Sample records for multi-product operator splitting

  1. 76 FR 31951 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Decision and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... specific to the Carrier Super Modular Multi-System (SMMSi) variable refrigerant flow (VRF) multi-split... in this notice to test and rate its SMMSi VRF multi-split commercial heat pumps. DATES: This Decision... its SMMSi VRF multi-split products. Carrier must use the alternate test procedure provided in this...

  2. 75 FR 4795 - Energy Conservation Program for Certain Industrial Equipment: Publication of the Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... 10, 2008) (Daikin waiver); 74 FR 15955 (April 8, 2009) (Daikin waiver); 74 FR 16193 (April 9, 2009) (Sanyo waiver); 74 FR 16373 (April 10, 2009) (Daikin waiver) The VRV-WIII systems have operational... water-source multi-split products on the basis of the existing test procedure under 10 CFR 431.96, which...

  3. The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications

    PubMed Central

    Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation. PMID:28788116

  4. The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications.

    PubMed

    Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-07-02

    This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and K u -band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.

  5. Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh Adaption for Hypersonic Viscous Flow. Degree awarded by Virginia Polytechnic Inst. and State Univ., 9 Nov. 2001

    NASA Technical Reports Server (NTRS)

    Wood, William A., III

    2002-01-01

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. A Blasius flat plate viscous validation case reveals a more accurate upsilon-velocity profile for fluctuation splitting, and the reduced artificial dissipation production is shown relative to DMFDSFV. Remarkably, the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. The second half of the report develops a local, compact, anisotropic unstructured mesh adaptation scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. The adaptation strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization.

  6. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage

    NASA Astrophysics Data System (ADS)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team

    2017-11-01

    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  7. Splitting blood and blood product packaging reduces donor exposure for patients undergoing cardiopulmonary bypass.

    PubMed

    Nuszkowski, M M; Jonas, R A; Zurakowski, D; Deutsch, N

    2015-11-01

    Cardiopulmonary bypass for congenital heart surgery requires packed red cells (PRBC) and fresh frozen plasma (FFP) to be available, both for priming of the circuit as well as to replace blood loss. This study examines the hypothesis that splitting one unit of packed red blood cells and one unit of fresh frozen plasma into two half units reduces blood product exposure and wastage in the Operating Room. Beginning August 2013, the blood bank at Children's National Medical Center began splitting one unit of packed red blood cells (PRBC) and one unit of fresh frozen plasma (FFP) for patients undergoing cardiopulmonary bypass (CPB). The 283 patients who utilized CPB during calendar year 2013 were divided into 2 study groups: before the split and after the split. The principal endpoints were blood product usage and donor exposure intra-operatively and within 72 hours post-operatively. There was a significant decrease in median total donor exposures for FFP and cryoprecipitate from 5 to 4 per case (p = 0.007, Mann-Whitney U-test). However, there was no difference in the volume of blood and blood products used; in fact, there was a significant increase in the amount of FFP that was wasted with the switch to splitting the unit of FFP. We found that modification of blood product packaging can decrease donor exposure. Future investigation is needed as to how to modify packaging to minimize wastage. © The Author(s) 2015.

  8. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  9. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp; Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realisticmore » biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.« less

  10. On kinetic modelling for solar redox thermochemical H2O and CO2 splitting over NiFe2O4 for H2, CO and syngas production.

    PubMed

    Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G

    2017-10-11

    This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.

  11. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-04-01

    The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.

  12. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    NASA Astrophysics Data System (ADS)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  13. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-08-01

    SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.

  14. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    PubMed

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 75 FR 41845 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Decision and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... conditioners and heat pumps. The waiver is specific to the Sanyo variable capacity ECO-i (commercial) multi... in this notice to test and rate its ECO-i multi-split products. DATES: This Decision and Order is..., Building Technologies Program, Mailstop EE-2J, 1000 Independence Avenue, SW., Washington, DC 20585-0121...

  16. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-05-14

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.

  17. 7 CFR 205.201 - Organic production and handling system plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... represent agricultural products as “100 percent organic,” “organic,” or “made with organic (specified... practices and physical barriers established to prevent commingling of organic and nonorganic products on a split operation and to prevent contact of organic production and handling operations and products with...

  18. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr; Le Corre, Alain

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs.more » This indicates a working condition beyond the classical Shockley-Queisser limit.« less

  19. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.

    PubMed

    Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin

    2018-01-30

    On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.

  20. 76 FR 19759 - Energy Conservation Program for Certain Industrial Equipment: Publication of the Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... (``VRF'') multi-split systems. Carrier requests this waiver for the SMMSi systems because the basic design of VRF multi-split systems prevents testing or rating according to DOE's prescribed test... adopted by AHRI--``ANSI/AHRI 1230--2010: Performance Rating of Variable Refrigerant Flow (VRF) Multi-Split...

