enormous increase in the number of genomes that have been sequenced. This is especially true in the field of virus genomics. In order to extract meaningful biological information from these genomes, whole genome data mining software tools must be utilized. Hundreds of tools have been developed to analyze biological sequence data. However, only some of these tools are user-friendly to biologists. Several of these tools that have been successfully used to analyze adenovirus genomes are described here. These include Artemis, EMBOSS, pDRAW, zPicture, CoreGenes, GeneOrder, and PipMaker. These tools provide functionalities such as visualization, restriction enzyme analysis, alignment, and proteome comparisons that are extremely useful in the bioinformatics analysis of adenovirus genomes. PMID:28293072

  5. Whole Genome Phylogeny of Bacillus by Feature Frequency Profiles (FFP)

    PubMed Central

    Wang, Aisuo; Ash, Gavin J.

    2015-01-01

    Fifty complete Bacillus genome sequences and associated plasmids were compared using the “feature frequency profile” (FFP) method. The resulting whole-genome phylogeny supports the placement of three Bacillus species (B. thuringiensis, B. anthracis and B. cereus) as a single clade. The monophyletic status of B. anthracis was strongly supported by the analysis. FFP proved to be more effective in inferring the phylogeny of Bacillus than methods based on single gene sequences [16s rRNA gene, GryB (gyrase subunit B) and AroE (shikimate-5-dehydrogenase)] analyses. The findings of FFP analysis were verified using kSNP v2 (alignment-free sequence analysis method) and Harvest suite (core genome sequence alignment method).

  6. Whole-genome molecular haplotyping of single cells.

    PubMed

    Fan, H Christina; Wang, Jianbin; Potanina, Anastasia; Quake, Stephen R

    2011-01-01

    Conventional experimental methods of studying the human genome are limited by the inability to independently study the combination of alleles, or haplotype, on each of the homologous copies of the chromosomes. We developed a microfluidic device capable of separating and amplifying homologous copies of each chromosome from a single human metaphase cell. Single-nucleotide polymorphism (SNP) array analysis of amplified DNA enabled us to achieve completely deterministic, whole-genome, personal haplotypes of four individuals, including a HapMap trio with European ancestry (CEU) and an unrelated European individual. The phases of alleles were determined at ∼99.8% accuracy for up to ∼96% of all assayed SNPs. We demonstrate several practical applications, including direct observation of recombination events in a family trio, deterministic phasing of deletions in individuals and direct measurement of the human leukocyte antigen haplotypes of an individual. Our approach has potential applications in personal genomics, single-cell genomics and statistical genetics.

  7. Relaxation of yeast mitochondrial functions after whole-genome duplication

    PubMed Central

    Jiang, Huifeng; Guan, Wenjun; Pinney, David; Wang, Wen; Gu, Zhenglong

    2008-01-01

    Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can survive without a functional mitochondrial genome. In this study, we show that the rate of evolution for the nuclear-encoded mitochondrial genes was greater in post-WGD species than pre-WGD species. Furthermore, codon usage bias was relaxed for these genes in post-WGD yeast species. The codon usage pattern and the distribution of a particular transcription regulatory element suggest that the change to an efficient aerobic fermentation lifestyle in this lineage might have emerged after WGD between the divergence of Kluyveromyces polysporus and Saccharomyces castellii from their common ancestor. This new energy production strategy could have led to the relaxation of mitochondrial function in the relevant yeast species. PMID:18669479

  8. Microfluidic whole genome amplification device for single cell sequencing.

    PubMed

    Yu, Zhilong; Lu, Sijia; Huang, Yanyi

    2014-10-07

    We developed a microfluidic device to perform multiplex single-cell whole-genome amplification (WGA) using multiple annealing and looping-based amplification cycles (MALBAC). This device, made of polydimethylsiloxane (PDMS), allows us to monitor the whole process of cell loading and single-cell WGA for sequencing. We show that the genome coverage of MALBAC amplifications is reproducible between chambers on a single chip and between different chips, which enables data normalization using standard samples to accurately identify copy number variations (CNVs). This device provides an easy-to-operate approach to perform single cell sequencing library preparation with minimum hands-on time. It reduces the requirement of manual expertise as well as the risk of contamination, which is essential in future applications especially the medical diagnosis.

  9. Diagnostic value of exome and whole genome sequencing in craniosynostosis

    PubMed Central

    Miller, Kerry A; Twigg, Stephen RF; McGowan, Simon J; Phipps, Julie M; Fenwick, Aimée L; Johnson, David; Wall, Steven A; Noons, Peter; Rees, Katie EM; Tidey, Elizabeth A; Craft, Judith; Taylor, John; Taylor, Jenny C; Goos, Jacqueline AC; Swagemakers, Sigrid MA; Mathijssen, Irene MJ; van der Spek, Peter J.; Lord, Helen; Lester, Tracy; Abid, Noina; Cilliers, Deirdre; Hurst, Jane A.; Morton, Jenny EV; Sweeney, Elizabeth; Weber, Astrid; Wilson, Louise C; Wilkie, Andrew OM

    2016-01-01

    Background Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ~1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. Methods We utilised exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high priority cases, and in whom prior clinically-driven genetic testing had been negative. Results We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (2 families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). Conclusions This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results. PMID:27884935

  10. Identification of Klebsiella capsule synthesis loci from whole genome data

    PubMed Central

    Wick, Ryan R.; Gorrie, Claire; Jenney, Adam; Follador, Rainer; Thomson, Nicholas R.

    2016-01-01

    Klebsiella pneumoniae is a growing cause of healthcare-associated infections for which multi-drug resistance is a concern. Its polysaccharide capsule is a major virulence determinant and epidemiological marker. However, little is known about capsule epidemiology since serological typing is not widely accessible and many isolates are serologically non-typeable. Molecular typing techniques provide useful insights, but existing methods fail to take full advantage of the information in whole genome sequences. We investigated the diversity of the capsule synthesis loci (K-loci) among 2503 K. pneumoniae genomes. We incorporated analyses of full-length K-locus nucleotide sequences and also clustered protein-encoding sequences to identify, annotate and compare K-locus structures. We propose a standardized nomenclature for K-loci and present a curated reference database. A total of 134 distinct K-loci were identified, including 31 novel types. Comparative analyses indicated 508 unique protein-encoding gene clusters that appear to reassort via homologous recombination. Extensive intra- and inter-locus nucleotide diversity was detected among the wzi and wzc genes, indicating that current molecular typing schemes based on these genes are inadequate. As a solution, we introduce Kaptive, a novel software tool that automates the process of identifying K-loci based on full locus information extracted from whole genome sequences (https://github.com/katholt/Kaptive). This work highlights the extensive diversity of Klebsiella K-loci and the proteins that they encode. The nomenclature, reference database and novel typing method presented here will become essential resources for genomic surveillance and epidemiological investigations of this pathogen. PMID:28348840

  11. Whole-genome fingerprint of the DNA methylome during human B cell differentiation.

    PubMed

    Kulis, Marta; Merkel, Angelika; Heath, Simon; Queirós, Ana C; Schuyler, Ronald P; Castellano, Giancarlo; Beekman, Renée; Raineri, Emanuele; Esteve, Anna; Clot, Guillem; Verdaguer-Dot, Néria; Duran-Ferrer, Martí; Russiñol, Nuria; Vilarrasa-Blasi, Roser; Ecker, Simone; Pancaldi, Vera; Rico, Daniel; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Pascual, Marien; Agirre, Xabier; Prosper, Felipe; Alignani, Diego; Paiva, Bruno; Caron, Gersende; Fest, Thierry; Muench, Marcus O; Fomin, Marina E; Lee, Seung-Tae; Wiemels, Joseph L; Valencia, Alfonso; Gut, Marta; Flicek, Paul; Stunnenberg, Hendrik G; Siebert, Reiner; Küppers, Ralf; Gut, Ivo G; Campo, Elías; Martín-Subero, José I

    2015-07-01

    We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.

  12. Whole genome response in guinea pigs infected with the high virulence strain Mycobacterium tuberculosis TT372

    PubMed Central

    Aiyaz, Mohamed; Bipin, Chand; Pantulwar, Vinay; Mugasimangalam, Raja; Shanley, Crystal A.; Ordway, Diane J; Orme, Ian M.

    2014-01-01

    SUMMARY In this study we conducted a microarray-based whole genomic analysis of gene expression in the lungs after exposure of guinea pigs to a low dose aerosol of the Atypical Beijing Western Cape TT372 strain of Mycobacterium tuberculosis, after harvesting lung tissues three weeks after infection at a time that effector immunity is starting to peak. The infection resulted in a very large up-regulation of multiple genes at this time, particularly in the context of a “chemokine storm” in the lungs. Overall gene expression was considerably reduced in animals that had been vaccinated with BCG two months earlier, but in both cases strong signatures featuring gamma interferon [IFNγ] and tumor necrosis factor [TNFα] were observed indicating the potent TH1 response in these animals. Even though their effects are not seen until later in the infection, even at this early time point gene expression patterns associated with the potential emergence of regulatory T cells were observed. Genes involving lung repair, response to oxidative stress, and cell trafficking were strongly expressed, but interesting these gene patterns differed substantially between the infected and vaccinated/infected groups of animals. Given the importance of this species as a relevant and cost-effective small animal model of tuberculosis, this approach has the potential to provide new information regarding the effects of vaccination on control of the disease process. PMID:25621360

  13. Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

    PubMed Central

    Zamani Esteki, Masoud; Dimitriadou, Eftychia; Mateiu, Ligia; Melotte, Cindy; Van der Aa, Niels; Kumar, Parveen; Das, Rakhi; Theunis, Koen; Cheng, Jiqiu; Legius, Eric; Moreau, Yves; Debrock, Sophie; D’Hooghe, Thomas; Verdyck, Pieter; De Rycke, Martine; Sermon, Karen; Vermeesch, Joris R.; Voet, Thierry

    2015-01-01

    Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones. PMID:25983246

  14. Whole-Genome Transcriptional Analysis of Heavy Metal Stresses in Caulobacter crescentus†

    PubMed Central

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey; McAdams, Harley H.; Andersen, Gary L.

    2005-01-01

    The bacterium Caulobacter crescentus and related stalk bacterial species are known for their distinctive ability to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Caulobacter crescentus is a model organism for studying cell cycle regulation with well-developed genetics. We have identified the pathways responding to heavy-metal toxicity in C. crescentus to provide insights for the possible application of Caulobacter to environmental restoration. We exposed C. crescentus cells to four heavy metals (chromium, cadmium, selenium, and uranium) and analyzed genome-wide transcriptional activities postexposure using an Affymetrix GeneChip microarray. C. crescentus showed surprisingly high tolerance to uranium, a possible mechanism for which may be the formation of extracellular calcium-uranium-phosphate precipitates. The principal response to these metals was protection against oxidative stress (up-regulation of manganese-dependent superoxide dismutase sodA). Glutathione S-transferase, thioredoxin, glutaredoxins, and DNA repair enzymes responded most strongly to cadmium and chromate. The cadmium and chromium stress response also focused on reducing the intracellular metal concentration, with multiple efflux pumps employed to remove cadmium, while a sulfate transporter was down-regulated to reduce nonspecific uptake of chromium. Membrane proteins were also up-regulated in response to most of the metals tested. A two-component signal transduction system involved in the uranium response was identified. Several differentially regulated transcripts from regions previously not known to encode proteins were identified, demonstrating the advantage of evaluating the transcriptome by using whole-genome microarrays. PMID:16321948

  15. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines

    PubMed Central

    Contino, Gianmarco; Eldridge, Matthew D.; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G.; Edwards, Paul A.W.; Fitzgerald, Rebecca C.

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines—ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4—all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC. PMID:27594985

  16. Whole genomes redefine the mutational landscape of pancreatic cancer

    PubMed Central

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  17. Information recovery from low coverage whole-genome bisulfite sequencing

    PubMed Central

    Libertini, Emanuele; Heath, Simon C.; Hamoudi, Rifat A.; Gut, Marta; Ziller, Michael J.; Czyz, Agata; Ruotti, Victor; Stunnenberg, Hendrik G.; Frontini, Mattia; Ouwehand, Willem H.; Meissner, Alexander; Gut, Ivo G.; Beck, Stephan

    2016-01-01

    The cost of whole-genome bisulfite sequencing (WGBS) remains a bottleneck for many studies and it is therefore imperative to extract as much information as possible from a given dataset. This is particularly important because even at the recommend 30X coverage for reference methylomes, up to 50% of high-resolution features such as differentially methylated positions (DMPs) cannot be called with current methods as determined by saturation analysis. To address this limitation, we have developed a tool that dynamically segments WGBS methylomes into blocks of comethylation (COMETs) from which lost information can be recovered in the form of differentially methylated COMETs (DMCs). Using this tool, we demonstrate recovery of ∼30% of the lost DMP information content as DMCs even at very low (5X) coverage. This constitutes twice the amount that can be recovered using an existing method based on differentially methylated regions (DMRs). In addition, we explored the relationship between COMETs and haplotypes in lymphoblastoid cell lines of African and European origin. Using best fit analysis, we show COMETs to be correlated in a population-specific manner, suggesting that this type of dynamic segmentation may be useful for integrated (epi)genome-wide association studies in the future. PMID:27346250

  18. Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences.

    PubMed

    Verma, Mansi; Lal, Devi; Kaur, Jaspreet; Saxena, Anjali; Kaur, Jasvinder; Anand, Shailly; Lal, Rup

    2013-09-01

    Actinobacteria constitute one of the largest and ancient taxonomic phylum within the domain bacteria and are well known for their secondary metabolites. Considerable variation in the metabolic properties, genome size and GC content of the members of this phylum has been observed. Therefore, the placement of new or existing species based on 16S rRNA gene sometimes becomes problematic due to the low congruence level. In the present study, phylogeny of ninety actinobacterial genomes was reconstructed using single gene and whole genome based data. Where alignment-free phylogenetic method was found to be more robust, the concatenation of 94 proteins improved the resolution which all single gene based phylogenies failed to resolve. The comprehensive analysis of 94 conserved proteins resulted in a total of 42,447 informative sites, which is so far the largest meta-alignment obtained for this phylum. But the ultimate resolved phylogeny was obtained by generating a consensus tree by combining the information from single gene and genome based phylogenies. The present investigation clearly revealed that the consensus approach is a useful tool for phylogenetic inference and the taxonomic affiliations must be based on this approach. The consensus approach suggested that there is a need for taxonomic amendments of the orders Frankiales and Micrococcales.

  19. MIPS: analysis and annotation of proteins from whole genomes.

    PubMed

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  20. Use of whole genome DNA spectrograms in bacterial classification.

    PubMed

    Kubicova, Vladimira; Provaznik, Ivo

    2016-02-01

    A spectrogram reflects the arrangement of nucleotides through the whole chromosome or genome. Our previous study suggested that the spectrogram of whole genome DNA sequences is a suitable tool for the determination of relationships among bacteria. Related bacteria have similar spectrograms, and similarity in spectrograms was measured using a color layout descriptor. Several parameters, such as the mapping of four bases into a spectrogram, the number of considered elements in the color layout descriptor, the color model of the image and the building tree method, can be changed. This study addresses the use of parameter selection to ensure the best classification results. The quality of the classification was measured by Matthew's correlation coefficient (MCC). The proposed method with optimal parameters (called SpectCMP-Spectrogram CoMParison method) achieved an average MCC of 0.73 at the phylum level. The SpectCMP method was also tested at the order level; the average MCC in the classification of class Gammaproteobacteria was 0.76. The success of a classification with respect to the correct phyla was compared to three methods that are used in bacterial phylogeny: the CVTree method, OGTree method and moment vector method. The results show that the SpectCMP method can be used in bacterial classification at various taxonomic levels.

  1. Cryptococcus gattii in the Age of Whole-Genome Sequencing.

    PubMed

    Meyer, Wieland

    2015-11-17

    Cryptococcus gattii, the sister species of Cryptococcus neoformans, is an emerging pathogen which gained importance in connection with the ongoing cryptococcosis outbreak on Vancouver Island. Many molecular studies have divided this species into for major lineages: VGI, VGII, VGIII, and VGIV. This commentary summarizes the whole-genome sequencing (WGS) studies that have been carried out with this species, re-emphasizing the phylogenetic relationships, showing chromosomal rearrangements between those four groups, and identifying VGII as ancestral population within C. gattii. In addition, WGS specific to VGII, containing the Vancouver Island outbreak genotypes and those from the Pacific Northwest region of the United States, has placed the origin of this lineage within South America and identified specific genes responsible for either brain or lung infection. It also showed, that many genotypes are spread across a number of different continents, as has been previously shown by multilocus sequence typing (MLST). In addition, it showed that recombination occurs more frequently between mitochondrial than nuclear genomes.

  2. Defects arising from whole-genome duplications in Saccharomyces cerevisiae.

    PubMed Central

    Andalis, Alex A; Storchova, Zuzana; Styles, Cora; Galitski, Timothy; Pellman, David; Fink, Gerald R

    2004-01-01

    Comparisons among closely related species have led to the proposal that the duplications found in many extant genomes are the remnants of an ancient polyploidization event, rather than a result of successive duplications of individual chromosomal segments. If this interpretation is correct, it would support Ohno's proposal that polyploidization drives evolution by generating the genetic material necessary for the creation of new genes. Paradoxically, analysis of contemporary polyploids suggests that increased ploidy is an inherently unstable state. To shed light on this apparent contradiction and to determine the effects of nascent duplications of the entire genome, we generated isogenic polyploid strains of the budding yeast Saccharomyces cerevisiae. Our data show that an increase in ploidy results in a marked decrease in a cell's ability to survive during stationary phase in growth medium. Tetraploid cells die rapidly, whereas isogenic haploids remain viable for weeks. Unlike haploid cells, which arrest growth as unbudded cells, tetraploid cells continue to bud and form mitotic spindles in stationary phase. The stationary-phase death of tetraploids can be prevented by mutations or conditions that result in growth arrest. These data show that whole-genome duplications are accompanied by defects that affect viability and subsequent survival of the new organism. PMID:15280227

  3. Signatures of selection in tilapia revealed by whole genome resequencing.

    PubMed

    Xia, Jun Hong; Bai, Zhiyi; Meng, Zining; Zhang, Yong; Wang, Le; Liu, Feng; Jing, Wu; Wan, Zi Yi; Li, Jiale; Lin, Haoran; Yue, Gen Hua

    2015-09-16

    Natural selection and selective breeding for genetic improvement have left detectable signatures within the genome of a species. Identification of selection signatures is important in evolutionary biology and for detecting genes that facilitate to accelerate genetic improvement. However, selection signatures, including artificial selection and natural selection, have only been identified at the whole genome level in several genetically improved fish species. Tilapia is one of the most important genetically improved fish species in the world. Using next-generation sequencing, we sequenced the genomes of 47 tilapia individuals. We identified a total of 1.43 million high-quality SNPs and found that the LD block sizes ranged from 10-100 kb in tilapia. We detected over a hundred putative selective sweep regions in each line of tilapia. Most selection signatures were located in non-coding regions of the tilapia genome. The Wnt signaling, gonadotropin-releasing hormone receptor and integrin signaling pathways were under positive selection in all improved tilapia lines. Our study provides a genome-wide map of genetic variation and selection footprints in tilapia, which could be important for genetic studies and accelerating genetic improvement of tilapia.

  4. Whole-genome landscape of pancreatic neuroendocrine tumours.

    PubMed

    Scarpa, Aldo; Chang, David K; Nones, Katia; Corbo, Vincenzo; Patch, Ann-Marie; Bailey, Peter; Lawlor, Rita T; Johns, Amber L; Miller, David K; Mafficini, Andrea; Rusev, Borislav; Scardoni, Maria; Antonello, Davide; Barbi, Stefano; Sikora, Katarzyna O; Cingarlini, Sara; Vicentini, Caterina; McKay, Skye; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; McLean, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wilson, Peter J; Anderson, Matthew J; Fink, J Lynn; Newell, Felicity; Waddell, Nick; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Wood, Scott; Xu, Qinying; Nagaraj, Shivashankar Hiriyur; Amato, Eliana; Dalai, Irene; Bersani, Samantha; Cataldo, Ivana; Dei Tos, Angelo P; Capelli, Paola; Davì, Maria Vittoria; Landoni, Luca; Malpaga, Anna; Miotto, Marco; Whitehall, Vicki L J; Leggett, Barbara A; Harris, Janelle L; Harris, Jonathan; Jones, Marc D; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Nagrial, Adnan M; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia; Rooman, Ilse; Toon, Christopher; Wu, Jianmin; Pinese, Mark; Cowley, Mark; Barbour, Andrew; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Lovell, Jessica A; Jamieson, Nigel B; Duthie, Fraser; Gingras, Marie-Claude; Fisher, William E; Dagg, Rebecca A; Lau, Loretta M S; Lee, Michael; Pickett, Hilda A; Reddel, Roger R; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Epari, Krishna; Nguyen, Nam Q; Zeps, Nikolajs; Falconi, Massimo; Simbolo, Michele; Butturini, Giovanni; Van Buren, George; Partelli, Stefano; Fassan, Matteo; Khanna, Kum Kum; Gill, Anthony J; Wheeler, David A; Gibbs, Richard A; Musgrove, Elizabeth A; Bassi, Claudio; Tortora, Giampaolo; Pederzoli, Paolo; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2017-03-02

    The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

  5. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    SciTech Connect

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  6. A whole genome association study of neuroticism using DNA pooling

    PubMed Central

    Shifman, S; Bhomra, A; Smiley, S; Wray, NR; James, MR; Martin, NG; Hettema, JM; An, SS; Neale, MC; van den Oord, EJCG; Kendler, KS; Chen, X; Boomsma, DI; Middeldorp, CM; Hottenga, JJ; Slagboom, PE; Flint, J

    2014-01-01

    We describe a multistage approach to identify single nucleotide polymorphisms (SNPs) associated with neuroticism, a personality trait that shares genetic determinants with major depression and anxiety disorders. Whole genome association with 452 574 SNPs was performed on DNA pools from ~2000 individuals selected on extremes of neuroticism scores from a cohort of 88 142 people from southwest England. The most significant SNPs were then genotyped on independent samples to replicate findings. We were able to replicate association of one SNP within the PDE4D gene in a second sample collected by our laboratory and in a family-based test in an independent sample; however, the SNP was not significantly associated with neuroticism in two other independent samples. We also observed an enrichment of low P-values in known regions of copy number variations. Simulation indicates that our study had ~80% power to identify neuroticism loci in the genome with odds ratio (OR) > 2, and ~50% power to identify small effects (OR = 1.5). Since we failed to find any loci accounting for more than 1% of the variance, the heritability of neuroticism probably arises from many loci each explaining much less than 1%. Our findings argue the need for much larger samples than anticipated in genetic association studies and that the biological basis of emotional disorders is extremely complex. PMID:17667963

  7. Whole genomes redefine the mutational landscape of pancreatic cancer.

    PubMed

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  8. Whole-genome amplification using Φ29 DNA polymerase.

    PubMed

    Burtt, Noël P

    2011-01-01

    The cornerstones of any genetic analysis study are the quality and quantity of the DNA samples. DNA is a precious limited resource, and in human disease studies the accessibility of sample DNA is often governed by the isolation method and the human source. Additionally, forensic analysis and archaeological research are generally infeasible without intact sample DNA. Therefore, mechanisms to preserve or enhance the quantity of the DNA stock are crucial to the success of these studies. Historically, to preserve and maintain DNA stocks, costly and labor-intensive Epstein-Barr-virus-transformed cell lines were produced. The creation of cell lines can be valuable for a number of reasons in addition to creating a renewable resource of DNA, but the cost and effort to create them, as well as the requirement of intact cells to begin with, limit the utility of this approach. More recently, whole-genome amplification (WGA), utilizing the unique property of the enzyme Φ29 DNA polymerase, has been used to generate robust high-fidelity copies of the genome. As described in this protocol, WGA using Φ29 DNA polymerase allows unbiased representation of the genome via multiple-strand displacement, followed by rolling-circle amplification on random primers.

  9. Cancer whole-genome sequencing: present and future.

    PubMed

    Nakagawa, H; Wardell, C P; Furuta, M; Taniguchi, H; Fujimoto, A

    2015-12-03

    Recent explosive advances in next-generation sequencing technology and computational approaches to massive data enable us to analyze a number of cancer genome profiles by whole-genome sequencing (WGS). To explore cancer genomic alterations and their diversity comprehensively, global and local cancer genome-sequencing projects, including ICGC and TCGA, have been analyzing many types of cancer genomes mainly by exome sequencing. However, there is limited information on somatic mutations in non-coding regions including untranslated regions, introns, regulatory elements and non-coding RNAs, and rearrangements, sometimes producing fusion genes, and pathogen detection in cancer genomes remain widely unexplored. WGS approaches can detect these unexplored mutations, as well as coding mutations and somatic copy number alterations, and help us to better understand the whole landscape of cancer genomes and elucidate functions of these unexplored genomic regions. Analysis of cancer genomes using the present WGS platforms is still primitive and there are substantial improvements to be made in sequencing technologies, informatics and computer resources. Taking account of the extreme diversity of cancer genomes and phenotype, it is also required to analyze much more WGS data and integrate these with multi-omics data, functional data and clinical-pathological data in a large number of sample sets to interpret them more fully and efficiently.

  10. Genomic V exons from whole genome shotgun data in reptiles.

    PubMed

    Olivieri, D N; von Haeften, B; Sánchez-Espinel, C; Faro, J; Gambón-Deza, F

    2014-08-01

    Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org).

  11. Evolution after whole-genome duplication: a network perspective.

    PubMed

    Zhu, Yun; Lin, Zhenguo; Nakhleh, Luay

    2013-11-06

    Gene duplication plays an important role in the evolution of genomes and interactomes. Elucidating how evolution after gene duplication interplays at the sequence and network level is of great interest. In this work, we analyze a data set of gene pairs that arose through whole-genome duplication (WGD) in yeast. All these pairs have the same duplication time, making them ideal for evolutionary investigation. We investigated the interplay between evolution after WGD at the sequence and network levels and correlated these two levels of divergence with gene expression and fitness data. We find that molecular interactions involving WGD genes evolve at rates that are three orders of magnitude slower than the rates of evolution of the corresponding sequences. Furthermore, we find that divergence of WGD pairs correlates strongly with gene expression and fitness data. Because of the role of gene duplication in determining redundancy in biological systems and particularly at the network level, we investigated the role of interaction networks in elucidating the evolutionary fate of duplicated genes. We find that gene neighborhoods in interaction networks provide a mechanism for inferring these fates, and we developed an algorithm for achieving this task. Further epistasis analysis of WGD pairs categorized by their inferred evolutionary fates demonstrated the utility of these techniques. Finally, we find that WGD pairs and other pairs of paralogous genes of small-scale duplication origin share similar properties, giving good support for generalizing our results from WGD pairs to evolution after gene duplication in general.

  12. Incorporating Genetic Heterogeneity in Whole-Genome Regressions Using Interactions.

    PubMed

    de Los Campos, Gustavo; Veturi, Yogasudha; Vazquez, Ana I; Lehermeier, Christina; Pérez-Rodríguez, Paulino

    Naturally and artificially selected populations usually exhibit some degree of stratification. In Genome-Wide Association Studies and in Whole-Genome Regressions (WGR) analyses, population stratification has been either ignored or dealt with as a potential confounder. However, systematic differences in allele frequency and in patterns of linkage disequilibrium can induce sub-population-specific effects. From this perspective, structure acts as an effect modifier rather than as a confounder. In this article, we extend WGR models commonly used in plant and animal breeding to allow for sub-population-specific effects. This is achieved by decomposing marker effects into main effects and interaction components that describe group-specific deviations. The model can be used both with variable selection and shrinkage methods and can be implemented using existing software for genomic selection. Using a wheat and a pig breeding data set, we compare parameter estimates and the prediction accuracy of the interaction WGR model with WGR analysis ignoring population stratification (across-group analysis) and with a stratified (i.e., within-sub-population) WGR analysis. The interaction model renders trait-specific estimates of the average correlation of effects between sub-populations; we find that such correlation not only depends on the extent of genetic differentiation in allele frequencies between groups but also varies among traits. The evaluation of prediction accuracy shows a modest superiority of the interaction model relative to the other two approaches. This superiority is the result of better stability in performance of the interaction models across data sets and traits; indeed, in almost all cases, the interaction model was either the best performing model or it performed close to the best performing model.

  13. Whole genome prediction and heritability of childhood asthma phenotypes

    PubMed Central

    Clemmer, George L.; Croteau‐Chonka, Damien C.; Castaldi, Peter J.; Cho, Michael H.; Sordillo, Joanne E.; Lasky‐Su, Jessica A.; Raby, Benjamin A.; Tantisira, Kelan G.; Weiss, Scott T.

    2016-01-01

    Abstract Introduction While whole genome prediction (WGP) methods have recently demonstrated successes in the prediction of complex genetic diseases, they have not yet been applied to asthma and related phenotypes. Longitudinal patterns of lung function differ between asthmatics, but these phenotypes have not been assessed for heritability or predictive ability. Herein, we assess the heritability and genetic predictability of asthma‐related phenotypes. Methods We applied several WGP methods to a well‐phenotyped cohort of 832 children with mild‐to‐moderate asthma from CAMP. We assessed narrow‐sense heritability and predictability for airway hyperresponsiveness, serum immunoglobulin E, blood eosinophil count, pre‐ and post‐bronchodilator forced expiratory volume in 1 sec (FEV1), bronchodilator response, steroid responsiveness, and longitudinal patterns of lung function (normal growth, reduced growth, early decline, and their combinations). Prediction accuracy was evaluated using a training/testing set split of the cohort. Results We found that longitudinal lung function phenotypes demonstrated significant narrow‐sense heritability (reduced growth, 95%; normal growth with early decline, 55%). These same phenotypes also showed significant polygenic prediction (areas under the curve [AUCs] 56% to 62%). Including additional demographic covariates in the models increased prediction 4–8%, with reduced growth increasing from 62% to 66% AUC. We found that prediction with a genomic relatedness matrix was improved by filtering available SNPs based on chromatin evidence, and this result extended across cohorts. Conclusions Longitudinal reduced lung function growth displayed extremely high heritability. All phenotypes with significant heritability showed significant polygenic prediction. Using SNP‐prioritization increased prediction across cohorts. WGP methods show promise in predicting asthma‐related heritable traits. PMID:27980782

  14. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  15. INTEGRATE: gene fusion discovery using whole genome and transcriptome data

    PubMed Central

    Zhang, Jin; White, Nicole M.; Schmidt, Heather K.; Fulton, Robert S.; Tomlinson, Chad; Warren, Wesley C.; Wilson, Richard K.; Maher, Christopher A.

    2016-01-01

    While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use. PMID:26556708

  16. A Whole Genome Association Study on Meat Palatability in Hanwoo

    PubMed Central

    Hyeong, K.-E.; Lee, Y.-M.; Kim, Y.-S.; Nam, K. C.; Jo, C.; Lee, K.-H.; Lee, J.-E.; Kim, J.-J.

    2014-01-01

    A whole genome association (WGA) study was carried out to find quantitative trait loci (QTL) for sensory evaluation traits in Hanwoo. Carcass samples of 250 Hanwoo steers were collected from National Agricultural Cooperative Livestock Research Institute, Ansung, Gyeonggi province, Korea, between 2011 and 2012 and genotyped with the Affymetrix Bovine Axiom Array 640K single nucleotide polymorphism (SNP) chip. Among the SNPs in the chip, a total of 322,160 SNPs were chosen after quality control tests. After adjusting for the effects of age, slaughter-year-season, and polygenic effects using genome relationship matrix, the corrected phenotypes for the sensory evaluation measurements were regressed on each SNP using a simple linear regression additive based model. A total of 1,631 SNPs were detected for color, aroma, tenderness, juiciness and palatability at 0.1% comparison-wise level. Among the significant SNPs, the best set of 52 SNP markers were chosen using a forward regression procedure at 0.05 level, among which the sets of 8, 14, 11, 10, and 9 SNPs were determined for the respectively sensory evaluation traits. The sets of significant SNPs explained 18% to 31% of phenotypic variance. Three SNPs were pleiotropic, i.e. AX-26703353 and AX-26742891 that were located at 101 and 110 Mb of BTA6, respectively, influencing tenderness, juiciness and palatability, while AX-18624743 at 3 Mb of BTA10 affected tenderness and palatability. Our results suggest that some QTL for sensory measures are segregating in a Hanwoo steer population. Additional WGA studies on fatty acid and nutritional components as well as the sensory panels are in process to characterize genetic architecture of meat quality and palatability in Hanwoo. PMID:25178363

  17. Parent and Public Interest in Whole Genome Sequencing

    PubMed Central

    Dodson, Daniel S.; Goldenberg, Aaron J.; Davis, Matthew M.; Singer, Dianne C.; Tarini, Beth A.

    2015-01-01

    Objective To assess the baseline interest of the public in whole genome sequencing (WGS) for themselves, parents’ interest in WGS for their youngest children, and factors associated with such interest. Methods A random sample of adults from a probability-based nationally representative online panel was surveyed. All participants were provided basic information about WGS and then asked their interest in WGS for themselves. Those participants who self-identified as parents were asked about their interest in WGS for their children. The order in which parents were asked about their interest in WGS for themselves and their child was randomized. The relationship between parent/child characteristics and interest in WGS was examined. Results Overall response rate was 62% (55% among parents). 58.6% of the total population (parents and non-parents) was interested in WGS for themselves. Similarly, 61.8% of parents were interested in WGS for themselves and 57.8% were interested in WGS for their youngest children. Of note, 84.7% of parents showed an identical interest level in WGS for themselves and their youngest children. Mothers as a whole, and parents whose youngest children had ≥2 health conditions had significantly more interest in WGS for themselves and their youngest children, while those with conservative political ideologies had considerably less. Conclusions While U.S. adults have varying interest levels in WGS, parents appear to have similar interests in genome testing for themselves and their youngest children. As WGS technology becomes available in the clinic and private market, clinicians should be prepared to discuss WGS risks and benefits with their patients. PMID:25765282

  18. INTEGRATE: gene fusion discovery using whole genome and transcriptome data.

    PubMed

    Zhang, Jin; White, Nicole M; Schmidt, Heather K; Fulton, Robert S; Tomlinson, Chad; Warren, Wesley C; Wilson, Richard K; Maher, Christopher A

    2016-01-01

    While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use.

  19. Whole genome sequencing analysis of lung adenocarcinoma in Xuanwei, China

    PubMed Central

    Wang, Xiao; Li, Jing; Duan, Yong; Wu, Huifei; Xu, Qiuyue

    2017-01-01

    Background The lung cancer mortality rate in Xuanwei city is among the highest in China and adenocarcinoma is the major histological type. Lung cancer has been associated with exposure to indoor smoky coal emissions that contain high levels of polycyclic aromatic hydrocarbons; however, the pathogenesis of lung cancer has not yet been fully elucidated. Methods We performed whole genome sequencing with lung adenocarcinoma and corresponding non‐tumor tissue to explore the genomic features of Xuanwei lung cancer. We used the Molecule Annotation System to determine and plot alterations in genes and signaling pathways. Results A total of 3 428 060 and 3 416 989 single nucleotide variants were detected in tumor and normal genomes, respectively. After comparison of these two genomes, 977 high‐confidence somatic single nucleotide variants were identified. We observed a remarkably high proportion of C·G‐A·T transversions. HECTD4, RCBTB2, KLF15, and CACNA1C may be cancer‐related genes. Nine copy number variations increased in chromosome 5 and one in chromosome 7. The novel junctions were detected via clustered discordant paired ends and 1955 structural variants were discovered. Among these, we found 44 novel chromosome structural variations. In addition, EGFR and CACNA1C in the mitogen‐activated protein kinase signaling pathway were mutated or amplified in lung adenocarcinoma tumor tissue. Conclusion We obtained a comprehensive view of somatic alterations of Xuanwei lung adenocarcinoma. These findings provide insight into the genomic landscape in order to further learn about the progress and development of Xuanwei lung adenocarcinoma. PMID:28083984

  20. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  1. A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease.

    PubMed

    Antonell, Anna; Lladó, Albert; Altirriba, Jordi; Botta-Orfila, Teresa; Balasa, Mircea; Fernández, Manel; Ferrer, Isidre; Sánchez-Valle, Raquel; Molinuevo, José Luis

    2013-07-01

    Alzheimer's disease (AD) is the most common neurodegenerative dementia. Approximately 10% of cases present at an age of onset before 65 years old, which in turn can be monogenic familial AD (FAD) or sporadic early-onset AD (sEOAD). Mutations in PSEN1, PSEN2, and APP genes have been linked with FAD. The aim of our study is to describe the brain whole-genome RNA expression profile of the posterior cingulate area in sEOAD and FAD caused by PSEN1 mutations (FAD-PSEN1). Fourteen patients (7 sEOAD and 7 FAD-PSEN1) and 7 neurologically healthy control subjects were selected and whole-genome expression was measured using Affymetrix Human Gene 1.1 microarrays. We identified statistically significant expression changes in sEOAD and FAD-PSEN1 brains with respect to control subjects (3183 and 3350 differentially expressed genes [DEG] respectively, false discovery rate-corrected p < 0.05). Of them, 1916 DEG were common between the 2 comparisons. We did not identify DEG between sEOAD and FAD-PSEN1. Microarray data were validated through real-time quantitative polymerase chain reaction. In silico analysis of DEG revealed an alteration in biological pathways related to intracellular signaling pathways (particularly calcium signaling), neuroactive ligand-receptor interactions, axon guidance, and long-term potentiation in both groups of patients. In conclusion, the altered biological final pathways in sEOAD and FAD-PSEN1 are mainly related with cell signaling cascades, synaptic plasticity, and learning and memory processes. We hypothesize that these 2 groups of early-onset AD with distinct etiologies and likely different could present a neurodegenerative process with potential different pathways that might converge in a common and similar final stage of the disease.

  2. Escape from Preferential Retention Following Repeated Whole Genome Duplications in Plants

    PubMed Central

    Schnable, James C.; Wang, Xiaowu; Pires, J. Chris; Freeling, Michael

    2012-01-01

    The well supported gene dosage hypothesis predicts that genes encoding proteins engaged in dose–sensitive interactions cannot be reduced back to single copies once all interacting partners are simultaneously duplicated in a whole genome duplication. The genomes of extant flowering plants are the result of many sequential rounds of whole genome duplication, yet the fraction of genomes devoted to encoding complex molecular machines does not increase as fast as expected through multiple rounds of whole genome duplications. Using parallel interspecies genomic comparisons in the grasses and crucifers, we demonstrate that genes retained as duplicates following a whole genome duplication have only a 50% chance of being retained as duplicates in a second whole genome duplication. Genes which fractionated to a single copy following a second whole genome duplication tend to be the member of a gene pair with less complex promoters, lower levels of expression, and to be under lower levels of purifying selection. We suggest the copy with lower levels of expression and less purifying selection contributes less to effective gene-product dosage and therefore is under less dosage constraint in future whole genome duplications, providing an explanation for why flowering plant genomes are not overrun with subunits of large dose–sensitive protein complexes. PMID:22639677

  3. Assessment of Whole-Genome Regression for Type II Diabetes

    PubMed Central

    Vazquez, Ana I.; Klimentidis, Yann C.; Dhurandhar, Emily J.; Veturi, Yogasudha C.; Paérez-Rodríguez, Paulino

    2015-01-01

    Lifestyle and genetic factors play a large role in the development of Type 2 Diabetes (T2D). Despite the important role of genetic factors, genetic information is not incorporated into the clinical assessment of T2D risk. We assessed and compared Whole Genome Regression methods to predict the T2D status of 5,245 subjects from the Framingham Heart Study. For evaluating each method we constructed the following set of regression models: A clinical baseline model (CBM) which included non-genetic covariates only. CBM was extended by adding the first two marker-derived principal components and 65 SNPs identified by a recent GWAS consortium for T2D (M-65SNPs). Subsequently, it was further extended by adding 249,798 genome-wide SNPs from a high-density array. The Bayesian models used to incorporate genome-wide marker information as predictors were: Bayes A, Bayes Cπ, Bayesian LASSO (BL), and the Genomic Best Linear Unbiased Prediction (G-BLUP). Results included estimates of the genetic variance and heritability, genetic scores for T2D, and predictive ability evaluated in a 10-fold cross-validation. The predictive AUC estimates for CBM and M-65SNPs were: 0.668 and 0.684, respectively. We found evidence of contribution of genetic effects in T2D, as reflected in the genomic heritability estimates (0.492±0.066). The highest predictive AUC among the genome-wide marker Bayesian models was 0.681 for the Bayesian LASSO. Overall, the improvement in predictive ability was moderate and did not differ greatly among models that included genetic information. Approximately 58% of the total number of genetic variants was found to contribute to the overall genetic variation, indicating a complex genetic architecture for T2D. Our results suggest that the Bayes Cπ and the G-BLUP models with a large set of genome-wide markers could be used for predicting risk to T2D, as an alternative to using high-density arrays when selected markers from large consortiums for a given complex trait or

  4. Assessment of whole-genome regression for type II diabetes.

    PubMed

    Vazquez, Ana I; Klimentidis, Yann C; Dhurandhar, Emily J; Veturi, Yogasudha C; Paérez-Rodríguez, Paulino

    2015-01-01

    Lifestyle and genetic factors play a large role in the development of Type 2 Diabetes (T2D). Despite the important role of genetic factors, genetic information is not incorporated into the clinical assessment of T2D risk. We assessed and compared Whole Genome Regression methods to predict the T2D status of 5,245 subjects from the Framingham Heart Study. For evaluating each method we constructed the following set of regression models: A clinical baseline model (CBM) which included non-genetic covariates only. CBM was extended by adding the first two marker-derived principal components and 65 SNPs identified by a recent GWAS consortium for T2D (M-65SNPs). Subsequently, it was further extended by adding 249,798 genome-wide SNPs from a high-density array. The Bayesian models used to incorporate genome-wide marker information as predictors were: Bayes A, Bayes Cπ, Bayesian LASSO (BL), and the Genomic Best Linear Unbiased Prediction (G-BLUP). Results included estimates of the genetic variance and heritability, genetic scores for T2D, and predictive ability evaluated in a 10-fold cross-validation. The predictive AUC estimates for CBM and M-65SNPs were: 0.668 and 0.684, respectively. We found evidence of contribution of genetic effects in T2D, as reflected in the genomic heritability estimates (0.492±0.066). The highest predictive AUC among the genome-wide marker Bayesian models was 0.681 for the Bayesian LASSO. Overall, the improvement in predictive ability was moderate and did not differ greatly among models that included genetic information. Approximately 58% of the total number of genetic variants was found to contribute to the overall genetic variation, indicating a complex genetic architecture for T2D. Our results suggest that the Bayes Cπ and the G-BLUP models with a large set of genome-wide markers could be used for predicting risk to T2D, as an alternative to using high-density arrays when selected markers from large consortiums for a given complex trait or

  5. Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.