  1. 76 FR 50204 - Decision and Order Granting a Waiver to Fujitsu General Limited From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Refrigerant Flow (VRF) multi-split commercial heat pump models specified in Fujitsu's petition for waiver. As... to test and rate these AIRSTAGE V-II VRF multi-split commercial heat pumps. DATES: This Decision and...) Standard 1230-2010, ``Performance Rating of VRF Multi-Split Air-Conditioning and Heat Pump Equipment'' to...

  2. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures

    DOE PAGES

    Young, James L.; Steiner, Myles A.; Döscher, Henning; ...

    2017-03-13

    Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less

  3. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, James L.; Steiner, Myles A.; Döscher, Henning

    Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less

  4. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes

    PubMed Central

    Kon, Theone C.; Onu, Adrian; Berbecila, Laurentiu; Lupulescu, Emilia; Ghiorgisor, Alina; Kersten, Gideon F.; Cui, Yi-Qing; Amorij, Jean-Pierre; Van der Pol, Leo

    2016-01-01

    The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months. PMID:26959983

  5. 75 FR 25224 - Energy Conservation Program for Commercial Equipment: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... systems. As a condition of this waiver, Daikin must use the alternate test procedure set forth in this... systems contain design characteristics that prevent them from being tested using the current DOE test.... The VRV-III-C systems have operational characteristics similar to other commercial multi-split...

  6. Multi-output differential technologies

    NASA Astrophysics Data System (ADS)

    Bidare, Srinivas R.

    1997-01-01

    A differential is a very old and proven mechanical device that allows a single input to be split into two outputs having equal torque irrespective of the output speeds. A standard differential is capable of providing only two outputs from a single input. A recently patented multi-output differential technology known as `Plural-Output Differential' allows a single input to be split into many outputs. This new technology is the outcome of a systematic study of complex gear trains (Bidare 1992). The unique feature of a differential (equal torque at different speeds) can be applied to simplify the construction and operation of many complex mechanical devices that require equal torque's or forces at multiple outputs. It is now possible to design a mechanical hand with three or more fingers with equal torque. Since these finger are powered via a differential they are `mechanically intelligent'. A prototype device is operational and has been used to demonstrate the utility and flexibility of the design. In this paper we shall review two devices that utilize the new technology resulting in increased performance, robustness with reduced complexity and cost.

  7. Stability of the Markov operator and synchronization of Markovian random products

    NASA Astrophysics Data System (ADS)

    Díaz, Lorenzo J.; Matias, Edgar

    2018-05-01

    We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.

  8. On-Orbit Maintenance Operations Strategy for the International Space Station - Concept and Implementation

    NASA Technical Reports Server (NTRS)

    Patterson, Linda P.

    2001-01-01

    The International Space Station (ISS) has an operational mission and profile that makes it a Logistics and Maintenance (L&M) support challenge different from previous programs. It is permanently manned, assembled on orbit, and multi-national. With this technical and operational challenge, a unique approach is needed to support the hardware and crew. The key is the integration of on-orbit and ground analysis, supply, maintenance, and crew training into a coherent functional process that supports ISS goals and objectives. To integrate all the necessary aspects of hardware and personnel to support on-orbit maintenance, a myriad of products and processes must be created and coordinated, such that the right resources are in the right place at the right time to ensure continued ISS functionality. This paper will familiarize the audience with ISS On-Orbit Maintenance (OOM) concepts and capabilities for different maintenance tasks and discuss some of the logic behind their selection. It will also identify the operational maintenance support responsibility split between the U.S. and the various International Partners (IPs).

  9. Measurement of kT splitting scales in W→ℓν events at [Formula: see text] with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behar Harpaz, S; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Duxfield, R; Dwuznik, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gandrajula, R P; Gao, Y S; Gaponenko, A; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Göpfert, T; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jeske, C; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Kenyon, M; Keoshkerian, H; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Krejci, F; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, M K; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, D; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, B; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lundquist, J; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martinez Outschoorn, V; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Meguro, T; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Möser, N; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Muenstermann, D; Müller, T A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poblaguev, A; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Raas, M; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rahimi, A M; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A; South, D; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Ye, J; Ye, S; Yen, A L; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    A measurement of splitting scales, as defined by the k T clustering algorithm, is presented for final states containing a W boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb -1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a k T cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.

  10. InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting.

    PubMed

    Liu, Shu-Yen; Sheu, J K; Lin, Yu-Chuan; Chen, Yu-Tong; Tu, S J; Lee, M L; Lai, W C

    2013-11-04

    Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.

  11. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  12. 75 FR 22581 - Energy Conservation Program for Commercial Equipment: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    .... (Mitsubishi) for a similar line of commercial multi-split air-conditioning systems: Testing laboratories...-conditioning systems: (1) Testing laboratories cannot test products with so many indoor units; (2) there are too many possible combinations of indoor and outdoor unit to test. The Daikin VRV-WIII systems have...

  13. 76 FR 34685 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Decision and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    .... The waiver is specific to the Daikin VRV III-PB variable refrigerant flow (VRF) multi-split commercial... this notice to test and rate its VRV III-PB variable refrigerant flow (VRF) multi-split commercial heat... Institute (ANSI/ AHRI) Standard 1230-2010, ``Performance Rating of Variable Refrigerant Flow (VRF) Multi...

  14. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    NASA Astrophysics Data System (ADS)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  15. Sustaining Software-Intensive Systems

    DTIC Science & Technology

    2006-05-01

    2.2 Multi- Service Operational Test and Evaluation .......................................4 2.3 Stable Software Baseline...or equivalent document • completed Multi- Service Operational Test and Evaluation (MOT&E) for the potential production software package (or OT&E if...not multi- service ) • stable software production baseline • complete and current software documentation • Authority to Operate (ATO) for an

  16. Measurement of k T splitting scales in W→ℓν events at $$\\sqrt{s} = 7\\ \\mathrm{TeV}$$ with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abajyan, T.; Abbott, B.

    2013-05-15

    A measurement of splitting scales, as defined by the k T clustering algorithm, is presented for final states containing a W boson produced in proton–proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb -1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a k T cluster sequence of the hadronic activity accompanying themore » W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.« less

  17. Serial DNA relay in DNA logic gates by electrical fusion and mechanical splitting of droplets

    PubMed Central

    Kawano, Ryuji; Takinoue, Masahiro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa

    2017-01-01

    DNA logic circuits utilizing DNA hybridization and/or enzymatic reactions have drawn increasing attention for their potential applications in the diagnosis and treatment of cellular diseases. The compartmentalization of such a system into a microdroplet considerably helps to precisely regulate local interactions and reactions between molecules. In this study, we introduced a relay approach for enabling the transfer of DNA from one droplet to another to implement multi-step sequential logic operations. We proposed electrical fusion and mechanical splitting of droplets to facilitate the DNA flow at the inputs, logic operation, output, and serial connection between two logic gates. We developed Negative-OR operations integrated by a serial connection of the OR gate and NOT gate incorporated in a series of droplets. The four types of input defined by the presence/absence of DNA in the input droplet pair were correctly reflected in the readout at the Negative-OR gate. The proposed approach potentially allows for serial and parallel logic operations that could be used for complex diagnostic applications. PMID:28700641

  18. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    PubMed

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production.

    PubMed

    Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V

    2015-01-21

    The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.

  20. Divide and control: split design of multi-input DNA logic gates.

    PubMed

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2015-01-18

    Logic gates made of DNA have received significant attention as biocompatible building blocks for molecular circuits. The majority of DNA logic gates, however, are controlled by the minimum number of inputs: one, two or three. Here we report a strategy to design a multi-input logic gate by splitting a DNA construct.

  1. 76 FR 31946 - Energy Conservation Program for Certain Industrial Equipment: Publication of the Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... has been adopted by AHRI--``ANSI/AHRI 1230--2010: Performance Rating of Variable Refrigerant Flow (VRF... Refrigerant Flow (VRF) Multi-Split Systems, because the basic model contains design characteristics which... line of commercial (3- phase) VRF multi-split ``AIRSTAGE V-II''. 2. The Design Characteristics FUJITSU...

  2. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

  3. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    PubMed

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-02

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.

  4. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    NASA Astrophysics Data System (ADS)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  6. Performance of Variable Capacity Heat Pumps in a Mixed Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D; Gehl, Anthony C; Jackson, Roderick K