    PubMed

    Dimitriadou, Eftychia; Zamani Esteki, Masoud; Vermeesch, Joris Robert

    2015-01-01

    Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.

  6. Comparative Analysis of Subtyping Methods against a Whole- Genome-Sequencing Standard for Salmonella enterica Serotype Enteritidis

    DTIC Science & Technology

    2015-01-01

    SECURITY CLASSIFICATION OF: A retrospective investigation was performed to evaluate whole-genome sequencing as a benchmark for comparing molecular...cases collected between 2001 and 2012 were sequenced and subjected to subtyping by four different methods: (i) whole-genome single- nucleotide...distribution is unlimited. Comparative Analysis of Subtyping Methods against a Whole- Genome- Sequencing Standard for Salmonella enterica Serotype Enteritidis

  7. Whole genome methylation profiling by immunoprecipitation of methylated DNA.

    PubMed

    Sharp, Andrew J

    2012-01-01

    I provide a protocol for DNA methylation profiling based on immunoprecipitation of methylated DNA using commercially available monoclonal antibodies that specifically recognize 5-methylcytosine. Quantification of the level of enrichment of the resulting DNA enables DNA methylation to be assayed for any genomic locus, including entire chromosomes or genomes if appropriate microarray or high-throughput sequencing platforms are used. In previous studies (1, 2), I have used hybridization to oligonucleotide arrays from Roche Nimblegen Inc, which allow any genomic region of interest to be interrogated, dependent on the array design. For example, using modern tiling arrays comprising millions of oligonucleotide probes, several complete human chromosomes can be assayed at densities of one probe per 100 bp or greater, sufficient to yield high-quality data. However, other methods such as quantitative real-time PCR or high-throughput sequencing can be used, giving either measurement of methylation at a single locus or across the entire genome, respectively. While the data produced by single locus assays is relatively simple to analyze and interpret, global assays such as microarrays or high-throughput sequencing require more complex statistical approaches in order to effectively identify regions of differential methylation, and a brief outline of some approaches is given.

  8. New perspectives on microbial community distortion after whole-genome amplification

    EPA Science Inventory

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  9. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Cancer.gov

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  10. Whole-Genome Sequence of the Nitrogen-Fixing Symbiotic Rhizobium Mesorhizobium loti Strain TONO

    PubMed Central

    Hirakawa, Hideki; Sato, Shusei; Saeki, Kazuhiko; Hayashi, Makoto

    2016-01-01

    Mesorhizobium loti is the nitrogen-fixing microsymbiont for legumes of the genus Lotus. Here, we report the whole-genome sequence of a Mesorhizobium loti strain, TONO, which is used as a symbiont for the model legume Lotus japonicus. The whole-genome sequence of the strain TONO will be a solid platform for comparative genomics analyses and for the identification of genes responsible for the symbiotic properties of Mesorhizobium species. PMID:27795235

  11. Predicting Alzheimer's Disease Using Combined Imaging-Whole Genome SNP Data.

    PubMed

    Kong, Dehan; Giovanello, Kelly S; Wang, Yalin; Lin, Weili; Lee, Eunjee; Fan, Yong; Murali Doraiswamy, P; Zhu, Hongtu

    2015-01-01

    The growing public threat of Alzheimer's disease (AD) has raised the urgency to discover and validate prognostic biomarkers in order to predicting time to onset of AD. It is anticipated that both whole genome single nucleotide polymorphism (SNP) data and high dimensional whole brain imaging data offer predictive values to identify subjects at risk for progressing to AD. The aim of this paper is to test whether both whole genome SNP data and whole brain imaging data offer predictive values to identify subjects at risk for progressing to AD. In 343 subjects with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI-1), we extracted high dimensional MR imaging (volumetric data on 93 brain regions plus a surface fluid registration based hippocampal subregion and surface data), and whole genome data (504,095 SNPs from GWAS), as well as routine neurocognitive and clinical data at baseline. MCI patients were then followed over 48 months, with 150 participants progressing to AD. Combining information from whole brain MR imaging and whole genome data was substantially superior to the standard model for predicting time to onset of AD in a 48-month national study of subjects at risk. Our findings demonstrate the promise of combined imaging-whole genome prognostic markers in people with mild memory impairment.

  12. Whole Genome Sequencing Demonstrates Limited Transmission within Identified Mycobacterium tuberculosis Clusters in New South Wales, Australia

    PubMed Central

    Gurjav, Ulziijargal; Outhred, Alexander C.; Jelfs, Peter; McCallum, Nadine; Wang, Qinning; Hill-Cawthorne, Grant A.; Marais, Ben J.; Sintchenko, Vitali

    2016-01-01

    Australia has a low tuberculosis incidence rate with most cases occurring among recent immigrants. Given suboptimal cluster resolution achieved with 24-locus mycobacterium interspersed repetitive unit (MIRU-24) genotyping, the added value of whole genome sequencing was explored. MIRU-24 profiles of all Mycobacterium tuberculosis culture-confirmed tuberculosis cases diagnosed between 2009 and 2013 in New South Wales (NSW), Australia, were examined and clusters identified. The relatedness of cases within the largest MIRU-24 clusters was assessed using whole genome sequencing and phylogenetic analyses. Of 1841 culture-confirmed TB cases, 91.9% (1692/1841) had complete demographic and genotyping data. East-African Indian (474; 28.0%) and Beijing (470; 27.8%) lineage strains predominated. The overall rate of MIRU-24 clustering was 20.1% (340/1692) and was highest among Beijing lineage strains (35.7%; 168/470). One Beijing and three East-African Indian (EAI) clonal complexes were responsible for the majority of observed clusters. Whole genome sequencing of the 4 largest clusters (30 isolates) demonstrated diverse single nucleotide polymorphisms (SNPs) within identified clusters. All sequenced EAI strains and 70% of Beijing lineage strains clustered by MIRU-24 typing demonstrated distinct SNP profiles. The superior resolution provided by whole genome sequencing demonstrated limited M. tuberculosis transmission within NSW, even within identified MIRU-24 clusters. Routine whole genome sequencing could provide valuable public health guidance in low burden settings. PMID:27737005

  13. Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly

    SciTech Connect

    Shou, S.; Kvikstad, E.; Kile, A.; Severin, J.; Forrest, D.; Runnheim, R.; Churas, C.; Hickman, J. W.; Mackenzie, C.; Choudhary, M.; Donohue, T.; Kaplan, S.; Schwartz, D. C.

    2003-09-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photoheterotrophic bacterium with tremendous metabolic diversity, which has significantly contributed to our understanding of the molecular genetics of photosynthesis, photoheterotrophy, nitrogen fixation, hydrogen metabolism, carbon dioxide fixation, taxis, and tetrapyrrole biosynthesis. To further understand this remarkable bacterium, and to accelerate an ongoing sequencing project, two whole-genome restriction maps (EcoRI and HindIII) of R. sphaeroides strain 2.4.1 were constructed using shotgun optical mapping. The approach directly mapped genomic DNA by the random mapping of single molecules. The two maps were used to facilitate sequence assembly by providing an optical scaffold for high-resolution alignment and verification of sequence contigs. Our results show that such maps facilitated the closure of sequence gaps by the early detection of nascent sequence contigs during the course of the whole-genome shotgun sequencing process.

  14. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  15. PEMapper and PECaller provide a simplified approach to whole-genome sequencing.

    PubMed

    Johnston, H Richard; Chopra, Pankaj; Wingo, Thomas S; Patel, Viren; Epstein, Michael P; Mulle, Jennifer G; Warren, Stephen T; Zwick, Michael E; Cutler, David J

    2017-03-07

    The analysis of human whole-genome sequencing data presents significant computational challenges. The sheer size of datasets places an enormous burden on computational, disk array, and network resources. Here, we present an integrated computational package, PEMapper/PECaller, that was designed specifically to minimize the burden on networks and disk arrays, create output files that are minimal in size, and run in a highly computationally efficient way, with the single goal of enabling whole-genome sequencing at scale. In addition to improved computational efficiency, we implement a statistical framework that allows for a base by base error model, allowing this package to perform as well or better than the widely used Genome Analysis Toolkit (GATK) in all key measures of performance on human whole-genome sequences.

  16. What can whole genome expression data tell us about the ecology and evolution of personality?

    PubMed

    Bell, Alison M; Aubin-Horth, Nadia

    2010-12-27

    Consistent individual differences in behaviour, aka personality, pose several evolutionary questions. For example, it is difficult to explain within-individual consistency in behaviour because behavioural plasticity is often advantageous. In addition, selection erodes heritable behavioural variation that is related to fitness, therefore we wish to know the mechanisms that can maintain between-individual variation in behaviour. In this paper, we argue that whole genome expression data can reveal new insights into the proximate mechanisms underlying personality, as well as its evolutionary consequences. After introducing the basics of whole genome expression analysis, we show how whole genome expression data can be used to understand whether behaviours in different contexts are affected by the same molecular mechanisms. We suggest strategies for using the power of genomics to understand what maintains behavioural variation, to study the evolution of behavioural correlations and to compare personality traits across diverse organisms.

  17. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  18. Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method.

    PubMed

    Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko

    2016-08-15

    Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities.

  19. Whole genome sequence of Enterobacter ludwigii type strain EN-119T, isolated from clinical specimens.

    PubMed

    Li, Gengmi; Hu, Zonghai; Zeng, Ping; Zhu, Bing; Wu, Lijuan

    2015-04-01

    Enterobacter ludwigii strain EN-119(T) is the type strain of E. ludwigii, which belongs to the E. cloacae complex (Ecc). This strain was first reported and nominated in 2005 and later been found in many hospitals. In this paper, the whole genome sequencing of this strain was carried out. The total genome size of EN-119(T) is 4952,770 bp with 4578 coding sequences, 88 tRNAs and 10 rRNAs. The genome sequence of EN-119(T) is the first whole genome sequence of E. ludwigii, which will further our understanding of Ecc.

  20. Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates

    SciTech Connect

    Casjens, S.R.; Dunn, J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Fraser-Liggett, C. M.; Schutzer, S. E.

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  1. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates.

    PubMed

    Casjens, Sherwood R; Mongodin, Emmanuel F; Qiu, Wei-Gang; Dunn, John J; Luft, Benjamin J; Fraser-Liggett, Claire M; Schutzer, Steve E

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  2. Whole-genome transcriptional and physiological responses of Nitrosomonas europaea to cyanide: identification of cyanide stress response genes.

    PubMed

    Park, Sunhwa; Ely, Roger L

    2009-04-15

    Nitrosomonas europaea (ATCC 19718) is one of several nitrifying species that participate in the biological removal of nitrogen from wastewater by oxidizing ammonia to nitrite, the first step in nitrification. Because nitrification is quite sensitive to cyanide, a compound often encountered in wastewater treatment plants, we characterized the physiological and transcriptional responses of N. europaea cells to cyanide. The cells were extremely sensitive to low concentrations of cyanide, with NO-(2)production and ammonia-dependent oxygen uptake rates decreasing by 50% within 30 min of exposure to 1 microM NaCN. Whole-genome transcriptional responses of cells exposed to 1 microM NaCN were examined using Affymetrix microarrays to identify stress-induced genes. The transcript levels of 35 genes increased more than 2-fold while transcript levels of 29 genes decreased more than 20-fold. A gene cluster that included moeZ (NE2353), encoding a rhodanese homologue and thought to be involved in detoxification of cyanide, showed the highest up-regulation (7-fold). The down-regulated genes included genes encoding proteins involved in the sulfate reduction pathway, signal transduction mechanisms, carbohydrate transport, energy production, coenzyme metabolism, and amino acid transport.

  3. Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis

    PubMed Central

    Hou, Jingyi; Ouyang, Yi; Deng, Haiquan; Chen, Zhong; Song, Bin; Xie, Zhongyu; Wang, Peng; Li, Jinteng

    2016-01-01

    Synovium-derived mesenchymal stromal cells (SMSCs) may play an important role in the pathogenesis of rheumatoid arthritis (RA) and show promise for therapeutic applications in RA. In this study, a whole-genome microarray analysis was used to detect differential gene expression in SMSCs from RA patients and healthy donors (HDs). Our results showed that there were 4828 differentially expressed genes in the RA group compared to the HD group; 3117 genes were upregulated, and 1711 genes were downregulated. A Gene Ontology analysis showed significantly enriched terms of differentially expressed genes in the biological process, cellular component, and molecular function domains. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the MAPK signaling and rheumatoid arthritis pathways were upregulated and that the p53 signaling pathway was downregulated in RA SMSCs. Quantitative real-time polymerase chain reaction was applied to verify the expression variations of the partial genes mentioned above, and a western blot analysis was used to determine the expression levels of p53, p-JNK, p-ERK, and p-p38. Our study found that differentially expressed genes in the MAPK signaling, rheumatoid arthritis, and p53 signaling pathways may help to explain the pathogenic mechanism of RA and lead to therapeutic RA SMSC applications. PMID:27642302

  4. Effects of whole genome duplication on cell size and gene expression in mouse embryonic stem cells

    PubMed Central

    IMAI, Hiroyuki; FUJII, Wataru; KUSAKABE, Ken Takeshi; KISO, Yasuo; KANO, Kiyoshi

    2016-01-01

    Alterations in ploidy tend to influence cell physiology, which in the long-term, contribute to species adaptation and evolution. Polyploid cells are observed under physiological conditions in the nerve and liver tissues, and in tumorigenic processes. Although tetraploid cells have been studied in mammalian cells, the basic characteristics and alterations caused by whole genome duplication are still poorly understood. The purpose of this study was to acquire basic knowledge about the effect of whole genome duplication on the cell cycle, cell size, and gene expression. Using flow cytometry, we demonstrate that cell cycle subpopulations in mouse tetraploid embryonic stem cells (TESCs) were similar to those in embryonic stem cells (ESCs). We performed smear preparations and flow cytometric analysis to identify cell size alterations. These indicated that the relative cell volume of TESCs was approximately 2.2–2.5 fold that of ESCs. We also investigated the effect of whole genome duplication on the expression of housekeeping and pluripotency marker genes using quantitative real-time PCR with external RNA. We found that the target transcripts were 2.2 times more abundant in TESCs than those in ESCs. This indicated that gene expression and cell volume increased in parallel. Our findings suggest the existence of a homeostatic mechanism controlling the cytoplasmic transcript levels in accordance with genome volume changes caused by whole genome duplication. PMID:27569766

  5. Spiked GBS: A unified, open platform for single marker genotyping and whole-genome profiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plant breeding, there are two primary applications for DNA markers in selection: 1) selection of known genes using a single marker assay (marker-assisted selection; MAS); and 2) whole-genome profiling and prediction (genomic selection; GS). Typically, marker platforms have addressed only one of t...

  6. Animal selection for whole genome sequencing by quantifying the unique contribution of homozygous haplotypes sequenced

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major whole genome sequencing projects promise to identify rare and causal variants within livestock species; however, the efficient selection of animals for sequencing remains a major problem within these surveys. The goal of this project was to develop a library of high accuracy genetic variants f...

  7. Draft Whole-Genome Sequence of the Type Strain Bacillus horikoshii DSM 8719.

    PubMed

    Hernández-González, Ismael L; Olmedo-Álvarez, Gabriela

    2016-07-14

    Members of the Bacillus genus have been extensively studied because of their ability to produce enzymes with high biotechnological value. Here, we report the draft of the whole-genome sequence of the type strain Bacillus horikoshii DSM 8719, an alkali-tolerant strain.

  8. Draft Whole-Genome Sequence of the Type Strain Bacillus aquimaris TF12T.

    PubMed

    Hernández-González, Ismael L; Olmedo-Álvarez, Gabriela

    2016-07-14

    Bacillus aquimaris TF12 is a Gram-positive bacteria isolated from a tidal flat of the Yellow Sea in South Korea. We report the draft whole-genome sequence of Bacillus aquimaris TF12, the type strain of a set of bacteria typically associated with marine habitats and with a potentially high biotechnology value.

  9. Whole-Genome Sequence of Aeromonas hydrophila Strain AH-1 (Serotype O11)

    PubMed Central

    Forn-Cuní, Gabriel; Tomás, Juan M.

    2016-01-01

    Aeromonas hydrophila is an emerging pathogen of aquatic and terrestrial animals, including humans. Here, we report the whole-genome sequence of the septicemic A. hydrophila AH-1 strain, belonging to the serotype O11, and the first mesophilic Aeromonas with surface layer (S-layer) to be sequenced. PMID:27587829

  10. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans)

    PubMed Central

    Tran, Phuong N.; Tan, Nicholas E. H.; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J.; Dailey, Lucas K.; Hudson, André O.

    2015-01-01

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. PMID:26586879

  11. The whole genome sequence assembly of the soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only two aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, and the Russian wheat aphid, Diuraphis noxia. The soybean aphid (Aphis glycines) is an extreme special...

  12. Draft Whole-Genome Sequences of 10 Enterotoxigenic Escherichia coli Serogroup O6 Strains

    PubMed Central

    Bopp, Cheryl A.

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children under the age of 5 years and in adults living in developing countries, as well as in travelers to these countries. In this announcement, we release the draft whole-genome sequences of 10 ETEC serogroup O6 strains. PMID:26044422

  13. Draft Whole-Genome Sequence of Urease-Producing Sporosarcina koreensis

    PubMed Central

    Graw, Michael F.; Nguyen, Hanh

    2016-01-01

    Urease-producing microbes are of significance due to their potential application in biocement production. Sporosarcina koreensis Q1 is a urease-producing bacterium belonging to the phylum Firmicutes. Here, we present the draft whole-genome sequence of S. koreensis Q1, isolated from a barchan sand dune in Qatar. PMID:26988039

  14. Draft Whole-Genome Sequence of Urease-Producing Sporosarcina koreensis.

    PubMed

    Abdul Majid, Sara; Graw, Michael F; Nguyen, Hanh; Hay, Anthony G

    2016-03-17

    Urease-producing microbes are of significance due to their potential application in biocement production. Sporosarcina koreensis Q1 is a urease-producing bacterium belonging to the phylum Firmicutes. Here, we present the draft whole-genome sequence of S. koreensis Q1, isolated from a barchan sand dune in Qatar.

  15. CViT: “Chromosome Visualization Tool” – A whole-genome viewer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CViT (Chromosome Visualization Tool) is a Perl utility for quickly generating images of features on a whole genome at once. It reads GFF3-format data representing chromosomes (linkage groups or pseudomolecules), and features on those chromosomes. It can display features on any chromosomal unit syste...

  16. Whole-Genome Sequencing Detection of Ongoing Listeria Contamination at a Restaurant, Rhode Island, USA, 2014

    PubMed Central

    Gosciminski, Michael; Miller, Adam

    2016-01-01

    In November 2014, the Rhode Island Department of Health investigated a cluster of 3 listeriosis cases. Using whole-genome sequencing to support epidemiologic, laboratory, and environmental investigations, the department identified 1 restaurant as the likely source of the outbreak and also linked the establishment to a listeriosis case that occurred in 2013. PMID:27434089

  17. Whole-genome sequence of “Candidatus Liberibacter solanacearum” strain R1 from California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The draft whole-genome sequence of “Candidatus Liberibacter solanacearum” strain R1, isolated from a tomato plant in California, United States, is reported. The R1 strain genome is 1,204,257 bp in size (G+C content of 35.3%), encoding 1,101 open reading frames and 57 RNA genes....

  18. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  19. Whole-Genome Shotgun Sequence of Rhodococcus Species Strain JVH1

    PubMed Central

    Brooks, Shannon L.

    2012-01-01

    Here we present a whole-genome shotgun sequence of Rhodococcus species strain JVH1, an organism capable of degrading a variety of organosulfur compounds. In particular, JVH1 is able to selectively cleave carbon-sulfur bonds within alkyl chains. A large number of oxygenases were identified, consistent with other members of the genus. PMID:22965106

  20. Draft Whole-Genome Sequence of the Type Strain Bacillus horikoshii DSM 8719

    PubMed Central

    Hernández-González, Ismael L.

    2016-01-01

    Members of the Bacillus genus have been extensively studied because of their ability to produce enzymes with high biotechnological value. Here, we report the draft of the whole-genome sequence of the type strain Bacillus horikoshii DSM 8719, an alkali-tolerant strain. PMID:27417833

  1. Toxicological effects of benzo[a]pyrene on DNA methylation of whole genome in ICR mice.

    PubMed

    Zhao, L; Zhang, S; An, X; Tan, W; Pang, D; Ouyang, H

    2015-10-30

    It has been well known that alterations in DNA methylation - an important regulator of gene transcription - lead to cancer. Therefore a change in the level of DNA methylation of whole genome has been considered as a biomarker of carcinogenesis. Previously, a large number of experimental results in genetic toxicology have showed that benzo[a]pyrene could cause DNA mutation and fragmentation. However, there was little to no studies on alterations in DNA methylation of genome directly result from exposure to benzo[a]pyrene. In this paper, possible mechanisms of alterations in whole genomic DNA methylation by benzo[a]pyrene were investigated using ICR mice after benzo[a]pyrene exposure. The blood, liver, pancreas, skin, lung and bladder of ICR mice were removed and checked after a fixed time interval (6 hours) of benzo[a]pyrene exposure, and whole genomic DNA methylation level was determined by high performance liquid chromatography (HPLC). The results exhibited tissue specificity, that is, the level of whole genomic DNA methylation decreases significantly in blood and liver, rather than pancreas, lung, skin and bladder of ICR mice. This study investigated the direct relationship between aberrant DNA methylation level and benzo[a]pyrene exposure, which might be helpful to clarify the toxicological mechanism of benzo[a]pyrene in epigenetic perspectives.

  2. Draft Whole-Genome Sequence of the Type Strain Bacillus aquimaris TF12T

    PubMed Central

    Hernández-González, Ismael L.

    2016-01-01

    Bacillus aquimaris TF12 is a Gram-positive bacteria isolated from a tidal flat of the Yellow Sea in South Korea. We report the draft whole-genome sequence of Bacillus aquimaris TF12, the type strain of a set of bacteria typically associated with marine habitats and with a potentially high biotechnology value. PMID:27417832

  3. Genomic diagnosis by whole genome sequencing in a Korean family with atypical progeroid syndrome.

    PubMed

    Lee, Seungbok; Park, Sae Mi; Kim, Hyun Ji; Kim, Jin-Wou; Yu, Dong Soo; Lee, Young Bok

    2015-12-01

    Clinical genomic diagnosis is unfamiliar to many dermatologists. Limited knowledge of bioinformatics has limited the use of the next generation sequencing method in dermatological clinics. We evaluated the usefulness of whole genome sequencing as a diagnostic approach to inherited dermatological disease. Here, we present our experience with two female siblings with atypical familial generalized lipodystrophy with diabetes mellitus and dyslipidemia. Whole genome sequencing was performed to diagnose the inherited disease. We compared control genomic databases using the Exome Aggregation Consortium, and filtered false-positive calls with the segmental duplication, non-flagged single nucleotide variants and COSMIC mutation databases, and applied the prediction tools of SIFT and PolyPhen2. The two siblings who presented with generalized lipodystrophy were diagnosed with an atypical progeroid syndrome with a p.D136H mutation in the LMNA gene (NM_005572). We diagnosed a familial atypical progeroid syndrome using whole genome sequencing. In this paper, we present our experience with whole genome sequencing and demonstrate that it can provide useful information for clinical genomic diagnosis of inherited diseases with atypical clinical features, such as atypical progeroid syndrome.

  4. A whole-genome assembly of the domestic cow, Bos taurus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods. Results: We have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion b...

  5. Laboratory-Acquired Infection with Salmonella enterica Serovar Typhimurium Exposed by Whole-Genome Sequencing

    PubMed Central

    Fitzgerald, Stephen F.; DePaulo, Rachel; Kitzul, Rosanne; Daku, Dawn; Levett, Paul N.; Cameron, Andrew D. S.

    2015-01-01

    Despite advances in laboratory design, professional training, and workplace biosafety guidelines, laboratory-acquired infections continue to occur. Effective tools are required to investigate cases and prevent future illness. Here, we demonstrate the value of whole-genome sequencing as a tool for the identification and source attribution of laboratory-acquired salmonellosis. PMID:26511736

  6. Whole-Genome Sequence of the Cheese Isolate Streptococcus macedonicus 679

    PubMed Central

    Mavrogonatou, Eleni; Bolotin, Alexander; Tsakalidou, Effie

    2016-01-01

    It is well recognized that Streptococcus macedonicus can populate artisanal fermented foods, especially those of dairy origin. However, the safety of S. macedonicus remains to be established. Here, we present the whole-genome sequence of strain 679, which was isolated from a French uncooked semihard cheese made with cow milk. PMID:27660795

  7. Whole-genome sequencing of Borrelia garinii BgVir, isolated from Taiga ticks (Ixodes persulcatus).

    PubMed

    Brenner, Evgeniy V; Kurilshikov, Alexander M; Stronin, Oleg V; Fomenko, Nataliya V

    2012-10-01

    Most Lyme borreliosis cases in Russia result from Borrelia garinii NT29 group infection. Borrelias of this group circulate exclusively in Ixodes persulcatus ticks, which are seldom found beyond Russia and the far east. Here we report the whole-genome sequence of Borrelia garinii BgVir isolated from an I. persulcatus female.

  8. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  9. Analysis of common k-mers for whole genome sequences using SSB-tree.

    PubMed

    Choi, Jeong-Hyeon; Cho, Hwan-Gue

    2002-01-01

    As sequenced genomes become larger and sequencing process becomes faster, there is a need to develop a tool to analyze sequences in the whole genomic scale. However, on-memory algorithms such as suffix tree and suffix array are not applicable to the analysis of whole genome sequence set, since the size of individual whole genome ranges from several million base pairs to hundreds billion base pairs. In order to effectively manipulate the huge sequence data, it is necessary to use the indexed data structure for external memory. In this paper, we introduce a workbench called SequeX for the analysis and visualization of whole genome sequences using SSB-tree (Static SB-tree). It consists of two parts: the analysis query subsystem and the visualization subsystem. The query subsystem supports various transactions such as pattern matching, k-occurrence, and k-mer analysis. The visualization subsystem helps biologists to easily understand whole genome structure and feature by sequence viewer, annotation viewer, CGR (Chaos Game Representation) viewer, and k-mer viewer. The system also supports a user-friendly programming interface based on Java script for batch processing and the extension for a specific purpose of a user. SequeX can be used to identify conserved genes or sequences by the analysis of the common k-mers and annotation. We analyze the common k-mer for 72 microbial genomes announced by Entrez, and find an interesting biological fact that the longest common k-mer for 72 sequences is 11-mer, and only 11 such sequences exist. Finally we note that many common k-mers occur in conserved region such as CDS, rRNA, and tRNA.

  10. Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy

    PubMed Central

    Lupski, James R.; Reid, Jeffrey G.; Gonzaga-Jauregui, Claudia; Deiros, David Rio; Chen, David C.Y.; Nazareth, Lynne; Bainbridge, Matthew; Dinh, Huyen; Jing, Chyn; Wheeler, David A.; McGuire, Amy L.; Zhang, Feng; Stankiewicz, Pawel; Halperin, John J.; Yang, Chengyong; Gehman, Curtis; Guo, Danwei; Irikat, Rola K.; Tom, Warren; Fantin, Nick J.; Muzny, Donna M.; Gibbs, Richard A.

    2014-01-01

    BACKGROUND Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease phenotypes and their corresponding genetic changes can be complicated. Comprehensive diagnostic assays must therefore identify all possible DNA changes in each haplotype and determine which are responsible for the underlying disorder. The high number of rare, heterogeneous mutations present in all humans and the paucity of known functional variants in more than 90% of annotated genes make this challenge particularly difficult. Thus, the identification of the molecular basis of a genetic disease by means of whole-genome sequencing has remained elusive. We therefore aimed to assess the usefulness of human whole-genome sequencing for genetic diagnosis in a patient with Charcot–Marie–Tooth disease. METHODS We identified a family with a recessive form of Charcot–Marie–Tooth disease for which the genetic basis had not been identified. We sequenced the whole genome of the proband, identified all potential functional variants in genes likely to be related to the disease, and genotyped these variants in the affected family members. RESULTS We identified and validated compound, heterozygous, causative alleles in SH3TC2 (the SH3 domain and tetratricopeptide repeats 2 gene), involving two mutations, in the proband and in family members affected by Charcot–Marie–Tooth disease. Separate subclinical phenotypes segregated independently with each of the two mutations; heterozygous mutations confer susceptibility to neuropathy, including the carpal tunnel syndrome. CONCLUSIONS As shown in this study of a family with Charcot–Marie–Tooth disease, whole-genome sequencing can identify clinically relevant variants and provide diagnostic information to inform the care of patients. PMID:20220177

  11. Canaries in the coal mine: Personal and professional impact of undergoing whole genome sequencing on medical professionals.

    PubMed

    Zierhut, Heather; McCarthy Veach, Patricia; LeRoy, Bonnie

    2015-11-01

    Public interest in personal whole genome sequencing is increasing. The technology is publicly available and is being used as an educational tool in higher education. Empirical evidence regarding its utility is vital. The goals of this study were to characterize the process of whole genome sequencing in a population of medical and basic science professionals undergoing whole genome sequencing as a part of an educational symposium. Thirty-eight individuals completed one or more surveys from the time of informed consent for whole genome sequencing to 3 months post-symposium. The four surveys assessed demographics, decision-making, communication, decision regret, and personal and professional impact. The most prevalent motivation to participate was professional enhancement, followed by curiosity about the technology, and personal health benefits. The most important initial impact concerned medical implications. Over time, however, impact on professional development was greater than on personal health. Anticipated reactions to receiving whole genome sequencing results generally matched participants' actual reactions and decision regret remained low over time. Benefits and risks of whole genome sequencing included medically actionable results and misunderstanding by healthcare providers. Whole genome sequencing generally had a positive impact professionally and personally on participants. Further education of providers and the public about whole genome sequencing and psychosocial support is warranted.

  12. Murine Hyperglycemic Vasculopathy and Cardiomyopathy: Whole-Genome Gene Expression Analysis Predicts Cellular Targets and Regulatory Networks Influenced by Mannose Binding Lectin

    PubMed Central

    Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.

    2012-01-01

    Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142

  13. De novo 7p partial trisomy characterized by subtelomeric FISH and whole-genome array in a girl with mental retardation

    PubMed Central

    2011-01-01

    Chromosome rearrangements involving telomeres have been established as one of the major causes of idiopathic mental retardation/developmental delay. This case of 7p partial trisomy syndrome in a 3-year-old female child presenting with developmental delay emphasizes the clinical relevance of cytogenetic diagnosis in the better management of genetic disorders. Application of subtelomeric FISH technique revealed the presence of interstitial telomeres and led to the ascertainment of partial trisomy for the distal 7p segment localized on the telomeric end of the short arm of chromosome 19. Whole-genome cytogenetic microarray-based analysis showed a mosaic 3.5 Mb gain at Xq21.1 besides the approximately 24.5 Mb gain corresponding to 7p15.3- > pter. The possible mechanisms of origin of the chromosomal rearrangement and the clinical relevance of trisomy for the genes lying in the critical regions are discussed. PMID:21968244

  14. Error rates, PCR recombination, and sampling depth in HIV-1 whole genome deep sequencing.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Albert, Jan; Neher, Richard A

    2016-12-27

    Deep sequencing is a powerful and cost-effective tool to characterize the genetic diversity and evolution of virus populations. While modern sequencing instruments readily cover viral genomes many thousand fold and very rare variants can in principle be detected, sequencing errors, amplification biases, and other artifacts can limit sensitivity and complicate data interpretation. For this reason, the number of studies using whole genome deep sequencing to characterize viral quasi-species in clinical samples is still limited. We have previously undertaken a large scale whole genome deep sequencing study of HIV-1 populations. Here we discuss the challenges, error profiles, control experiments, and computational test we developed to quantify the accuracy of variant frequency estimation.

  15. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    PubMed

    Satoh, Soichirou; Mimuro, Mamoru; Tanaka, Ayumi

    2013-01-01

    Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.

  16. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.

    PubMed

    Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney

    2015-01-01

    We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.

  17. Whole-Genome Characterization and Genotyping of Global WU Polyomavirus Strains▿ †

    PubMed Central

    Bialasiewicz, Seweryn; Rockett, Rebecca; Whiley, David W.; Abed, Yacine; Allander, Tobias; Binks, Michael; Boivin, Guy; Cheng, Allen C.; Chung, Ju-Young; Ferguson, Patricia E.; Gilroy, Nicole M.; Leach, Amanda J.; Lindau, Cecilia; Rossen, John W.; Sorrell, Tania C.; Nissen, Michael D.; Sloots, Theo P.

    2010-01-01

    Exploration of the genetic diversity of WU polyomavirus (WUV) has been limited in terms of the specimen numbers and particularly the sizes of the genomic fragments analyzed. Using whole-genome sequencing of 48 WUV strains collected in four continents over a 5-year period and 16 publicly available whole-genome sequences, we identified three main WUV clades and five subtypes, provisionally termed Ia, Ib, Ic, II, IIIa, and IIIb. Overall nucleotide variation was low (0 to 1.2%). The discriminatory power of the previous VP2 fragment typing method was found to be limited, and a new, larger genotyping region within the VP2/1 interface was proposed. PMID:20357093

  18. Comparison of whole genome amplification techniques for human single cell exome sequencing

    PubMed Central

    Borgström, Erik; Paterlini, Marta; Mold, Jeff E.; Frisen, Jonas; Lundeberg, Joakim

    2017-01-01

    Background Whole genome amplification (WGA) is currently a prerequisite for single cell whole genome or exome sequencing. Depending on the method used the rate of artifact formation, allelic dropout and sequence coverage over the genome may differ significantly. Results The largest difference between the evaluated protocols was observed when analyzing the target coverage and read depth distribution. These differences also had impact on the downstream variant calling. Conclusively, the products from the AMPLI1 and MALBAC kits were shown to be most similar to the bulk samples and are therefore recommended for WGA of single cells. Discussion In this study four commercial kits for WGA (AMPLI1, MALBAC, Repli-G and PicoPlex) were used to amplify human single cells. The WGA products were exome sequenced together with non-amplified bulk samples from the same source. The resulting data was evaluated in terms of genomic coverage, allelic dropout and SNP calling. PMID:28207771

  19. Real-time investigation of a Legionella pneumophila outbreak using whole genome sequencing.

    PubMed

    Graham, R M A; Doyle, C J; Jennison, A V

    2014-11-01

    Legionella pneumophila is the main pathogen responsible for outbreaks of Legionnaires' disease, which can be related to contaminated water supplies such as cooling towers or water pipes. We combined conventional molecular methods and whole genome sequence (WGS) analysis to investigate an outbreak of L. pneumophila in a large Australian hospital. Typing of these isolates using sequence-based typing and virulence gene profiling, was unable to discriminate between outbreak and non-outbreak isolates. WGS analysis was performed on isolates during the outbreak, as well as on unlinked isolates from the Public Health Microbiology reference collection. The more powerful resolution provided by analysis of whole genome sequences allowed outbreak isolates to be distinguished from isolates that were temporally and spatially unassociated with the outbreak, demonstrating that this technology can be used in real-time to investigate L. pneumophila outbreaks.

  20. Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches

    PubMed Central

    Niemann, Stefan; Supply, Philip

    2014-01-01

    Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252

  1. Sampling strategies for whole genome association studies in aquaculture and outcrossing plant species.

    PubMed

    Hayes, B J; MacLeod, I M; Baranski, M

    2009-12-01

    A number of farmed species are characterized by breeding populations of large full-sib families, including aquaculture species and outcrossing plant species. Whole genome association studies in such species must account for stratification arising from the full-sib family structure to avoid high rates of false discovery. Here, we demonstrate the value of selective genotyping strategies which balance the contribution of families across high and low phenotypes to greatly reduce rates of false discovery with a minimal effect on power.

  2. Determination of Elizabethkingia Diversity by MALDI-TOF Mass Spectrometry and Whole-Genome Sequencing

    PubMed Central

    Gumpert, Heidi; Faurholt, Cecilie Haase; Westh, Henrik

    2017-01-01

    In a hospital-acquired infection with multidrug-resistant Elizabethkingia, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene analysis identified the pathogen as Elizabethkingia miricola. Whole-genome sequencing, genus-level core genome analysis, and in silico DNA-DNA hybridization of 35 Elizabethkingia strains indicated that the species taxonomy should be further explored. PMID:28098550

  3. Whole-Genome Sequence of Rummeliibacillus stabekisii Strain PP9 Isolated from Antarctic Soil

    PubMed Central

    da Mota, Fábio Faria; Vollú, Renata Estebanez; Jurelevicius, Diogo

    2016-01-01

    The whole genome of Rummeliibacillus stabekisii PP9, isolated from a soil sample from Antarctica, consists of a circular chromosome of 3,412,092 bp and a circular plasmid of 8,647 bp, with 3,244 protein-coding genes, 12 copies of the 16S-23S-5S rRNA operon, 101 tRNA genes, and 6 noncoding RNAs (ncRNAs). PMID:27231360

  4. A whole-genome, radiation hybrid mapping resource of hexaploid wheat.

    PubMed

    Tiwari, Vijay K; Heesacker, Adam; Riera-Lizarazu, Oscar; Gunn, Hilary; Wang, Shichen; Wang, Yi; Gu, Young Q; Paux, Etienne; Koo, Dal-Hoe; Kumar, Ajay; Luo, Ming-Cheng; Lazo, Gerard; Zemetra, Robert; Akhunov, Eduard; Friebe, Bernd; Poland, Jesse; Gill, Bikram S; Kianian, Shahryar; Leonard, Jeffrey M

    2016-04-01

    Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.

  5. The need for high-quality whole-genome sequence databases in microbial forensics.

    PubMed

    Sjödin, Andreas; Broman, Tina; Melefors, Öjar; Andersson, Gunnar; Rasmusson, Birgitta; Knutsson, Rickard; Forsman, Mats

    2013-09-01

    Microbial forensics is an important part of a strengthened capability to respond to biocrime and bioterrorism incidents to aid in the complex task of distinguishing between natural outbreaks and deliberate acts. The goal of a microbial forensic investigation is to identify and criminally prosecute those responsible for a biological attack, and it involves a detailed analysis of the weapon--that is, the pathogen. The recent development of next-generation sequencing (NGS) technologies has greatly increased the resolution that can be achieved in microbial forensic analyses. It is now possible to identify, quickly and in an unbiased manner, previously undetectable genome differences between closely related isolates. This development is particularly relevant for the most deadly bacterial diseases that are caused by bacterial lineages with extremely low levels of genetic diversity. Whole-genome analysis of pathogens is envisaged to be increasingly essential for this purpose. In a microbial forensic context, whole-genome sequence analysis is the ultimate method for strain comparisons as it is informative during identification, characterization, and attribution--all 3 major stages of the investigation--and at all levels of microbial strain identity resolution (ie, it resolves the full spectrum from family to isolate). Given these capabilities, one bottleneck in microbial forensics investigations is the availability of high-quality reference databases of bacterial whole-genome sequences. To be of high quality, databases need to be curated and accurate in terms of sequences, metadata, and genetic diversity coverage. The development of whole-genome sequence databases will be instrumental in successfully tracing pathogens in the future.

  6. Rapid single-colony whole-genome sequencing of bacterial pathogens

    PubMed Central

    Köser, Claudio U.; Fraser, Louise J.; Ioannou, Avgousta; Becq, Jennifer; Ellington, Matthew J.; Holden, Matthew T. G.; Reuter, Sandra; Török, M. Estée; Bentley, Stephen D.; Parkhill, Julian; Gormley, Niall A.; Smith, Geoffrey P.; Peacock, Sharon J.

    2014-01-01

    Objectives As a result of the introduction of rapid benchtop sequencers, the time required to subculture a bacterial pathogen to extract sufficient DNA for library preparation can now exceed the time to sequence said DNA. We have eliminated this rate-limiting step by developing a protocol to generate DNA libraries for whole-genome sequencing directly from single bacterial colonies grown on primary culture plates. Methods We developed our protocol using single colonies of 17 bacterial pathogens responsible for severe human infection that were grown using standard diagnostic media and incubation conditions. We then applied this method to four clinical scenarios that currently require time-consuming reference laboratory tests: full identification and genotyping of salmonellae; identification of blaNDM-1, a highly transmissible carbapenemase resistance gene, in Klebsiella pneumoniae; detection of genes encoding staphylococcal toxins associated with specific disease syndromes; and monitoring of vaccine targets to detect vaccine escape in Neisseria meningitidis. Results We validated our single-colony whole-genome sequencing protocol for all 40 combinations of pathogen and selective, non-selective or indicator media tested in this study. Moreover, we demonstrated the clinical value of this method compared with current reference laboratory tests. Conclusions This advance will facilitate the implementation of whole-genome sequencing into diagnostic and public health microbiology. PMID:24370932

  7. Construction of a mouse whole-genome radiation hybrid panel and application to MMU11

    SciTech Connect

    Schmitt, K.; Foster, J.W.; Feakes, R.W.

    1996-06-01

    Whole-genome radiation hybrids have been used to construct human genome maps that integrate different types of markers. To investigate this methodology in mammalian species other than humans, panel of 164 mouse x hamster whole-genome radiation hybrids was constructed. This set of hybrids was used to produce a high-resolution map of a region on MMU11 that included microsatellite markers and cDNA sequences. The mouse homologue of the human SRY-related gene SOX9 was mapped to an interval of approximately 1.1 cM flanked by the microsatellite markers D11Mit11 and D11Mit291. This interval includes the region containing the mouse Tail-short mutation, a possible homologue of the human syndrome campomelic dysplasia, which is caused by mutations in SOX9. Our results suggest that whole-genome radiation hybrid technology will be a useful adjunct to mapping the genomes of nonhuman mammalian species. 31 refs., 2 figs.

  8. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials.

    PubMed

    Broomall, Stacey M; Ait Ichou, Mohamed; Krepps, Michael D; Johnsky, Lauren A; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; Betters, Janet L; Redmond, Brady W; Rivers, Bryan A; Liem, Alvin T; Hill, Jessica M; Fochler, Edward T; Roth, Pierce A; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S

    2015-11-13

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms.

  9. Whole-genome sequencing and the clinician: a tale of two cities

    PubMed Central

    Foley, A Reghan; Pitceathly, Robert D S; He, Jie; Kim, Jihee; Pearson, Nathaniel M; Muntoni, Francesco; Hanna, Michael G

    2014-01-01

    Background Clinicians are faced with unprecedented opportunities to identify the genetic aetiologies of hitherto molecularly uncharacterised conditions via the use of high-throughput sequencing. Access to genomic technology and resultant data is no longer limited to clinicians, geneticists and bioinformaticians, however; ongoing commercialisation gives patients themselves ever greater access to sequencing services. We report an increasingly common medical scenario by describing two neuromuscular patients—a mother and adult son—whose consumer access to whole-genome sequencing affected their diagnostic journey. Results Whole-genome sequencing initiated by the patients—to predict their risk of common diseases—revealed that they share several variants potentially relevant to neuromuscular diseases, which initially sidetracked diagnostic efforts. Since eventual clinical reassessment, including muscle imaging, pointed towards Bethlem myopathy, a collagen VI-related myopathy, we pursued Sanger sequencing of COL6A1, COL6A2 and COL6A3. This targeted approach revealed a heterozygous causative variant in COL6A3 (c.6365G>T (p.Gly2122Val)), shared by both individuals, that was not flagged by the interpretation of the whole-genome sequencing data. Conclusions This report highlights the essential interplay of clinical and genomic expertise in realising the potential of high-throughput sequencing. In an era when patients themselves may bring their own data to the table, definitively identifying clinically significant genomic variants will require close collaboration among clinicians, geneticists and bioinformaticians. PMID:24706943

  10. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials

    PubMed Central

    Broomall, Stacey M.; Ait Ichou, Mohamed; Krepps, Michael D.; Johnsky, Lauren A.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; Betters, Janet L.; Redmond, Brady W.; Rivers, Bryan A.; Liem, Alvin T.; Hill, Jessica M.; Fochler, Edward T.; Roth, Pierce A.; Rosenzweig, C. Nicole; Skowronski, Evan W.

    2015-01-01

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. PMID:26567301

  11. GenomeVISTA—an integrated software package for whole-genome alignment and visualization

    PubMed Central

    Poliakov, Alexandre; Foong, Justin; Brudno, Michael; Dubchak, Inna

    2014-01-01

    Summary: With the ubiquitous generation of complete genome assemblies for a variety of species, efficient tools for whole-genome alignment along with user-friendly visualization are critically important. Our VISTA family of tools for comparative genomics, based on algorithms for pairwise and multiple alignments of genomic sequences and whole-genome assemblies, has become one of the standard techniques for comparative analysis. Most of the VISTA programs have been implemented as Web-accessible servers and are extensively used by the biomedical community. In this manuscript, we introduce GenomeVISTA: a novel implementation that incorporates most features of the VISTA family—fast and accurate alignment, visualization capabilities, GUI and analytical tools within a stand-alone software package. GenomeVISTA thus provides flexibility and security for users who need to conduct whole-genome comparisons on their own computers. Availability and implementation: Implemented in Perl, C/C++ and Java, the source code is freely available for download at the VISTA Web site: http://genome.lbl.gov/vista/ Contact: avpoliakov@lbl.gov or ildubchak@lbl.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24860159

  12. Whole Genome Mapping with Feature Sets from High-Throughput Sequencing Data

    PubMed Central

    Pan, Yonglong; Wang, Xiaoming; Liu, Lin; Wang, Hao; Luo, Meizhong

    2016-01-01

    A good physical map is essential to guide sequence assembly in de novo whole genome sequencing, especially when sequences are produced by high-throughput sequencing such as next-generation-sequencing (NGS) technology. We here present a novel method, Feature sets-based Genome Mapping (FGM). With FGM, physical map and draft whole genome sequences can be generated, anchored and integrated using the same data set of NGS sequences, independent of restriction digestion. Method model was created and parameters were inspected by simulations using the Arabidopsis genome sequence. In the simulations, when ~4.8X genome BAC library including 4,096 clones was used to sequence the whole genome, ~90% of clones were successfully connected to physical contigs, and 91.58% of genome sequences were mapped and connected to chromosomes. This method was experimentally verified using the existing physical map and genome sequence of rice. Of 4,064 clones covering 115 Mb sequence selected from ~3 tiles of 3 chromosomes of a rice draft physical map, 3,364 clones were reconstructed into physical contigs and 98 Mb sequences were integrated into the 3 chromosomes. The physical map-integrated draft genome sequences can provide permanent frameworks for eventually obtaining high-quality reference sequences by targeted sequencing, gap filling and combining other sequences. PMID:27611682

  13. Using Mendelian inheritance errors as quality control criteria in whole genome sequencing data set

    PubMed Central

    2014-01-01

    Although the technical and analytic complexity of whole genome sequencing is generally appreciated, best practices for data cleaning and quality control have not been defined. Family based data can be used to guide the standardization of specific quality control metrics in nonfamily based data. Given the low mutation rate, Mendelian inheritance errors are likely as a result of erroneous genotype calls. Thus, our goal was to identify the characteristics that determine Mendelian inheritance errors. To accomplish this, we used chromosome 3 whole genome sequencing family based data from the Genetic Analysis Workshop 18. Mendelian inheritance errors were provided as part of the GAW18 data set. Additionally, for binary variants we calculated Mendelian inheritance errors using PLINK. Based on our analysis, nonbinary single-nucleotide variants have an inherently high number of Mendelian inheritance errors. Furthermore, in binary variants, Mendelian inheritance errors are not randomly distributed. Indeed, we identified 3 Mendelian inheritance error peaks that were enriched with repetitive elements. However, these peaks can be lessened with the inclusion of a single filter from the sequencing file. In summary, we demonstrated that erroneous sequencing calls are nonrandomly distributed across the genome and quality control metrics can dramatically reduce the number of mendelian inheritance errors. Appropriate quality control will allow optimal use of genetic data to realize the full potential of whole genome sequencing. PMID:25519373

  14. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium

    PubMed Central

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž

    2016-01-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum. Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. PMID:27307293

  15. Personalized Oncogenomics: Clinical Experience with Malignant Peritoneal Mesothelioma Using Whole Genome Sequencing

    PubMed Central

    Sheffield, Brandon S.; Tinker, Anna V.; Shen, Yaoqing; Hwang, Harry; Li-Chang, Hector H.; Pleasance, Erin; Ch’ng, Carolyn; Lum, Amy; Lorette, Julie; McConnell, Yarrow J.; Sun, Sophie; Jones, Steven J. M.; Gown, Allen M.; Huntsman, David G.; Schaeffer, David F.; Churg, Andrew; Yip, Stephen; Laskin, Janessa; Marra, Marco A.

    2015-01-01

    Peritoneal mesothelioma is a rare and sometimes lethal malignancy that presents a clinical challenge for both diagnosis and management. Recent studies have led to a better understanding of the molecular biology of peritoneal mesothelioma. Translation of the emerging data into better treatments and outcome is needed. From two patients with peritoneal mesothelioma, we derived whole genome sequences, RNA expression profiles, and targeted deep sequencing data. Molecular data were made available for translation into a clinical treatment plan. Treatment responses and outcomes were later examined in the context of molecular findings. Molecular studies presented here provide the first reported whole genome sequences of peritoneal mesothelioma. Mutations in known mesothelioma-related genes NF2, CDKN2A, LATS2, amongst others, were identified. Activation of MET-related signaling pathways was demonstrated in both cases. A hypermutated phenotype was observed in one case (434 vs. 18 single nucleotide variants) and was associated with a favourable outcome despite sarcomatoid histology and multifocal disease. This study represents the first report of whole genome analyses of peritoneal mesothelioma, a key step in the understanding and treatment of this disease. PMID:25798586

  16. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    PubMed Central

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-01-01

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. PMID:27172215

  17. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    PubMed Central

    Shi, Jingsong; Jiang, Song; Qiu, Dandan; Le, Weibo; Wang, Xiao; Lu, Yinhui; Liu, Zhihong

    2016-01-01

    Objective. To investigate potential drugs for diabetic nephropathy (DN) using whole-genome expression profiles and the Connectivity Map (CMAP). Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs) between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1) A total of 1065 DEGs (FDR < 0.05 and fold change > 1.5) were found in late stage DN patients compared with early stage DN patients. (2) Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2), vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs), PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN. PMID:27069916

  18. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples.

    PubMed

    Cowell, Annie N; Loy, Dorothy E; Sundararaman, Sesh A; Valdivia, Hugo; Fisch, Kathleen; Lescano, Andres G; Baldeviano, G Christian; Durand, Salomon; Gerbasi, Vince; Sutherland, Colin J; Nolder, Debbie; Vinetz, Joseph M; Hahn, Beatrice H; Winzeler, Elizabeth A

    2017-02-07

    Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens.

  19. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples

    PubMed Central

    Loy, Dorothy E.; Sundararaman, Sesh A.; Valdivia, Hugo; Fisch, Kathleen; Lescano, Andres G.; Baldeviano, G. Christian; Durand, Salomon; Gerbasi, Vince; Sutherland, Colin J.; Nolder, Debbie; Vinetz, Joseph M.; Hahn, Beatrice H.

    2017-01-01

    ABSTRACT Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. PMID:28174312

  20. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS

    PubMed Central

    2013-01-01

    Background The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward understanding how biological networks evolve and generate emergent phenotypes. However, experimental identification of PPIs is a laborious and error-prone process, and current methods of PPI prediction tend to be highly conservative or require large amounts of functional data that may not be available for newly-sequenced organisms. Results In this study we demonstrate a random-forest based technique, ENTS, for the computational prediction of protein-protein interactions based only on primary sequence data. Our approach is able to efficiently predict interactions on a whole-genome scale for any eukaryotic organism, using pairwise combinations of conserved domains and predicted subcellular localization of proteins as input features. We present the first predicted interactome for the forest tree Populus trichocarpa in addition to the predicted interactomes for Saccharomyces cerevisiae, Homo sapiens, Mus musculus, and Arabidopsis thaliana. Comparing our approach to other PPI predictors, we find that ENTS performs comparably to or better than a number of existing approaches, including several that utilize a variety of functional information for their predictions. We also find that the predicted interactions are biologically meaningful, as indicated by similarity in functional annotations and enrichment of co-expressed genes in public microarray datasets. Furthermore, we demonstrate some of the biological insights that can be gained from these predicted interaction networks. We show that the predicted interactions yield informative groupings of P. trichocarpa metabolic pathways, literature-supported associations among human disease states, and theory-supported insight into the evolutionary dynamics of duplicated genes in paleopolyploid plants. Conclusion We conclude that the ENTS classifier will be a valuable tool for the de novo annotation of genome

  1. A Study on Pedagogical Requirements for Multi-platform Learning Objects

    NASA Astrophysics Data System (ADS)

    Behar, Patricia Alejandra; Passerino, Liliana Maria; de Castro E Souza Frozi, Ana Paula Frozi; de Oliveira Dias, Cristiani; da Silva, Ketia Kellen Araújo

    This study presents the development of a proposal of pedagogical requirements for multi-platform learning objects (LO). It aims at providing a debate on the importance of such pedagogical requirements in the development and construction of LOs. It also demonstrates an analysis of these requirements performed with a built learning object operating in the Web, digital TV (DTV) and cell phone.

  2. Whole-Genome Shotgun Sequence of Escherichia coli Strain MN067 from India, a Commensal Bacterium with Potent Pathogenic Ability

    PubMed Central

    Nagarjuna, Daram; Gaind, Rajni; Dhanda, Rakesh Singh

    2017-01-01

    ABSTRACT Escherichia coli is one of the most frequently prevalent pathogens, causing infections in health care settings throughout the world. Here, we report the whole-genome sequence of MN067, a commensal bacterium with a pathogenic potential. PMID:28336596

  3. Whole-Genome Sequence of Enteractinococcus helveticum sp. nov. Strain UASWS1574 Isolated from Industrial Used Waters

    PubMed Central

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien

    2016-01-01

    We report here the whole-genome shotgun sequences of the strain UASWS1574 of the undescribed Enteractinococcus helveticum sp. nov., isolated from used water. This is the first genome registered for the whole genus. PMID:27469945

  4. A rapid whole genome sequencing and analysis system supporting genomic epidemiology (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    FitzGerald, Michael [Broad Institute

    2016-07-12

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  5. A rapid whole genome sequencing and analysis system supporting genomic epidemiology (7th Annual SFAF Meeting, 2012)

    SciTech Connect

    FitzGerald, Michael

    2012-06-01

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia.

    PubMed

    Pak, Theodore R; Altman, Deena R; Attie, Oliver; Sebra, Robert; Hamula, Camille L; Lewis, Martha; Deikus, Gintaras; Newman, Leah C; Fang, Gang; Hand, Jonathan; Patel, Gopi; Wallach, Fran; Schadt, Eric E; Huprikar, Shirish; van Bakel, Harm; Kasarskis, Andrew; Bashir, Ali

    2015-11-01

    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy.

  7. Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome

    PubMed Central

    2012-01-01

    Background The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome. Results We identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks. Conclusions This list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals. PMID:22747675

  8. Postzygotic single-nucleotide mosaicisms in whole-genome sequences of clinically unremarkable individuals

    PubMed Central

    Huang, August Y; Xu, Xiaojing; Ye, Adam Y; Wu, Qixi; Yan, Linlin; Zhao, Boxun; Yang, Xiaoxu; He, Yao; Wang, Sheng; Zhang, Zheng; Gu, Bowen; Zhao, Han-Qing; Wang, Meng; Gao, Hua; Gao, Ge; Zhang, Zhichao; Yang, Xiaoling; Wu, Xiru; Zhang, Yuehua; Wei, Liping

    2014-01-01

    Postzygotic single-nucleotide mutations (pSNMs) have been studied in cancer and a few other overgrowth human disorders at whole-genome scale and found to play critical roles. However, in clinically unremarkable individuals, pSNMs have never been identified at whole-genome scale largely due to technical difficulties and lack of matched control tissue samples, and thus the genome-wide characteristics of pSNMs remain unknown. We developed a new Bayesian-based mosaic genotyper and a series of effective error filters, using which we were able to identify 17 SNM sites from ∼80× whole-genome sequencing of peripheral blood DNAs from three clinically unremarkable adults. The pSNMs were thoroughly validated using pyrosequencing, Sanger sequencing of individual cloned fragments, and multiplex ligation-dependent probe amplification. The mutant allele fraction ranged from 5%-31%. We found that C→T and C→A were the predominant types of postzygotic mutations, similar to the somatic mutation profile in tumor tissues. Simulation data showed that the overall mutation rate was an order of magnitude lower than that in cancer. We detected varied allele fractions of the pSNMs among multiple samples obtained from the same individuals, including blood, saliva, hair follicle, buccal mucosa, urine, and semen samples, indicating that pSNMs could affect multiple sources of somatic cells as well as germ cells. Two of the adults have children who were diagnosed with Dravet syndrome. We identified two non-synonymous pSNMs in SCN1A, a causal gene for Dravet syndrome, from these two unrelated adults and found that the mutant alleles were transmitted to their children, highlighting the clinical importance of detecting pSNMs in genetic counseling. PMID:25312340

  9. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.

    PubMed

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-02-04

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.

  10. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-01-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  11. Whole-Genome Sequencing for Detecting Antimicrobial Resistance in Nontyphoidal Salmonella

    PubMed Central

    Tyson, Gregory H.; Kabera, Claudine; Chen, Yuansha; Li, Cong; Folster, Jason P.; Ayers, Sherry L.; Lam, Claudia; Tate, Heather P.; Zhao, Shaohua

    2016-01-01

    Laboratory-based in vitro antimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidal Salmonella and correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred forty Salmonella of 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n = 59) in the 104 human isolates than in the 536 retail meat isolates (n = 36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum β-lactamases (ESBLs) (blaCTX-M1 and blaSHV2a) in retail meat isolates of Salmonella in the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidal Salmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations. PMID:27381390

  12. Meta-analysis of general bacterial subclades in whole-genome phylogenies using tree topology profiling.

    PubMed

    Meinel, Thomas; Krause, Antje

    2012-01-01

    In the last two decades, a large number of whole-genome phylogenies have been inferred to reconstruct the Tree of Life (ToL). Underlying data models range from gene or functionality content in species to phylogenetic gene family trees and multiple sequence alignments of concatenated protein sequences. Diversity in data models together with the use of different tree reconstruction techniques, disruptive biological effects and the steadily increasing number of genomes have led to a huge diversity in published phylogenies. Comparison of those and, moreover, identification of the impact of inference properties (underlying data model, inference technique) on particular reconstructions is almost impossible. In this work, we introduce tree topology profiling as a method to compare already published whole-genome phylogenies. This method requires visual determination of the particular topology in a drawn whole-genome phylogeny for a set of particular bacterial clans. For each clan, neighborhoods to other bacteria are collected into a catalogue of generalized alternative topologies. Particular topology alternatives found for an ordered list of bacterial clans reveal a topology profile that represents the analyzed phylogeny. To simulate the inhomogeneity of published gene content phylogenies we generate a set of seven phylogenies using different inference techniques and the SYSTERS-PhyloMatrix data model. After tree topology profiling on in total 54 selected published and newly inferred phylogenies, we separate artefactual from biologically meaningful phylogenies and associate particular inference results (phylogenies) with inference background (inference techniques as well as data models). Topological relationships of particular bacterial species groups are presented. With this work we introduce tree topology profiling into the scientific field of comparative phylogenomics.

  13. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  14. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    SciTech Connect

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; Fahrenbach, John P.; Nelakuditi, Viswateja; Pesce, Lorenzo L.; Pytel, Peter; McNally, Elizabeth M.

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.

  15. Whole-genome resequencing of 100 healthy individuals using DNA pooling

    PubMed Central

    Wang, Xiaobin; Sui, Weiguo; Wu, Weiqing; Hou, Xianliang; Ou, Minglin; Xiang, Yueying; Dai, Yong

    2016-01-01

    With the advent of next-generation sequencing technology, the cost of sequencing has significantly decreased. However, sequencing costs remain high for large-scale studies. In the present study, DNA pooling was applied as a cost-effective strategy for sequencing. The sequencing results for 100 healthy individuals obtained via whole-genome resequencing and using DNA pooling are presented in the present study. In order to minimise the likelihood of systematic bias in sampling, paired-end libraries with an insert size of 500 bp were prepared for all samples and then subjected to whole-genome sequencing using four lanes for each library and resulting in at least a 30-fold haploid coverage for each sample. The NCBI human genome build37 (hg19) was used as a reference genome for the present study and the short reads were aligned to the reference genome achieving 99.84% coverage. In addition, the average sequencing depth was 32.76. In total, ~3 million single-nucleotide polymorphisms were identified, of which 99.88% were in the NCBI dbSNP database. Furthermore, ~600,000 small insertion/deletions, 500,000 structure variants, 5,000 copy number variations and 13,000 single nucleotide variants were identified. According to the present study, the whole genome has been sequenced for a small sample subjects from southern China for the first time. Furthermore, new variation sites were identified by comparing with the reference sequence, and new knowledge of the human genome variation was added to the human genomic databases. Furthermore, the particular distribution regions of variation were illustrated by analyzing various sites of variation, such as single-nucleotide polymorphisms. PMID:27882129

  16. Whole genome comparative analysis of channel catfish (Ictalurus punctatus) with four model fish species

    PubMed Central

    2013-01-01

    Background Comparative mapping is a powerful tool to study evolution of genomes. It allows transfer of genome information from the well-studied model species to non-model species. Catfish is an economically important aquaculture species in United States. A large amount of genome resources have been developed from catfish including genetic linkage maps, physical maps, BAC end sequences (BES), integrated linkage and physical maps using BES-derived markers, physical map contig-specific sequences, and draft genome sequences. Application of such genome resources should allow comparative analysis at the genome scale with several other model fish species. Results In this study, we conducted whole genome comparative analysis between channel catfish and four model fish species with fully sequenced genomes, zebrafish, medaka, stickleback and Tetraodon. A total of 517 Mb draft genome sequences of catfish were anchored to its genetic linkage map, which accounted for 62% of the total draft genome sequences. Based on the location of homologous genes, homologous chromosomes were determined among catfish and the four model fish species. A large number of conserved syntenic blocks were identified. Analysis of the syntenic relationships between catfish and the four model fishes supported that the catfish genome is most similar to the genome of zebrafish. Conclusion The organization of the catfish genome is similar to that of the four teleost species, zebrafish, medaka, stickleback, and Tetraodon such that homologous chromosomes can be identified. Within each chromosome, extended syntenic blocks were evident, but the conserved syntenies at the chromosome level involve extensive inter-chromosomal and intra-chromosomal rearrangements. This whole genome comparative map should facilitate the whole genome assembly and annotation in catfish, and will be useful for genomic studies of various other fish species. PMID:24215161

  17. Using Whole Genome Analysis to Examine Recombination across Diverse Sequence Types of Staphylococcus aureus

    PubMed Central

    Driebe, Elizabeth M.; Sahl, Jason W.; Roe, Chandler; Bowers, Jolene R.; Schupp, James M.; Gillece, John D.; Kelley, Erin; Price, Lance B.; Pearson, Talima R.; Hepp, Crystal M.; Brzoska, Pius M.; Cummings, Craig A.; Furtado, Manohar R.; Andersen, Paal S.; Stegger, Marc; Engelthaler, David M.; Keim, Paul S.

    2015-01-01

    Staphylococcus aureus is an important clinical pathogen worldwide and understanding this organism's phylogeny and, in particular, the role of recombination, is important both to understand the overall spread of virulent lineages and to characterize outbreaks. To further elucidate the phylogeny of S. aureus, 35 diverse strains were sequenced using whole genome sequencing. In addition, 29 publicly available whole genome sequences were included to create a single nucleotide polymorphism (SNP)-based phylogenetic tree encompassing 11 distinct lineages. All strains of a particular sequence type fell into the same clade with clear groupings of the major clonal complexes of CC8, CC5, CC30, CC45 and CC1. Using a novel analysis method, we plotted the homoplasy density and SNP density across the whole genome and found evidence of recombination throughout the entire chromosome, but when we examined individual clonal lineages we found very little recombination. However, when we analyzed three branches of multiple lineages, we saw intermediate and differing levels of recombination between them. These data demonstrate that in S. aureus, recombination occurs across major lineages that subsequently expand in a clonal manner. Estimated mutation rates for the CC8 and CC5 lineages were different from each other. While the CC8 lineage rate was similar to previous studies, the CC5 lineage was 100-fold greater. Fifty known virulence genes were screened in all genomes in silico to determine their distribution across major clades. Thirty-three genes were present variably across clades, most of which were not constrained by ancestry, indicating horizontal gene transfer or gene loss. PMID:26161978

  18. A generic assay for whole-genome amplification and deep sequencing of enterovirus A71.

    PubMed

    Tan, Le Van; Tuyen, Nguyen Thi Kim; Thanh, Tran Tan; Ngan, Tran Thuy; Van, Hoang Minh Tu; Sabanathan, Saraswathy; Van, Tran Thi My; Thanh, Le Thi My; Nguyet, Lam Anh; Geoghegan, Jemma L; Ong, Kien Chai; Perera, David; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Anh, Nguyen To; Ha, Do Quang; Qui, Phan Tu; Viet, Do Chau; Tuan, Ha Manh; Wong, Kum Thong; Holmes, Edward C; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H Rogier

    2015-04-01

    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.

  19. Sequence determination from overlapping fragments: a simple model of whole-genome shotgun sequencing.

    PubMed

    Derrida, Bernard; Fink, Thomas M A

    2002-02-11

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  20. When aging meets microgravity: whole genome promoters and enchancers transcription landscape in zebrafish onboard ISS

    NASA Astrophysics Data System (ADS)

    Arshanovskii, Kirill; Gusev, Oleg; Sychev, Vladimir; Poddubko, Svetlana; Deviatiiarov, Ruslan

    2016-07-01

    In order to gen new insights of gene regulation changes under conditions of real spaceflight, we have conducted whole-genome analysis of dynamic of promotes and enhancers transcriptional changes in zebrafish during prolonged exposure to real spaceflight. In the frame of Russia-Japan joint experiments "Aquatic Habitat"-"Aquarium" we have conducted Cap Analysis of Gene Expression (CAGE) assay of zebrafish in the rage from 7 to 40 days of real spaceflight onboard ISS. The analysis showed that both gene expression patterns and architecture of shapes and types of the promoters are affected by spaceflight environment.

  1. Whole-Genome Sequence for Methicillin-Resistant Staphylococcus aureus Strain ATCC BAA-1680.

    PubMed

    Daum, Luke T; Bumah, Violet V; Masson-Meyers, Daniela S; Khubbar, Manjeet; Rodriguez, John D; Fischer, Gerald W; Enwemeka, Chukuka S; Gradus, Steve; Bhattacharyya, Sanjib

    2015-03-12

    We report here the whole-genome sequence of the USA300 strain of methicillin-resistant Staphylococcus aureus (MRSA), designated ATCC BAA-1680, and commonly referred to as community-associated MRSA (CA-MRSA). This clinical MRSA isolate is commercially available from the American Type Culture Collection (ATCC) and is widely utilized as a control strain for research applications and clinical diagnosis. The isolate was propagated in ATCC medium 18, tryptic soy agar, and has been utilized as a model S. aureus strain in several studies, including MRSA genetic analysis after irradiation with 470-nm blue light.

  2. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens.

    PubMed

    Bayliss, Sion C; Verner-Jeffreys, David W; Bartie, Kerry L; Aanensen, David M; Sheppard, Samuel K; Adams, Alexandra; Feil, Edward J

    2017-01-01

    Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.

  3. Genetic linkage analysis in the age of whole-genome sequencing

    PubMed Central

    Ott, Jurg; Wang, Jing; Leal, Suzanne M.

    2015-01-01

    For many years, linkage analysis was the primary tool used for the genetic mapping of Mendelian and complex traits with familial aggregation. Linkage analysis was largely supplanted by the wide adoption of genome-wide association studies (GWASs). However, with the recent increased use of whole-genome sequencing (WGS), linkage analysis is again emerging as an important and powerful analysis method for the identification of genes involved in disease aetiology, often in conjunction with WGS filtering approaches. Here, we review the principles of linkage analysis and provide practical guidelines for carrying out linkage studies using WGS data. PMID:25824869

  4. The Future of Whole-Genome Sequencing for Public Health and the Clinic

    PubMed Central

    2016-01-01

    An American Society for Microbiology (ASM) conference titled the Conference on Rapid Next-Generation Sequencing and Bioinformatic Pipelines for Enhanced Molecular Epidemiological Investigation of Pathogens provided a venue for discussing how technologies surrounding whole-genome sequencing (WGS) are advancing microbiology. Several applications in microbial taxonomy, microbial forensics, and genomics for public health pathogen surveillance were presented at the meeting and are reviewed. All of these studies document that WGS is revolutionizing applications in microbiology and that the impact of these technologies will be profound. ASM is providing support mechanisms to promote discussions of WGS techniques to foster applications and interpretations. PMID:27307454

  5. Association analysis of whole genome sequencing data accounting for longitudinal and family designs.

    PubMed

    Hu, Yijuan; Hui, Qin; Sun, Yan V

    2014-01-01

    Using the whole genome sequencing data and the simulated longitudinal phenotypes for 849 pedigree-based individuals from Genetic Analysis Workshop 18, we investigated various approaches to detecting the association of rare and common variants with blood pressure traits. We compared three strategies for longitudinal data: (a) using the baseline measurement only, (b) using the average from multiple visits, and (c) using all individual measurements. We also compared the power of using all of the pedigree-based data and the unrelated subset. The analyses were performed without knowledge of the underlying simulating model.

  6. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  7. Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing

    PubMed Central

    Brunker, Kirstyn; Marston, Denise A; Horton, Daniel L; Cleaveland, Sarah; Fooks, Anthony R; Kazwala, Rudovick; Ngeleja, Chanasa; Lembo, Tiziana; Sambo, Maganga; Mtema, Zacharia J; Sikana, Lwitiko; Wilkie, Gavin; Biek, Roman; Hampson, Katie

    2015-01-01

    Many of the pathogens perceived to pose the greatest risk to humans are viral zoonoses, responsible for a range of emerging and endemic infectious diseases. Phylogeography is a useful tool to understand the processes that give rise to spatial patterns and drive dynamics in virus populations. Increasingly, whole-genome information is being used to uncover these patterns, but the limits of phylogenetic resolution that can be achieved with this are unclear. Here, whole-genome variation was used to uncover fine-scale population structure in endemic canine rabies virus circulating in Tanzania. This is the first whole-genome population study of rabies virus and the first comprehensive phylogenetic analysis of rabies virus in East Africa, providing important insights into rabies transmission in an endemic system. In addition, sub-continental scale patterns of population structure were identified using partial gene data and used to determine population structure at larger spatial scales in Africa. While rabies virus has a defined spatial structure at large scales, increasingly frequent levels of admixture were observed at regional and local levels. Discrete phylogeographic analysis revealed long-distance dispersal within Tanzania, which could be attributed to human-mediated movement, and we found evidence of multiple persistent, co-circulating lineages at a very local scale in a single district, despite on-going mass dog vaccination campaigns. This may reflect the wider endemic circulation of these lineages over several decades alongside increased admixture due to human-mediated introductions. These data indicate that successful rabies control in Tanzania could be established at a national level, since most dispersal appears to be restricted within the confines of country borders but some coordination with neighbouring countries may be required to limit transboundary movements. Evidence of complex patterns of rabies circulation within Tanzania necessitates the use of whole-genome

  8. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens

    PubMed Central

    Bayliss, Sion C.; Verner-Jeffreys, David W.; Bartie, Kerry L.; Aanensen, David M.; Sheppard, Samuel K.; Adams, Alexandra; Feil, Edward J.

    2017-01-01

    Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools. PMID:28217117

  9. Using Multiplex PCR for Assessing the Quality of Whole Genome Amplified DNA.

    PubMed

    El-Heliebi, Amin; Chen, Shukun; Kroneis, Thomas

    2015-01-01

    This chapter describes a simple and inexpensive multiplex PCR-based method to assess the quality of whole genome amplification (WGA) products generated from heat-induced random fragmented DNA. A set of four primer pairs is used to amplify DNA sequences of WGA products in and downstream of GAPDH gene in yielding 100, 200, 300, and 400 bp fragments. PCR products are analyzed by agarose gel electrophoresis and the respective WGA quality is classified according to the number of obtained PCR bands. WGA products that yield three or four PCR bands are considered to be of high quality and yield good results when analyzed by means of array comparative genome hybridization (CGH).

  10. Random-primed, Phi29 DNA polymerase-based whole genome amplification.

    PubMed

    Nelson, John R

    2014-01-06

    Whole-genome amplification by multiple displacement amplification (MDA) is a patented method to generate potentially unlimited genomic material when researchers are challenged with trace samples, or the amount of genomic DNA required for analysis exceeds the amount on hand. It is an isothermal reaction, using Phi29 DNA polymerase and random hexamer primers for unbiased amplification of linear DNA molecules, such as genomic DNA. The random-primed MDA reaction provides extensive amplification coverage of the genome, generates extremely long DNA products, and provides high DNA yields. This unit explains the reaction, and describes use of the commercial kits available.

  11. Whole genome analysis provides evidence for porcine-to-simian interspecies transmission of rotavirus-A.

    PubMed

    Navarro, Ryan; Aung, Meiji Soe; Cruz, Katalina; Ketzis, Jennifer; Gallagher, Christa Ann; Beierschmitt, Amy; Malik, Yashpal Singh; Kobayashi, Nobumichi; Ghosh, Souvik

    2017-04-01

    We report here whole genome analysis of a porcine rotavirus-A (RVA) strain RVA/Pig-wt/KNA/ET8B/2015/G5P[13] detected in a diarrheic piglet, and nearly whole genome (except for VP4 gene) analysis of a simian RVA strain RVA/Simian-wt/KNA/08979/2015/G5P[X] detected in a non-diarrheic African green monkey (AGM) on the island of St. Kitts, Caribbean region. Strain ET8B exhibited a G5-P[13]-I5-R1-C1-M1-A8-N1-T7-E1-H1 genotype constellation that was identical to those of Brazilian porcine RVA G5P[13] strains RVA/Pig-wt/BRA/ROTA01/2013/G5P[13] and RVA/Pig-wt/BRA/ROTA07/2013/G5P[13], the only porcine G5P[13] RVAs that have been analyzed for the whole genome so far. Phylogenetically, all the 11 gene segments of ET8B were closely related to those of porcine and porcine-like human RVAs within the respective genotypes. Although the porcine G5P[13] RVAs exhibited identical genotype constellations, ET8B did not appear to share common evolutionary pathways with the Brazilian porcine G5P[13] RVAs. Interestingly, the VP2, VP3, VP6, VP7, and NSP1-NSP5 genes of simian RVA strain 08979 were closely related to those of porcine and porcine-like human RVA strains, exhibiting 99%-100% nucleotide sequence identities to cognate genes of co-circulating porcine RVA strain ET8B. On the other hand, the VP1 of 08979 appeared to be genetically divergent from porcine and human RVAs within the R1 genotype, and its exact origin could not be ascertained. Taken together, these observations suggested that simian strain 08979 might have been derived from interspecies transmission events involving transmission of ET8B-like RVAs from pigs to AGMs. In St. Kitts, AGMs often stray from the wild into livestock farms. Therefore, it may be possible that the AGM acquired the infection from a pig farm on the island. To our knowledge, this is the first report on detection of porcine-like RVAs in monkeys. Also, the present study is the first to report whole genomic analysis of a porcine RVA strain from the Caribbean

  12. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing.

    PubMed

    Ranjan, Ravi; Rani, Asha; Metwally, Ahmed; McGee, Halvor S; Perkins, David L

    2016-01-22

    The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 10(6) reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.

  13. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE PAGES

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus.more » Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  14. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition

    PubMed Central

    Jemaà, Mohamed; Manic, Gwenola; Lledo, Gwendaline; Lissa, Delphine; Reynes, Christelle; Morin, Nathalie; Chibon, Frédéric; Sistigu, Antonella; Castedo, Maria; Vitale, Ilio; Kroemer, Guido; Abrieu, Ariane

    2016-01-01

    Several lines of evidence indicate that whole-genome duplication resulting in tetraploidy facilitates carcinogenesis by providing an intermediate and metastable state more prone to generate oncogenic aneuploidy. Here, we report a novel strategy to preferentially kill tetraploid cells based on the abrogation of the spindle assembly checkpoint (SAC) via the targeting of TTK protein kinase (better known as monopolar spindle 1, MPS1). The pharmacological inhibition as well as the knockdown of MPS1 kills more efficiently tetraploid cells than their diploid counterparts. By using time-lapse videomicroscopy, we show that tetraploid cells do not survive the aborted mitosis due to SAC abrogation upon MPS1 depletion. On the contrary diploid cells are able to survive up to at least two more cell cycles upon the same treatment. This effect might reflect the enhanced difficulty of cells with whole-genome doubling to tolerate a further increase in ploidy and/or an elevated level of chromosome instability in the absence of SAC functions. We further show that MPS1-inhibited tetraploid cells promote mitotic catastrophe executed by the intrinsic pathway of apoptosis, as indicated by the loss of mitochondrial potential, the release of the pro-apoptotic cytochrome c from mitochondria, and the activation of caspases. Altogether, our results suggest that MPS1 inhibition could be used as a therapeutic strategy for targeting tetraploid cancer cells. PMID:26637805

  15. Computel: computation of mean telomere length from whole-genome next-generation sequencing data.

    PubMed

    Nersisyan, Lilit; Arakelyan, Arsen

    2015-01-01

    Telomeres are the ends of eukaryotic chromosomes, consisting of consecutive short repeats that protect chromosome ends from degradation. Telomeres shorten with each cell division, leading to replicative cell senescence. Deregulation of telomere length homeostasis is associated with the development of various age-related diseases and cancers. A number of experimental techniques exist for telomere length measurement; however, until recently, the absence of tools for extracting telomere lengths from high-throughput sequencing data has significantly obscured the association of telomere length with molecular processes in normal and diseased conditions. We have developed Computel, a program in R for computing mean telomere length from whole-genome next-generation sequencing data. Computel is open source, and is freely available at https://github.com/lilit-nersisyan/computel. It utilizes a short-read alignment-based approach and integrates various popular tools for sequencing data analysis. We validated it with synthetic and experimental data, and compared its performance with the previously available software. The results have shown that Computel outperforms existing software in accuracy, independence of results from sequencing conditions, stability against inherent sequencing errors, and better ability to distinguish pure telomeric sequences from interstitial telomeric repeats. By providing a highly reliable methodology for determining telomere lengths from whole-genome sequencing data, Computel should help to elucidate the role of telomeres in cellular health and disease.