    2012-04-01

    Variable capacity heat pumps represent the next wave of technology for heat pumps. In this report, the performance of two variable capacity heat pumps (HPs) is compared to that of a single or two stage baseline system. The units were installed in two existing research houses located in Knoxville, TN. These houses were instrumented to collect energy use and temperature data while both the baseline systems and variable capacity systems were installed. The homes had computer controlled simulated occupancy, which provided consistent schedules for hot water use and lighting. The temperature control and energy use of the systems were comparedmore » during both the heating and cooling seasons. Multiple linear regression models were used along with TMY3 data for Knoxville, TN in order to normalize the effect that the outdoor air temperature has on energy use. This enables a prediction of each system's energy use over a year with the same weather. The first system was a multi-split system consisting of 8 indoor units and a single outdoor unit. This system replaced a 16 SEER single stage HP with a zoning system, which served as the baseline. Data was collected on the baseline system from August 2009 to December 2010 and on the multi-split system from January 2011 to January 2012. Soon after the installation of the multi-split system, some of the smaller rooms began over-conditioning. This was determined to be caused by a small amount of continuous refrigerant flow to all of the indoor units when the outdoor unit was running regardless of whether they were calling for heat. This, coupled with the fact that the indoor fans run continuously, was providing enough heat in some rooms to exceed the set point. In order to address this, the indoor fans were disabled when not actively heating per the manufacturer's recommendation. Based on the measured data, the multi-split system was predicted to use 40% more energy in the heating season and 16% more energy in the cooling season than the baseline system, for the typical meteorological year weather data. The AHRI ratings indicated that the baseline system would perform slightly better than the multi-split system, but not by as large of a margin as seen in this study. The multi-split system was able to maintain more consistent temperature throughout the house than the baseline system, but it did allow relative humidity levels to increase above 60% in the summer. The second system was a split system with an inverter driven compressor and a single ducted air handler. This unit replaced a 16 SEER two stage HP with a zoning system. Data was collected on the baseline system from July 2009 to November 2010 and on the ducted inverter system from December 2010 to January 2012. The ducted inverter system did not offer a zone controller, so it functioned as a single zone system. Due to this fact, the registers had to be manually adjusted in order to better maintain consistent temperatures between the two levels of the house. The predicted heating season energy use for the ducted inverter system, based on the measured energy use, was 30% less than that of the baseline system for the typical meteorological year. However, the baseline system was unable to operate in its high stage due to a wiring issue with the zone controller. This resulted in additional resistance heat use during the winter and therefore higher energy use than would be expected in a properly performing unit. The AHRI ratings would indicate that the baseline system would use less energy than the ducted inverter system, which is opposite to the results of this study. During the cooling season, the ducted inverter system was predicted to use 23% more energy than the baseline system during the typical meteorological year. This is also opposite of the results expected by comparing the AHRI ratings. After a detailed comparison of the ducted inverter system's power use compared to that of a recently installed identical system at a retro-fit study house, there is concern that the unit is not operating as intended. The power use and cycles indicate that the unit is performing more like a single stage unit than a variable capacity unit. Analysis of the data indicates that a change in operating behavior occurred during a service call shortly after the installation of the unit. The logbook only indicates that refrigerant charge was added, but does not indicate any other change. This is being investigated further. While the energy comparison results of these two variable capacity heat pumps is generally underwhelming, it is difficult to draw any hard conclusions about the maximum attainable efficiency of these units when optimally installed. Both units appear to have undesirable conditions associated with the installation or operation, which could have had an adverse effect on their energy use.« less

  7. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    PubMed

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  8. Electroweak splitting functions and high energy showering

    NASA Astrophysics Data System (ADS)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  9. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  10. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  11. A theoretical multi-reflection method for analysis of optomechanical behavior of the Fabry-Perot cavity with moving boundary condition

    NASA Astrophysics Data System (ADS)

    Bahrampour, A. R.; Vahedi, M.; Abdi, M.; Ghobadi, R.; Golshani, M.; Tofighi, S.; Parvin, B.

    2011-09-01

    The opto-mechanical coupling and the generation of Stokes and anti-Stokes frequencies in the in-band and intra-band regimes of operation of the Fabry-Perot cavity with a moving mirror on the basis of multi-reflection method (MRM) are described by a unique theory. The frequency characteristic function of the Fabry-Perot filter is modified. By increasing the amplitude of mirror oscillation the Fabry-Perot bandwidth increases and normal mode splitting occurred. The conversion efficiencies of the Stokes and anti-Stokes frequencies versus the mechanical amplitude of oscillation have an optimum value. Also, the delay function corresponding to the radiation pressure is obtained.

  12. Multi-band phase shifter design using modified slotline configuration

    NASA Astrophysics Data System (ADS)

    Kulandhaisamy, Indhumathi; Rajendran, Dinesh Babu; Kanagasabai, Malathi; Gurusamy, Gunasekaran; Moorthy, Balaji; George, Jithila V.; Lawrance, Livya

    2017-01-01

    In this paper, an analog multiband phase shifter using slotline configuration is proposed. To implement the design, a pair of modified Split Ring Resonator (SRR) is employed. The periodic property of SRR provides multiband characteristics, whether the coupling slot gives the phase variations over the bands. The operation is well explained with an equivalent circuit model and its characteristics have been studied both in simulation and measurement. The prototype operates in 1.77-2.16, 3.5-3.97, 5.08-5.33, 6.43-6.93, and 8.01-8.59 GHz frequency bands which can be utilized for GSM, GPS, WLAN, C-band, and X-band applications, respectively.