  16. Whole genome resequencing of a laboratory-adapted Drosophila melanogaster population sample.

    PubMed

    Gilks, William P; Pennell, Tanya M; Flis, Ilona; Webster, Matthew T; Morrow, Edward H

    2016-01-01

    As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly ( Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LH M). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics ( https://zenodo.org/communities/sussex_drosophila_sequencing/).

  17. Whole genome DNA methylation analysis based on high throughput sequencing technology.

    PubMed

    Li, Ning; Ye, Mingzhi; Li, Yingrui; Yan, Zhixiang; Butcher, Lee M; Sun, Jihua; Han, Xu; Chen, Quan; Zhang, Xiuqing; Wang, Jun

    2010-11-01

    There are numerous approaches to decipher a whole genome DNA methylation profile ("methylome"), each varying in cost, throughput and resolution. The gold standard of these methods, whole genome bisulfite-sequencing (BS-seq), involves treatment of DNA with sodium bisulfite combined with subsequent high throughput sequencing. Using BS-seq, we generated a single-base-resolution methylome in human peripheral blood mononuclear cells (in press). This BS-seq map was then used as the reference methylome to compare two alternative sequencing-based methylome assays (performed on the same donor of PBMCs): methylated DNA immunoprecipitation (MeDIP-seq) and methyl-binding protein (MBD-seq). In our analysis, we found that MeDIP-seq and MBD-seq are complementary strategies, with MeDIP-seq more sensitive to highly methylated, high-CpG densities and MDB-seq more sensitive to highly methylated, moderate-CpG densities. Taking into account the size of a mammalian genome and the current expense of sequencing, we feel 3gigabases (Gbp) 45bp paired-end MeDIP-seq or MBD-seq uniquely mapped reads is the minimum requirement and cost-effective strategy for methylome pattern analysis.

  18. Whole genome resequencing of a laboratory-adapted Drosophila melanogaster population sample

    PubMed Central

    Gilks, William P.; Pennell, Tanya M.; Flis, Ilona; Webster, Matthew T.; Morrow, Edward H.

    2016-01-01

    As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly ( Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LH M). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics ( https://zenodo.org/communities/sussex_drosophila_sequencing/). PMID:27928499

  19. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing?

    PubMed Central

    Robins-Browne, Roy M.; Holt, Kathryn E.; Ingle, Danielle J.; Hocking, Dianna M.; Yang, Ji; Tauschek, Marija

    2016-01-01

    The empirical and pragmatic nature of diagnostic microbiology has given rise to several different schemes to subtype E.coli, including biotyping, serotyping, and pathotyping. These schemes have proved invaluable in identifying and tracking outbreaks, and for prognostication in individual cases of infection, but they are imprecise and potentially misleading due to the malleability and continuous evolution of E. coli. Whole genome sequencing can be used to accurately determine E. coli subtypes that are based on allelic variation or differences in gene content, such as serotyping and pathotyping. Whole genome sequencing also provides information about single nucleotide polymorphisms in the core genome of E. coli, which form the basis of sequence typing, and is more reliable than other systems for tracking the evolution and spread of individual strains. A typing scheme for E. coli based on genome sequences that includes elements of both the core and accessory genomes, should reduce typing anomalies and promote understanding of how different varieties of E. coli spread and cause disease. Such a scheme could also define pathotypes more precisely than current methods. PMID:27917373

  20. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data.

    PubMed

    Dewey, Frederick E; Grove, Megan E; Priest, James R; Waggott, Daryl; Batra, Prag; Miller, Clint L; Wheeler, Matthew; Zia, Amin; Pan, Cuiping; Karzcewski, Konrad J; Miyake, Christina; Whirl-Carrillo, Michelle; Klein, Teri E; Datta, Somalee; Altman, Russ B; Snyder, Michael; Quertermous, Thomas; Ashley, Euan A

    2015-10-01

    High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.

  1. Whole-Genome Mapping as a Novel High-Resolution Typing Tool for Legionella pneumophila.

    PubMed

    Bosch, Thijs; Euser, Sjoerd M; Landman, Fabian; Bruin, Jacob P; IJzerman, Ed P; den Boer, Jeroen W; Schouls, Leo M

    2015-10-01

    Legionella is the causative agent for Legionnaires' disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h.

  2. Whole genome phylogeny of Prochlorococcus marinus group of cyanobacteria: genome alignment and overlapping gene approach.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K; Rai, Anil

    2014-06-01

    Prochlorococcus is the smallest known oxygenic phototrophic marine cyanobacterium dominating the mid-latitude oceans. Physiologically and genetically distinct P. marinus isolates from many oceans in the world were assigned two different groups, a tightly clustered high-light (HL)-adapted and a divergent low-light (LL-) adapted clade. Phylogenetic analysis of this cyanobacterium on the basis of 16S rRNA and other conserved genes did not show consistency with its phenotypic behavior. We analyzed phylogeny of this genus on the basis of complete genome sequences through genome alignment, overlapping-gene content and gene-order approach. Phylogenetic tree of P. marinus obtained by comparing whole genome sequences in contrast to that based on 16S rRNA gene, corresponded well with the HL/LL ecotypic distinction of twelve strains and showed consistency with phenotypic classification of P. marinus. Evidence for the horizontal descent and acquisition of genes within and across the genus was observed. Many genes involved in metabolic functions were found to be conserved across these genomes and many were continuously gained by different strains as per their needs during the course of their evolution. Consistency in the physiological and genetic phylogeny based on whole genome sequence is established. These observations improve our understanding about the adaptation and diversification of these organisms under evolutionary pressure.

  3. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    PubMed Central

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-01-01

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains. PMID:22384341

  4. Whole Genome Sequence Typing to Investigate the Apophysomyces Outbreak following a Tornado in Joplin, Missouri, 2011

    PubMed Central

    Etienne, Kizee A.; Gillece, John; Hilsabeck, Remy; Schupp, Jim M.; Colman, Rebecca; Lockhart, Shawn R.; Gade, Lalitha; Thompson, Elizabeth H.; Sutton, Deanna A.; Neblett-Fanfair, Robyn; Park, Benjamin J.; Turabelidze, George; Keim, Paul; Brandt, Mary E.; Deak, Eszter; Engelthaler, David M.

    2012-01-01

    Case reports of Apophysomyces spp. in immunocompetent hosts have been a result of traumatic deep implantation of Apophysomyces spp. spore-contaminated soil or debris. On May 22, 2011 a tornado occurred in Joplin, MO, leaving 13 tornado victims with Apophysomyces trapeziformis infections as a result of lacerations from airborne material. We used whole genome sequence typing (WGST) for high-resolution phylogenetic SNP analysis of 17 outbreak Apophysomyces isolates and five additional temporally and spatially diverse Apophysomyces control isolates (three A. trapeziformis and two A. variabilis isolates). Whole genome SNP phylogenetic analysis revealed three clusters of genotypically related or identical A. trapeziformis isolates and multiple distinct isolates among the Joplin group; this indicated multiple genotypes from a single or multiple sources. Though no linkage between genotype and location of exposure was observed, WGST analysis determined that the Joplin isolates were more closely related to each other than to the control isolates, suggesting local population structure. Additionally, species delineation based on WGST demonstrated the need to reassess currently accepted taxonomic classifications of phylogenetic species within the genus Apophysomyces. PMID:23209631

  5. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    PubMed Central

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  6. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    PubMed

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype.

  7. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing

    PubMed Central

    Ranjan, Ravi; Rani, Asha; Metwally, Ahmed; McGee, Halvor S.; Perkins, David L.

    2016-01-01

    The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1×106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. PMID:26718401

  8. Whole-Genome Sequencing Analysis of Sapovirus Detected in South Korea.

    PubMed

    Choi, Hye Lim; Suh, Chang-Il; Park, Seung-Won; Jin, Ji-Young; Cho, Han-Gil; Paik, Soon-Young

    2015-01-01

    Sapovirus (SaV), a virus residing in the intestines, is one of the important causes of gastroenteritis in human beings. Human SaV genomes are classified into various genogroups and genotypes. Whole-genome analysis and phylogenetic analysis of ROK62, the SaV isolated in South Korea, were carried out. The ROK62 genome of 7429 nucleotides contains 3 open-reading frames (ORF). The genotype of ROK62 is SaV GI-1, and 94% of its nucleotide sequence is identical with other SaVs, namely Manchester and Mc114. Recently, SaV infection has been on the rise throughout the world, particularly in countries neighboring South Korea; however, very few academic studies have been done nationally. As the first whole-genome sequence analysis of SaV in South Korea, this research will help provide reference for the detection of recombination, tracking of epidemic spread, and development of diagnosis methods for SaV.

  9. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  10. Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L.) via Whole-Genome Resequencing

    PubMed Central

    Bowers, John E.; Pearl, Stephanie A.; Burke, John M.

    2016-01-01

    Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs) of a cross between safflower (Carthamus tinctorius L.) and its wild progenitor (C. palaestinus Eig). We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds) of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads from the RILs were mapped to this genome assembly to facilitate SNP identification, and the resulting polymorphisms were used to construct a genetic map. The resulting map included 2,008,196 genetically located SNPs in 1178 unique positions. A total of 57,270 scaffolds, each containing five or more mapped SNPs, were anchored to the map. This resulted in the assignment of sequence covering 14% of the expected genome length to a genetic position. Comparison of this safflower map to genetic maps of sunflower and lettuce revealed numerous chromosomal rearrangements, and the resulting patterns were consistent with a whole-genome duplication event in the lineage leading to sunflower. This sequence-based genetic map provides a powerful tool for the assembly of a low-cost draft genome of safflower, and the same general approach is expected to work for other species. PMID:27226165

  11. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage. PMID:27152421

  12. Whole-genome single-nucleotide-polymorphism analysis for discrimination of Clostridium botulinum group I strains.

    PubMed

    Gonzalez-Escalona, Narjol; Timme, Ruth; Raphael, Brian H; Zink, Donald; Sharma, Shashi K

    2014-04-01

    Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA(+) OrfX(-)) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA(-) OrfX(+)) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA(+) OrfX(-) cluster (69A and 32A) and one strain with the HA(-) OrfX(+) cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.

  13. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku

    PubMed Central

    Baym, Michael; Shaket, Lev; Anzai, Isao A.; Adesina, Oluwakemi; Barstow, Buz

    2016-01-01

    Whole-genome knockout collections are invaluable for connecting gene sequence to function, yet traditionally, their construction has required an extraordinary technical effort. Here we report a method for the construction and purification of a curated whole-genome collection of single-gene transposon disruption mutants termed Knockout Sudoku. Using simple combinatorial pooling, a highly oversampled collection of mutants is condensed into a next-generation sequencing library in a single day, a 30- to 100-fold improvement over prior methods. The identities of the mutants in the collection are then solved by a probabilistic algorithm that uses internal self-consistency within the sequencing data set, followed by rapid algorithmically guided condensation to a minimal representative set of mutants, validation, and curation. Starting from a progenitor collection of 39,918 mutants, we compile a quality-controlled knockout collection of the electroactive microbe Shewanella oneidensis MR-1 containing representatives for 3,667 genes that is functionally validated by high-throughput kinetic measurements of quinone reduction. PMID:27830751

  14. Parallel Single Cancer Cell Whole Genome Amplification Using Button-Valve Assisted Mixing in Nanoliter Chambers

    PubMed Central

    Yang, Yoonsun; Swennenhuis, Joost F.; Rho, Hoon Suk; Le Gac, Séverine; Terstappen, Leon W. M. M.

    2014-01-01

    The heterogeneity of tumor cells and their alteration during the course of the disease urges the need for real time characterization of individual tumor cells to improve the assessment of treatment options. New generations of therapies are frequently associated with specific genetic alterations driving the need to determine the genetic makeup of tumor cells. Here, we present a microfluidic device for parallel single cell whole genome amplification (pscWGA) to obtain enough copies of a single cell genome to probe for the presence of treatment targets and the frequency of its occurrence among the tumor cells. Individual cells were first captured and loaded into eight parallel amplification units. Next, cells were lysed on a chip and their DNA amplified through successive introduction of dedicated reagents while mixing actively with the help of integrated button-valves. The reaction chamber volume for scWGA 23.85 nl, and starting from 6–7 pg DNA contained in a single cell, around 8 ng of DNA was obtained after WGA, representing over 1000-fold amplification. The amplified products from individual breast cancer cells were collected from the device to either directly investigate the amplification of specific genes by qPCR or for re-amplification of the DNA to obtain sufficient material for whole genome sequencing. Our pscWGA device provides sufficient DNA from individual cells for their genetic characterization, and will undoubtedly allow for automated sample preparation for single cancer cell genomic characterization. PMID:25233459

  15. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce.

    PubMed

    Reyes-Chin-Wo, Sebastian; Wang, Zhiwen; Yang, Xinhua; Kozik, Alexander; Arikit, Siwaret; Song, Chi; Xia, Liangfeng; Froenicke, Lutz; Lavelle, Dean O; Truco, María-José; Xia, Rui; Zhu, Shilin; Xu, Chunyan; Xu, Huaqin; Xu, Xun; Cox, Kyle; Korf, Ian; Meyers, Blake C; Michelmore, Richard W

    2017-04-12

    Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules. We identify several genomic features that may have contributed to the success of the family, including genes encoding Cycloidea-like transcription factors, kinases, enzymes involved in rubber biosynthesis and disease resistance proteins that are expanded in the genome. We characterize 21 novel microRNAs, one of which may trigger phasiRNAs from numerous kinase transcripts. We provide evidence for a whole-genome triplication event specific but basal to the Compositae. We detect 26% of the genome in triplicated regions containing 30% of all genes that are enriched for regulatory sequences and depleted for genes involved in defence.

  16. Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L.) via Whole-Genome Resequencing.

    PubMed

    Bowers, John E; Pearl, Stephanie A; Burke, John M

    2016-07-07

    Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs) of a cross between safflower (Carthamus tinctorius L.) and its wild progenitor (C. palaestinus Eig). We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds) of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads from the RILs were mapped to this genome assembly to facilitate SNP identification, and the resulting polymorphisms were used to construct a genetic map. The resulting map included 2,008,196 genetically located SNPs in 1178 unique positions. A total of 57,270 scaffolds, each containing five or more mapped SNPs, were anchored to the map. This resulted in the assignment of sequence covering 14% of the expected genome length to a genetic position. Comparison of this safflower map to genetic maps of sunflower and lettuce revealed numerous chromosomal rearrangements, and the resulting patterns were consistent with a whole-genome duplication event in the lineage leading to sunflower. This sequence-based genetic map provides a powerful tool for the assembly of a low-cost draft genome of safflower, and the same general approach is expected to work for other species.

  17. Kernel-based whole-genome prediction of complex traits: a review

    PubMed Central

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics. PMID:25360145

  18. Whole genome sequence typing to investigate the Apophysomyces outbreak following a tornado in Joplin, Missouri, 2011.

    PubMed

    Etienne, Kizee A; Gillece, John; Hilsabeck, Remy; Schupp, Jim M; Colman, Rebecca; Lockhart, Shawn R; Gade, Lalitha; Thompson, Elizabeth H; Sutton, Deanna A; Neblett-Fanfair, Robyn; Park, Benjamin J; Turabelidze, George; Keim, Paul; Brandt, Mary E; Deak, Eszter; Engelthaler, David M

    2012-01-01

    Case reports of Apophysomyces spp. in immunocompetent hosts have been a result of traumatic deep implantation of Apophysomyces spp. spore-contaminated soil or debris. On May 22, 2011 a tornado occurred in Joplin, MO, leaving 13 tornado victims with Apophysomyces trapeziformis infections as a result of lacerations from airborne material. We used whole genome sequence typing (WGST) for high-resolution phylogenetic SNP analysis of 17 outbreak Apophysomyces isolates and five additional temporally and spatially diverse Apophysomyces control isolates (three A. trapeziformis and two A. variabilis isolates). Whole genome SNP phylogenetic analysis revealed three clusters of genotypically related or identical A. trapeziformis isolates and multiple distinct isolates among the Joplin group; this indicated multiple genotypes from a single or multiple sources. Though no linkage between genotype and location of exposure was observed, WGST analysis determined that the Joplin isolates were more closely related to each other than to the control isolates, suggesting local population structure. Additionally, species delineation based on WGST demonstrated the need to reassess currently accepted taxonomic classifications of phylogenetic species within the genus Apophysomyces.

  19. The mutational landscape in pediatric acute lymphoblastic leukemia deciphered by whole genome sequencing.

    PubMed

    Lindqvist, Carl Mårten; Nordlund, Jessica; Ekman, Diana; Johansson, Anna; Moghadam, Behrooz Torabi; Raine, Amanda; Övernäs, Elin; Dahlberg, Johan; Wahlberg, Per; Henriksson, Niklas; Abrahamsson, Jonas; Frost, Britt-Marie; Grandér, Dan; Heyman, Mats; Larsson, Rolf; Palle, Josefine; Söderhäll, Stefan; Forestier, Erik; Lönnerholm, Gudmar; Syvänen, Ann-Christine; Berglund, Eva C

    2015-01-01

    Genomic characterization of pediatric acute lymphoblastic leukemia (ALL) has identified distinct patterns of genes and pathways altered in patients with well-defined genetic aberrations. To extend the spectrum of known somatic variants in ALL, we performed whole genome and transcriptome sequencing of three B-cell precursor patients, of which one carried the t(12;21)ETV6-RUNX1 translocation and two lacked a known primary genetic aberration, and one T-ALL patient. We found that each patient had a unique genome, with a combination of well-known and previously undetected genomic aberrations. By targeted sequencing in 168 patients, we identified KMT2D and KIF1B as novel putative driver genes. We also identified a putative regulatory non-coding variant that coincided with overexpression of the growth factor MDK. Our results contribute to an increased understanding of the biological mechanisms that lead to ALL and suggest that regulatory variants may be more important for cancer development than recognized to date. The heterogeneity of the genetic aberrations in ALL renders whole genome sequencing particularly well suited for analysis of somatic variants in both research and diagnostic applications.

  20. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    PubMed

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.

  1. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    SciTech Connect

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-06-02

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains.

  2. Phased whole-genome genetic risk in a family quartet using a major allele reference sequence.

    PubMed

    Dewey, Frederick E; Chen, Rong; Cordero, Sergio P; Ormond, Kelly E; Caleshu, Colleen; Karczewski, Konrad J; Whirl-Carrillo, Michelle; Wheeler, Matthew T; Dudley, Joel T; Byrnes, Jake K; Cornejo, Omar E; Knowles, Joshua W; Woon, Mark; Sangkuhl, Katrin; Gong, Li; Thorn, Caroline F; Hebert, Joan M; Capriotti, Emidio; David, Sean P; Pavlovic, Aleksandra; West, Anne; Thakuria, Joseph V; Ball, Madeleine P; Zaranek, Alexander W; Rehm, Heidi L; Church, George M; West, John S; Bustamante, Carlos D; Snyder, Michael; Altman, Russ B; Klein, Teri E; Butte, Atul J; Ashley, Euan A

    2011-09-01

    Whole-genome sequencing harbors unprecedented potential for characterization of individual and family genetic variation. Here, we develop a novel synthetic human reference sequence that is ethnically concordant and use it for the analysis of genomes from a nuclear family with history of familial thrombophilia. We demonstrate that the use of the major allele reference sequence results in improved genotype accuracy for disease-associated variant loci. We infer recombination sites to the lowest median resolution demonstrated to date (< 1,000 base pairs). We use family inheritance state analysis to control sequencing error and inform family-wide haplotype phasing, allowing quantification of genome-wide compound heterozygosity. We develop a sequence-based methodology for Human Leukocyte Antigen typing that contributes to disease risk prediction. Finally, we advance methods for analysis of disease and pharmacogenomic risk across the coding and non-coding genome that incorporate phased variant data. We show these methods are capable of identifying multigenic risk for inherited thrombophilia and informing the appropriate pharmacological therapy. These ethnicity-specific, family-based approaches to interpretation of genetic variation are emblematic of the next generation of genetic risk assessment using whole-genome sequencing.

  3. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa.

    PubMed

    Cheng, Feng; Sun, Chao; Wu, Jian; Schnable, James; Woodhouse, Margaret R; Liang, Jianli; Cai, Chengcheng; Freeling, Michael; Wang, Xiaowu

    2016-07-01

    Subgenome dominance is an important phenomenon observed in allopolyploids after whole genome duplication, in which one subgenome retains more genes as well as contributes more to the higher expressing gene copy of paralogous genes. To dissect the mechanism of subgenome dominance, we systematically investigated the relationships of gene expression, transposable element (TE) distribution and small RNA targeting, relating to the multicopy paralogous genes generated from whole genome triplication in Brassica rapa. The subgenome dominance was found to be regulated by a relatively stable factor established previously, then inherited by and shared among B. rapa varieties. In addition, we found a biased distribution of TEs between flanking regions of paralogous genes. Furthermore, the 24-nt small RNAs target TEs and are negatively correlated to the dominant expression of individual paralogous gene pairs. The biased distribution of TEs among subgenomes and the targeting of 24-nt small RNAs together produce the dominant expression phenomenon at a subgenome scale. Based on these findings, we propose a bucket hypothesis to illustrate subgenome dominance and hybrid vigor. Our findings and hypothesis are valuable for the evolutionary study of polyploids, and may shed light on studies of hybrid vigor, which is common to most species.

  4. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia.

    PubMed

    Puente, Xose S; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M C; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M; Puente, Diana A; Freije, José M P; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C; de Sanjosé, Silvia; Piris, Miguel A; de Alava, Enrique; San Miguel, Jesús; Royo, Romina; Gelpí, Josep L; Torrents, David; Orozco, Modesto; Pisano, David G; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A; Futreal, P Andrew; Stratton, Michael R; Campbell, Peter J; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2011-06-05

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.

  5. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data

    PubMed Central

    Dewey, Frederick E.; Grove, Megan E.; Priest, James R.; Waggott, Daryl; Batra, Prag; Miller, Clint L.; Wheeler, Matthew; Zia, Amin; Pan, Cuiping; Karzcewski, Konrad J.; Miyake, Christina; Whirl-Carrillo, Michelle; Klein, Teri E.; Datta, Somalee; Altman, Russ B.; Snyder, Michael; Quertermous, Thomas; Ashley, Euan A.

    2015-01-01

    Abstract High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework. PMID:26448358

  6. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos).

    PubMed

    Avila, Felipe; Baily, Malorie P; Perelman, Polina; Das, Pranab J; Pontius, Joan; Chowdhary, Renuka; Owens, Elaine; Johnson, Warren E; Merriwether, David A; Raudsepp, Terje

    2014-01-01

    Genome analysis of the alpaca (Lama pacos, LPA) has progressed slowly compared to other domestic species. Here, we report the development of the first comprehensive whole-genome integrated cytogenetic map for the alpaca using fluorescence in situ hybridization (FISH) and CHORI-246 BAC library clones. The map is comprised of 230 linearly ordered markers distributed among all 36 alpaca autosomes and the sex chromosomes. For the first time, markers were assigned to LPA14, 21, 22, 28, and 36. Additionally, 86 genes from 15 alpaca chromosomes were mapped in the dromedary camel (Camelus dromedarius, CDR), demonstrating exceptional synteny and linkage conservation between the 2 camelid genomes. Cytogenetic mapping of 191 protein-coding genes improved and refined the known Zoo-FISH homologies between camelids and humans: we discovered new homologous synteny blocks (HSBs) corresponding to HSA1-LPA/CDR11, HSA4-LPA/CDR31 and HSA7-LPA/CDR36, and revised the location of breakpoints for others. Overall, gene mapping was in good agreement with the Zoo-FISH and revealed remarkable evolutionary conservation of gene order within many human-camelid HSBs. Most importantly, 91 FISH-mapped markers effectively integrated the alpaca whole-genome sequence and the radiation hybrid maps with physical chromosomes, thus facilitating the improvement of the sequence assembly and the discovery of genes of biological importance.

  7. A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat

    PubMed Central

    2014-01-01

    Background The past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the effects of increasing RNA-seq sequencing depth. Finally we take advantage of the “agnostic” approach of RNA-seq to discover areas of expression outside of annotated exons that show marked changes in expression following nerve injury. Results RNA-seq and microarrays largely agree in terms of the genes called as differentially expressed. However, RNA-seq is able to interrogate a much larger proportion of the genome. It can also detect a greater number of differentially expressed genes than microarrays, across a wider range of fold changes and is able to assign a larger range of expression values to the genes it measures. The number of differentially expressed genes detected increases with sequencing depth. RNA-seq also allows the discovery of a number of genes displaying unusual and interesting patterns of non-exonic expression following nerve injury, an effect that cannot be detected using microarrays. Conclusion We recommend the use of RNA-seq for future high-throughput transcriptomic experiments in pain studies. RNA-seq allowed the identification of a larger number of putative candidate pain genes than microarrays and can also detect a wider range of expression values in a neuropathic pain model. In addition, RNA-seq can interrogate the whole genome regardless of prior annotations, being able to detect transcription from areas of the genome not currently annotated as exons. Some of these areas are differentially expressed following nerve injury, and may represent novel genes or isoforms. We also recommend the use of a high

  8. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    PubMed

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for

  9. Multi-platform investigation of the metabolome in a leptin receptor defective murine model of type 2 diabetes.

    PubMed

    Gipson, Geoffrey T; Tatsuoka, Kay S; Ball, Rachel J; Sokhansanj, Bahrad A; Hansen, Michael K; Ryan, Terence E; Hodson, Mark P; Sweatman, Brian C; Connor, Susan C

    2008-10-01

    We describe a multi-platform ((1)H NMR, LC-MS, microarray) investigation of metabolic disturbances associated with the leptin receptor defective (db/db) mouse model of type 2 diabetes using novel assignment methodologies. For the first time, several urinary metabolites were found to be associated with diabetes and/or diabetes progression and confirmed in both NMR and LC-MS datasets. The confirmed metabolites were trimethylamine-n-oxide (TMAO), creatine, carnitine, and phenylalanine. TMAO and phenylalanine were both elevated in db/db mice and decreased in these mice with age. Levels of both creatine and carnitine increase in diabetic mice with age and creatine was also significantly decreased in db/db mice. Additionally, many metabolic markers were found by either NMR or LC-MS, but could not be found in both, due to instrumental limitations. This indicates that the combined use of NMR and LC-MS instrumentation provides complementary information that would be otherwise unattainable. Pathway analyses of urinary metabolites and liver, muscle, and adipose tissue transcripts from the db/db model were also performed to identify altered biochemical processes in the diabetic mice. Metabolite and liver transcript levels associated with the TCA cycle and steroid processes were altered in db/db mice. In addition, gene expression in muscle and liver associated with fatty acid processing was altered in the diabetic mice and similar evidence was observed in the LC-MS data. Our findings highlight the importance of a number of processes known to be associated with diabetes and reveal tissue specific responses to the condition. When studying metabolic disorders such as diabetes, multiple platform integrated profiling of metabolite alterations in biofluids can provide important insights into the processes underlying the disease.

  10. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions.

    PubMed

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases.

  11. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing

    PubMed Central

    2013-01-01

    Background Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Results Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Conclusions Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of

  12. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    PubMed

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  13. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs

    PubMed Central

    Dilthey, Alexander T.; Gourraud, Pierre-Antoine; McVean, Gil

    2016-01-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30–250 CPU hours per sample) remain a significant

  14. SBMDb: first whole genome putative microsatellite DNA marker database of sugarbeet for bioenergy and industrial applications

    PubMed Central

    Iquebal, Mir Asif; Jaiswal, Sarika; Angadi, U.B.; Sablok, Gaurav; Arora, Vasu; Kumar, Sunil; Rai, Anil; Kumar, Dinesh

    2015-01-01

    DNA marker plays important role as valuable tools to increase crop productivity by finding plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL) of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR) markers were time consuming and inefficient. Recent methods invoking the development of STR markers using whole genomic or transcriptomics data has gained wide importance with immense potential in developing breeding and cultivator improvement approaches. Availability of whole genome sequences and in silico approaches has revolutionized bulk marker discovery. We report world’s first sugarbeet whole genome marker discovery having 145 K markers along with 5 K functional domain markers unified in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and corresponding location information can be selected for desired chromosome, location/interval and primers can be generated using Primer3 core, integrated at backend. Our analyses revealed abundance of ‘mono’ repeat (76.82%) over ‘di’ repeats (13.68%). Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density (341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome marker density has direct implications in increasing mapping marker density. This will enable present linkage map having marker distance of ∼2 cM, i.e. from 200 to 2.6 Kb, thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027 polymorphic markers in panel of five genotypes. These markers can be used for DUS test of variety identification and MAS/GAS in variety improvement program. The present database presents wide source of potential markers for developing and implementing new approaches for molecular breeding required to accelerate industrious use of this crop, especially for sugar, health care products, medicines and color dye. Identified markers will also help in improvement of bioenergy trait

  15. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data

    PubMed Central

    Weedmark, K. A.; Mabon, P.; Hayden, K. L.; Lambert, D.; Van Domselaar, G.; Austin, J. W.

    2015-01-01

    Clostridium botulinum group II isolates (n = 163) from different geographic regions, outbreaks, and neurotoxin types and subtypes were characterized in silico using whole-genome sequence data. Two clusters representing a variety of botulinum neurotoxin (BoNT) types and subtypes were identified by multilocus sequence typing (MLST) and core single nucleotide polymorphism (SNP) analysis. While one cluster included BoNT/B4/F6/E9 and nontoxigenic members, the other comprised a wide variety of different BoNT/E subtype isolates and a nontoxigenic strain. In silico MLST and core SNP methods were consistent in terms of clade-level isolate classification; however, core SNP analysis showed higher resolution capability. Furthermore, core SNP analysis correctly distinguished isolates by outbreak and location. This study illustrated the utility of next-generation sequence-based typing approaches for isolate characterization and source attribution and identified discrete SNP loci and MLST alleles for isolate comparison. PMID:26116673

  16. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    SciTech Connect

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B.; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerod, Anita; Ringner, Markus; Ahn, Sung -Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit K. J.; Jang, Se Jin; Jones, David R.; Kim, Hyung -Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong -Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporte, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-Gonzalez, F. German; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T.; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A.; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; Veer, Laura van’t; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Ake; Ueno, Naoto T.; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J.; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R.; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G.; van de Vijver, Marc J.; Martens, John W. M.; Borresen-Dale, Anne -Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.

  17. Development of highly transferable microsatellites for Panax ginseng (Araliaceae) using whole-genome data1

    PubMed Central

    Jiang, Peng; Shi, Feng-Xue; Li, Ya-Ling; Liu, Bao; Li, Lin-Feng

    2016-01-01

    Premise of the study: Highly transferable expressed sequence tag (EST) microsatellites were developed for Panax ginseng (Araliaceae), one of the most celebrated traditional Chinese medicines and an endangered species in East Asia, using whole-genome data. Methods and Results: Twenty-one EST microsatellites were characterized from next-generation sequencing and were composed of di- and trinucleotide repeats. Polymorphisms and genetic diversity were evaluated for 45 accessions of three ginseng landraces. The number of alleles for each locus ranged from one to five among the landraces, and the polymorphism information content varied from 0.0000 to 0.6450. These microsatellites were also tested for congeneric amplification with P. notoginseng, P. stipuleanatus, P. quinquefolius, P. bipinnatifidus, and the closely related species Aralia elata. Conclusions: These novel EST-derived microsatellite markers will facilitate further population genetic studies of the genera Panax and Aralia. PMID:27843725

  18. Evaluating potential for whole-genome studies in Kosrae, an isolated population in Micronesia.

    PubMed

    Bonnen, Penelope E; Pe'er, Itsik; Plenge, Robert M; Salit, Jackie; Lowe, Jennifer K; Shapero, Michael H; Lifton, Richard P; Breslow, Jan L; Daly, Mark J; Reich, David E; Jones, Keith W; Stoffel, Markus; Altshuler, David; Friedman, Jeffrey M

    2006-02-01

    Whole-genome association studies are predicted to be especially powerful in isolated populations owing to increased linkage disequilibrium (LD) and decreased allelic diversity, but this possibility has not been empirically tested. We compared genome-wide data on 113,240 SNPs typed on 30 trios from the Pacific island of Kosrae to the same markers typed in the 270 samples from the International HapMap Project. The extent of LD is longer and haplotype diversity is lower in Kosrae than in the HapMap populations. More than 98% of Kosraen haplotypes are present in HapMap populations, indicating that HapMap will be useful for genetic studies on Kosrae. The long-range LD around common alleles and limited diversity result in improved efficiency in genetic studies in this population and augments the power to detect association of 'hidden SNPs'.

  19. Bisulfite-free and Base-resolution Analysis of 5-formylcytosine at Whole-genome Scale

    PubMed Central

    Xia, Bo; Han, Dali; Lu, Xingyu; Sun, Zhaozhu; Zhou, Ankun; Yin, Qiangzong; Zeng, Hu; Liu, Menghao; Jiang, Xiang; Xie, Wei; He, Chuan; Yi, Chengqi

    2015-01-01

    Active DNA demethylation in mammals involves TET-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). However, genome-wide detection of 5fC at single-base resolution remains challenging. Here we present a bisulfite-free method for whole-genome analysis of 5fC, based on selective chemical labeling of 5fC and subsequent C-to-T transition during PCR. Base-resolution 5fC maps reveal limited overlap with 5hmC, with 5fC-marked regions more active than 5hmC-marked ones. PMID:26344045

  20. Accurate whole genome sequencing and haplotyping from10-20 human cells

    PubMed Central

    Peters, Brock A.; Kermani, Bahram G.; Sparks, Andrew B.; Alferov, Oleg; Hong, Peter; Alexeev, Andrei; Jiang, Yuan; Dahl, Fredrik; Tang, Y. Tom; Haas, Juergen; Robasky, Kimberly; Zaranek, Alexander Wait; Lee, Je-Hyuk; Ball, Madeleine Price; Peterson, Joseph E.; Perazich, Helena; Yeung, George; Liu, Jia; Chen, Linsu; Kennemer, Michael I.; Pothuraju, Kaliprasad; Konvicka, Karel; Tsoupko-Sitnikov, Mike; Pant, Krishna P.; Ebert, Jessica C.; Nilsen, Geoffrey B.; Baccash, Jonathan; Halpern, Aaron L.; Church, George M.; Drmanac, Radoje

    2012-01-01

    Recent advances in whole genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, Long Fragment Read (LFR) technology, similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only ~100 pg of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants (SNVs) were assembled into long haplotype contigs. Removal of false positive SNVs not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10 Mb. Cost-effective and accurate genome sequencing and haplotyping from 10-20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications. PMID:22785314

  1. Whole-genome regression and prediction methods applied to plant and animal breeding.

    PubMed

    de Los Campos, Gustavo; Hickey, John M; Pong-Wong, Ricardo; Daetwyler, Hans D; Calus, Mario P L

    2013-02-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.

  2. Molecular etiology of an indolent lymphoproliferative disorder determined by whole-genome sequencing

    PubMed Central

    Parker, Jeremy D.K.; Shen, Yaoqing; Pleasance, Erin; Li, Yvonne; Schein, Jacqueline E.; Zhao, Yongjun; Moore, Richard; Wegrzyn-Woltosz, Joanna; Savage, Kerry J.; Weng, Andrew P.; Gascoyne, Randy D.; Jones, Steven; Marra, Marco; Laskin, Janessa; Karsan, Aly

    2016-01-01

    In an attempt to assess potential treatment options, whole-genome and transcriptome sequencing were performed on a patient with an unclassifiable small lymphoproliferative disorder. Variants from genome sequencing were prioritized using a combination of comparative variant distributions in a spectrum of lymphomas, and meta-analyses of gene expression profiling. In this patient, the molecular variants that we believe to be most relevant to the disease presentation most strongly resemble a diffuse large B-cell lymphoma (DLBCL), whereas the gene expression data are most consistent with a low-grade chronic lymphocytic leukemia (CLL). The variant of greatest interest was a predicted NOTCH2-truncating mutation, which has been recently reported in various lymphomas. PMID:27148583

  3. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq

    PubMed Central

    Adli, Mazhar; Bernstein, Bradley E.

    2015-01-01

    Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d. PMID:21959244

  4. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation.

    PubMed

    Michaelson, Jacob J; Shi, Yujian; Gujral, Madhusudan; Zheng, Hancheng; Malhotra, Dheeraj; Jin, Xin; Jian, Minghan; Liu, Guangming; Greer, Douglas; Bhandari, Abhishek; Wu, Wenting; Corominas, Roser; Peoples, Aine; Koren, Amnon; Gore, Athurva; Kang, Shuli; Lin, Guan Ning; Estabillo, Jasper; Gadomski, Therese; Singh, Balvindar; Zhang, Kun; Akshoomoff, Natacha; Corsello, Christina; McCarroll, Steven; Iakoucheva, Lilia M; Li, Yingrui; Wang, Jun; Sebat, Jonathan

    2012-12-21

    De novo mutation plays an important role in autism spectrum disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes and may also include nucleotide-substitution hot spots. We investigated global patterns of germline mutation by whole-genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing data sets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans.

  5. A strategic stakeholder approach for addressing further analysis requests in whole genome sequencing research.

    PubMed

    Thornock, Bradley Steven O

    2016-01-01

    Whole genome sequencing (WGS) can be a cost-effective and efficient means of diagnosis for some children, but it also raises a number of ethical concerns. One such concern is how researchers derive and communicate results from WGS, including future requests for further analysis of stored sequences. The purpose of this paper is to think about what is at stake, and for whom, in any solution that is developed to deal with such requests. To accomplish this task, this paper will utilize stakeholder theory, a common method used in business ethics. Several scenarios that connect stakeholder concerns and WGS will also posited and analyzed. This paper concludes by developing criteria composed of a series of questions that researchers can answer in order to more effectively address requests for further analysis of stored sequences.

  6. Assignment of the horse grey coat colour gene to ECA25 using whole genome scanning.

    PubMed

    Swinburne, June E; Hopkins, A; Binns, M M

    2002-10-01

    The dominant grey coat colour gene of horses has been mapped using a whole genome scanning approach. Samples from a large half-sibling pedigree of Thoroughbred horses were utilized in order to map the grey coat colour locus, G. Multiplex groups of microsatellite markers were developed and used to efficiently screen the horse genome at a resolution of approximately 22 cM, based on an estimated map length for the horse genome of 2720 cM. The grey gene was assigned to chromosome 25 (ECA25), one of the smaller acrocentric horse chromosomes. Based on the current state of knowledge of conserved synteny and coat colour genetics in other mammalian species, there are no obvious candidate genes for the grey gene in the region.

  7. CCor: A whole genome network-based similarity measure between two genes.

    PubMed

    Hu, Yiming; Zhao, Hongyu

    2016-12-01

    Measuring the similarity between genes is often the starting point for building gene regulatory networks. Most similarity measures used in practice only consider pairwise information with a few also consider network structure. Although theoretical properties of pairwise measures are well understood in the statistics literature, little is known about their statistical properties of those similarity measures based on network structure. In this article, we consider a new whole genome network-based similarity measure, called CCor, that makes use of information of all the genes in the network. We derive a concentration inequality of CCor and compare it with the commonly used Pearson correlation coefficient for inferring network modules. Both theoretical analysis and real data example demonstrate the advantages of CCor over existing measures for inferring gene modules.

  8. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases.

    PubMed

    Miller, Neil A; Farrow, Emily G; Gibson, Margaret; Willig, Laurel K; Twist, Greyson; Yoo, Byunggil; Marrs, Tyler; Corder, Shane; Krivohlavek, Lisa; Walter, Adam; Petrikin, Josh E; Saunders, Carol J; Thiffault, Isabelle; Soden, Sarah E; Smith, Laurie D; Dinwiddie, Darrell L; Herd, Suzanne; Cakici, Julie A; Catreux, Severine; Ruehle, Mike; Kingsmore, Stephen F

    2015-09-30

    While the cost of whole genome sequencing (WGS) is approaching the realm of routine medical tests, it remains too tardy to help guide the management of many acute medical conditions. Rapid WGS is imperative in light of growing evidence of its utility in acute care, such as in diagnosis of genetic diseases in very ill infants, and genotype-guided choice of chemotherapy at cancer relapse. In such situations, delayed, empiric, or phenotype-based clinical decisions may meet with substantial morbidity or mortality. We previously described a rapid WGS method, STATseq, with a sensitivity of >96 % for nucleotide variants that allowed a provisional diagnosis of a genetic disease in 50 h. Here improvements in sequencing run time, read alignment, and variant calling are described that enable 26-h time to provisional molecular diagnosis with >99.5 % sensitivity and specificity of genotypes. STATseq appears to be an appropriate strategy for acutely ill patients with potentially actionable genetic diseases.