  13. Expert diagnostics system as a part of analysis software for power mission operations

    NASA Technical Reports Server (NTRS)

    Harris, Jennifer A.; Bahrami, Khosrow A.

    1993-01-01

    The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.

  14. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  15. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    DOE PAGES

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; ...

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  16. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    NASA Astrophysics Data System (ADS)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  17. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    NASA Astrophysics Data System (ADS)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  18. Methodology for interpretation of SST retrievals using the AVHRR split window algorithm

    NASA Technical Reports Server (NTRS)

    Barbieri, R. W.; Mcclain, C. R.; Endres, D. L.

    1983-01-01

    Intercomparisons of sea surface temperature (SST) products derived from the operational NOAA-7 AVHRR-II algorithm and in situ observations are made. The 1982 data sets consist of ship survey data during the winter from the Mid-Atlantic Bight (MAB), ship and buoy measurements during April and September in the Gulf of Mexico and shipboard observations during April off the N.W. Spanish coast. The analyses included single pixel comparisons and the warmest pixel technique for 2 x 2 pixel and 10 x 10 pixel areas. The reason for using multi-pixel areas was for avoiding cloud contaminated pixels in the vicinity of the field measurements. Care must be taken when applying the warmest pixel technique near oceanic fronts. The Gulf of Mexico results clearly indicate a persistent degradation in algorithm accuracy due to El Chichon aerosols. The MAB and Spanish data sets indicate that very accurate estimates can be achieved if care is taken to avoid clouds and oceanic fronts.

  19. Effective Medium Ratio Obeying Wideband Left-Handed Miniaturized Meta-atoms for Multi-band Applications

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2017-12-01

    In this paper, a miniaturized wideband left-handed (LH) meta-atom based on planar modified multiple hexagonal split ring resonators was designed, simulated, fabricated and tested that can maintain a left-handed property. An analysis and comparison of the different array structures were performed that obtained better effective medium ratio (EMR) and wideband (5.54 GHz) for multi band operations in the microwave regime. Finite-difference time-domain (FDTD) method based Computer Simulation Technology was implemented to design the meta-atom. The meta-atom showed multi-band response in conjunction with wideband and LH property over the certain frequency bands in the microwave spectra. The EMR was considerably improved compared to previously reported meta-atoms. The measured results showed good agreement with the simulated results. The dimensions, S-parameters and EMR parameters of the proposed miniaturized LH meta-atom are appropriate for L-, S-, C-, X-, and Ku-band applications.

  20. Effective Medium Ratio Obeying Wideband Left-Handed Miniaturized Meta-atoms for Multi-band Applications

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2018-03-01

    In this paper, a miniaturized wideband left-handed (LH) meta-atom based on planar modified multiple hexagonal split ring resonators was designed, simulated, fabricated and tested that can maintain a left-handed property. An analysis and comparison of the different array structures were performed that obtained better effective medium ratio (EMR) and wideband (5.54 GHz) for multi band operations in the microwave regime. Finite-difference time-domain (FDTD) method based Computer Simulation Technology was implemented to design the meta-atom. The meta-atom showed multi-band response in conjunction with wideband and LH property over the certain frequency bands in the microwave spectra. The EMR was considerably improved compared to previously reported meta-atoms. The measured results showed good agreement with the simulated results. The dimensions, S-parameters and EMR parameters of the proposed miniaturized LH meta-atom are appropriate for L-, S-, C-, X-, and Ku-band applications.

  1. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    PubMed

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  2. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less

  3. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  4. Principles to Products: Toward Realizing MOS 2.0

    NASA Technical Reports Server (NTRS)

    Bindschadler, Duane L.; Delp, Christopher L.

    2012-01-01

    This is a report on the Operations Revitalization Initiative, part of the ongoing NASA-funded Advanced Multi-Mission Operations Systems (AMMOS) program. We are implementing products that significantly improve efficiency and effectiveness of Mission Operations Systems (MOS) for deep-space missions. We take a multi-mission approach, in keeping with our organization's charter to "provide multi-mission tools and services that enable mission customers to operate at a lower total cost to NASA." Focusing first on architectural fundamentals of the MOS, we review the effort's progress. In particular, we note the use of stakeholder interactions and consideration of past lessons learned to motivate a set of Principles that guide the evolution of the AMMOS. Thus guided, we have created essential patterns and connections (detailed in companion papers) that are explicitly modeled and support elaboration at multiple levels of detail (system, sub-system, element...) throughout a MOS. This architecture is realized in design and implementation products that provide lifecycle support to a Mission at the system and subsystem level. The products include adaptable multi-mission engineering documentation that describes essentials such as operational concepts and scenarios, requirements, interfaces and agreements, information models, and mission operations processes. Because we have adopted a model-based system engineering method, these documents and their contents are meaningfully related to one another and to the system model. This means they are both more rigorous and reusable (from mission to mission) than standard system engineering products. The use of models also enables detailed, early (e.g., formulation phase) insight into the impact of changes (e.g., to interfaces or to software) that is rigorous and complete, allowing better decisions on cost or technical trades. Finally, our work provides clear and rigorous specification of operations needs to software developers, further enabling significant gains in productivity.