  9. Whole-genome analyses resolve early branches in the tree of life of modern birds.

    PubMed

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C; Ray, David; Green, Richard E; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P; Bertelsen, Mads Frost; Sheldon, Frederick H; Brumfield, Robb T; Mello, Claudio V; Lovell, Peter V; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Vargas Velazquez, Amhed Missael; Alfaro-Núñez, Alonzo; Campos, Paula F; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M; Zhou, Qi; Perelman, Polina; Driskell, Amy C; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Smeds, Linnea; Rheindt, Frank E; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O'Brien, Stephen; Haussler, David; Ryder, Oliver A; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R; Glenn, Travis C; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas P; Zhang, Guojie

    2014-12-12

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

  10. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation.

    PubMed

    Zhao, Shancen; Zheng, Pingping; Dong, Shanshan; Zhan, Xiangjiang; Wu, Qi; Guo, Xiaosen; Hu, Yibo; He, Weiming; Zhang, Shanning; Fan, Wei; Zhu, Lifeng; Li, Dong; Zhang, Xuemei; Chen, Quan; Zhang, Hemin; Zhang, Zhihe; Jin, Xuelin; Zhang, Jinguo; Yang, Huanming; Wang, Jian; Wang, Jun; Wei, Fuwen

    2013-01-01

    The panda lineage dates back to the late Miocene and ultimately leads to only one extant species, the giant panda (Ailuropoda melanoleuca). Although global climate change and anthropogenic disturbances are recognized to shape animal population demography their contribution to panda population dynamics remains largely unknown. We sequenced the whole genomes of 34 pandas at an average 4.7-fold coverage and used this data set together with the previously deep-sequenced panda genome to reconstruct a continuous demographic history of pandas from their origin to the present. We identify two population expansions, two bottlenecks and two divergences. Evidence indicated that, whereas global changes in climate were the primary drivers of population fluctuation for millions of years, human activities likely underlie recent population divergence and serious decline. We identified three distinct panda populations that show genetic adaptation to their environments. However, in all three populations, anthropogenic activities have negatively affected pandas for 3,000 years.

  11. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1.

    PubMed

    Kim, Eun Jin; Lee, Chan Hee; Nair, G Balakrish; Kim, Dong Wook

    2015-08-01

    The analysis of the whole-genome sequences of Vibrio cholerae strains from previous and current cholera pandemics has demonstrated that genomic changes and alterations in phage CTX (particularly in the gene encoding the B subunit of cholera toxin) were major features in the evolution of V. cholerae. Recent studies have revealed the genetic mechanisms in these bacteria by which new variants of V. cholerae are generated from type-specific strains; these mechanisms suggest that certain strains are selected by environmental or human factors over time. By understanding the mechanisms and driving forces of historical and current changes in the V. cholerae population, it would be possible to predict the direction of such changes and the evolution of new variants; this has implications for the battle against cholera.

  12. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  13. Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis.

    PubMed

    Faksri, Kiatichai; Tan, Jun Hao; Chaiprasert, Angkana; Teo, Yik-Ying; Ong, Rick Twee-Hee

    2016-11-01

    Tuberculosis (TB) is an infectious disease of global public health importance caused by Mycobacterium tuberculosis complex (MTC) in which M. tuberculosis (Mtb) is the major causative agent. Recent advancements in genomic technologies such as next generation sequencing have enabled high throughput cost-effective generation of whole genome sequence information from Mtb clinical isolates, providing new insights into the evolution, genomic diversity and transmission of the Mtb bacteria, including molecular mechanisms of antibiotic resistance. The large volume of sequencing data generated however necessitated effective and efficient management, storage, analysis and visualization of the data and results through development of novel and customized bioinformatics software tools and databases. In this review, we aim to provide a comprehensive survey of the current freely available bioinformatics software tools and publicly accessible databases for genomic analysis of Mtb for identifying disease transmission in molecular epidemiology and in rapid determination of the antibiotic profiles of clinical isolates for prompt and optimal patient treatment.

  14. Microsatellite polymorphism among Chrysanthemum sp. polyploids: the influence of whole genome duplication

    PubMed Central

    Wang, Haibin; Qi, Xiangyu; Gao, Ri; Wang, Jingjing; Dong, Bin; Jiang, Jiafu; Chen, Sumei; Guan, Zhiyong; Fang, Weimin; Liao, Yuan; Chen, Fadi

    2014-01-01

    Polyploidy is common among flowering plants, including the Asteraceae, a relatively recent angiosperm group. EST-SSRs were used to characterize polymorphism among 29 Chrysanthemum and Ajania spp. accessions of various ploidy levels. Most EST-SSR loci were readily transferable between the species, 29 accessions were separated into three groups in terms of the number of fragments. It inferred that the formation from tetraploid to hexaploid and from octoploid to decaploid may be a recent event, while from the diploid to the tetraploid may be an ancient one in the Chrysanthemum lineage. EST-SSR polymorphism was found and some transcripts containing an SSR were transcribed differently in the de novo autotetraploid C. nankingense and C. lavandulifolium than in their progenitor diploid. EST-SSR could provide a potential molecular basis of adaptation during evolution, while whole genome duplication has a major effect on the mutational dynamics of EST-SSR loci, which could also affect gene regulation. PMID:25339092

  15. Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database

    PubMed Central

    Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M.; Brown, Eric W.; Timme, Ruth

    2016-01-01

    The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. PMID:27008877

  16. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data.

    PubMed

    Weedmark, K A; Mabon, P; Hayden, K L; Lambert, D; Van Domselaar, G; Austin, J W; Corbett, C R

    2015-09-01

    Clostridium botulinum group II isolates (n = 163) from different geographic regions, outbreaks, and neurotoxin types and subtypes were characterized in silico using whole-genome sequence data. Two clusters representing a variety of botulinum neurotoxin (BoNT) types and subtypes were identified by multilocus sequence typing (MLST) and core single nucleotide polymorphism (SNP) analysis. While one cluster included BoNT/B4/F6/E9 and nontoxigenic members, the other comprised a wide variety of different BoNT/E subtype isolates and a nontoxigenic strain. In silico MLST and core SNP methods were consistent in terms of clade-level isolate classification; however, core SNP analysis showed higher resolution capability. Furthermore, core SNP analysis correctly distinguished isolates by outbreak and location. This study illustrated the utility of next-generation sequence-based typing approaches for isolate characterization and source attribution and identified discrete SNP loci and MLST alleles for isolate comparison.

  17. [Whole-genome amplification by MDA to improve sensitivity of forensic expert examination of chromosomal DNA].

    PubMed

    Ivanov, P L; Fomichev, A A

    2008-01-01

    This pilot project has the objective to evaluate the possibility of application of the multiple displacement amplification (MDA) technique to whole-genome amplification with a view to improving sensitivity of molecular-genetic test-systems. Preparations of total cellular DNA were amplified by MDA and analysed to assess conserved specificity of chromosomal DNA and its enhanced template activity in the standard polymerase chain reaction (PCR) for typing allele variants of polymorphous DNA loci. DNA samples before and after MDA showed virtually identical genotypic combinations of alleles. Allele fragments were stably detected at a level of DNA 4-5 times lower than in the standard test. The results of the study indicate that the MDA technique provides a promising tool to improve reliability of forensic- expert examination of chromosomal DNA and imply the necessity to further develop forensic-medical aspects of this method.

  18. CCor: a whole genome network-based similarity measure between two genes

    PubMed Central

    Hu, Yiming; Zhao, Hongyu

    2016-01-01

    Summary Measuring the similarity between genes is often the starting point for building gene regulatory networks. Most similarity measures used in practice only consider pairwise information with a few also consider network structure. Although theoretical properties of pairwise measures are well understood in the statistics literature, little is known about their statistical properties of those similarity measures based on network structure. In this article, we consider a new whole genome network-based similarity measure, called CCor, that makes use of information of all the genes in the network. We derive a concentration inequality of CCor and compare it with the commonly used Pearson correlation coe cient for inferring network modules. Both theoretical analysis and real data example demonstrate the advantages of CCor over existing measures for inferring gene modules. PMID:26953524

  19. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome

    SciTech Connect

    Chapman, Jarrod A.; Mascher, Martin; Buluc, Aydin; Barry, Kerrie; Georganas, Evangelos; Session, Adam; Strnadova, Veronika; Jenkins, Jerry; Sehgal, Sunish; Oliker, Leonid; Schmutz, Jeremy; Yelick, Katherine A.; Scholz, Uwe; Waugh, Robbie; Poland, Jesse A.; Muehlbauer, Gary J.; Stein, Nils; Rokhsar, Daniel S.

    2015-01-31

    We report that polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.

  20. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome

    DOE PAGES

    Chapman, Jarrod A.; Mascher, Martin; Buluc, Aydin; ...

    2015-01-31

    We report that polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible tomore » construct a mapping population.« less

  1. Characterisation of invasive clinical Haemophilus influenzae isolates in Queensland, Australia using whole-genome sequencing.

    PubMed

    Staples, M; Graham, R M A; Jennison, A V

    2017-03-06

    Haemophilus influenzae is an important aetiological organism of both adult and child respiratory disease. The number of non-typeable (NTHi) invasive H. influenzae isolates referred to the Queensland (QLD) Public Health Microbiology laboratory has increased notably year-by-year. In this study we used whole-genome sequencing to molecularly characterise 100 referred invasive H. influenzae, including 74 NTHi isolates over a 15-year period, observing the carriage of capsular and putative virulence genes, including the major adhesins, antimicrobial resistance genes and population diversity. Encapsulated isolates were largely clonal, however NTHi isolates displayed high genetic variability by MLST and single nucleotide polymorphism typing with no dominant clone observed. The only mechanism for β-lactam resistance identified in the QLD isolates was β-lactamase production. No single set of virulence determinants was conclusively associated with invasive QLD NTHi isolates.

  2. Whole genome sequencing and the transformation of C. elegans forward genetics.

    PubMed

    Hu, Patrick J

    2014-08-01

    Forward genetics has been an undeniably powerful approach in Caenorhabditis elegans and other model organisms. However, the trek from mutant isolation to identification of the causative molecular lesion can be time-consuming and fraught with obstacles. This has changed with the advent of whole genome sequencing (WGS). The widespread availability of high-throughput sequencing technology, coupled with the increasing affordability of WGS, has enabled the routine use of WGS in the analysis of forward genetic screens. The noteworthy development of one-step mapping/sequencing approaches has largely eliminated the bottleneck of conventional high-resolution mapping, greatly accelerating the journey from mutagenesis to gene discovery. By enabling the use of increasingly complex and diverse genetic backgrounds as substrates for mutagenesis, WGS is expanding the landscape of biological problems that can be interrogated using forward genetic approaches in C. elegans and other organisms.

  3. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    PubMed Central

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  4. Whole-Genome Sequencing to Determine Origin of Multinational Outbreak of Sarocladium kiliense Bloodstream Infections

    PubMed Central

    Roe, Chandler C.; Smith, Rachel M.; Vallabhaneni, Snigdha; Duarte, Carolina; Escandón, Patricia; Castañeda, Elizabeth; Gómez, Beatriz L.; de Bedout, Catalina; López, Luisa F.; Salas, Valentina; Hederra, Luz Maria; Fernández, Jorge; Pidal, Paola; Hormazabel, Juan Carlos; Otaíza-O’Ryan, Fernando; Vannberg, Fredrik O.; Gillece, John; Lemmer, Darrin; Driebe, Elizabeth M.; Engelthaler, David M.; Litvintseva, Anastasia P.

    2016-01-01

    We used whole-genome sequence typing (WGST) to investigate an outbreak of Sarocladium kiliense bloodstream infections (BSI) associated with receipt of contaminated antinausea medication among oncology patients in Colombia and Chile during 2013–2014. Twenty-five outbreak isolates (18 from patients and 7 from medication vials) and 11 control isolates unrelated to this outbreak were subjected to WGST to elucidate a source of infection. All outbreak isolates were nearly indistinguishable (<5 single-nucleotide polymorphisms), and >21,000 single-nucleotide polymorphisms were identified from unrelated control isolates, suggesting a point source for this outbreak. S. kiliense has been previously implicated in healthcare-related infections; however, the lack of available typing methods has precluded the ability to substantiate point sources. WGST for outbreak investigation caused by eukaryotic pathogens without reference genomes or existing genotyping methods enables accurate source identification to guide implementation of appropriate control and prevention measures. PMID:26891230

  5. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  6. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.

    PubMed

    Snitkin, Evan S; Zelazny, Adrian M; Thomas, Pamela J; Stock, Frida; Henderson, David K; Palmore, Tara N; Segre, Julia A

    2012-08-22

    The Gram-negative bacteria Klebsiella pneumoniae is a major cause of nosocomial infections, primarily among immunocompromised patients. The emergence of strains resistant to carbapenems has left few treatment options, making infection containment critical. In 2011, the U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-resistant K. pneumoniae that affected 18 patients, 11 of whom died. Whole-genome sequencing was performed on K. pneumoniae isolates to gain insight into why the outbreak progressed despite early implementation of infection control procedures. Integrated genomic and epidemiological analysis traced the outbreak to three independent transmissions from a single patient who was discharged 3 weeks before the next case became clinically apparent. Additional genomic comparisons provided evidence for unexpected transmission routes, with subsequent mining of epidemiological data pointing to possible explanations for these transmissions. Our analysis demonstrates that integration of genomic and epidemiological data can yield actionable insights and facilitate the control of nosocomial transmission.

  7. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences

    PubMed Central

    Bentley, Stephen D

    2014-01-01

    Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve. PMID:23075447

  8. The Impact of Whole Genome Sequencing on Model System Genetics: Get Ready for the Ride

    PubMed Central

    Hobert, Oliver

    2010-01-01

    Much of our understanding of how organisms develop and function is derived from the extraordinarily powerful, classic approach of screening for mutant organisms in which a specific biological process is disrupted. Reaping the fruits of such forward genetic screens in metazoan model systems like Drosophila, Caenorhabditis elegans, or zebrafish traditionally involves time-consuming positional cloning strategies that result in the identification of the mutant locus. Whole genome sequencing (WGS) has begun to provide an effective alternative to this approach through direct pinpointing of the molecular lesion in a mutated strain isolated from a genetic screen. Apart from significantly altering the pace and costs of genetic analysis, WGS also provides new perspectives on solving genetic problems that are difficult to tackle with conventional approaches, such as identifying the molecular basis of multigenic and complex traits. PMID:20103786

  9. Whole-genome linkage analysis in mapping alcoholism genes using single-nucleotide polymorphisms and microsatellites.

    PubMed

    Wang, Shuang; Huang, Song; Liu, Nianjun; Chen, Liang; Oh, Cheongeun; Zhao, Hongyu

    2005-12-30

    There is currently a great interest in using single-nucleotide polymorphisms (SNPs) in genetic linkage and association studies because of the abundance of SNPs as well as the availability of high-throughput genotyping technologies. In this study, we compared the performance of whole-genome scans using SNPs with microsatellites on 143 pedigrees from the Collaborative Studies on Genetics of Alcoholism provided by Genetic Analysis Workshop 14. A total of 315 microsatellites and 10,081 SNPs from Affymetrix on 22 autosomal chromosomes were used in our analyses. We found that the results from the two scans had good overall concordance. One region on chromosome 2 and two regions on chromosome 7 showed significant linkage signals (i.e., NPL >or= 2) for alcoholism from both the SNP and microsatellite scans. The different results observed between the two scans may be explained by the difference observed in information content between the SNPs and the microsatellites.

  10. Whole genome methylation array analysis reveals new aspects in Balkan endemic nephropathy etiology

    PubMed Central

    2013-01-01

    Background Balkan endemic nephropathy (BEN) represents a chronic progressive interstitial nephritis in striking correlation with uroepithelial tumours of the upper urinary tract. The disease has endemic distribution in the Danube river regions in several Balkan countries. DNA methylation is a primary epigenetic modification that is involved in major processes such as cancer, genomic imprinting, gene silencing, etc. The significance of CpG island methylation status in normal development, cell differentiation and gene expression is widely recognized, although still stays poorly understood. Methods We performed whole genome DNA methylation array analysis on DNA pool samples from peripheral blood from 159 affected individuals and 170 healthy individuals. This technique allowed us to determine the methylation status of 27 627 CpG islands throughout the whole genome in healthy controls and BEN patients. Thus we obtained the methylation profile of BEN patients from Bulgarian and Serbian endemic regions. Results Using specifically developed software we compared the methylation profiles of BEN patients and corresponding controls and revealed the differently methylated regions. We then compared the DMRs between all patient-control pairs to determine common changes in the epigenetic profiles. SEC61G, IL17RA, HDAC11 proved to be differently methylated throughout all patient-control pairs. The CpG islands of all 3 genes were hypomethylated compared to controls. This suggests that dysregulation of these genes involved in immunological response could be a common mechanism in BEN pathogenesis in both endemic regions and in both genders. Conclusion Our data propose a new hypothesis that immunologic dysregulation has a place in BEN etiopathogenesis. PMID:24131581

  11. Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak

    PubMed Central

    Köser, Claudio U.; Holden, Matthew T.G.; Ellington, Matthew J.; Cartwright, Edward J.P.; Brown, Nicholas M.; Ogilvy-Stuart, Amanda L.; Hsu, Li Yang; Chewapreecha, Claire; Croucher, Nicholas J.; Harris, Simon R.; Sanders, Mandy; Enright, Mark C.; Dougan, Gordon; Bentley, Stephen D.; Parkhill, Julian; Fraser, Louise J.; Betley, Jason R.; Schulz-Trieglaff, Ole B.; Smith, Geoffrey P.; Peacock, Sharon J.

    2013-01-01

    Background Isolates of methicillin-resistant Staphylococcus aureus (MRSA) belonging to a single lineage are often indistinguishable by means of current typing techniques. Whole-genome sequencing may provide improved resolution to define transmission pathways and characterize outbreaks. Methods We investigated a putative MRSA outbreak in a neonatal intensive care unit. By using rapid high-throughput sequencing technology with a clinically relevant turnaround time, we retrospectively sequenced the DNA from seven isolates associated with the outbreak and another seven MRSA isolates associated with carriage of MRSA or bacteremia in the same hospital. Results We constructed a phylogenetic tree by comparing single-nucleotide polymorphisms (SNPs) in the core genome to a reference genome (an epidemic MRSA clone, EMRSA-15 [sequence type 22]). This revealed a distinct cluster of outbreak isolates and clear separation between these and the nonoutbreak isolates. A previously missed transmission event was detected between two patients with bacteremia who were not part of the outbreak. We created an artificial “resistome” of antibiotic-resistance genes and demonstrated concordance between it and the results of phenotypic susceptibility testing; we also created a “toxome” consisting of toxin genes. One outbreak isolate had a hypermutator phenotype with a higher number of SNPs than the other outbreak isolates, highlighting the difficulty of imposing a simple threshold for the number of SNPs between isolates to decide whether they are part of a recent transmission chain. Conclusions Whole-genome sequencing can provide clinically relevant data within a time frame that can influence patient care. The need for automated data interpretation and the provision of clinically meaningful reports represent hurdles to clinical implementation. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.) PMID:22693998

  12. [Pathological Diagnoses and Whole-genome Sequence Analyses of the Jaagsiekte Sheep Retrovirus in Xinjiang, China].

    PubMed

    Yang, Sufang; Liang, Tian; Zhao, Qingliang; Zhang, Dianqing; Si Junqiang; Zhang, Jing; Yang, Xia; Sheng, Jinliang

    2015-05-01

    To carry out pathologic diagnoses and whole-genome sequence analyses of the Jaagsiekte sheep retrovirus (JSRV) in Xinjiang, China, we first observed sheep suspected to have the JSRV. Then, the extracted virus suspension was observed by transmission electron microscopy (TEM). Total RNAs from lungs of JSRV-infected sheep were extracted and reverse-transcribed using a cDNA synthesis kit. Six pairs of primers were designed according to the exogenous reference virus strain (AF105220). Reverse transcription-polymerase chain reaction was carried out from JSRV-infected tissue, and the whole genome of the JSRV sequenced. Our results showed: flow of nasal fluid ("wheelbarrow test"); different sizes of adenoma lesions in the lungs; papillary hyperplasia of alveolar epithelial cells; alveolar cavity filled with macrophages; dissolute nuclei in central lesions. TEM revealed JSRV particles with a diameter of 88 nm to 125. 4 nm. The full-length of the viral genome sequence was 7456 bp. BLAST analyses showed nucleotide homology of 96% and 95% compared with that of the representative strain from the USA (AF105220) and UK (AF357971). Nucleotide homology was 89.8% and 89.9% compared with the endogenous Jaagsiekte sheep retrovirus, Inner Mongolia strain (DQ838493) and USA strain (EF680300). The specific pathogenic amino-acid sequence "YXXM" was found in the TM district, similar to the exogenous JSRV: this gene has been reported to be oncogenic. This is the first report of the complete genomic sequence of the exogenous JSRV from Xinjiang, and could lay the foundation for study of the biological characteristics and pathogenic mechanisms of the pulmonary adenomatosis virus in sheep.

  13. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks

    PubMed Central

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and

  14. Whole genome survey of coding SNPs reveals a reproducible pathway determinant of Parkinson disease

    PubMed Central

    Srinivasan, Balaji S; Doostzadeh, Jaleh; Absalan, Farnaz; Mohandessi, Sharareh; Jalili, Roxana; Bigdeli, Saharnaz; Wang, Justin; Mahadevan, Jaydev; Lee, Caroline LG; Davis, Ronald W; William Langston, J; Ronaghi, Mostafa

    2009-01-01

    It is quickly becoming apparent that situating human variation in a pathway context is crucial to understanding its phenotypic significance. Toward this end, we have developed a general method for finding pathways associated with traits that control for pathway size. We have applied this method to a new whole genome survey of coding SNP variation in 187 patients afflicted with Parkinson disease (PD) and 187 controls. We show that our dataset provides an independent replication of the axon guidance association recently reported by Lesnick et al. [PLoS Genet 2007;3:e98], and also indicates that variation in the ubiquitin-mediated proteolysis and T-cell receptor signaling pathways may predict PD susceptibility. Given this result, it is reasonable to hypothesize that pathway associations are more replicable than individual SNP associations in whole genome association studies. However, this hypothesis is complicated by a detailed comparison of our dataset to the second recent PD association study by Fung et al. [Lancet Neurol 2006;5:911–916]. Surprisingly, we find that the axon guidance pathway does not rank at the very top of the Fung dataset after controlling for pathway size. More generally, in comparing the studies, we find that SNP frequencies replicate well despite technologically different assays, but that both SNP and pathway associations are globally uncorrelated across studies. We thus have a situation in which an association between axon guidance pathway variation and PD has been found in 2 out of 3 studies. We conclude by relating this seeming inconsistency to the molecular heterogeneity of PD, and suggest future analyses that may resolve such discrepancies. PMID:18853455

  15. Light whole genome sequence for SNP discovery across domestic cat breeds

    PubMed Central

    2010-01-01

    Background The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV) that are homologues to human scourges (cancer, SARS, and AIDS respectively). However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP) map is required in order to accomplish disease and phenotype association discovery. Description To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%. Conclusions These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases. PMID:20576142

  16. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    PubMed Central

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  17. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer

    PubMed Central

    Bova, G. Steven; Kallio, Heini M.L.; Annala, Matti; Kivinummi, Kati; Högnäs, Gunilla; Häyrynen, Sergei; Rantapero, Tommi; Kivinen, Virpi; Isaacs, William B.; Tolonen, Teemu; Nykter, Matti; Visakorpi, Tapio

    2016-01-01

    We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials. PMID:27148588

  18. Tumor Touch Imprints as Source for Whole Genome Analysis of Neuroblastoma Tumors

    PubMed Central

    Brunner, Clemens; Brunner-Herglotz, Bettina; Ziegler, Andrea; Frech, Christian; Amann, Gabriele; Ladenstein, Ruth; Ambros, Inge M.; Ambros, Peter F.

    2016-01-01

    Introduction Tumor touch imprints (TTIs) are routinely used for the molecular diagnosis of neuroblastomas by interphase fluorescence in-situ hybridization (I-FISH). However, in order to facilitate a comprehensive, up-to-date molecular diagnosis of neuroblastomas and to identify new markers to refine risk and therapy stratification methods, whole genome approaches are needed. We examined the applicability of an ultra-high density SNP array platform that identifies copy number changes of varying sizes down to a few exons for the detection of genomic changes in tumor DNA extracted from TTIs. Material and Methods DNAs were extracted from TTIs of 46 neuroblastoma and 4 other pediatric tumors. The DNAs were analyzed on the Cytoscan HD SNP array platform to evaluate numerical and structural genomic aberrations. The quality of the data obtained from TTIs was compared to that from randomly chosen fresh or fresh frozen solid tumors (n = 212) and I-FISH validation was performed. Results SNP array profiles were obtained from 48 (out of 50) TTI DNAs of which 47 showed genomic aberrations. The high marker density allowed for single gene analysis, e.g. loss of nine exons in the ATRX gene and the visualization of chromothripsis. Data quality was comparable to fresh or fresh frozen tumor SNP profiles. SNP array results were confirmed by I-FISH. Conclusion TTIs are an excellent source for SNP array processing with the advantage of simple handling, distribution and storage of tumor tissue on glass slides. The minimal amount of tumor tissue needed to analyze whole genomes makes TTIs an economic surrogate source in the molecular diagnostic work up of tumor samples. PMID:27560999

  19. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins

    PubMed Central

    2013-01-01

    Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

  20. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly

    PubMed Central

    Li, Heng

    2012-01-01

    Motivation: Eugene Myers in his string graph paper suggested that in a string graph or equivalently a unitig graph, any path spells a valid assembly. As a string/unitig graph also encodes every valid assembly of reads, such a graph, provided that it can be constructed correctly, is in fact a lossless representation of reads. In principle, every analysis based on whole-genome shotgun sequencing (WGS) data, such as SNP and insertion/deletion (INDEL) calling, can also be achieved with unitigs. Results: To explore the feasibility of using de novo assembly in the context of resequencing, we developed a de novo assembler, fermi, that assembles Illumina short reads into unitigs while preserving most of information of the input reads. SNPs and INDELs can be called by mapping the unitigs against a reference genome. By applying the method on 35-fold human resequencing data, we showed that in comparison to the standard pipeline, our approach yields similar accuracy for SNP calling and better results for INDEL calling. It has higher sensitivity than other de novo assembly based methods for variant calling. Our work suggests that variant calling with de novo assembly can be a beneficial complement to the standard variant calling pipeline for whole-genome resequencing. In the methodological aspects, we propose FMD-index for forward–backward extension of DNA sequences, a fast algorithm for finding all super-maximal exact matches and one-pass construction of unitigs from an FMD-index. Availability: http://github.com/lh3/fermi Contact: hengli@broadinstitute.org PMID:22569178

  1. Whole-genome analysis of multienvironment or multitrait QTL in MAGIC.

    PubMed

    Verbyla, Arūnas P; Cavanagh, Colin R; Verbyla, Klara L

    2014-09-18

    Multiparent Advanced Generation Inter-Cross (MAGIC) populations are now being utilized to more accurately identify the underlying genetic basis of quantitative traits through quantitative trait loci (QTL) analyses and subsequent gene discovery. The expanded genetic diversity present in such populations and the amplified number of recombination events mean that QTL can be identified at a higher resolution. Most QTL analyses are conducted separately for each trait within a single environment. Separate analysis does not take advantage of the underlying correlation structure found in multienvironment or multitrait data. By using this information in a joint analysis-be it multienvironment or multitrait - it is possible to gain a greater understanding of genotype- or QTL-by-environment interactions or of pleiotropic effects across traits. Furthermore, this can result in improvements in accuracy for a range of traits or in a specific target environment and can influence selection decisions. Data derived from MAGIC populations allow for founder probabilities of all founder alleles to be calculated for each individual within the population. This presents an additional layer of complexity and information that can be utilized to identify QTL. A whole-genome approach is proposed for multienvironment and multitrait QTL analysis in MAGIC. The whole-genome approach simultaneously incorporates all founder probabilities at each marker for all individuals in the analysis, rather than using a genome scan. A dimension reduction technique is implemented, which allows for high-dimensional genetic data. For each QTL identified, sizes of effects for each founder allele, the percentage of genetic variance explained, and a score to reflect the strength of the QTL are found. The approach was demonstrated to perform well in a small simulation study and for two experiments, using a wheat MAGIC population.

  2. Whole genomic constellation of the first human G8 rotavirus strain detected in Japan.

    PubMed

    Agbemabiese, Chantal Ama; Nakagomi, Toyoko; Doan, Yen Hai; Nakagomi, Osamu

    2015-10-01

    Human G8 Rotavirus A (RVA) strains are commonly detected in Africa but are rarely detected in Japan and elsewhere in the world. In this study, the whole genome sequence of the first human G8 RVA strain designated AU109 isolated in a child with acute gastroenteritis in 1994 was determined in order to understand how the strain was generated including the host species origin of its genes. The genotype constellation of AU109 was G8-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analyses of the 11 genome segments revealed that its VP7 and VP1 genes were closely related to those of a Hungarian human G8P[14] RVA strain and these genes shared the most recent common ancestors in 1988 and 1982, respectively. AU109 possessed an NSP2 gene closely related to those of Chinese sheep and goat RVA strains. The remaining eight genome segments were closely related to Japanese human G2P[4] strains which circulated around 1985-1990. Bayesian evolutionary analyses revealed that the NSP2 gene of AU109 and those of the Chinese sheep and goat RVA strains diverged from a common ancestor around 1937. In conclusion, AU109 was generated through genetic reassortment event where Japanese DS-1-like G2P[4] strains circulating around 1985-1990 obtained the VP7, VP1 and NSP2 genes from unknown ruminant G8 RVA strains. These observations highlight the need for comprehensive examination of the whole genomes of RVA strains of less explored host species.

  3. Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing.

    PubMed

    Silva, James; Scheffler, Brian; Sanabria, Yamid; De Guzman, Christian; Galam, Dominique; Farmer, Andrew; Woodward, Jimmy; May, Gregory; Oard, James

    2012-01-01

    Recent advances in whole genome sequencing (WGS) have allowed identification of genes for disease susceptibility in humans. The objective of our research was to exploit whole genome sequences of 13 rice (Oryza sativa L.) inbred lines to identify non-synonymous SNPs (nsSNPs) and candidate genes for resistance to sheath blight, a disease of worldwide significance. WGS by the Illumina GA IIx platform produced an average 5× coverage with ~700 K variants detected per line when compared to the Nipponbare reference genome. Two filtering strategies were developed to identify nsSNPs between two groups of known resistant and susceptible lines. A total of 333 nsSNPs detected in the resistant lines were absent in the susceptible group. Selected variants associated with resistance were found in 11 of 12 chromosomes. More than 200 genes with selected nsSNPs were assigned to 42 categories based on gene family/gene ontology. Several candidate genes belonged to families reported in previous studies, and three new regions with novel candidates were also identified. A subset of 24 nsSNPs detected in 23 genes was selected for further study. Individual alleles of the 24 nsSNPs were evaluated by PCR whose presence or absence corresponded to known resistant or susceptible phenotypes of nine additional lines. Sanger sequencing confirmed presence of 12 selected nsSNPs in two lines. "Resistant" nsSNP alleles were detected in two accessions of O. nivara that suggests sources for resistance occur in additional Oryza sp. Results from this study provide a foundation for future basic research and marker-assisted breeding of rice for sheath blight resistance.

  4. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    PubMed Central

    2014-01-01

    Background Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of “living fossils.” As arthropods, they belong to the Ecdysozoa, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Results Here we apply a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab, Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers grouped into 1,876 distinct genetic intervals and 5,775 candidate conserved protein coding genes. Conclusions Comparison with other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications 300 million years ago, followed by extensive chromosome fusion. These results provide a counter-example to the often noted correlation between whole genome duplication and evolutionary radiations. The new, low-cost genetic mapping method for obtaining a chromosome-scale view of non-model organism genomes that we demonstrate here does not require laboratory culture, and is potentially applicable to a broad range of other species. PMID:24987520

  5. Comparative Whole-Genome Mapping To Determine Staphylococcus aureus Genome Size, Virulence Motifs, and Clonality

    PubMed Central

    Pantrang, Madhulatha; Stahl, Buffy; Briska, Adam M.; Stemper, Mary E.; Wagner, Trevor K.; Zentz, Emily B.; Callister, Steven M.; Lovrich, Steven D.; Henkhaus, John K.; Dykes, Colin W.

    2012-01-01

    Despite being a clonal pathogen, Staphylococcus aureus continues to acquire virulence and antibiotic-resistant genes located on mobile genetic elements such as genomic islands, prophages, pathogenicity islands, and the staphylococcal chromosomal cassette mec (SCCmec) by horizontal gene transfer from other staphylococci. The potential virulence of a S. aureus strain is often determined by comparing its pulsed-field gel electrophoresis (PFGE) or multilocus sequence typing profiles to that of known epidemic or virulent clones and by PCR of the toxin genes. Whole-genome mapping (formerly optical mapping), which is a high-resolution ordered restriction mapping of a bacterial genome, is a relatively new genomic tool that allows comparative analysis across entire bacterial genomes to identify regions of genomic similarities and dissimilarities, including small and large insertions and deletions. We explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to predict the presence of methicillin resistance, SCCmec type, and Panton-Valentine leukocidin (PVL)-producing genes on an S. aureus genome. We determined the WGMs of 47 diverse clinical isolates of S. aureus, including well-characterized reference MRSA strains, and annotated the signature restriction pattern in SCCmec types, arginine catabolic mobile element (ACME), and PVL-carrying prophage, PhiSa2 or PhiSa2-like regions on the genome. WGMs of these isolates accurately characterized them as MRSA or methicillin-sensitive S. aureus based on the presence or absence of the SCCmec motif, ACME and the unique signature pattern for the prophage insertion that harbored the PVL genes. Susceptibility to methicillin resistance and the presence of mecA, SCCmec types, and PVL genes were confirmed by PCR. A WGM clustering approach was further able to discriminate isolates within the same PFGE clonal group. These results showed that WGMs could be used not only to genotype S. aureus but also to

  6. Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation

    PubMed Central

    Technow, Frank; Messina, Carlos D.; Totir, L. Radu; Cooper, Mark

    2015-01-01

    Genomic selection, enabled by whole genome prediction (WGP) methods, is revolutionizing plant breeding. Existing WGP methods have been shown to deliver accurate predictions in the most common settings, such as prediction of across environment performance for traits with additive gene effects. However, prediction of traits with non-additive gene effects and prediction of genotype by environment interaction (G×E), continues to be challenging. Previous attempts to increase prediction accuracy for these particularly difficult tasks employed prediction methods that are purely statistical in nature. Augmenting the statistical methods with biological knowledge has been largely overlooked thus far. Crop growth models (CGMs) attempt to represent the impact of functional relationships between plant physiology and the environment in the formation of yield and similar output traits of interest. Thus, they can explain the impact of G×E and certain types of non-additive gene effects on the expressed phenotype. Approximate Bayesian computation (ABC), a novel and powerful computational procedure, allows the incorporation of CGMs directly into the estimation of whole genome marker effects in WGP. Here we provide a proof of concept study for this novel approach and demonstrate its use with synthetic data sets. We show that this novel approach can be considerably more accurate than the benchmark WGP method GBLUP in predicting performance in environments represented in the estimation set as well as in previously unobserved environments for traits determined by non-additive gene effects. We conclude that this proof of concept demonstrates that using ABC for incorporating biological knowledge in the form of CGMs into WGP is a very promising and novel approach to improving prediction accuracy for some of the most challenging scenarios in plant breeding and applied genetics. PMID:26121133

  7. Genetic aberrations in imatinib-resistant dermatofibrosarcoma protuberans revealed by whole genome sequencing.

    PubMed

    Hong, Jung Yong; Liu, Xiao; Mao, Mao; Li, Miao; Choi, Dong Il; Kang, Shin Woo; Lee, Jeeyun; La Choi, Yoon

    2013-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma. DFSP often reveals a specific chromosome translocation, t(17;22)(q22;q13), which results in the fusion of collagen 1 alpha 1 (COL1A1) gene and platelet-derived growth factor-B (PDGFB) gene. The COL1A1-PDGFB fusion protein activates the PDGFB receptor and resultant constitutive activation of PDGFR receptor is essential in the pathogenesis of DFSP. Thus, blocking PDGFR receptor activation with imatinib has shown promising activity in the treatment of advanced and metastatic DFSP. Despite the success with targeted agents in cancers, acquired drug resistance eventually occurs. Here, we tried to identify potential drug resistance mechanisms against imatinib in a 46-year old female with DFSP who initially responded well to imatinib but suffered rapid disease progression. We performed whole-genome sequencing of both pre-treatment and post-treatment tumor tissue to identify the mutational events associated with imatinib resistance. No significant copy number alterations, insertion, and deletions were identified during imatinib treatment. Of note, we identified newly emerged 8 non-synonymous somatic mutations of the genes (ACAP2, CARD10, KIAA0556, PAAQR7, PPP1R39, SAFB2, STARD9, and ZFYVE9) in the imatinib-resistant tumor tissue. This study revealed diverse possible candidate mechanisms by which imatinib resistance to PDGFRB inhibition may arise in DFSP, and highlights the usefulness of whole-genome sequencing in identifying drug resistance mechanisms and in pursuing genome-directed, personalized anti-cancer therapy.

  8. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing.

    PubMed

    Gordon, N C; Price, J R; Cole, K; Everitt, R; Morgan, M; Finney, J; Kearns, A M; Pichon, B; Young, B; Wilson, D J; Llewelyn, M J; Paul, J; Peto, T E A; Crook, D W; Walker, A S; Golubchik, T

    2014-04-01

    Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism's phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.

  9. Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing

    PubMed Central

    Price, J. R.; Cole, K.; Everitt, R.; Morgan, M.; Finney, J.; Kearns, A. M.; Pichon, B.; Young, B.; Wilson, D. J.; Llewelyn, M. J.; Paul, J.; Peto, T. E. A.; Crook, D. W.; Walker, A. S.; Golubchik, T.

    2014-01-01

    Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism's phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens. PMID:24501024

  10. Whole-Genome Sequencing for the Investigation of a Hospital Outbreak of MRSA in China

    PubMed Central

    Kong, Zhenzhen; Zhao, Peipei; Liu, Haibing; Yu, Xiang; Qin, Yanyan; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi; Chen, Jianguo

    2016-01-01

    Staphylococcus aureus is a globally disseminated drug-resistant bacterial species. It remains a leading cause of hospital-acquired infection, primarily among immunocompromised patients. In 2012, the Affiliated People’s Hospital of Jiangsu University experienced a putative outbreak of methicillin-resistant S. aureus (MRSA) that affected 12 patients in the Neurosurgery Department. In this study, whole-genome sequencing (WGS) was used to gain insight into the epidemiology of the outbreak caused by MRSA, and traditional bacterial genotyping approaches were also applied to provide supportive evidence for WGS. We sequenced the DNA from 6 isolates associated with the outbreak. Phylogenetic analysis was constructed by comparing single-nucleotide polymorphisms (SNPs) in the core genome of 6 isolates in the present study and another 3 referenced isolates from GenBank. Of the 6 MRSA sequences in the current study, 5 belonged to the same group, clustering with T0131, while the other one clustered closely with TW20. All of the isolates were identified as ST239-SCCmecIII clones. Whole-genome analysis revealed that four of the outbreak isolates were more tightly clustered into a group and SA13002 together with SA13009 were distinct from the outbreak strains, which were considered non-outbreak strains. Based on the sequencing results, the antibiotic-resistance gene status (present or absent) was almost perfectly concordant with the results of phenotypic susceptibility testing. Various toxin genes were also analyzed successfully. Our analysis demonstrates that using traditional molecular methods and WGS can facilitate the identification of outbreaks and help to control nosocomial transmission. PMID:26950298

  11. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle

    PubMed Central

    Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.

    2015-01-01

    BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332

  12. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer.

    PubMed

    Bova, G Steven; Kallio, Heini M L; Annala, Matti; Kivinummi, Kati; Högnäs, Gunilla; Häyrynen, Sergei; Rantapero, Tommi; Kivinen, Virpi; Isaacs, William B; Tolonen, Teemu; Nykter, Matti; Visakorpi, Tapio

    2016-05-01

    We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials.

  13. Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes.

    PubMed

    Wood, Andrew R; Tuke, Marcus A; Nalls, Mike; Hernandez, Dena; Gibbs, J Raphael; Lin, Haoxiang; Xu, Christopher S; Li, Qibin; Shen, Juan; Jun, Goo; Almeida, Marcio; Tanaka, Toshiko; Perry, John R B; Gaulton, Kyle; Rivas, Manny; Pearson, Richard; Curran, Joanne E; Johnson, Matthew P; Göring, Harald H H; Duggirala, Ravindranath; Blangero, John; Mccarthy, Mark I; Bandinelli, Stefania; Murray, Anna; Weedon, Michael N; Singleton, Andrew; Melzer, David; Ferrucci, Luigi; Frayling, Timothy M

    2015-03-01

    Initial results from sequencing studies suggest that there are relatively few low-frequency (<5%) variants associated with large effects on common phenotypes. We performed low-pass whole-genome sequencing in 680 individuals from the InCHIANTI study to test two primary hypotheses: (i) that sequencing would detect single low-frequency-large effect variants that explained similar amounts of phenotypic variance as single common variants, and (ii) that some common variant associations could be explained by low-frequency variants. We tested two sets of disease-related common phenotypes for which we had statistical power to detect large numbers of common variant-common phenotype associations-11 132 cis-gene expression traits in 450 individuals and 93 circulating biomarkers in all 680 individuals. From a total of 11 657 229 high-quality variants of which 6 129 221 and 5 528 008 were common and low frequency (<5%), respectively, low frequency-large effect associations comprised 7% of detectable cis-gene expression traits [89 of 1314 cis-eQTLs at P < 1 × 10(-06) (false discovery rate ∼5%)] and one of eight biomarker associations at P < 8 × 10(-10). Very few (30 of 1232; 2%) common variant associations were fully explained by low-frequency variants. Our data show that whole-genome sequencing can identify low-frequency variants undetected by genotyping based approaches when sample sizes are sufficiently large to detect substantial numbers of common variant associations, and that common variant associations are rarely explained by single low-frequency variants of large effect.

  14. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    SciTech Connect

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  15. Use of whole-genome sequencing data to analyze 23S rRNA-mediated azithromycin resistance.

    PubMed

    Johnson, Steven R; Grad, Yonatan; Abrams, A Jeanine; Pettus, Kevin; Trees, David L

    2017-02-01

    The whole-genome sequences of 24 isolates of Neisseria gonorrhoeae with elevated minimum inhibitory concentrations (MICs) to azithromycin (≥2.0 µg/mL) were analyzed against a modified sequence derived from the whole-genome sequence of N. gonorrhoeae FA1090 to determine, by signal ratio, the number of mutant copies of the 23S rRNA gene and the copy number effect on 50S ribosome-mediated azithromycin resistance. Isolates that were predicted to contain four mutated copies were accurately identified compared with the results of direct sequencing. Fewer than four mutated copies gave less accurate results but were consistent with elevated MICs.

  16. Whole-Genome Sequencing Identifies Emergence of a Quinolone Resistance Mutation in a Case of Stenotrophomonas maltophilia Bacteremia

    PubMed Central

    Altman, Deena R.; Attie, Oliver; Sebra, Robert; Hamula, Camille L.; Lewis, Martha; Deikus, Gintaras; Newman, Leah C.; Fang, Gang; Hand, Jonathan; Patel, Gopi; Wallach, Fran; Schadt, Eric E.; Huprikar, Shirish; van Bakel, Harm; Bashir, Ali

    2015-01-01

    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy. PMID:26324280

  17. Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing

    DOE PAGES

    Jaing, Crystal J.; McLoughlin, Kevin S.; Thissen, James B.; ...

    2016-09-26

    Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, providemore » better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we then selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. For genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Finally, structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.« less

  18. Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing

    SciTech Connect

    Jaing, Crystal J.; McLoughlin, Kevin S.; Thissen, James B.; Zemla, Adam; Gardner, Shea N.; Vergez, Lisa M.; Bourguet, Feliza; Mabery, Shalini; Fofanov, Viacheslav Y.; Koshinsky, Heather; Jackson, Paul J.; Wang, Junwen

    2016-09-26

    Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, provide better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we then selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. For genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Finally, structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.

  19. Functional Whole-genome Analysis Identifies Polo-like Kinase 2 and Poliovirus Receptor as Essential for Neuronal Differentiation Upstream of the Negative Regulator αB-crystallin

    PubMed Central

    Draghetti, Cristina; Salvat, Catherine; Zanoguera, Francisca; Curchod, Marie-Laure; Vignaud, Chloé; Peixoto, Helene; Di Cara, Alessandro; Fischer, David; Dhanabal, Mohanraj; Andreas, Goutopoulos; Abderrahim, Hadi; Rommel, Christian; Camps, Montserrat

    2009-01-01

    This study aimed at identifying transcriptional changes associated to neuronal differentiation induced by six distinct stimuli using whole-genome microarray hybridization analysis. Bioinformatics analyses revealed the clustering of these six stimuli into two categories, suggesting separate gene/pathway dependence. Treatment with specific inhibitors demonstrated the requirement of both Janus kinase and microtubule-associated protein kinase activation to trigger differentiation with nerve growth factor (NGF) and dibutyryl cAMP. Conversely, activation of protein kinase A, phosphatidylinositol-3-kinase α, and mammalian target of rapamycin, although required for dibutyryl cAMP-induced differentiation, exerted a negative feedback on NGF-induced differentiation. We identified Polo-like kinase 2 (Plk2) and poliovirus receptor (PVR) as indispensable for NGF-driven neuronal differentiation and αB-crystallin (Cryab) as an inhibitor of this process. Silencing of Plk2 or PVR blocked NGF-triggered differentiation and Cryab down-regulation, while silencing of Cryab enhanced NGF-induced differentiation. Our results position both Plk2 and PVR upstream of the negative regulator Cryab in the pathway(s) leading to neuronal differentiation triggered by NGF. PMID:19700763

  20. Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing

    PubMed Central

    Jaing, Crystal J.; McLoughlin, Kevin S.; Thissen, James B.; Zemla, Adam; Vergez, Lisa M.; Bourguet, Feliza; Mabery, Shalini; Fofanov, Viacheslav Y.; Koshinsky, Heather; Jackson, Paul J.

    2016-01-01

    Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, provide better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. Genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms. PMID:27668749

  1. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples

    DTIC Science & Technology

    2015-08-01

    multiple bacteria could be uniquely identified within mixtures. In the first set of experiments, three unique organisms ( Bacillus subtilis subsp. globigii...4th, Oglesby T, et al.Whole-genome sequencing and phenotypic analysis of Bacillus subtilis mutants following evolution under conditions of relaxed

  2. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections

    PubMed Central

    Leekitcharoenphon, Pimlapas; Raufu, Ibrahim; Nielsen, Mette T.; Rosenqvist Lund, Birthe S.; Ameh, James A.; Ambali, Abdul G.; Sørensen, Gitte; Le Hello, Simon; Aarestrup, Frank M.; Hendriksen, Rene S.

    2016-01-01

    Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections. PMID:27228329

  3. Whole-Genome Sequence of Pseudomonas xanthomarina Strain UASWS0955, a Potential Biological Agent for Agricultural and Environmental Uses

    PubMed Central

    Crovadore, Julien; Cochard, Bastien; Calmin, Gautier; Chablais, Romain; Schulz, Torsten

    2016-01-01

    We report here the whole-genome shotgun sequence of the strain UASWS0955 of the species Pseudomonas xanthomarina, isolated from sewage sludge. This genome was obtained with an Illumina MiniSeq and is the second genome registered for this species, which is considered as a promising resource for agriculture and bioremediation of contaminated soils. PMID:27738044

  4. Whole-Genome Sequence of Mesorhizobium hungaricum sp. nov. Strain UASWS1009, a Potential Resource for Agricultural and Environmental Uses

    PubMed Central

    Crovadore, Julien; Cochard, Bastien; Calmin, Gautier; Chablais, Romain; Schulz, Torsten

    2016-01-01

    We report here the whole-genome shotgun sequences of the strain UASWS1009 of the species Mesorhizobium hungaricum sp. nov., which are different from any other known Mesorhizobium species. This is the first genome registered for this new species, which could be considered as a potential resource for agriculture and environmental uses. PMID:27738050

  5. Whole-Genome Sequences of Two Campylobacter coli Isolates from the Antimicrobial Resistance Monitoring Program in Colombia

    PubMed Central

    Bernal, Johan F.; Donado-Godoy, Pilar; Valencia, María Fernanda; León, Maribel; Gómez, Yolanda; Rodríguez, Fernando; Agarwala, Richa; Landsman, David

    2016-01-01

    Campylobacter coli, along with Campylobacter jejuni, is a major agent of gastroenteritis and acute enterocolitis in humans. We report the whole-genome sequences of two multidrug-resistance C. coli strains, isolated from the Colombian poultry chain. The isolates contain a variety of antimicrobial resistance genes for aminoglycosides, lincosamides, fluoroquinolones, and tetracycline. PMID:26988048

  6. Whole-genome sequences of 13 endophytic bacteria isolated from shrub willow (salix) grown in geneva, new york.

    PubMed

    Gan, Huan You; Gan, Han Ming; Savka, Michael A; Triassi, Alexander J; Wheatley, Matthew S; Smart, Lawrence B; Fabio, Eric S; Hudson, André O

    2014-05-08

    Shrub willow, Salix spp. and hybrids, is an important bioenergy crop. Here we report the whole-genome sequences and annotation of 13 endophytic bacteria from stem tissues of Salix purpurea grown in nature and from commercial cultivars and Salix viminalis × Salix miyabeana grown in bioenergy fields in Geneva, New York.

  7. High-Quality Draft Whole-Genome Sequences of Three Strains of Enterobacter Isolated from Jamaican Dioscorea cayenensis (Yellow Yam).

    PubMed

    Gan, Han Ming; Triassi, Alexander J; Wheatley, Matthew S; Savka, Michael A; Hudson, André O

    2014-03-13

    Here we report the whole-genome sequences of three endophytic bacteria, Enterobacter sp. strain DC1, Enterobacter sp. strain DC3, and Enterobacter sp. strain DC4, from root tubers of the yellow yam plant, Dioscorea cayenensis. Preliminary analyses suggest that the genomes of the three bacteria contain genes involved in acetoin and indole-3-acetic acid metabolism.

  8. High-Quality Draft Whole-Genome Sequences of Three Strains of Enterobacter Isolated from Jamaican Dioscorea cayenensis (Yellow Yam)

    PubMed Central

    Gan, Han Ming; Triassi, Alexander J.; Wheatley, Matthew S.; Savka, Michael A.

    2014-01-01

    Here we report the whole-genome sequences of three endophytic bacteria, Enterobacter sp. strain DC1, Enterobacter sp. strain DC3, and Enterobacter sp. strain DC4, from root tubers of the yellow yam plant, Dioscorea cayenensis. Preliminary analyses suggest that the genomes of the three bacteria contain genes involved in acetoin and indole-3-acetic acid metabolism. PMID:24625871

  9. Selection of Unique Escherichia coli Clones by Random Amplified Polymorphic DNA (RAPD): Evaluation by Whole Genome Sequencing

    PubMed Central

    Nielsen, Karen L.; Godfrey, Paul A.; Stegger, Marc; Andersen, Paal S.; Feldgarden, Michael; Frimodt-Møller, Niels

    2014-01-01

    Identifying and characterizing clonal diversity is important when analysing fecal flora. We evaluated random amplified polymorphic DNA (RAPD) PCR, applied for selection of Escherichia coli isolates, by whole genome sequencing. RAPD was fast, and reproducible as screening method for selection of distinct E. coli clones in fecal swabs. PMID:24912108

  10. A searchable, whole genome resource designed for protein variant analysis in diverse lineages of U.S. beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key feature of a gene's function is the variety of protein isoforms it encodes in a population. However, the genetic diversity in bovine whole genome databases tends to be underrepresented because these databases contain an abundance of sequence from the most influential sires. Our first aim was ...

  11. Characterization of Clinically Attenuated Burkholderia mallei by Whole-Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists

    DTIC Science & Technology

    2008-04-01

    genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology...Characterization of Clinically-Attenuated Burkholderia mallei by Whole Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists...of Medicine, Washington, D. C., United States of America Abstract Background: Burkholderia mallei is an understudied biothreat agent responsible for

  12. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

    PubMed Central

    Ahrenfeldt, Johanne; Cisneros, Jose Luis Bellod; Jurtz, Vanessa; Larsen, Mette Voldby; Hasman, Henrik; Aarestrup, Frank Møller; Lund, Ole

    2016-01-01

    Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available. PMID:27327771

  13. Whole-Genome Sequences of Two Campylobacter coli Isolates from the Antimicrobial Resistance Monitoring Program in Colombia.

    PubMed

    Bernal, Johan F; Donado-Godoy, Pilar; Valencia, María Fernanda; León, Maribel; Gómez, Yolanda; Rodríguez, Fernando; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-03-17

    Campylobacter coli, along with Campylobacter jejuni, is a major agent of gastroenteritis and acute enterocolitis in humans. We report the whole-genome sequences of two multidrug-resistance C. coli strains, isolated from the Colombian poultry chain. The isolates contain a variety of antimicrobial resistance genes for aminoglycosides, lincosamides, fluoroquinolones, and tetracycline.

  14. Identification of Source of Brucella suis Infection in Human by Using Whole-Genome Sequencing, United States and Tonga.

    PubMed

    Quance, Christine; Robbe-Austerman, Suelee; Stuber, Tod; Brignole, Tom; DeBess, Emilio E; Boyd, Laurel; LeaMaster, Brad; Tiller, Rebekah; Draper, Jenny; Humphrey, Sharon; Erdman, Matthew M

    2016-01-01

    Brucella suis infection was diagnosed in a man from Tonga, Polynesia, who had butchered swine in Oregon, USA. Although the US commercial swine herd is designated brucellosis-free, exposure history suggested infection from commercial pigs. We used whole-genome sequencing to determine that the man was infected in Tonga, averting a field investigation.

  15. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland

    PubMed Central

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten

    2016-01-01

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture. PMID:27795260

  16. Whole Genome Sequencing of a Methicillin-Resistant Staphylococcus aureus Pseudo-Outbreak in a Professional Football Team

    PubMed Central

    Anderson, Deverick J.; Harris, Simon R.; Godofsky, Eliot; Toriscelli, Todd; Rude, Thomas H.; Elder, Kevin; Sexton, Daniel J.; Pellman, Elliot J.; Mayer, Thom; Fowler, Vance G.; Peacock, Sharon J.

    2014-01-01

    Two American football players on the same team were diagnosed with methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections on the same day. Our investigation, including whole genome sequencing, confirmed that players did not transmit MRSA to one another nor did they acquire the MRSA from a single source within the training facility. PMID:25734164

  17. Ethical and legal implications of whole genome and whole exome sequencing in African populations

    PubMed Central

    2013-01-01

    Background Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. Discussion Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource

  18. Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins

    PubMed Central

    Opazo, Juan C.; Butts, G. Tyler; Nery, Mariana F.; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    Subsequent to the two rounds of whole-genome duplication that occurred in the common ancestor of vertebrates, a third genome duplication occurred in the stem lineage of teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided genetic raw materials for the physiological, morphological, and behavioral diversification of this highly speciose group. The extreme physiological versatility of teleost fish is manifest in their diversity of blood–gas transport traits, which reflects the myriad solutions that have evolved to maintain tissue O2 delivery in the face of changing metabolic demands and environmental O2 availability during different ontogenetic stages. During the course of development, regulatory changes in blood–O2 transport are mediated by the expression of multiple, functionally distinct hemoglobin (Hb) isoforms that meet the particular O2-transport challenges encountered by the developing embryo or fetus (in viviparous or oviparous species) and in free-swimming larvae and adults. The main objective of the present study was to assess the relative contributions of whole-genome duplication, large-scale segmental duplication, and small-scale gene duplication in producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we integrated phylogenetic reconstructions with analyses of conserved synteny to characterize the genomic organization and evolutionary history of the globin gene clusters of teleosts. These results were then integrated with available experimental data on functional properties and developmental patterns of stage-specific gene expression. Our results indicate that multiple α- and β-globin genes were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived globin gene clusters, each of which has undergone lineage-specific changes in gene content via repeated duplication and

  19. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study

    PubMed Central

    Walker, Timothy M; Ip, Camilla LC; Harrell, Ruth H; Evans, Jason T; Kapatai, Georgia; Dedicoat, Martin J; Eyre, David W; Wilson, Daniel J; Hawkey, Peter M; Crook, Derrick W; Parkhill, Julian; Harris, David; Walker, A Sarah; Bowden, Rory; Monk, Philip; Smith, E Grace; Peto, Tim EA

    2013-01-01

    Summary Background Tuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks. Methods In a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data. Findings We sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters. Interpretation Whole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between

  20. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture

    PubMed Central

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent

    2016-01-01

    SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of

  1. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications

    PubMed Central

    Ahsanuddin, Sofia; Afshinnekoo, Ebrahim; Gandara, Jorge; Hakyemezoğlu, Mustafa; Bezdan, Daniela; Minot, Samuel; Greenfield, Nick; Mason, Christopher E.

    2017-01-01

    Amplification of minute quantities of DNA is a fundamental challenge in low-biomass metagenomic and microbiome studies because of potential biases in coverage, guanine-cytosine (GC) content, and altered species abundances. Whole genome amplification (WGA), although widely used, is notorious for introducing artifact sequences, either by amplifying laboratory contaminants or by nonrandom amplification of a sample’s DNA. In this study, we investigate the effect of REPLI-g multiple displacement amplification (MDA; Qiagen, Valencia, CA, USA) on sequencing data quality and species abundance detection in 8 paired metagenomic samples and 1 titrated, mixed control sample. We extracted and sequenced genomic DNA (gDNA) from 8 environmental samples and compared the quality of the sequencing data for the MDA and their corresponding non-MDA samples. The degree of REPLI-g MDA bias was evaluated by sequence metrics, species composition, and cross-validating observed species abundance and species diversity estimates using the One Codex and MetaPhlAn taxonomic classification tools. Here, we provide evidence of the overall efficacy of REPLI-g MDA on retaining sequencing data quality and species abundance measurements while providing increased yields of high-fidelity DNA. We find that species abundance estimates are largely consistent across samples, even with REPLI-g amplification, as demonstrated by the Spearman’s rank order coefficient (R2 > 0.8). However, REPLI-g MDA often produced fewer classified reads at the species, genera, and family level, resulting in decreased species diversity. We also observed some areas with the PCR “jackpot effect,” with varying input DNA values for the Metagenomics Research Group (MGRG) controls at specific genomic loci. We visualize this effect in whole genome coverage plots and with sequence composition analyses and note these caveats of the MDA method. Despite overall concordance of species abundance between the amplified and unamplified

  2. Space-efficient whole genome comparisons with Burrows-Wheeler transforms.

    PubMed

    Lippert, Ross A

    2005-05-01

    The starting point for any alignment of mammalian genomes is the computation of exact matches satisfying various criteria. Time-efficient, O(n), data structures for this computation, such as the suffix tree, require O(n log(n)) space, several times the space of the genomes themselves. Thus, any reasonable whole-genome comparative project finds itself requiring tens of Gigabytes of RAM to maintain time-efficiency. This is beyond most modern workstations. With a new data structure, the compressed suffix array (CSA) implemented via the Burrows-Wheeler transform, we can trade time-efficiency for space-efficiency, taking O(n log(n)) time, but running in O(n) space, typically in total space less than or equal to that of the genomes themselves. If space is more expensive than time, this is an appropriate approach to consider. The most space-efficient implementation of this data structure requires 5 bits per nucleotide character to build on-line, in the worst case, and 2.5 bits per character to store once built. We present a description of this data structure and how it is used to obtain matches. An implementation (called bbbwt) is demonstrated by aligning two mammalian genomes on a modest workstation equipped with under 2 GB of free RAM in time superior to that of the implementations of other data structures.

  3. Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association

    PubMed Central

    Strachan, Norval J. C.; Rotariu, Ovidiu; Lopes, Bruno; MacRae, Marion; Fairley, Susan; Laing, Chad; Gannon, Victor; Allison, Lesley J.; Hanson, Mary F.; Dallman, Tim; Ashton, Philip; Franz, Eelco; van Hoek, Angela H. A. M.; French, Nigel P.; George, Tessy; Biggs, Patrick J.; Forbes, Ken J.

    2015-01-01

    Genetic variation in an infectious disease pathogen can be driven by ecological niche dissimilarities arising from different host species and different geographical locations. Whole genome sequencing was used to compare E. coli O157 isolates from host reservoirs (cattle and sheep) from Scotland and to compare genetic variation of isolates (human, animal, environmental/food) obtained from Scotland, New Zealand, Netherlands, Canada and the USA. Nei’s genetic distance calculated from core genome single nucleotide polymorphisms (SNPs) demonstrated that the animal isolates were from the same population. Investigation of the Shiga toxin bacteriophage and their insertion sites (SBI typing) revealed that cattle and sheep isolates had statistically indistinguishable rarefaction profiles, diversity and genotypes. In contrast, isolates from different countries exhibited significant differences in Nei’s genetic distance and SBI typing. Hence, after successful international transmission, which has occurred on multiple occasions, local genetic variation occurs, resulting in a global patchwork of continental and trans-continental phylogeographic clades. These findings are important for three reasons: first, understanding transmission and evolution of infectious diseases associated with multiple host reservoirs and multi-geographic locations; second, highlighting the relevance of the sheep reservoir when considering farm based interventions; and third, improving our understanding of why human disease incidence varies across the world. PMID:26442781

  4. Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2012-01-01

    It has been hypothesized that two successive rounds of whole-genome duplication (WGD) in the stem lineage of vertebrates provided genetic raw materials for the evolutionary innovation of many vertebrate-specific features. However, it has seldom been possible to trace such innovations to specific functional differences between paralogous gene products that derive from a WGD event. Here, we report genomic evidence for a direct link between WGD and key physiological innovations in the vertebrate oxygen transport system. Specifically, we demonstrate that key globin proteins that evolved specialized functions in different aspects of oxidative metabolism (hemoglobin, myoglobin, and cytoglobin) represent paralogous products of two WGD events in the vertebrate common ancestor. Analysis of conserved macrosynteny between the genomes of vertebrates and amphioxus (subphylum Cephalochordata) revealed that homologous chromosomal segments defined by myoglobin + globin-E, cytoglobin, and the α-globin gene cluster each descend from the same linkage group in the reconstructed proto-karyotype of the chordate common ancestor. The physiological division of labor between the oxygen transport function of hemoglobin and the oxygen storage function of myoglobin played a pivotal role in the evolution of aerobic energy metabolism, supporting the hypothesis that WGDs helped fuel key innovations in vertebrate evolution. PMID:21965344

  5. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU

    PubMed Central

    Lee, Lap-Kei; Cheung, Jeanno; Liu, Chi-Man

    2014-01-01

    This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA’s speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa. PMID:24949238

  6. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  7. New Perspectives on Microbial Community Distortion after Whole-Genome Amplification

    PubMed Central

    DeSantis, Todd Z.; Santo Domingo, Jorge W.; Ashbolt, Nicholas

    2015-01-01

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the effects of WGA on 31 different microbial communities from five biotopes that also included low-biomass samples from drinking water and groundwater. Our findings provide evidence that microbiome segregation by biotope was possible despite WGA treatment. Nevertheless, samples from different biotopes revealed different levels of distortion, with genomic GC content significantly correlated with WGA perturbation. Certain phylogenetic clades revealed a homogenous trend across various sample types, for instance Alpha- and Betaproteobacteria showed a decrease in their abundance after WGA treatment. On the other hand, Enterobacteriaceae, an important biomarker group for fecal contamination in groundwater and drinking water, were strongly affected by WGA treatment without a predictable pattern. These novel results describe the impact of WGA on low-biomass samples and may highlight issues to be aware of when designing future metagenomic studies that necessitate preceding WGA treatment. PMID:26010362

  8. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    PubMed Central

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  9. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing.

    PubMed

    Naushad, Sohail; Barkema, Herman W; Luby, Christopher; Condas, Larissa A Z; Nobrega, Diego B; Carson, Domonique A; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity.

  10. Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs.

    PubMed

    Kenny, N J; Chan, K W; Nong, W; Qu, Z; Maeso, I; Yip, H Y; Chan, T F; Kwan, H S; Holland, P W H; Chu, K H; Hui, J H L

    2016-02-01

    Whole-genome duplication (WGD) results in new genomic resources that can be exploited by evolution for rewiring genetic regulatory networks in organisms. In metazoans, WGD occurred before the last common ancestor of vertebrates, and has been postulated as a major evolutionary force that contributed to their speciation and diversification of morphological structures. Here, we have sequenced genomes from three of the four extant species of horseshoe crabs-Carcinoscorpius rotundicauda, Limulus polyphemus and Tachypleus tridentatus. Phylogenetic and sequence analyses of their Hox and other homeobox genes, which encode crucial transcription factors and have been used as indicators of WGD in animals, strongly suggests that WGD happened before the last common ancestor of these marine chelicerates >135 million years ago. Signatures of subfunctionalisation of paralogues of Hox genes are revealed in the appendages of two species of horseshoe crabs. Further, residual homeobox pseudogenes are observed in the three lineages. The existence of WGD in the horseshoe crabs, noted for relative morphological stasis over geological time, suggests that genomic diversity need not always be reflected phenotypically, in contrast to the suggested situation in vertebrates. This study provides evidence of ancient WGD in the ecdysozoan lineage, and reveals new opportunities for studying genomic and regulatory evolution after WGD in the Metazoa.

  11. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  12. Inverse Symmetry in Complete Genomes and Whole-Genome Inverse Duplication

    PubMed Central

    Kong, Sing-Guan; Fan, Wen-Lang; Chen, Hong-Da; Hsu, Zi-Ting; Zhou, Nengji; Zheng, Bo; Lee, Hoong-Chien

    2009-01-01

    The cause of symmetry is usually subtle, and its study often leads to a deeper understanding of the bearer of the symmetry. To gain insight into the dynamics driving the growth and evolution of genomes, we conducted a comprehensive study of textual symmetries in 786 complete chromosomes. We focused on symmetry based on our belief that, in spite of their extreme diversity, genomes must share common dynamical principles and mechanisms that drive their growth and evolution, and that the most robust footprints of such dynamics are symmetry related. We found that while complement and reverse symmetries are essentially absent in genomic sequences, inverse–complement plus reverse–symmetry is prevalent in complex patterns in most chromosomes, a vast majority of which have near maximum global inverse symmetry. We also discovered relations that can quantitatively account for the long observed but unexplained phenomenon of -mer skews in genomes. Our results suggest segmental and whole-genome inverse duplications are important mechanisms in genome growth and evolution, probably because they are efficient means by which the genome can exploit its double-stranded structure to enrich its code-inventory. PMID:19898631

  13. Living laboratory: Whole-genome sequencing as a learning healthcare enterprise

    PubMed Central

    Angrist, M.; Jamal, L.

    2014-01-01

    With the proliferation of affordable large-scale human genomic data come profound and vexing questions about management of such data and their clinical uncertainty. These issues challenge the view that genomic research on human beings can (or should) be fully segregated from clinical genomics, either conceptually or practically. Here we argue that the historical sharp distinction between clinical care and research is especially problematic in the context of large-scale genomic sequencing of people with suspected genetic conditions. Core goals of both enterprises (e.g., understanding genotype-phenotype relationships; generating an evidence base for genomic medicine) are more likely to be realized at a population scale if both those ordering and those undergoing sequencing for clinical reasons are routinely and longitudinally studied. Rather than relying on expensive and lengthy randomized clinical trials and meta-analyses, we propose leveraging nascent clinical-research hybrid frameworks into a broader, more permanent instantiation of exploratory medical sequencing. Such an investment could enlighten stakeholders about the real-life challenges posed by whole-genome sequencing, e.g., establishing the clinical actionability of genetic variants, returning “off-target” results to families, developing effective service delivery models and monitoring long-term outcomes. PMID:25045831

  14. Whole genome sequencing for M/XDR tuberculosis surveillance and for resistance testing.

    PubMed

    Walker, T M; Merker, M; Kohl, T A; Crook, D W; Niemann, S; Peto, T E A

    2017-03-01

    Whole genome sequencing (WGS) can help to relate Mycobacterium tuberculosis genomes to one another to assess genetic relatedness and infer the likelihood of transmission between cases. The same sequence data are now increasingly being used to predict drug resistance and susceptibility. Controlling the spread of tuberculosis and providing patients with the correct treatment are central to the World Health Organization's target to 'End TB' by 2035, for which the global prevalence of drug-resistant tuberculosis remains one of the main obstacles to success. So far, WGS has been applied largely to drug-susceptible strains for the purposes of understanding transmission, leaving a number of analytical considerations before transferring what has been learnt from drug-susceptible disease to drug-resistant tuberculosis. We discuss these potential problems here, alongside some of the challenges to characterizing the Mycobacterium tuberculosis 'resistome'-the optimal knowledge-base required for WGS-based assays to successfully direct individualized treatment regimens through the prediction of drug resistance and susceptibility in the future.

  15. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China.

    PubMed

    Chen, Rong; Feng, Yu; Wang, Xiaohui; Yang, Jingyu; Zhang, Xiaoxia; Lü, Xiaoju; Zong, Zhiyong

    2017-03-06

    Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28-29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile.

  16. A field guide to whole-genome sequencing, assembly and annotation

    PubMed Central

    Ekblom, Robert; Wolf, Jochen B W

    2014-01-01

    Genome sequencing projects were long confined to biomedical model organisms and required the concerted effort of large consortia. Rapid progress in high-throughput sequencing technology and the simultaneous development of bioinformatic tools have democratized the field. It is now within reach for individual research groups in the eco-evolutionary and conservation community to generate de novo draft genome sequences for any organism of choice. Because of the cost and considerable effort involved in such an endeavour, the important first step is to thoroughly consider whether a genome sequence is necessary for addressing the biological question at hand. Once this decision is taken, a genome project requires careful planning with respect to the organism involved and the intended quality of the genome draft. Here, we briefly review the state of the art within this field and provide a step-by-step introduction to the workflow involved in genome sequencing, assembly and annotation with particular reference to large and complex genomes. This tutorial is targeted at scientists with a background in conservation genetics, but more generally, provides useful practical guidance for researchers engaging in whole-genome sequencing projects. PMID:25553065

  17. Kuwaiti population subgroup of nomadic Bedouin ancestry—Whole genome sequence and analysis

    PubMed Central

    John, Sumi Elsa; Thareja, Gaurav; Hebbar, Prashantha; Behbehani, Kazem; Thanaraj, Thangavel Alphonse; Alsmadi, Osama

    2014-01-01

    Kuwaiti native population comprises three distinct genetic subgroups of Persian, “city-dwelling” Saudi Arabian tribe, and nomadic “tent-dwelling” Bedouin ancestry. Bedouin subgroup is characterized by presence of 17% African ancestry; it owes it origin to nomadic tribes of the deserts of Arabian Peninsula and North Africa. By sequencing whole genome of a Kuwaiti male from this subgroup at 41X coverage, we report 3,752,878 SNPs, 411,839 indels, and 8451 structural variations. Neighbor-joining tree, based on shared variant positions carrying disease-risk alleles between the Bedouin and other continental genomes, places Bedouin genome at the nexus of African, Asian, and European genomes in concordance with geographical location of Kuwait and Peninsula. In congruence with participant's medical history for morbid obesity and bronchial asthma, risk alleles are seen at deleterious SNPs associated with obesity and asthma. Many of the observed deleterious ‘novel’ variants lie in genes associated with autosomal recessive disorders characteristic of the region. PMID:26484159

  18. Inference of gorilla demographic and selective history from whole-genome sequence data.

    PubMed

    McManus, Kimberly F; Kelley, Joanna L; Song, Shiya; Veeramah, Krishna R; Woerner, August E; Stevison, Laurie S; Ryder, Oliver A; Ape Genome Project, Great; Kidd, Jeffrey M; Wall, Jeffrey D; Bustamante, Carlos D; Hammer, Michael F

    2015-03-01

    Although population-level genomic sequence data have been gathered extensively for humans, similar data from our closest living relatives are just beginning to emerge. Examination of genomic variation within great apes offers many opportunities to increase our understanding of the forces that have differentially shaped the evolutionary history of hominid taxa. Here, we expand upon the work of the Great Ape Genome Project by analyzing medium to high coverage whole-genome sequences from 14 western lowland gorillas (Gorilla gorilla gorilla), 2 eastern lowland gorillas (G. beringei graueri), and a single Cross River individual (G. gorilla diehli). We infer that the ancestors of western and eastern lowland gorillas diverged from a common ancestor approximately 261 ka, and that the ancestors of the Cross River population diverged from the western lowland gorilla lineage approximately 68 ka. Using a diffusion approximation approach to model the genome-wide site frequency spectrum, we infer a history of western lowland gorillas that includes an ancestral population expansion of 1.4-fold around 970 ka and a recent 5.6-fold contraction in population size 23 ka. The latter may correspond to a major reduction in African equatorial forests around the Last Glacial Maximum. We also analyze patterns of variation among western lowland gorillas to identify several genomic regions with strong signatures of recent selective sweeps. We find that processes related to taste, pancreatic and saliva secretion, sodium ion transmembrane transport, and cardiac muscle function are overrepresented in genomic regions predicted to have experienced recent positive selection.

  19. Scalable whole-genome single-cell library preparation without preamplification.

    PubMed

    Zahn, Hans; Steif, Adi; Laks, Emma; Eirew, Peter; VanInsberghe, Michael; Shah, Sohrab P; Aparicio, Samuel; Hansen, Carl L

    2017-02-01

    Single-cell genomics is critical for understanding cellular heterogeneity in cancer, but existing library preparation methods are expensive, require sample preamplification and introduce coverage bias. Here we describe direct library preparation (DLP), a robust, scalable, and high-fidelity method that uses nanoliter-volume transposition reactions for single-cell whole-genome library preparation without preamplification. We examined 782 cells from cell lines and triple-negative breast xenograft tumors. Low-depth sequencing, compared with existing methods, revealed greater coverage uniformity and more reliable detection of copy-number alterations. Using phylogenetic analysis, we found minor xenograft subpopulations that were undetectable by bulk sequencing, as well as dynamic clonal expansion and diversification between passages. Merging single-cell genomes in silico, we generated 'bulk-equivalent' genomes with high depth and uniform coverage. Thus, low-depth sequencing of DLP libraries may provide an attractive replacement for conventional bulk sequencing methods, permitting analysis of copy number at the cell level and of other genomic variants at the population level.

  20. Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans

    PubMed Central

    Begun, David J; Holloway, Alisha K; Stevens, Kristian; Hillier, LaDeana W; Poh, Yu-Ping; Hahn, Matthew W; Nista, Phillip M; Jones, Corbin D; Kern, Andrew D; Dewey, Colin N; Pachter, Lior; Myers, Eugene; Langley, Charles H

    2007-01-01

    The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans. PMID:17988176

  1. A novel strategy for clustering major depression individuals using whole-genome sequencing variant data

    PubMed Central

    Yu, Chenglong; Baune, Bernhard T.; Licinio, Julio; Wong, Ma-Li

    2017-01-01

    Major depressive disorder (MDD) is highly prevalent, resulting in an exceedingly high disease burden. The identification of generic risk factors could lead to advance prevention and therapeutics. Current approaches examine genotyping data to identify specific variations between cases and controls. Compared to genotyping, whole-genome sequencing (WGS) allows for the detection of private mutations. In this proof-of-concept study, we establish a conceptually novel computational approach that clusters subjects based on the entirety of their WGS. Those clusters predicted MDD diagnosis. This strategy yielded encouraging results, showing that depressed Mexican-American participants were grouped closer; in contrast ethnically-matched controls grouped away from MDD patients. This implies that within the same ancestry, the WGS data of an individual can be used to check whether this individual is within or closer to MDD subjects or to controls. We propose a novel strategy to apply WGS data to clinical medicine by facilitating diagnosis through genetic clustering. Further studies utilising our method should examine larger WGS datasets on other ethnical groups. PMID:28287625

  2. Whole-Genome Sequencing and Intraspecific Analysis of the Yeast Species Lachancea quebecensis

    PubMed Central

    Freel, Kelle C.; Friedrich, Anne; Sarilar, Véronique; Devillers, Hugo; Neuvéglise, Cécile; Schacherer, Joseph

    2016-01-01

    The gold standard in yeast population genomics has been the model organism Saccharomyces cerevisiae. However, the exploration of yeast species outside the Saccharomyces genus is essential to broaden the understanding of genome evolution. Here, we report the analyses of whole-genome sequences of nineisolates from the recently described yeast species Lachancea quebecensis. The genome of one isolate was assembled and annotated, and the intraspecific variability within L. quebecensis was surveyed by comparing the sequences from the eight other isolates to this reference sequence. Our study revealed that these strains harbor genomes with an average nucleotide diversity of π = 2 × 10−3 which is slightly lower, although on the same order of magnitude, as that previously determined for S. cerevisiae (π = 4 × 10−3). Our results show that even though these isolates were all obtained from a relatively isolated geographic location, the same ecological source, and represent a smaller sample size than is available for S. cerevisiae, the levels of divergence are similar to those observed in this model species. This divergence is essentially linked to the presence of two distinct clusters delineated according to geographic location. However, even with relatively similar ranges of genome divergence, L. quebecensis has an extremely low global phenotypic variance of 0.062 compared with 0.59 previously determined in S. cerevisiae. PMID:26733577

  3. Unique Features of a Japanese ‘Candidatus Liberibacter asiaticus’ Strain Revealed by Whole Genome Sequencing

    PubMed Central

    Katoh, Hiroshi; Miyata, Shin-ichi; Inoue, Hiromitsu; Iwanami, Toru

    2014-01-01

    Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. americanus’, and ‘Ca. L. africanus’. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol), in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative ‘Ca. L. asiaticus’ Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from ‘Ca. L. asiaticus’-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other ‘Ca. L. asiaticus’ strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region. PMID:25180586

  4. Using whole-genome sequencing to determine appropriate streptomycin epidemiological cutoffs for Salmonella and Escherichia coli.

    PubMed

    Tyson, Gregory H; Li, Cong; Ayers, Sherry; McDermott, Patrick F; Zhao, Shaohua

    2016-02-01

    For Enterobacteriaceae such as Salmonella spp. and Escherichia coli, no unified interpretive resistance criteria exist for streptomycin, an epidemiologically important antibiotic. As part of the National Antimicrobial Resistance Monitoring System, we had previously used a minimum inhibitory concentration of ≥ 64 μg mL(-1) as an epidemiological cutoff value (ECV) to define non-wild-type isolates. To identify whether this ECV correlated with genetic determinants of resistance, we performed whole-genome sequencing of 463 Salmonella and E. coli isolates to identify streptomycin resistance genotypes. From this analysis, we found that using a streptomycin resistance breakpoint of ≥ 64 μg mL(-1) classified over 20% of strains possessing aadA or strA/strB resistance genes as wild-type. Therefore, to improve the concordance between genotypic and phenotypic data, we propose reducing the phenotypic cutoff values to ≥ 32 μg mL(-1) for both Salmonella and E. coli, to be used widely as ECVs to categorize non-wild-type isolates.

  5. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing

    PubMed Central

    Buchanan, Ruaridh; Stoesser, Nicole; Crook, Derrick; Bowler, Ian C J W

    2014-01-01

    A 45-year-old man with dilated cardiomyopathy presented with acute leg pain and erythema suggestive of necrotising fasciitis. Initial surgical exploration revealed no necrosis and treatment for a soft tissue infection was started. Blood and tissue cultures unexpectedly grew a Gram-negative bacillus, subsequently identified by an automated broth microdilution phenotyping system as an extended-spectrum β-lactamase producing Escherichia coli. The patient was treated with a 3-week course of antibiotics (ertapenem followed by ciprofloxacin) and debridement for small areas of necrosis, followed by skin grafting. The presence of E. coli triggered investigation of both host and pathogen. The patient was found to have previously undiagnosed liver disease, a risk factor for E. coli soft tissue infection. Whole genome sequencing of isolates from all specimens confirmed they were clonal, of sequence type ST131 and associated with a likely plasmid-associated AmpC (CMY-2), several other resistance genes and a number of virulence factors. PMID:25331151

  6. Identification of Salmonella for public health surveillance using whole genome sequencing

    PubMed Central

    Ashton, Philip M.; Nair, Satheesh; Peters, Tansy M.; Bale, Janet A.; Powell, David G.; Painset, Anaïs; Tewolde, Rediat; Schaefer, Ulf; de Pinna, Elizabeth M.; Grant, Kathie A.