  5. Choice of implicit and explicit operators for the upwind differencing method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Vanleer, Bram

    1988-01-01

    The flux-vector and flux-difference splittings of Steger-Warming, van Leer and Roe are tested in all possible combinations on the implicit and explicit operators that can be distinguished in implicit relaxation methods for the steady Euler and Navier-Stokes equations. The tests include one-dimensional inviscid nozzle flow, and two-dimensional inviscid and viscous shock reflection. Roe's splitting, as anticipated, is found to uniformly yield the most accurate results. On the other hand, an approximate Roe splitting of the implicit operator (the complete Roe splitting is too complicated for practical use) proves to be the least robust with regard to convergence to the steady state. In this respect, the Steger-Warming splitting is the most robust; it leads to convergence when combined with any of the splittings in the explicit operator, although not necessarily in the most efficient way.

  6. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.

  7. Systems Design and Pilot Operation of a Regional Center for Technical Processing for the Libraries of the New England State Universities. NELINET, New England Library Information Network. Progress Report, July 1, 1967 - March 30, 1968, Volume II, Appendices.

    ERIC Educational Resources Information Center

    Agenbroad, James E.; And Others

    Included in this volume of appendices to LI 000 979 are acquisitions flow charts; a current operations questionnaire; an algorithm for splitting the Library of Congress call number; analysis of the Machine-Readable Cataloging (MARC II) format; production problems and decisions; operating procedures for information transmittal in the New England…

  8. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  9. Automation of cellular therapy product manufacturing: results of a split validation comparing CD34 selection of peripheral blood stem cell apheresis product with a semi-manual vs. an automatic procedure.

    PubMed

    Hümmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard

    2016-03-16

    Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.

  10. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    PubMed Central

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  11. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.

    PubMed

    Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F

    2016-10-31

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  12. Exponential Formulae and Effective Operations

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Fernandez, David J. C.

    1996-01-01

    One of standard methods to predict the phenomena of squeezing consists in splitting the unitary evolution operator into the product of simpler operations. The technique, while mathematically general, is not so simple in applications and leaves some pragmatic problems open. We report an extended class of exponential formulae, which yield a quicker insight into the laboratory details for a class of squeezing operations, and moreover, can be alternatively used to programme different type of operations, as: (1) the free evolution inversion; and (2) the soft simulations of the sharp kicks (so that all abstract results involving the kicks of the oscillator potential, become realistic laboratory prescriptions).

  13. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.

  14. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  15. Split-screen display system and standardized methods for ultrasound image acquisition and multi-frame data processing

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2011-01-01

    A standardized acquisition methodology assists operators to accurately replicate high resolution B-mode ultrasound images obtained over several spaced-apart examinations utilizing a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, dynamic material properties of arterial structures, such as IMT and diameter, are measured in a standard region over successive image frames. Each frame of the sequence has its echo edge boundaries automatically determined by using the immediately prior frame's true echo edge coordinates as initial boundary conditions. Computerized echo edge recognition and tracking over multiple successive image frames enhances measurement of arterial diameter and IMT and allows for improved vascular dimension measurements, including vascular stiffness and IMT determinations.

  16. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  17. Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.

    PubMed

    Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok

    2018-05-08

    This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.

  18. Progressive simplification and transmission of building polygons based on triangle meshes

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Wang, Yingjie; Guo, Qingsheng; Han, Jiafu

    2010-11-01

    Digital earth is a virtual representation of our planet and a data integration platform which aims at harnessing multisource, multi-resolution, multi-format spatial data. This paper introduces a research framework integrating progressive cartographic generalization and transmission of vector data. The progressive cartographic generalization provides multiple resolution data from coarse to fine as key scales and increments between them which is not available in traditional generalization framework. Based on the progressive simplification algorithm, the building polygons are triangulated into meshes and encoded according to the simplification sequence of two basic operations, edge collapse and vertex split. The map data at key scales and encoded increments between them are stored in a multi-resolution file. As the client submits requests to the server, the coarsest map is transmitted first and then the increments. After data decoding and mesh refinement the building polygons with more details will be visualized. Progressive generalization and transmission of building polygons is demonstrated in the paper.

  19. Investigation of upwind, multigrid, multiblock numerical schemes for three dimensional flows. Volume 1: Runge-Kutta methods for a thin layer Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Ash, Robert L.