    2016-01-01

    In April 2015, Public Health England implemented whole genome sequencing (WGS) as a routine typing tool for public health surveillance of Salmonella, adopting a multilocus sequence typing (MLST) approach as a replacement for traditional serotyping. The WGS derived sequence type (ST) was compared to the phenotypic serotype for 6,887 isolates of S. enterica subspecies I, and of these, 6,616 (96%) were concordant. Of the 4% (n = 271) of isolates of subspecies I exhibiting a mismatch, 119 were due to a process error in the laboratory, 26 were likely caused by the serotype designation in the MLST database being incorrect and 126 occurred when two different serovars belonged to the same ST. The population structure of S. enterica subspecies II–IV differs markedly from that of subspecies I and, based on current data, defining the serovar from the clonal complex may be less appropriate for the classification of this group. Novel sequence types that were not present in the MLST database were identified in 8.6% of the total number of samples tested (including S. enterica subspecies I–IV and S. bongori) and these 654 isolates belonged to 326 novel STs. For S. enterica subspecies I, WGS MLST derived serotyping is a high throughput, accurate, robust, reliable typing method, well suited to routine public health surveillance. The combined output of ST and serovar supports the maintenance of traditional serovar nomenclature while providing additional insight on the true phylogenetic relationship between isolates. PMID:27069781

  7. Identification of Medium-Sized Copy Number Alterations in Whole-Genome Sequencing

    PubMed Central

    Ozer, Hatice Gulcin; Usubalieva, Aisulu; Dorrance, Adrienne; Yilmaz, Ayse Selen; Caligiuri, Michael; Marcucci, Guido; Huang, Kun

    2014-01-01

    The genome-wide discoveries such as detection of copy number alterations (CNA) from high-throughput whole-genome sequencing data enabled new developments in personalized medicine. The CNAs have been reported to be associated with various diseases and cancers including acute myeloid leukemia. However, there are multiple challenges to the use of current CNA detection tools that lead to high false-positive rates and thus impede widespread use of such tools in cancer research. In this paper, we discuss these issues and propose possible solutions. First, since the entire genome cannot be mapped due to some regions lacking sequence uniqueness, current methods cannot be appropriately adjusted to handle these regions in the analyses. Thus, detection of medium-sized CNAs is also being directly affected by these mappability problems. The requirement for matching control samples is also an important limitation because acquiring matching controls might not be possible or might not be cost efficient. Here we present an approach that addresses these issues and detects medium-sized CNAs in cancer genomes by (1) masking unmappable regions during the initial CNA detection phase, (2) using pool of a few normal samples as control, and (3) employing median filtering to adjust CNA ratios to its surrounding coverage and eliminate false positives. PMID:25788829

  8. Impacts of Whole-Genome Triplication on MIRNA Evolution in Brassica rapa.

    PubMed

    Sun, Chao; Wu, Jian; Liang, Jianli; Schnable, James C; Yang, Wencai; Cheng, Feng; Wang, Xiaowu

    2015-11-01

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play essential roles in eukaryotes. Although the influence of whole-genome triplication (WGT) on protein-coding genes has been well documented in Brassica rapa, little is known about its impacts on MIRNAs. In this study, through generating a comprehensive annotation of 680 MIRNAs for B. rapa, we analyzed the evolutionary characteristics of these MIRNAs from different aspects in B. rapa. First, while MIRNAs and genes show similar patterns of biased distribution among subgenomes of B. rapa, we found that MIRNAs are much more overretained than genes following fractionation after WGT. Second, multiple-copy MIRNAs show significant sequence conservation than that of single-copy MIRNAs, which is opposite to that of genes. This indicates that increased purifying selection is acting upon these highly retained multiple-copy MIRNAs and their functional importance over singleton MIRNAs. Furthermore, we found the extensive divergence between pairs of miRNAs and their target genes following the WGT in B. rapa. In summary, our study provides a valuable resource for exploring MIRNA in B. rapa and highlights the impacts of WGT on the evolution of MIRNA.

  9. Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis.

    PubMed

    Inns, T; Ashton, P M; Herrera-Leon, S; Lighthill, J; Foulkes, S; Jombart, T; Rehman, Y; Fox, A; Dallman, T; DE Pinna, E; Browning, L; Coia, J E; Edeghere, O; Vivancos, R

    2017-01-01

    Since April 2015, whole genome sequencing (WGS) has been the routine test for Salmonella identification, surveillance and outbreak investigation at the national reference laboratory in England and Wales. In May 2015, an outbreak of Salmonella Enteritidis cases was detected using WGS data and investigated. UK cases were interviewed to obtain a food history and links between suppliers were mapped to produce a food chain network for chicken eggs. The association between the food chain network and the phylogeny was explored using a network comparison approach. Food and environmental samples were taken from premises linked to cases and tested for Salmonella. Within the outbreak single nucleotide polymorphism defined cluster, 136 cases were identified in the UK and 18 in Spain. One isolate from a food containing chicken eggs was within the outbreak cluster. There was a significant association between the chicken egg food chain of UK cases and phylogeny of outbreak isolates. This is the first published Salmonella outbreak to be prospectively detected using WGS. This outbreak in the UK was linked with contemporaneous cases in Spain by WGS. We conclude that UK and Spanish cases were exposed to a common source of Salmonella-contaminated chicken eggs.

  10. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs.

    PubMed

    King, Jaime S; Smith, Monica E

    2016-01-01

    State newborn screening (NBS) programs routinely screen nearly all of the 4 million newborns in the United States each year for ∼30 primary conditions and a number of secondary conditions. NBS could be on the cusp of an unprecedented expansion as a result of advances in whole-genome sequencing (WGS). As WGS becomes cheaper and easier and as our knowledge and understanding of human genetics expand, the question of whether WGS has a role to play in state NBS programs becomes increasingly relevant and complex. As geneticists and state public health officials begin to contemplate the technical and procedural details of whether WGS could benefit existing NBS programs, this is an opportune time to revisit the legal framework of state NBS programs. In this article, we examine the constitutional underpinnings of state-mandated NBS and explore the range of current state statutes and regulations that govern the programs. We consider the legal refinements that will be needed to keep state NBS programs within constitutional bounds, focusing on 2 areas of concern: consent procedures and the criteria used to select new conditions for NBS panels. We conclude by providing options for states to consider when contemplating the use of WGS for NBS.

  11. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    PubMed Central

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  12. Differential retention and divergent resolution of duplicate genes following whole-genome duplication

    PubMed Central

    McGrath, Casey L.; Gout, Jean-Francois; Johri, Parul; Doak, Thomas G.

    2014-01-01

    The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by >10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs’ lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex. PMID:25085612

  13. Insights into Three Whole-Genome Duplications Gleaned from the Paramecium caudatum Genome Sequence

    PubMed Central

    McGrath, Casey L.; Gout, Jean-Francois; Doak, Thomas G.; Yanagi, Akira; Lynch, Michael

    2014-01-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. PMID:24840360

  14. Whole-Genome Sequencing Uncovers the Genetic Basis of Chronic Mountain Sickness in Andean Highlanders

    PubMed Central

    Zhou, Dan; Udpa, Nitin; Ronen, Roy; Stobdan, Tsering; Liang, Junbin; Appenzeller, Otto; Zhao, Huiwen W.; Yin, Yi; Du, Yuanping; Guo, Lixia; Cao, Rui; Wang, Yu; Jin, Xin; Huang, Chen; Jia, Wenlong; Cao, Dandan; Guo, Guangwu; Gamboa, Jorge L.; Villafuerte, Francisco; Callacondo, David; Xue, Jin; Liu, Siqi; Frazer, Kelly A.; Li, Yingrui; Bafna, Vineet; Haddad, Gabriel G.

    2013-01-01

    The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcriptional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation to high altitudes and identifies potentially targetable mechanisms for CMS treatment. PMID:23954164

  15. Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing.

    PubMed

    Suzuki, Toshifumi; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Miyake, Noriko; Saitsu, Hirotomo; Takeda, Satoru; Matsumoto, Naomichi

    2014-12-01

    Structural variations (SVs), including translocations, inversions, deletions and duplications, are potentially associated with Mendelian diseases and contiguous gene syndromes. Determination of SV-related breakpoints at the nucleotide level is important to reveal the genetic causes for diseases. Whole-genome sequencing (WGS) by next-generation sequencers is expected to determine structural abnormalities more directly and efficiently than conventional methods. In this study, 14 SVs (9 balanced translocations, 1 inversion and 4 microdeletions) in 9 patients were analyzed by WGS with a shallow (5 × ) to moderate read coverage (20 × ). Among 28 breakpoints (as each SV has two breakpoints), 19 SV breakpoints had been determined previously at the nucleotide level by any other methods and 9 were uncharacterized. BreakDancer and Integrative Genomics Viewer determined 20 breakpoints (16 translocation, 2 inversion and 2 deletion breakpoints), but did not detect 8 breakpoints (2 translocation and 6 deletion breakpoints). These data indicate the efficacy of WGS for the precise determination of translocation and inversion breakpoints.

  16. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU.

    PubMed

    Luo, Ruibang; Wong, Yiu-Lun; Law, Wai-Chun; Lee, Lap-Kei; Cheung, Jeanno; Liu, Chi-Man; Lam, Tak-Wah

    2014-01-01

    This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA's speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.

  17. The population genomics of rhesus macaques (Macaca mulatta) based on whole-genome sequences

    PubMed Central

    Xue, Cheng; Raveendran, Muthuswamy; Harris, R. Alan; Fawcett, Gloria L.; Liu, Xiaoming; White, Simon; Dahdouli, Mahmoud; Rio Deiros, David; Below, Jennifer E.; Salerno, William; Cox, Laura; Fan, Guoping; Ferguson, Betsy; Horvath, Julie; Johnson, Zach; Kanthaswamy, Sree; Kubisch, H. Michael; Liu, Dahai; Platt, Michael; Smith, David G.; Sun, Binghua; Vallender, Eric J.; Wang, Feng; Wiseman, Roger W.; Chen, Rui; Muzny, Donna M.; Gibbs, Richard A.; Yu, Fuli; Rogers, Jeffrey

    2016-01-01

    Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little is known about genome-wide genetic variation in this species. A detailed understanding of extant genomic variation among rhesus macaques has implications for the use of this species as a model for studies of human health and disease, as well as for evolutionary population genomics. Whole-genome sequencing analysis of 133 rhesus macaques revealed more than 43.7 million single-nucleotide variants, including thousands predicted to alter protein sequences, transcript splicing, and transcription factor binding sites. Rhesus macaques exhibit 2.5-fold higher overall nucleotide diversity and slightly elevated putative functional variation compared with humans. This functional variation in macaques provides opportunities for analyses of coding and noncoding variation, and its cellular consequences. Despite modestly higher levels of nonsynonymous variation in the macaques, the estimated distribution of fitness effects and the ratio of nonsynonymous to synonymous variants suggest that purifying selection has had stronger effects in rhesus macaques than in humans. Demographic reconstructions indicate this species has experienced a consistently large but fluctuating population size. Overall, the results presented here provide new insights into the population genomics of nonhuman primates and expand genomic information directly relevant to primate models of human disease. PMID:27934697

  18. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins

    PubMed Central

    Croucher, Nicholas J.; Page, Andrew J.; Connor, Thomas R.; Delaney, Aidan J.; Keane, Jacqueline A.; Bentley, Stephen D.; Parkhill, Julian; Harris, Simon R.

    2015-01-01

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates’ recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  19. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection.

    PubMed

    Kuroda, Makoto; Yamashita, Atsushi; Hirakawa, Hideki; Kumano, Miyuki; Morikawa, Kazuya; Higashide, Masato; Maruyama, Atsushi; Inose, Yumiko; Matoba, Kimio; Toh, Hidehiro; Kuhara, Satoru; Hattori, Masahira; Ohta, Toshiko

    2005-09-13

    Staphylococcus saprophyticus is a uropathogenic Staphylococcus frequently isolated from young female outpatients presenting with uncomplicated urinary tract infections. We sequenced the whole genome of S. saprophyticus type strain ATCC 15305, which harbors a circular chromosome of 2,516,575 bp with 2,446 ORFs and two plasmids. Comparative genomic analyses with the strains of two other species, Staphylococcus aureus and Staphylococcus epidermidis, as well as experimental data, revealed the following characteristics of the S. saprophyticus genome. S. saprophyticus does not possess any virulence factors found in S. aureus, such as coagulase, enterotoxins, exoenzymes, and extracellular matrix-binding proteins, although it does have a remarkable paralog expansion of transport systems related to highly variable ion contents in the urinary environment. A further unique feature is that only a single ORF is predictable as a cell wall-anchored protein, and it shows positive hemagglutination and adherence to human bladder cell associated with initial colonization in the urinary tract. It also shows significantly high urease activity in S. saprophyticus. The uropathogenicity of S. saprophyticus can be attributed to its genome that is needed for its survival in the human urinary tract by means of novel cell wall-anchored adhesin and redundant uro-adaptive transport systems, together with urease.

  20. Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association.

    PubMed

    Strachan, Norval J C; Rotariu, Ovidiu; Lopes, Bruno; MacRae, Marion; Fairley, Susan; Laing, Chad; Gannon, Victor; Allison, Lesley J; Hanson, Mary F; Dallman, Tim; Ashton, Philip; Franz, Eelco; van Hoek, Angela H A M; French, Nigel P; George, Tessy; Biggs, Patrick J; Forbes, Ken J

    2015-10-07

    Genetic variation in an infectious disease pathogen can be driven by ecological niche dissimilarities arising from different host species and different geographical locations. Whole genome sequencing was used to compare E. coli O157 isolates from host reservoirs (cattle and sheep) from Scotland and to compare genetic variation of isolates (human, animal, environmental/food) obtained from Scotland, New Zealand, Netherlands, Canada and the USA. Nei's genetic distance calculated from core genome single nucleotide polymorphisms (SNPs) demonstrated that the animal isolates were from the same population. Investigation of the Shiga toxin bacteriophage and their insertion sites (SBI typing) revealed that cattle and sheep isolates had statistically indistinguishable rarefaction profiles, diversity and genotypes. In contrast, isolates from different countries exhibited significant differences in Nei's genetic distance and SBI typing. Hence, after successful international transmission, which has occurred on multiple occasions, local genetic variation occurs, resulting in a global patchwork of continental and trans-continental phylogeographic clades. These findings are important for three reasons: first, understanding transmission and evolution of infectious diseases associated with multiple host reservoirs and multi-geographic locations; second, highlighting the relevance of the sheep reservoir when considering farm based interventions; and third, improving our understanding of why human disease incidence varies across the world.

  1. Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae) – Insights from transcriptome sequences

    PubMed Central

    Yu, Yan; Xiang, Qiuyun; Manos, Paul S.; Soltis, Douglas E.; Soltis, Pamela S.; Song, Bao-Hua; Cheng, Shifeng; Liu, Xin; Wong, Gane

    2017-01-01

    The pattern and rate of genome evolution have profound consequences in organismal evolution. Whole-genome duplication (WGD), or polyploidy, has been recognized as an important evolutionary mechanism of plant diversification. However, in non-model plants the molecular signals of genome duplications have remained largely unexplored. High-throughput transcriptome data from next-generation sequencing have set the stage for novel investigations of genome evolution using new bioinformatic and methodological tools in a phylogenetic framework. Here we compare ten de novo-assembled transcriptomes representing the major lineages of the angiosperm genus Cornus (dogwood) and relevant outgroups using a customized pipeline for analyses. Using three distinct approaches, molecular dating of orthologous genes, analyses of the distribution of synonymous substitutions between paralogous genes, and examination of substitution rates through time, we detected a shared WGD event in the late Cretaceous across all taxa sampled. The inferred doubling event coincides temporally with the paleoclimatic changes associated with the initial divergence of the genus into three major lineages. Analyses also showed an acceleration of rates of molecular evolution after WGD. The highest rates of molecular evolution were observed in the transcriptome of the herbaceous lineage, C. canadensis, a species commonly found at higher latitudes, including the Arctic. Our study demonstrates the value of transcriptome data for understanding genome evolution in closely related species. The results suggest dramatic increase in sea surface temperature in the late Cretaceous may have contributed to the evolution and diversification of flowering plants. PMID:28225773

  2. Universal Human Papillomavirus Typing Assay: Whole-Genome Sequencing following Target Enrichment

    PubMed Central

    Li, Tengguo; Unger, Elizabeth R.; Batra, Dhwani; Sheth, Mili; Steinau, Martin; Jasinski, Jean; Jones, Jennifer

    2016-01-01

    ABSTRACT We designed a universal human papillomavirus (HPV) typing assay based on target enrichment and whole-genome sequencing (eWGS). The RNA bait included 23,941 probes targeting 191 HPV types and 12 probes targeting beta-globin as a control. We used the Agilent SureSelect XT2 protocol for library preparation, Illumina HiSeq 2500 for sequencing, and CLC Genomics Workbench for sequence analysis. Mapping stringency for type assignment was determined based on 8 (6 HPV-positive and 2 HPV-negative) control samples. Using the optimal mapping conditions, types were assigned to 24 blinded samples. eWGS results were 100% concordant with Linear Array (LA) genotyping results for 9 plasmid samples and fully or partially concordant for 9 of the 15 cervical-vaginal samples, with 95.83% overall type-specific concordance for LA genotyping. eWGS identified 7 HPV types not included in the LA genotyping. Since this method does not involve degenerate primers targeting HPV genomic regions, PCR bias in genotype detection is minimized. With further refinements aimed at reducing cost and increasing throughput, this first application of eWGS for universal HPV typing could be a useful method to elucidate HPV epidemiology. PMID:27974548

  3. Whole-genome scan for guttural pouch tympany in Arabian and German warmblood horses.

    PubMed

    Zeitz, A; Spötter, A; Blazyczek, I; Diesterbeck, U; Ohnesorge, B; Deegen, E; Distl, O

    2009-12-01

    Equine guttural pouch tympany (GPT) is a hereditary disease in foals of several breeds, including thoroughbreds, Arabian, Quarter and warmblood horses. We performed a whole-genome scan for GPT in 143 horses from five Arabian and five German warmblood families and genotyped 257 microsatellites. Chromosome-wide significant linkage was detected on ECA2 and ECA15 using multipoint non-parametric linkage analyses. Analyses stratified by sex revealed chromosome-wide significant linkage on ECA2 for fillies and chromosome-wide significant linkage on ECA15 for colts. For Arabian colts, the quantitative trait locus (QTL) on ECA15 was genome-wide significant. Haplotypes including two to four microsatellites within the QTL on ECA2 and 15 in fillies and colts, respectively, were significantly associated with GPT for both breeds. Thus, our analysis indicated sex-specific QTL, a fact which is in agreement with a two- to fourfold higher incidence of GPT in females. This is the first report of QTL for equine GPT and a first step towards identifying genes responsible for GPT.

  4. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    PubMed

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  5. Whole genome sequencing of Gir cattle for identifying polymorphisms and loci under selection.

    PubMed

    Liao, Xiaoping; Peng, Fred; Forni, Selma; McLaren, David; Plastow, Graham; Stothard, Paul

    2013-10-01

    Genetic variation in Gir cattle (Bos indicus) has so far not been well characterized. In this study, we used whole genome sequencing of three Gir bulls and a pooled sample from another 11 bulls to identify polymorphisms and loci under selection. A total of 9 990 733 single nucleotide polymorphisms (SNPs) and 604 308 insertion/deletions (indels) were discovered in Gir samples, of which 62.34% and 83.62%, respectively, are previously unknown. Moreover, we detected 79 putative selective sweeps using the sequence data of the pooled sample. One of the most striking sweeps harbours several genes belonging to the cathelicidin gene family, such as CAMP, CATHL1, CATHL2, and CATHL3, which are related to pathogen- and parasite-resistance. Another interesting region harbours genes encoding mitogen-activated protein kinases, which are involved in directing cellular responses to a variety of stimuli, such as osmotic stress and heat shock. These findings are particularly interesting because Gir is resistant to hot temperatures and tropical diseases. This initial selective sweep analysis of Gir cattle has revealed a number of loci that could be important for their adaptation to tropical climates.

  6. Long insert whole genome sequencing for copy number variant and translocation detection

    PubMed Central

    Liang, Winnie S.; Aldrich, Jessica; Tembe, Waibhav; Kurdoglu, Ahmet; Cherni, Irene; Phillips, Lori; Reiman, Rebecca; Baker, Angela; Weiss, Glen J.; Carpten, John D.; Craig, David W.

    2014-01-01

    As next-generation sequencing continues to have an expanding presence in the clinic, the identification of the most cost-effective and robust strategy for identifying copy number changes and translocations in tumor genomes is needed. We hypothesized that performing shallow whole genome sequencing (WGS) of 900–1000-bp inserts (long insert WGS, LI-WGS) improves our ability to detect these events, compared with shallow WGS of 300–400-bp inserts. A priori analyses show that LI-WGS requires less sequencing compared with short insert WGS to achieve a target physical coverage, and that LI-WGS requires less sequence coverage to detect a heterozygous event with a power of 0.99. We thus developed an LI-WGS library preparation protocol based off of Illumina’s WGS library preparation protocol and illustrate the feasibility of performing LI-WGS. We additionally applied LI-WGS to three separate tumor/normal DNA pairs collected from patients diagnosed with different cancers to demonstrate our application of LI-WGS on actual patient samples for identification of somatic copy number alterations and translocations. With the evolution of sequencing technologies and bioinformatics analyses, we show that modifications to current approaches may improve our ability to interrogate cancer genomes. PMID:24071583

  7. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes

    PubMed Central

    Kwong, Jason C.; Mercoulia, Karolina; Tomita, Takehiro; Easton, Marion; Li, Hua Y.; Bulach, Dieter M.; Stinear, Timothy P.; Seemann, Torsten

    2015-01-01

    Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance of Listeria monocytogenes has the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423 L. monocytogenes isolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferred in silico from the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97 L. monocytogenes isolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospective L. monocytogenes surveillance and investigated for other pathogens relevant to public health. PMID:26607978

  8. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications.

    PubMed

    Tank, David C; Eastman, Jonathan M; Pennell, Matthew W; Soltis, Pamela S; Soltis, Douglas E; Hinchliff, Cody E; Brown, Joseph W; Sessa, Emily B; Harmon, Luke J

    2015-07-01

    Our growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events. Diversification rates have been incredibly heterogeneous throughout the evolutionary history of angiosperms and reveal a pattern of 'nested radiations' - increases in net diversification nested within other radiations. This pattern in turn generates a negative relationship between clade age and diversity across both families and orders. We suggest that stochastically changing diversification rates across the phylogeny explain these patterns. Finally, we demonstrate significant statistical support for the WGD radiation lag-time model. Across angiosperms, nested shifts in diversification led to an overall increasing rate of net diversification and declining relative extinction rates through time. These diversification shifts are only rarely perfectly associated with WGD events, but commonly follow them after a lag period.

  9. Deciphering the Wisent Demographic and Adaptive Histories from Individual Whole-Genome Sequences

    PubMed Central

    Gautier, Mathieu; Moazami-Goudarzi, Katayoun; Levéziel, Hubert; Parinello, Hugues; Grohs, Cécile; Rialle, Stéphanie; Kowalczyk, Rafał; Flori, Laurence

    2016-01-01

    As the largest European herbivore, the wisent (Bison bonasus) is emblematic of the continent wildlife but has unclear origins. Here, we infer its demographic and adaptive histories from two individual whole-genome sequences via a detailed comparative analysis with bovine genomes. We estimate that the wisent and bovine species diverged from 1.7 × 106 to 850,000 years before present (YBP) through a speciation process involving an extended period of limited gene flow. Our data further support the occurrence of more recent secondary contacts, posterior to the Bos taurus and Bos indicus divergence (∼150,000 YBP), between the wisent and (European) taurine cattle lineages. Although the wisent and bovine population sizes experienced a similar sharp decline since the Last Glacial Maximum, we find that the wisent demography remained more fluctuating during the Pleistocene. This is in agreement with a scenario in which wisents responded to successive glaciations by habitat fragmentation rather than southward and eastward migration as for the bovine ancestors. We finally detect 423 genes under positive selection between the wisent and bovine lineages, which shed a new light on the genome response to different living conditions (temperature, available food resource, and pathogen exposure) and on the key gene functions altered by the domestication process. PMID:27436010

  10. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data

    PubMed Central

    Tiley, George P.; Ané, Cécile; Burleigh, J. Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  11. Whole genome duplication of intra- and inter-chromosomes in the tomato genome.

    PubMed

    Song, Chi; Guo, Juan; Sun, Wei; Wang, Ying

    2012-07-20

    Whole genome duplication (WGD) events have been proven to occur in the evolutionary history of most angiosperms. Tomato is considered a model species of the Solanaceae family. In this study, we describe the details of the evolutionary process of the tomato genome by detecting collinearity blocks and dating the WGD events on the tree of life by combining two different methods: synonymous substitution rates (Ks) and phylogenetic trees. In total, 593 collinearity blocks were discovered out of 12 pseudo-chromosomes constructed. It was evident that chromosome 2 had experienced an intra-chromosomal duplication event. Major inter-chromosomal duplication occurred among all the pseudo-chromosome. We calculated the Ks value of these collinearity blocks. Two peaks of Ks distribution were found, corresponding to two WGD events occurring approximately 36-82 million years ago (MYA) and 148-205 MYA. Additionally, the results of phylogenetic trees suggested that the more recent WGD event may have occurred after the divergence of the rosid-asterid clade, but before the major diversification in Solanaceae. The older WGD event was shown to have occurred before the divergence of the rosid-asterid clade and after the divergence of rice-Arabidopsis (monocot-dicot).

  12. Bonus Organisms in High-Throughput Eukaryotic Whole-Genome Shorgun Assembly

    SciTech Connect

    Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank; Platt, Darren

    2006-02-06

    The DOE Joint Genome Institute has sequenced over 50 eukaryotic genomes, ranging in size from 15 MB to 1.6 GB, over a wide range of organism types. In the course of doing so, it has become clear that a substantial fraction of these data sets contains bonus organisms, usually prokaryotes, in addition to the desired genome. While some of these additional organisms are extraneous contamination, they are sometimes symbionts, and so can be of biological interest. Therefore, it is desirable to assemble the bonus organisms along with the main genome. This transforms the problem into one of metagenomic assembly, which is considerably more challenging than traditional whole-genome shotgun (WGS) assembly. The different organisms will usually be present at different sequence depths, which is difficult to handle in most WGS assemblers. In addition, with multiple distinct genomes present, chimerism can produce cross-organism combinations. Finally, there is no guarantee that only a single bonus organism will be present. For example, one JGI project contained at least two different prokaryotic contaminants, plus a 145 KB plasmid of unknown origin. We have developed techniques to routinely identify and handle such bonus organisms in a high-throughput sequencing environment. Approaches include screening and partitioning the unassembled data, and iterative subassemblies. These methods are applicable not only to bonus organisms, but also to desired components such as organelles. These procedures have the additional benefit of identifying, and allowing for the removal of, cloning artifacts such as E.coli and spurious vector inclusions.

  13. Insertions and deletions are male biased too: a whole-genome analysis in rodents.

    PubMed

    Makova, Kateryna D; Yang, Shan; Chiaromonte, Francesca

    2004-04-01

    It is presently accepted that, in mammals, due to the greater number of cell divisions in the male germline than in the female germline, nucleotide substitutions occur more frequently in males. The data on mutation bias in insertions and deletions (indels) are contradictory, with some studies indicating no sex bias and others indicating either female or male bias. The sequenced rat and mouse genomes provide a unique opportunity to investigate a potential sex bias for different types of mutations. Indeed, mutation rates can be accurately estimated from a large number of orthologous loci in organisms similar in generation time and in the number of germline cell divisions. Here we compare the mutation rates between chromosome X and autosomes for likely neutral sites in eutherian ancestral interspersed repetitive elements present at orthologous locations in the rat and mouse genomes. We find that small indels are male biased: The male-to-female mutation rate ratio (alpha) for indels in rodents is approximately 2. Similarly, our whole-genome analysis in rodents indicates an approximately twofold excess of nucleotide substitutions originating in males over that in females. This is the same as the male-to-female ratio of the number of germline cell divisions in rat and mouse. Thus, this is consistent with nucleotide substitutions and small indels occurring primarily during DNA replication.

  14. Whole Genome Sequencing Reveals a De Novo SHANK3 Mutation in Familial Autism Spectrum Disorder

    PubMed Central

    Nemirovsky, Sergio I.; Córdoba, Marta; Zaiat, Jonathan J.; Completa, Sabrina P.; Vega, Patricia A.; González-Morón, Dolores; Medina, Nancy M.; Fabbro, Mónica; Romero, Soledad; Brun, Bianca; Revale, Santiago; Ogara, María Florencia; Pecci, Adali; Marti, Marcelo; Vazquez, Martin; Turjanski, Adrián; Kauffman, Marcelo A.

    2015-01-01

    Introduction Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. Methods We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Results Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). Conclusions We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder. PMID:25646853

  15. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient

    PubMed Central

    Heyn, Holger; Vidal, Enrique; Sayols, Sergi; Sanchez-Mut, Jose V.; Moran, Sebastian; Medina, Ignacio; Sandoval, Juan; Simó-Riudalbas, Laia; Szczesna, Karolina; Huertas, Dori; Gatto, Sole; Matarazzo, Maria R.; Dopazo, Joaquin; Esteller, Manel

    2012-01-01

    The immunodeficiency, centromere instability and facial anomalies (ICF) syndrome is associated to mutations of the DNA methyl-transferase DNMT3B, resulting in a reduction of enzyme activity. Aberrant expression of immune system genes and hypomethylation of pericentromeric regions accompanied by chromosomal instability were determined as alterations driving the disease phenotype. However, so far only technologies capable to analyze single loci were applied to determine epigenetic alterations in ICF patients. In the current study, we performed whole-genome bisulphite sequencing to assess alteration in DNA methylation at base pair resolution. Genome-wide we detected a decrease of methylation level of 42%, with the most profound changes occurring in inactive heterochromatic regions, satellite repeats and transposons. Interestingly, transcriptional active loci and ribosomal RNA repeats escaped global hypomethylation. Despite a genome-wide loss of DNA methylation the epigenetic landscape and crucial regulatory structures were conserved. Remarkably, we revealed a mislocated activity of mutant DNMT3B to H3K4me1 loci resulting in hypermethylation of active promoters. Functionally, we could associate alterations in promoter methylation with the ICF syndrome immunodeficient phenotype by detecting changes in genes related to the B-cell receptor mediated maturation pathway. PMID:22595875

  16. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs

    PubMed Central

    King, Jaime S.; Smith, Monica E.

    2016-01-01

    State newborn screening (NBS) programs routinely screen nearly all of the 4 million newborns in the United States each year for ~30 primary conditions and a number of secondary conditions. NBS could be on the cusp of an unprecedented expansion as a result of advances in whole-genome sequencing (WGS). As WGS becomes cheaper and easier and as our knowledge and understanding of human genetics expand, the question of whether WGS has a role to play in state NBS programs becomes increasingly relevant and complex. As geneticists and state public health officials begin to contemplate the technical and procedural details of whether WGS could benefit existing NBS programs, this is an opportune time to revisit the legal framework of state NBS programs. In this article, we examine the constitutional underpinnings of state-mandated NBS and explore the range of current state statutes and regulations that govern the programs. We consider the legal refinements that will be needed to keep state NBS programs within constitutional bounds, focusing on 2 areas of concern: consent procedures and the criteria used to select new conditions for NBS panels. We conclude by providing options for states to consider when contemplating the use of WGS for NBS. PMID:26729704

  17. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    PubMed

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists.

  18. Sparse whole-genome sequencing identifies two loci for major depressive disorder.

    PubMed

    2015-07-30

    Major depressive disorder (MDD), one of the most frequently encountered forms of mental illness and a leading cause of disability worldwide, poses a major challenge to genetic analysis. To date, no robustly replicated genetic loci have been identified, despite analysis of more than 9,000 cases. Here, using low-coverage whole-genome sequencing of 5,303 Chinese women with recurrent MDD selected to reduce phenotypic heterogeneity, and 5,337 controls screened to exclude MDD, we identified, and subsequently replicated in an independent sample, two loci contributing to risk of MDD on chromosome 10: one near the SIRT1 gene (P = 2.53 × 10(-10)), the other in an intron of the LHPP gene (P = 6.45 × 10(-12)). Analysis of 4,509 cases with a severe subtype of MDD, melancholia, yielded an increased genetic signal at the SIRT1 locus. We attribute our success to the recruitment of relatively homogeneous cases with severe illness.

  19. Whole-genome analyses resolve early branches in the tree of life of modern birds

    PubMed Central

    Jarvis, Erich D.; Mirarab, Siavash; Aberer, Andre J.; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y. W.; Faircloth, Brant C.; Nabholz, Benoit; Howard, Jason T.; Suh, Alexander; Weber, Claudia C.; da Fonseca, Rute R.; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md. Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C.; Ray, David; Green, Richard E.; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P.; Bertelsen, Mads Frost; Sheldon, Frederick H.; Brumfield, Robb T.; Mello, Claudio V.; Lovell, Peter V.; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Velazquez, Amhed Missael Vargas; Alfaro-Núñez, Alonzo; Campos, Paula F.; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M.; Zhou, Qi; Perelman, Polina; Driskell, Amy C.; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Smeds, Linnea; Rheindt, Frank E.; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F. Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O’Brien, Stephen; Haussler, David; Ryder, Oliver A.; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R.; Glenn, Travis C.; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V.; Stamatakis, Alexandros; Mindell, David P.; Cracraft, Joel; Braun, Edward L.; Warnow, Tandy; Jun, Wang; Gilbert, M. Thomas P.; Zhang, Guojie

    2015-01-01

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago. PMID:25504713

  20. A whole genome Bayesian scan for adaptive genetic divergence in West African cattle

    PubMed Central

    2009-01-01

    Background The recent settlement of cattle in West Africa after several waves of migration from remote centres of domestication has imposed dramatic changes in their environmental conditions, in particular through exposure to new pathogens. West African cattle populations thus represent an appealing model to unravel the genome response to adaptation to tropical conditions. The purpose of this study was to identify footprints of adaptive selection at the whole genome level in a newly collected data set comprising 36,320 SNPs genotyped in 9 West African cattle populations. Results After a detailed analysis of population structure, we performed a scan for SNP differentiation via a previously proposed Bayesian procedure including extensions to improve the detection of loci under selection. Based on these results we identified 53 genomic regions and 42 strong candidate genes. Their physiological functions were mainly related to immune response (MHC region which was found under strong balancing selection, CD79A, CXCR4, DLK1, RFX3, SEMA4A, TICAM1 and TRIM21), nervous system (NEUROD6, OLFM2, MAGI1, SEMA4A and HTR4) and skin and hair properties (EDNRB, TRSP1 and KRTAP8-1). Conclusion The main possible underlying selective pressures may be related to climatic conditions but also to the host response to pathogens such as Trypanosoma(sp). Overall, these results might open the way towards the identification of important variants involved in adaptation to tropical conditions and in particular to resistance to tropical infectious diseases. PMID:19930592

  1. The population genomics of rhesus macaques (Macaca mulatta) based on whole-genome sequences.

    PubMed

    Xue, Cheng; Raveendran, Muthuswamy; Harris, R Alan; Fawcett, Gloria L; Liu, Xiaoming; White, Simon; Dahdouli, Mahmoud; Rio Deiros, David; Below, Jennifer E; Salerno, William; Cox, Laura; Fan, Guoping; Ferguson, Betsy; Horvath, Julie; Johnson, Zach; Kanthaswamy, Sree; Kubisch, H Michael; Liu, Dahai; Platt, Michael; Smith, David G; Sun, Binghua; Vallender, Eric J; Wang, Feng; Wiseman, Roger W; Chen, Rui; Muzny, Donna M; Gibbs, Richard A; Yu, Fuli; Rogers, Jeffrey

    2016-12-01

    Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little is known about genome-wide genetic variation in this species. A detailed understanding of extant genomic variation among rhesus macaques has implications for the use of this species as a model for studies of human health and disease, as well as for evolutionary population genomics. Whole-genome sequencing analysis of 133 rhesus macaques revealed more than 43.7 million single-nucleotide variants, including thousands predicted to alter protein sequences, transcript splicing, and transcription factor binding sites. Rhesus macaques exhibit 2.5-fold higher overall nucleotide diversity and slightly elevated putative functional variation compared with humans. This functional variation in macaques provides opportunities for analyses of coding and noncoding variation, and its cellular consequences. Despite modestly higher levels of nonsynonymous variation in the macaques, the estimated distribution of fitness effects and the ratio of nonsynonymous to synonymous variants suggest that purifying selection has had stronger effects in rhesus macaques than in humans. Demographic reconstructions indicate this species has experienced a consistently large but fluctuating population size. Overall, the results presented here provide new insights into the population genomics of nonhuman primates and expand genomic information directly relevant to primate models of human disease.

  2. Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus.

    PubMed

    Rhee, Jae-Sung; Lee, Jae-Seong

    2014-08-30

    Genome resources have advantages for understanding diverse areas such as biological patterns and functioning of organisms. Omics platforms are useful approaches for the study of organs and organisms. These approaches can be powerful screening tools for whole genome, proteome, and metabolome profiling, and can be used to understand molecular changes in response to internal and external stimuli. This methodology has been applied successfully in freshwater model fish such as the zebrafish Danio rerio and the Japanese medaka Oryzias latipes in research areas such as basic physiology, developmental biology, genetics, and environmental biology. However, information is still scarce about model fish that inhabit brackish water or seawater. To develop the self-fertilizing killifish Kryptolebias marmoratus as a potential model species with unique characteristics and research merits, we obtained genomic information about K. marmoratus. We address ways to use these data for genome-based molecular mechanistic studies. We review the current state of genome information on K. marmoratus to initiate omics approaches. We evaluate the potential applications of integrated omics platforms for future studies in environmental science, developmental biology, and biomedical research. We conclude that information about the K. marmoratus genome will provide a better understanding of the molecular functions of genes, proteins, and metabolites that are involved in the biological functions of this species. Omics platforms, particularly combined technologies that make effective use of bioinformatics, will provide powerful tools for hypothesis-driven investigations and discovery-driven discussions on diverse aspects of this species and on fish and vertebrates in general.

  3. Different whole-genome amplification methods as a preamplification tool in Y-chromosome Loci analysis.

    PubMed

    Maciejewska, Agnieszka; Jakubowska, Joanna; Pawłowski, Ryszard

    2014-06-01

    Degraded and low template DNA is often analyzed in forensic genetics laboratories. Reliable analysis of degraded and low template DNA is of great importance, because its results impact the quality and reliability of expert testimonies. Recently, a number of whole-genome amplification (WGA) methods have been proposed as preamplification tools improving quantity and quality of DNA. We chose, investigated, and compared 7 WGA methods to evaluate their ability to "recover" degraded and nondegraded DNA. These methods include degenerate oligonucleotide primed polymerase chain reaction, primer extension preamplification (PEP) polymerase chain reaction, GenomePlex WGA (Sigma), multiple displacement amplification, GenomiPhi Amplification Kit (Amersham Biosciences), restriction and circularization aided rolling circle amplification, and blunt-end ligation-mediated WGA. Recently, we have described the comparison of these methods' efficiency and reliability using SGMPlus kit. However, Y-chromosome profiling is also often used in analysis of both nondegraded and degraded DNA. This includes criminal cases and investigation of kinship in male linage. Here we demonstrate the impact of WGA methods on Y-chromosome loci (Yfiler) reactivation.The best results for nondegraded DNA were obtained with GenomiPhi kit and PEP method. In the case of degraded DNA (200 base pairs), the most complete profiles were obtained with GenomePlex kit and PEP method. None of the analyzed methods allowed full reactivation of degraded (200 base pairs) DNA in terms of Y-chromosome loci profiling.

  4. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides.

    PubMed

    Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2016-10-01

    Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.

  5. Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs

    PubMed Central

    Kenny, N J; Chan, K W; Nong, W; Qu, Z; Maeso, I; Yip, H Y; Chan, T F; Kwan, H S; Holland, P W H; Chu, K H; Hui, J H L

    2016-01-01

    Whole-genome duplication (WGD) results in new genomic resources that can be exploited by evolution for rewiring genetic regulatory networks in organisms. In metazoans, WGD occurred before the last common ancestor of vertebrates, and has been postulated as a major evolutionary force that contributed to their speciation and diversification of morphological structures. Here, we have sequenced genomes from three of the four extant species of horseshoe crabs—Carcinoscorpius rotundicauda, Limulus polyphemus and Tachypleus tridentatus. Phylogenetic and sequence analyses of their Hox and other homeobox genes, which encode crucial transcription factors and have been used as indicators of WGD in animals, strongly suggests that WGD happened before the last common ancestor of these marine chelicerates >135 million years ago. Signatures of subfunctionalisation of paralogues of Hox genes are revealed in the appendages of two species of horseshoe crabs. Further, residual homeobox pseudogenes are observed in the three lineages. The existence of WGD in the horseshoe crabs, noted for relative morphological stasis over geological time, suggests that genomic diversity need not always be reflected phenotypically, in contrast to the suggested situation in vertebrates. This study provides evidence of ancient WGD in the ecdysozoan lineage, and reveals new opportunities for studying genomic and regulatory evolution after WGD in the Metazoa. PMID:26419336

  6. Living laboratory: whole-genome sequencing as a learning healthcare enterprise.

    PubMed

    Angrist, M; Jamal, L

    2015-04-01

    With the proliferation of affordable large-scale human genomic data come profound and vexing questions about management of such data and their clinical uncertainty. These issues challenge the view that genomic research on human beings can (or should) be fully segregated from clinical genomics, either conceptually or practically. Here, we argue that the sharp distinction between clinical care and research is especially problematic in the context of large-scale genomic sequencing of people with suspected genetic conditions. Core goals of both enterprises (e.g. understanding genotype-phenotype relationships; generating an evidence base for genomic medicine) are more likely to be realized at a population scale if both those ordering and those undergoing sequencing for diagnostic reasons are routinely and longitudinally studied. Rather than relying on expensive and lengthy randomized clinical trials and meta-analyses, we propose leveraging nascent clinical-research hybrid frameworks into a broader, more permanent instantiation of exploratory medical sequencing. Such an investment could enlighten stakeholders about the real-life challenges posed by whole-genome sequencing, such as establishing the clinical actionability of genetic variants, returning 'off-target' results to families, developing effective service delivery models and monitoring long-term outcomes.

  7. Preferences for the provision of whole genome sequencing services among young adults

    PubMed Central

    Elliott, Kailyn R.

    2017-01-01

    Objectives As whole genome sequencing (WGS) becomes increasingly available, clinicians will be faced with conveying complex information to individuals at different stages in life. The purpose of this study is to characterize the views of young adults toward obtaining WGS, learning different types of genomic information, and having choice about which results are disclosed. Methods A mixed-methods descriptive study was conducted with a diverse group of 18 and 19-years-olds (N = 145). Participants watched an informational video about WGS and then completed an online survey. Results Participants held a positive attitude toward obtaining WGS and learning about a range of health conditions and traits. Increased interest in learning WGS information was significantly associated with anticipated capacity to handle the emotional consequences if a serious risk was found (β = 0.13, P = .04). Young adults wanted the ability to choose what types of genomic risk information would be returned and expressed decreased willingness to undergo WGS if clinicians made these decisions (t(138) = -7.14, P <.01). Qualitative analysis showed that young adults emphasized procedural factors in WGS decision-making and that perceived health benefits of WGS had a substantial role in testing preferences and anticipated usage of WGS results. Conclusions Clinicians are likely to encounter enthusiasm for obtaining WGS results among young adults and may need to develop strategies for ensuring that this preference is adequately informed. PMID:28334023

  8. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder.

    PubMed

    C Yuen, Ryan K; Merico, Daniele; Bookman, Matt; L Howe, Jennifer; Thiruvahindrapuram, Bhooma; Patel, Rohan V; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A; Walker, Susan; Marshall, Christian R; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D'Abate, Lia; Chan, Ada J S; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R; Nalpathamkalam, Thomas; Sung, Wilson W L; Tsoi, Fiona J; Wei, John; Xu, Lizhen; Tasse, Anne-Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie MacKinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A; Parr, Jeremy R; Spence, Sarah J; Vorstman, Jacob; Frey, Brendan J; Robinson, James T; Strug, Lisa J; Fernandez, Bridget A; Elsabbagh, Mayada; Carter, Melissa T; Hallmayer, Joachim; Knoppers, Bartha M; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H; Glazer, David; Pletcher, Mathew T; Scherer, Stephen W

    2017-04-01

    We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10(-4)). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.

  9. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    PubMed

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-01-20

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases.

  10. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.

    PubMed

    Tiley, George P; Ané, Cécile; Burleigh, J Gordon

    2016-04-11

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses.

  11. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria

    PubMed Central

    Nakazawa, Hidekazu; Arakaki, Atsushi; Narita-Yamada, Sachiko; Yashiro, Isao; Jinno, Koji; Aoki, Natsuko; Tsuruyama, Ai; Okamura, Yoshiko; Tanikawa, Satoshi; Fujita, Nobuyuki; Takeyama, Haruko; Matsunaga, Tadashi

    2009-01-01

    Magnetotactic bacteria are ubiquitous microorganisms that synthesize intracellular magnetite particles (magnetosomes) by accumulating Fe ions from aquatic environments. Recent molecular studies, including comprehensive proteomic, transcriptomic, and genomic analyses, have considerably improved our hypotheses of the magnetosome-formation mechanism. However, most of these studies have been conducted using pure-cultured bacterial strains of α-proteobacteria. Here, we report the whole-genome sequence of Desulfovibrio magneticus strain RS-1, the only isolate of magnetotactic microorganisms classified under δ-proteobacteria. Comparative genomics of the RS-1 and four α-proteobacterial strains revealed the presence of three separate gene regions (nuo and mamAB-like gene clusters, and gene region of a cryptic plasmid) conserved in all magnetotactic bacteria. The nuo gene cluster, encoding NADH dehydrogenase (complex I), was also common to the genomes of three iron-reducing bacteria exhibiting uncontrolled extracellular and/or intracellular magnetite synthesis. A cryptic plasmid, pDMC1, encodes three homologous genes that exhibit high similarities with those of other magnetotactic bacterial strains. In addition, the mamAB-like gene cluster, encoding the key components for magnetosome formation such as iron transport and magnetosome alignment, was conserved only in the genomes of magnetotactic bacteria as a similar genomic island-like structure. Our findings suggest the presence of core genetic components for magnetosome biosynthesis; these genes may have been acquired into the magnetotactic bacterial genomes by multiple gene-transfer events during proteobacterial evolution. PMID:19675025

  12. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks.

    PubMed

    Medugorac, Ivica; Graf, Alexander; Grohs, Cécile; Rothammer, Sophie; Zagdsuren, Yondon; Gladyr, Elena; Zinovieva, Natalia; Barbieri, Johanna; Seichter, Doris; Russ, Ingolf; Eggen, André; Hellenthal, Garrett; Brem, Gottfried; Blum, Helmut; Krebs, Stefan; Capitan, Aurélien

    2017-03-01

    The yak is remarkable for its adaptation to high altitude and occupies a central place in the economies of the mountainous regions of Asia. At lower elevations, it is common to hybridize yaks with cattle to combine the yak's hardiness with the productivity of cattle. Hybrid males are sterile, however, preventing the establishment of stable hybrid populations, but not a limited introgression after backcrossing several generations of female hybrids to male yaks. Here we inferred bovine haplotypes in the genomes of 76 Mongolian yaks using high-density SNP genotyping and whole-genome sequencing. These yaks inherited ∼1.3% of their genome from bovine ancestors after nearly continuous admixture over at least the last 1,500 years. The introgressed regions are enriched in genes involved in nervous system development and function, and particularly in glutamate metabolism and neurotransmission. We also identified a novel mutation associated with a polled (hornless) phenotype originating from Mongolian Turano cattle. Our results suggest that introgressive hybridization contributed to the improvement of yak management and breeding.

  13. Two Rounds of Whole Genome Duplication in the AncestralVertebrate

    SciTech Connect

    Dehal, Paramvir; Boore, Jeffrey L.

    2005-04-12

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of 4-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.

  14. Whole genome sequencing data and de novo draft assemblies for 66 teleost species

    PubMed Central

    Malmstrøm, Martin; Matschiner, Michael; Tørresen, Ole K.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2017-01-01

    Teleost fishes comprise more than half of all vertebrate species, yet genomic data are only available for 0.2% of their diversity. Here, we present whole genome sequencing data for 66 new species of teleosts, vastly expanding the availability of genomic data for this important vertebrate group. We report on de novo assemblies based on low-coverage (9–39×) sequencing and present detailed methodology for all analyses. To facilitate further utilization of this data set, we present statistical analyses of the gene space completeness and verify the expected phylogenetic position of the sequenced genomes in a large mitogenomic context. We further present a nuclear marker set used for phylogenetic inference and evaluate each gene tree in relation to the species tree to test for homogeneity in the phylogenetic signal. Collectively, these analyses illustrate the robustness of this highly diverse data set and enable extensive reuse of the selected phylogenetic markers and the genomic data in general. This data set covers all major teleost lineages and provides unprecedented opportunities for comparative studies of teleosts. PMID:28094797

  15. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase chain reaction.

    PubMed

    Focke, Felix; Haase, Ilka; Fischer, Markus

    2011-01-26

    Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.

  16. Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication.

    PubMed

    Uno, Y; Nishida, C; Takagi, C; Ueno, N; Matsuda, Y

    2013-11-01

    It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD.

  17. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China

    PubMed Central

    Chen, Rong; Feng, Yu; Wang, Xiaohui; Yang, Jingyu; Zhang, Xiaoxia; Lü, Xiaoju; Zong, Zhiyong

    2017-01-01

    Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28–29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile. PMID:28262711

  18. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  19. New perspectives on microbial community distortion after whole-genome amplification.

    PubMed

    Probst, Alexander J; Weinmaier, Thomas; DeSantis, Todd Z; Santo Domingo, Jorge W; Ashbolt, Nicholas

    2015-01-01

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the effects of WGA on 31 different microbial communities from five biotopes that also included low-biomass samples from drinking water and groundwater. Our findings provide evidence that microbiome segregation by biotope was possible despite WGA treatment. Nevertheless, samples from different biotopes revealed different levels of distortion, with genomic GC content significantly correlated with WGA perturbation. Certain phylogenetic clades revealed a homogenous trend across various sample types, for instance Alpha- and Betaproteobacteria showed a decrease in their abundance after WGA treatment. On the other hand, Enterobacteriaceae, an important biomarker group for fecal contamination in groundwater and drinking water, were strongly affected by WGA treatment without a predictable pattern. These novel results describe the impact of WGA on low-biomass samples and may highlight issues to be aware of when designing future metagenomic studies that necessitate preceding WGA treatment.

  20. Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

    PubMed Central

    Saunders, Carol Jean; Miller, Neil Andrew; Soden, Sarah Elizabeth; Dinwiddie, Darrell Lee; Noll, Aaron; Alnadi, Noor Abu; Andraws, Nevene; Patterson, Melanie LeAnn; Krivohlavek, Lisa Ann; Fellis, Joel; Humphray, Sean; Saffrey, Peter; Kingsbury, Zoya; Weir, Jacqueline Claire; Betley, Jason; Grocock, Russell James; Margulies, Elliott Harrison; Farrow, Emily Gwendolyn; Artman, Michael; Safina, Nicole Pauline; Petrikin, Joshua Erin; Hall, Kevin Peter; Kingsmore, Stephen Francis

    2014-01-01

    Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling. PMID:23035047

  1. Paired Tumor and Normal Whole Genome Sequencing of Metastatic Olfactory Neuroblastoma

    PubMed Central

    Weiss, Glen J.; Liang, Winnie S.; Izatt, Tyler; Arora, Shilpi; Cherni, Irene; Raju, Robert N.; Hostetter, Galen; Kurdoglu, Ahmet; Christoforides, Alexis; Sinari, Shripad; Baker, Angela S.; Metpally, Raghu; Tembe, Waibhav D.; Phillips, Lori

    2012-01-01

    Background Olfactory neuroblastoma (ONB) is a rare cancer of the sinonasal tract with little molecular characterization. We performed whole genome sequencing (WGS) on paired normal and tumor DNA from a patient with metastatic-ONB to identify the somatic alterations that might be drivers of tumorigenesis and/or metastatic progression. Methodology/Principal Findings Genomic DNA was isolated from fresh frozen tissue from a metastatic lesion and whole blood, followed by WGS at >30X depth, alignment and mapping, and mutation analyses. Sanger sequencing was used to confirm selected mutations. Sixty-two somatic short nucleotide variants (SNVs) and five deletions were identified inside coding regions, each causing a non-synonymous DNA sequence change. We selected seven SNVs and validated them by Sanger sequencing. In the metastatic ONB samples collected several months prior to WGS, all seven mutations were present. However, in the original surgical resection specimen (prior to evidence of metastatic disease), mutations in KDR, MYC, SIN3B, and NLRC4 genes were not present, suggesting that these were acquired with disease progression and/or as a result of post-treatment effects. Conclusions/Significance This work provides insight into the evolution of ONB cancer cells and provides a window into the more complex factors, including tumor clonality and multiple driver mutations. PMID:22649506

  2. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  3. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma.

    PubMed

    Gartner, Jared J; Parker, Stephen C J; Prickett, Todd D; Dutton-Regester, Ken; Stitzel, Michael L; Lin, Jimmy C; Davis, Sean; Simhadri, Vijaya L; Jha, Sujata; Katagiri, Nobuko; Gotea, Valer; Teer, Jamie K; Wei, Xiaomu; Morken, Mario A; Bhanot, Umesh K; Chen, Guo; Elnitski, Laura L; Davies, Michael A; Gershenwald, Jeffrey E; Carter, Hannah; Karchin, Rachel; Robinson, William; Robinson, Steven; Rosenberg, Steven A; Collins, Francis S; Parmigiani, Giovanni; Komar, Anton A; Kimchi-Sarfaty, Chava; Hayward, Nicholas K; Margulies, Elliott H; Samuels, Yardena

    2013-08-13

    Synonymous mutations, which do not alter the protein sequence, have been shown to affect protein function [Sauna ZE, Kimchi-Sarfaty C (2011) Nat Rev Genet 12(10):683-691]. However, synonymous mutations are rarely investigated in the cancer genomics field. We used whole-genome and -exome sequencing to identify somatic mutations in 29 melanoma samples. Validation of one synonymous somatic mutation in BCL2L12 in 285 samples identified 12 cases that harbored the recurrent F17F mutation. This mutation led to increased BCL2L12 mRNA and protein levels because of differential targeting of WT and mutant BCL2L12 by hsa-miR-671-5p. Protein made from mutant BCL2L12 transcript bound p53, inhibited UV-induced apoptosis more efficiently than WT BCL2L12, and reduced endogenous p53 target gene transcription. This report shows selection of a recurrent somatic synonymous mutation in cancer. Our data indicate that silent alterations have a role to play in human cancer, emphasizing the importance of their investigation in future cancer genome studies.

  4. Deep Whole-Genome Sequencing to Detect Mixed Infection of Mycobacterium tuberculosis

    PubMed Central

    Gan, Mingyu; Liu, Qingyun; Yang, Chongguang; Gao, Qian; Luo, Tao

    2016-01-01

    Mixed infection by multiple Mycobacterium tuberculosis (MTB) strains is associated with poor treatment outcome of tuberculosis (TB). Traditional genotyping methods have been used to detect mixed infections of MTB, however, their sensitivity and resolution are limited. Deep whole-genome sequencing (WGS) has been proved highly sensitive and discriminative for studying population heterogeneity of MTB. Here, we developed a phylogenetic-based method to detect MTB mixed infections using WGS data. We collected published WGS data of 782 global MTB strains from public database. We called homogeneous and heterogeneous single nucleotide variations (SNVs) of individual strains by mapping short reads to the ancestral MTB reference genome. We constructed a phylogenomic database based on 68,639 homogeneous SNVs of 652 MTB strains. Mixed infections were determined if multiple evolutionary paths were identified by mapping the SNVs of individual samples to the phylogenomic database. By simulation, our method could specifically detect mixed infections when the sequencing depth of minor strains was as low as 1× coverage, and when the genomic distance of two mixed strains was as small as 16 SNVs. By applying our methods to all 782 samples, we detected 47 mixed infections and 45 of them were caused by locally endemic strains. The results indicate that our method is highly sensitive and discriminative for identifying mixed infections from deep WGS data of MTB isolates. PMID:27391214

  5. Whole-Genome Analysis of Exserohilum rostratum from an Outbreak of Fungal Meningitis and Other Infections

    PubMed Central

    Hurst, Steven; Gade, Lalitha; Frace, Michael A.; Hilsabeck, Remy; Schupp, James M.; Gillece, John D.; Roe, Chandler; Smith, David; Keim, Paul; Lockhart, Shawn R.; Changayil, Shankar; Weil, M. Ryan; MacCannell, Duncan R.; Brandt, Mary E.; Engelthaler, David M.

    2014-01-01

    Exserohilum rostratum was the cause of most cases of fungal meningitis and other infections associated with the injection of contaminated methylprednisolone acetate produced by the New England Compounding Center (NECC). Until this outbreak, very few human cases of Exserohilum infection had been reported, and very little was known about this dematiaceous fungus, which usually infects plants. Here, we report using whole-genome sequencing (WGS) for the detection of single nucleotide polymorphisms (SNPs) and phylogenetic analysis to investigate the molecular origin of the outbreak using 22 isolates of E. rostratum retrieved from 19 case patients with meningitis or epidural/spinal abscesses, 6 isolates from contaminated NECC vials, and 7 isolates unrelated to the outbreak. Our analysis indicates that all 28 isolates associated with the outbreak had nearly identical genomes of 33.8 Mb. A total of 8 SNPs were detected among the outbreak genomes, with no more than 2 SNPs separating any 2 of the 28 genomes. The outbreak genomes were separated from the next most closely related control strain by ∼136,000 SNPs. We also observed significant genomic variability among strains unrelated to the outbreak, which may suggest the possibility of cryptic speciation in E. rostratum. PMID:24951807

  6. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

    PubMed Central

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology. PMID:27144304

  7. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    PubMed Central

    Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi

    2011-01-01

    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213

  8. Automated whole-genome multiple alignment of rat, mouse, and human

    SciTech Connect

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  9. Whole Genome Sequencing and Complete Genetic Analysis Reveals Novel Pathways to Glycopeptide Resistance in Staphylococcus aureus

    PubMed Central

    Renzoni, Adriana; Andrey, Diego O.; Jousselin, Ambre; Barras, Christine; Monod, Antoinette; Vaudaux, Pierre; Lew, Daniel; Kelley, William L.

    2011-01-01

    The precise mechanisms leading to the emergence of low-level glycopeptide resistance in Staphylococcus aureus are poorly understood. In this study, we used whole genome deep sequencing to detect differences between two isogenic strains: a parental strain and a stable derivative selected stepwise for survival on 4 µg/ml teicoplanin, but which grows at higher drug concentrations (MIC 8 µg/ml). We uncovered only three single nucleotide changes in the selected strain. Nonsense mutations occurred in stp1, encoding a serine/threonine phosphatase, and in yjbH, encoding a post-transcriptional negative regulator of the redox/thiol stress sensor and global transcriptional regulator, Spx. A missense mutation (G45R) occurred in the histidine kinase sensor of cell wall stress, VraS. Using genetic methods, all single, pairwise combinations, and a fully reconstructed triple mutant were evaluated for their contribution to low-level glycopeptide resistance. We found a synergistic cooperation between dual phospho-signalling systems and a subtle contribution from YjbH, suggesting the activation of oxidative stress defences via Spx. To our knowledge, this is the first genetic demonstration of multiple sensor and stress pathways contributing simultaneously to glycopeptide resistance development. The multifactorial nature of glycopeptide resistance in this strain suggests a complex reprogramming of cell physiology to survive in the face of drug challenge. PMID:21738716

  10. Whole genome association study of rheumatoid arthritis using 27 039 microsatellites.

    PubMed

    Tamiya, Gen; Shinya, Minori; Imanishi, Tadashi; Ikuta, Tomoki; Makino, Satoshi; Okamoto, Koichi; Furugaki, Koh; Matsumoto, Toshiko; Mano, Shuhei; Ando, Satoshi; Nozaki, Yasuyuki; Yukawa, Wataru; Nakashige, Ryo; Yamaguchi, Daisuke; Ishibashi, Hideo; Yonekura, Manabu; Nakami, Yuu; Takayama, Seiken; Endo, Takaho; Saruwatari, Takuya; Yagura, Masaru; Yoshikawa, Yoko; Fujimoto, Kei; Oka, Akira; Chiku, Suenori; Linsen, Samuel E V; Giphart, Marius J; Kulski, Jerzy K; Fukazawa, Toru; Hashimoto, Hiroshi; Kimura, Minoru; Hoshina, Yuuichi; Suzuki, Yasuo; Hotta, Tomomitsu; Mochida, Joji; Minezaki, Takatoshi; Komai, Koichiro; Shiozawa, Shunichi; Taniguchi, Atsuo; Yamanaka, Hisashi; Kamatani, Naoyuki; Gojobori, Takashi; Bahram, Seiamak; Inoko, Hidetoshi

    2005-08-15

    A major goal of current human genome-wide studies is to identify the genetic basis of complex disorders. However, the availability of an unbiased, reliable, cost efficient and comprehensive methodology to analyze the entire genome for complex disease association is still largely lacking or problematic. Therefore, we have developed a practical and efficient strategy for whole genome association studies of complex diseases by charting the human genome at 100 kb intervals using a collection of 27,039 microsatellites and the DNA pooling method in three successive genomic screens of independent case-control populations. The final step in our methodology consists of fine mapping of the candidate susceptible DNA regions by single nucleotide polymorphisms (SNPs) analysis. This approach was validated upon application to rheumatoid arthritis, a destructive joint disease affecting up to 1% of the population. A total of 47 candidate regions were identified. The top seven loci, withstanding the most stringent statistical tests, were dissected down to individual genes and/or SNPs on four chromosomes, including the previously known 6p21.3-encoded Major Histocompatibility Complex gene, HLA-DRB1. Hence, microsatellite-based genome-wide association analysis complemented by end stage SNP typing provides a new tool for genetic dissection of multifactorial pathologies including common diseases.

  11. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification

    PubMed Central

    Fu, Yusi; Li, Chunmei; Lu, Sijia; Zhou, Wenxiong; Tang, Fuchou; Xie, X. Sunney; Huang, Yanyi

    2015-01-01

    Whole-genome amplification (WGA) for next-generation sequencing has seen wide applications in biology and medicine when characterization of the genome of a single cell is required. High uniformity and fidelity of WGA is needed to accurately determine genomic variations, such as copy number variations (CNVs) and single-nucleotide variations (SNVs). Prevailing WGA methods have been limited by fluctuation of the amplification yield along the genome, as well as false-positive and -negative errors for SNV identification. Here, we report emulsion WGA (eWGA) to overcome these problems. We divide single-cell genomic DNA into a large number (105) of picoliter aqueous droplets in oil. Containing only a few DNA fragments, each droplet is led to reach saturation of DNA amplification before demulsification such that the differences in amplification gain among the fragments are minimized. We demonstrate the proof-of-principle of eWGA with multiple displacement amplification (MDA), a popular WGA method. This easy-to-operate approach enables simultaneous detection of CNVs and SNVs in an individual human cell, exhibiting significantly improved amplification evenness and accuracy. PMID:26340991

  12. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification.

    PubMed

    Fu, Yusi; Li, Chunmei; Lu, Sijia; Zhou, Wenxiong; Tang, Fuchou; Xie, X Sunney; Huang, Yanyi

    2015-09-22

    Whole-genome amplification (WGA) for next-generation sequencing has seen wide applications in biology and medicine when characterization of the genome of a single cell is required. High uniformity and fidelity of WGA is needed to accurately determine genomic variations, such as copy number variations (CNVs) and single-nucleotide variations (SNVs). Prevailing WGA methods have been limited by fluctuation of the amplification yield along the genome, as well as false-positive and -negative errors for SNV identification. Here, we report emulsion WGA (eWGA) to overcome these problems. We divide single-cell genomic DNA into a large number (10(5)) of picoliter aqueous droplets in oil. Containing only a few DNA fragments, each droplet is led to reach saturation of DNA amplification before demulsification such that the differences in amplification gain among the fragments are minimized. We demonstrate the proof-of-principle of eWGA with multiple displacement amplification (MDA), a popular WGA method. This easy-to-operate approach enables simultaneous detection of CNVs and SNVs in an individual human cell, exhibiting significantly improved amplification evenness and accuracy.

  13. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    SciTech Connect

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.; Kumar-Sinha, Chandan

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  14. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE PAGES

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; ...

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  15. Power analysis of artificial selection experiments using efficient whole genome simulation of quantitative traits.

    PubMed

    Kessner, Darren; Novembre, John

    2015-04-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50-100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates.

  16. From single gene to integrative molecular concept MAPS: pitfalls and potentials of microarray technology.

    PubMed

    Chiorino, G; Mello Grand, M; Scatolini, M; Ostano, P

    2008-01-01

    Microarray experiments have a large variety of applications and several important achievements have been obtained by means of this technology, especially within the field of whole genome expression profiling, which undoubtedly is the most diffused world-wide. Nevertheless, care must be taken in unconditionally applying such high-throughput techniques and in extracting/interpreting their results. Both the validity and the reproducibility of microarray-based clinical research have recently been challenged. Pitfalls and potentials of the microarray technology for gene expression profiling are critically reviewed in this paper.

  17. The American cranberry: first insights into the whole genome of a species adapted to bog habitat

    PubMed Central

    2014-01-01

    Background The American cranberry (Vaccinium macrocarpon Ait.) is one of only three widely-cultivated fruit crops native to North America- the other two are blueberry (Vaccinium spp.) and native grape (Vitis spp.). In terms of taxonomy, cranberries are in the core Ericales, an order for which genome sequence data are currently lacking. In addition, cranberries produce a host of important polyphenolic secondary compounds, some of which are beneficial to human health. Whereas next-generation sequencing technology is allowing the advancement of whole-genome sequencing, one major obstacle to the successful assembly from short-read sequence data of complex diploid (and higher ploidy) organisms is heterozygosity. Cranberry has the advantage of being diploid (2n = 2x = 24) and self-fertile. To minimize the issue of heterozygosity, we sequenced the genome of a fifth-generation inbred genotype (F ≥ 0.97) derived from five generations of selfing originating from the cultivar Ben Lear. Results The genome size of V. macrocarpon has been estimated to be about 470 Mb. Genomic sequences were assembled into 229,745 scaffolds representing 420 Mbp (N50 = 4,237 bp) with 20X average coverage. The number of predicted genes was 36,364 and represents 17.7% of the assembled genome. Of the predicted genes, 30,090 were assigned to candidate genes based on homology. Genes supported by transcriptome data totaled 13,170 (36%). Conclusions Shotgun sequencing of the cranberry genome, with an average sequencing coverage of 20X, allowed efficient assembly and gene calling. The candidate genes identified represent a useful collection to further study important biochemical pathways and cellular processes and to use for marker development for breeding and the study of horticultural characteristics, such as disease resistance. PMID:24927653

  18. Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

    PubMed Central

    Ma, Li-Jun; Ibrahim, Ashraf S.; Skory, Christopher; Grabherr, Manfred G.; Burger, Gertraud; Butler, Margi; Elias, Marek; Idnurm, Alexander; Lang, B. Franz; Sone, Teruo; Abe, Ayumi; Calvo, Sarah E.; Corrochano, Luis M.; Engels, Reinhard; Fu, Jianmin; Hansberg, Wilhelm; Kim, Jung-Mi; Kodira, Chinnappa D.; Koehrsen, Michael J.; Liu, Bo; Miranda-Saavedra, Diego; O'Leary, Sinead; Ortiz-Castellanos, Lucila; Poulter, Russell; Rodriguez-Romero, Julio; Ruiz-Herrera, José; Shen, Yao-Qing; Zeng, Qiandong; Galagan, James; Birren, Bruce W.

    2009-01-01

    Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments. PMID:19578406

  19. Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Li, Cai; Smeds, Linnea; Zhang, Guojie; Ellegren, Hans

    2015-01-01

    Summary Global climate fluctuations have significantly influenced the distribution and abundance of biodiversity [1]. During unfavorable glacial periods, many species experienced range contraction and fragmentation, expanding again during interglacials [2–4]. An understanding of the evolutionary consequences of both historical and ongoing climate changes requires knowledge of the temporal dynamics of population numbers during such climate cycles. Variation in abundance should have left clear signatures in the patterns of intraspecific genetic variation in extant species, from which historical effective population sizes (Ne) can be estimated [3]. We analyzed whole-genome sequences of 38 avian species in a pairwise sequentially Markovian coalescent (PSMC, [5]) framework to quantitatively reveal changes in Ne from approximately 10 million to 10 thousand years ago. Significant fluctuations in Ne over time were evident for most species. The most pronounced pattern observed in many species was a severe reduction in Ne coinciding with the beginning of the last glacial period (LGP). Among species, Ne varied by at least three orders of magnitude, exceeding 1 million in the most abundant species. Several species on the IUCN Red List of Threatened Species showed long-term reduction in population size, predating recent declines. We conclude that cycles of population expansions and contractions have been a common feature of many bird species during the Quaternary period, likely coinciding with climate cycles. Population size reduction should have increased the risk of extinction but may also have promoted speciation. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic threats. PMID:25891404

  20. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments

    PubMed Central

    Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun

    2016-01-01

    Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change. PMID:27401233

  1. Fine Mapping and Whole-Genome Resequencing Identify the Seed Coat Color Gene in Brassica rapa

    PubMed Central

    Guo, Shaomin; An, Fengyun; Du, Dezhi

    2016-01-01

    A yellow seed coat is a desirable agronomic trait in the seeds of oilseed-type Brassica crops. In this study, we identified a candidate gene for seed coat color in Dahuang, a landrace of Brassica rapa. A previous study of Dahuang mapped the seed coat color gene Brsc1 to a 2.8-Mb interval on chromosome A9 of B. rapa. In the present study, the density of the linkage map for Brsc1 was increased by adding simple sequence repeat (SSR) markers, and the candidate region for Brsc1 was narrowed to 1.04 Mb. In addition, whole-genome resequencing with bulked segregant analysis (BSA) was conducted to identify candidate intervals for Brsc1. A genome-wide comparison of SNP profiles was performed between yellow-seeded and brown-seeded bulk samples. SNP index analyses identified a major candidate interval on chromosome A9 (A09:18,255,838–18,934,000, 678 kb) containing a long overlap with the target region recovered from the fine mapping results. According to gene annotation, Bra028067 (BrTT1) is an important candidate gene for Brsc1 in the overlapping region. Quantitative reverse transcription (qRT)-PCR revealed that BrTT1 mainly functions in the seed. Point mutations and small deletions in BrTT1 were found between yellow- and brown-seeded Dahuang plants. Collectively, the expression and sequence analysis results provide preliminary evidence that BrTT1 is a candidate gene for the seed coat color trait in Dahuang. PMID:27829069

  2. Validation of Pooled Whole-Genome Re-Sequencing in Arabidopsis lyrata

    PubMed Central

    Fracassetti, Marco; Griffin, Philippa C.; Willi, Yvonne

    2015-01-01

    Sequencing pooled DNA of multiple individuals from a population instead of sequencing individuals separately has become popular due to its cost-effectiveness and simple wet-lab protocol, although some criticism of this approach remains. Here we validated a protocol for pooled whole-genome re-sequencing (Pool-seq) of Arabidopsis lyrata libraries prepared with low amounts of DNA (1.6 ng per individual). The validation was based on comparing single nucleotide polymorphism (SNP) frequencies obtained by pooling with those obtained by individual-based Genotyping By Sequencing (GBS). Furthermore, we investigated the effect of sample number, sequencing depth per individual and variant caller on population SNP frequency estimates. For Pool-seq data, we compared frequency estimates from two SNP callers, VarScan and Snape; the former employs a frequentist SNP calling approach while the latter uses a Bayesian approach. Results revealed concordance correlation coefficients well above 0.8, confirming that Pool-seq is a valid method for acquiring population-level SNP frequency data. Higher accuracy was achieved by pooling more samples (25 compared to 14) and working with higher sequencing depth (4.1× per individual compared to 1.4× per individual), which increased the concordance correlation coefficient to 0.955. The Bayesian-based SNP caller produced somewhat higher concordance correlation coefficients, particularly at low sequencing depth. We recommend pooling at least 25 individuals combined with sequencing at a depth of 100× to produce satisfactory frequency estimates for common SNPs (minor allele frequency above 0.05). PMID:26461136

  3. Flexible positions, managed hopes: the promissory bioeconomy of a whole genome sequencing cancer study.

    PubMed

    Haase, Rachel; Michie, Marsha; Skinner, Debra

    2015-04-01

    Genomic research has rapidly expanded its scope and ambition over the past decade, promoted by both public and private sectors as having the potential to revolutionize clinical medicine. This promissory bioeconomy of genomic research and technology is generated by, and in turn generates, the hopes and expectations shared by investors, researchers and clinicians, patients, and the general public alike. Examinations of such bioeconomies have often focused on the public discourse, media representations, and capital investments that fuel these "regimes of hope," but also crucial are the more intimate contexts of small-scale medical research, and the private hopes, dreams, and disappointments of those involved. Here we examine one local site of production in a university-based clinical research project that sought to identify novel cancer predisposition genes through whole genome sequencing in individuals at high risk for cancer. In-depth interviews with 24 adults who donated samples to the study revealed an ability to shift flexibly between positioning themselves as research participants on the one hand, and as patients or as family members of patients, on the other. Similarly, interviews with members of the research team highlighted the dual nature of their positions as researchers and as clinicians. For both parties, this dual positioning shaped their investment in the project and valuing of its possible outcomes. In their narratives, all parties shifted between these different relational positions as they managed hopes and expectations for the research project. We suggest that this flexibility facilitated study implementation and participation in the face of potential and probable disappointment on one or more fronts, and acted as a key element in the resilience of this local promissory bioeconomy. We conclude that these multiple dimensions of relationality and positionality are inherent and essential in the creation of any complex economy, "bio" or otherwise.

  4. A Recent Whole-Genome Duplication Divides Populations of a Globally Distributed Microsporidian.

    PubMed

    Williams, Tom A; Nakjang, Sirintra; Campbell, Scott E; Freeman, Mark A; Eydal, Matthías; Moore, Karen; Hirt, Robert P; Embley, T Martin; Williams, Bryony A P

    2016-08-01

    The Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (<3 Mb of gene-dense sequence) while others have more typically eukaryotic genome architectures. To gain fine-scale, population-level insight into the evolutionary dynamics of these tiny eukaryotic genomes, we performed the broadest microsporidian population genomic study to date, sequencing geographically isolated strains of Spraguea, a marine microsporidian infecting goosefish worldwide. Our analysis revealed that population structure across the Atlantic Ocean is associated with a conserved difference in ploidy, with American and Canadian isolates sharing an ancestral whole genome duplication that was followed by widespread pseudogenisation and sorting-out of paralogue pairs. While past analyses have suggested de novo gene formation of microsporidian-specific genes, we found evidence for the origin of new genes from noncoding sequence since the divergence of these populations. Some of these genes experience selective constraint, suggesting the evolution of new functions and local host adaptation. Combining our data with published microsporidian genomes, we show that nucleotide composition across the phylum is shaped by a mutational bias favoring A and T nucleotides, which is opposed by an evolutionary force favoring an increase in genomic GC content. This study reveals ongoing dramatic reorganization of genome structure and the evolution of new gene functions in modern microsporidians despite extensive genomic streamlining in their common ancestor.

  5. Whole-exome sequencing and whole genome re-sequencing for prenatal diagnosis of achondroplasia

    PubMed Central

    Zhao, Rong; Ruan, Yan; Wang, Xin

    2015-01-01

    Objective: To investigate the feasibility of whole exome sequencing (WES) and whole genome re-sequencing (WGS) in the prenatal diagnosis of achondroplasia (ACH). Methods: Eleven highly suspected with ACH or hypochondroplasia (HCH) fetuses and their parents were enrolled in this study. Routine prenatal examinations were carried out in all pregnant women. WGS was performed for the detection of copy number variation (CNV). WES was conducted to determine the mutation of fibroblast growth factor receptor 3 (FGFR3) gene in one special family with rickets and dwarfism. Moreover, all subjects were performed Sanger sequencing for the screening of high frequent mutation sites in FGFR3 gene. Results: For ultrasound (US) examination, short femur was noted in all fetuses with FL less than 4SD and 2SD in 8 cases and one case compared with those of normal gestational weeks, respectively. CNV abnormality was identified in 5 cases, including heterozygous deletion in 4 cases and heterozygous duplication in one case. Among these variation, one case was acknowledged to be pathogenic, one case was identified as genomic polymorphism, while the pathogenicity remained unknown in other 3 cases. For the exome and Sanger sequencing, heterozygous mutation p.Tyr278Cys (833A>G) was noted in the fetus and husband of the special family, while homozygous c.1959+19G>A mutation was identified in another case. Conclusion: Multiple sequencing technologies may provide an additional diagnostic tool and facilitates genetic counseling in the patients with ACH. Further improvement of gene sequencing should be done in the prenatal diagnosis for the mutant screening in other genes. PMID:26770560

  6. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  7. Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

    PubMed Central

    Power, Robert A.; Davaniah, Siva; Derache, Anne; Wilkinson, Eduan; Tanser, Frank; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS. PMID:27677172

  8. Whole-Genome Sequencing for National Surveillance of Shiga Toxin–Producing Escherichia coli O157

    PubMed Central

    Dallman, Timothy J.; Byrne, Lisa; Ashton, Philip M.; Cowley, Lauren A.; Perry, Neil T.; Adak, Goutam; Petrovska, Liljana; Ellis, Richard J.; Elson, Richard; Underwood, Anthony; Green, Jonathan; Hanage, William P.; Jenkins, Claire; Grant, Kathie; Wain, John

    2015-01-01

    Background. National surveillance of gastrointestinal pathogens, such as Shiga toxin–producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. Methods. We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. Results. Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. Conclusions. WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations. PMID:25888672

  9. Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing

    PubMed Central

    Ashton, Philip M.; Perry, Neil; Ellis, Richard; Petrovska, Liljana; Wain, John; Grant, Kathie A.; Jenkins, Claire

    2015-01-01

    The ability of Shiga toxin-producing Escherichia coli (STEC) to cause severe illness in humans is determined by multiple host factors and bacterial characteristics, including Shiga toxin (Stx) subtype. Given the link between Stx2a subtype and disease severity, we sought to identify the stx subtypes present in whole genome sequences (WGS) of 444 isolates of STEC O157. Difficulties in assembling the stx genes in some strains were overcome by using two complementary bioinformatics methods: mapping and de novo assembly. We compared the WGS analysis with the results obtained using a PCR approach and investigated the diversity within and between the subtypes. All strains of STEC O157 in this study had stx1a, stx2a or stx2c or a combination of these three genes. There was over 99% (442/444) concordance between PCR and WGS. When common source strains were excluded, 236/349 strains of STEC O157 had multiple copies of different Stx subtypes and 54 had multiple copies of the same Stx subtype. Of those strains harbouring multiple copies of the same Stx subtype, 33 had variants between the alleles while 21 had identical copies. Strains harbouring Stx2a only were most commonly found to have multiple alleles of the same subtype (42%). Both the PCR and WGS approach to stx subtyping provided a good level of sensitivity and specificity. In addition, the WGS data also showed there were a significant proportion of strains harbouring multiple alleles of the same Stx subtype associated with clinical disease in England. PMID:25737808

  10. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2015-10-30

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs.

  11. Systematic Pharmacogenomics Analysis of a Malay Whole Genome: Proof of Concept for Personalized Medicine

    PubMed Central

    Salleh, Mohd Zaki; Teh, Lay Kek; Lee, Lian Shien; Ismet, Rose Iszati; Patowary, Ashok; Joshi, Kandarp; Pasha, Ayesha; Ahmed, Azni Zain; Janor, Roziah Mohd; Hamzah, Ahmad Sazali; Adam, Aishah; Yusoff, Khalid; Hoh, Boon Peng; Hatta, Fazleen Haslinda Mohd; Ismail, Mohamad Izwan; Scaria, Vinod; Sivasubbu, Sridhar

    2013-01-01

    Background With a higher throughput and lower cost in sequencing, second generation sequencing technology has immense potential for translation into clinical practice and in the realization of pharmacogenomics based patient care. The systematic analysis of whole genome sequences to assess patient to patient variability in pharmacokinetics and pharmacodynamics responses towards drugs would be the next step in future medicine in line with the vision of personalizing medicine. Methods Genomic DNA obtained from a 55 years old, self-declared healthy, anonymous male of Malay descent was sequenced. The subject's mother died of lung cancer and the father had a history of schizophrenia and deceased at the age of 65 years old. A systematic, intuitive computational workflow/pipeline integrating custom algorithm in tandem with large datasets of variant annotations and gene functions for genetic variations with pharmacogenomics impact was developed. A comprehensive pathway map of drug transport, metabolism and action was used as a template to map non-synonymous variations with potential functional consequences. Principal Findings Over 3 million know