    1992-01-01

    A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.

  20. Design and Construction Multi Output Power Transmition with Single Prime Mover on Agricultural Products Machine

    NASA Astrophysics Data System (ADS)

    Koten, V. K.; Tanamal, C. E.

    2017-03-01

    Manufacturing agricultural products by the farmers, people or person who involve in medium industry, small industry, and households industry still be done in separately. Although the power on primemover is enough, in operations, primemover was only to move one of several agricultural products machine. This study attempts to design and construct power transmition multi output with single primemover; a single construction that allows primemover move some agricultur products machine in the same or not. This study begins with the determination of production capacity and the power to destroy products, the determination of resources and rotation, normalization of resources and rotation, the determination of the type material used, the size determination of each machine elements, construction machine elements, and assemble machine elements into a construction multi output power transmition with single primemover on agricultural products machine. The results show that with a input normalization 4 PK (2984 Watt), rotation 2000 rpm, the strength of material 60 kg/mm2, and several operating consideration, thus obtained size of machine elements through calculation. Based on the size, the machine elements is made through the use of some machine tools and assembled to form a multi output power transmition with single primemover.

  1. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  2. How do strategic decisions and operative practices affect operating room productivity?

    PubMed

    Peltokorpi, Antti

    2011-12-01

    Surgical operating rooms are cost-intensive parts of health service production. Managing operating units efficiently is essential when hospitals and healthcare systems aim to maximize health outcomes with limited resources. Previous research about operating room management has focused on studying the effect of management practices and decisions on efficiency by utilizing mainly modeling approach or before-after analysis in single hospital case. The purpose of this research is to analyze the synergic effect of strategic decisions and operative management practices on operating room productivity and to use a multiple case study method enabling statistical hypothesis testing with empirical data. 11 hypotheses that propose connections between the use of strategic and operative practices and productivity were tested in a multi-hospital study that included 26 units. The results indicate that operative practices, such as personnel management, case scheduling and performance measurement, affect productivity more remarkably than do strategic decisions that relate to, e.g., units' size, scope or academic status. Units with different strategic positions should apply different operative practices: Focused hospital units benefit most from sophisticated case scheduling and parallel processing whereas central and ambulatory units should apply flexible working hours, incentives and multi-skilled personnel. Operating units should be more active in applying management practices which are adequate for their strategic orientation.

  3. Superiorization-based multi-energy CT image reconstruction

    PubMed Central

    Yang, Q; Cong, W; Wang, G

    2017-01-01

    The recently-developed superiorization approach is efficient and robust for solving various constrained optimization problems. This methodology can be applied to multi-energy CT image reconstruction with the regularization in terms of the prior rank, intensity and sparsity model (PRISM). In this paper, we propose a superiorized version of the simultaneous algebraic reconstruction technique (SART) based on the PRISM model. Then, we compare the proposed superiorized algorithm with the Split-Bregman algorithm in numerical experiments. The results show that both the Superiorized-SART and the Split-Bregman algorithms generate good results with weak noise and reduced artefacts. PMID:28983142

  4. Direct thermal water splitting by concentrated solar radiation for hydrogen production. Phase O: Proof of concept experiment

    NASA Technical Reports Server (NTRS)

    Genequand, P.

    1980-01-01

    The direct production of hydrogen from water and solar energy concentrated into a high temperature aperture is described. A solar powered reactor able to dissociate water vapor and to separate the reaction product at high temperature was developed, and direct water splitting has been achieved in a laboratory reactor. Water vapor and radiative heating from a carbon dioxide laser are fed into the reactor, and water vapor enriched in hydrogen and water vapor enriched in oxygen are produced. The enriched water vapors are separated through a separation membrane, a small disc of zirconium dioxide heated to a range of 1800 k to 2800 k. To avoid water vapor condensation within the reactor, the total pressure within the reactor was limited to 0.15 torr. A few modifications would enable the reactor to be operated at an increased pressure of a few torrs. More substantial modifications would allow for a reaction pressure of 0.1 atmosphere.

  5. Achievement of trifecta in minimally invasive partial nephrectomy correlates with functional preservation of operated kidney: a multi-institutional assessment using MAG3 renal scan.

    PubMed

    Zargar, Homayoun; Porpiglia, Francesco; Porter, James; Quarto, Giuseppe; Perdona, Sisto; Bertolo, Riccardo; Autorino, Riccardo; Kaouk, Jihad H

    2016-07-01

    To validate and compare the values of "MIC" and "trifecta" as predictors of operated kidney functional preservation in a multi-institutional cohort of patients undergoing minimally invasive PN. We retrospectively reviewed records of consecutive cases of minimally invasive PN performed for cT1 renal masses in 4 centers from 2009 to 2013. Inclusion criteria consisted of availability of a renal scan obtained within 2 weeks prior to surgery and follow-up renal scan 3-6 months after the surgery. The primary endpoint of the study was to compare the degree of ipsilateral renal function preservation assessed by MAG3 renal scan in relation to achievement of MIC and trifecta. Total of 351 patients met our inclusion criteria. The rates of trifecta achievement for cT1a and cT1b tumors were 78.9 and 60.6 %, respectively. The rate of MIC achievement for cT1a tumors and cT1b tumors was 60.3 and 31.7 %, respectively. On multivariable linear regression model, only the degree of tumor complexity assessed by R.E.N.A.L nephrometry score [coefficient B -1.8 (-2.7, -0.9); p < 0.0001] and the achievement of trifecta [coefficient B 6.1 (2.4,9.8); p = 0.014] or MIC (coefficient B 7.2 (3.8,0.6); p < 0.0001) were significant clinical factors predicting ipsilateral split function preservation. Achievement of both MIC and "trifecta" is associated with higher proportion of split renal function preservation for cT1 tumors after minimally invasive PN. Thus, these outcome measures can be regarded not only as markers of surgical quality, but also as reliable surrogates for predicting functional outcome in the operated kidney.

  6. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  7. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure

    NASA Astrophysics Data System (ADS)

    Ji, Hongyu; Zhang, Bo; Wang, Guocui; Wang, Wei; Shen, Jingling

    2018-04-01

    We propose a photo-excited tunable multi-frequency metamaterial (MM) switch that can be used in the terahertz region. This metamaterial switch is composed of a polyimide substrate and a hybrid metal-semiconductor square split-ring resonator (SRR) with two gaps, with various semiconductors placed in critical regions of the metallic resonator. By changing the incident pump power, we were able to tune the conductivity of the diverse semiconductors filling the gaps of the SRR, and by using an external exciting beam, we were able to modulate the resonant absorption properties of the composite metamaterial structure. We demonstrated the tunable multi-frequency metamaterial switch by irradiating the composite metamaterial structure with a pump laser. In addition, we proposed a tunable metamaterial switch based on a circular metallic split-ring resonator.

  8. Gas-liquid flow splitting in T-junction with inclined lateral arm

    NASA Astrophysics Data System (ADS)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  9. Statistical Methods in Assembly Quality Management of Multi-Element Products on Automatic Rotor Lines

    NASA Astrophysics Data System (ADS)

    Pries, V. V.; Proskuriakov, N. E.

    2018-04-01

    To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.

  10. Speech Adaptation to a Self-Inflicted Cosmetic Tongue Split: Perceptual and Ultrasonographic Analysis

    ERIC Educational Resources Information Center

    Bressmann, Tim

    2006-01-01

    In the cosmetic tongue split operation, the anterior tongue blade is split along the midline of the tongue. The goal of this case study was to obtain preliminary data on speech and tongue motility in a participant who had performed this operation on himself. The participant underwent an articulation test and a tongue motility assessment, as well…

  11. Supporting Students' Constructions of the Splitting Operation

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.

    2013-01-01

    Previous research has demonstrated the effectiveness of particular instructional practices that support students' constructions of the partitive unit fraction scheme and measurement concepts for fractions. Another body of research has demonstrated the power of a particular mental operation--the splitting operation--in supporting students'…

  12. Dye-sensitized photocatalyst for effective water splitting catalyst

    NASA Astrophysics Data System (ADS)

    Watanabe, Motonori

    2017-12-01

    Renewable hydrogen production is a sustainable method for the development of next-generation energy technologies. Utilising solar energy and photocatalysts to split water is an ideal method to produce hydrogen. In this review, the fundamental principles and recent progress of hydrogen production by artificial photosynthesis are reviewed, focusing on hydrogen production from photocatalytic water splitting using organic-inorganic composite-based photocatalysts.

  13. Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elangovan, Elango; Rao, Ranjeet; Colella, Whitney

    Production of hydrogen using an electrochemical device provides for large scale, high efficiency conversion and storage of electrical energy. When renewable electricity is used for conversion of steam to hydrogen, a low-cost and low emissions pathway to hydrogen production emerges. This project was intended to demonstrate a high efficiency High Temperature Water Splitting (HTWS) stack for the electrochemical production of low cost H2. The innovations investigated address the limitations of the state of the art through the use of a novel architecture that introduces macro-features to provide mechanical support of a thin electrolyte, and micro-features of the electrodes to lowermore » polarization losses. The approach also utilizes a combination of unique sets of fabrication options that are scalable to achieve manufacturing cost objectives. The development of HTWS process and device is guided by techno-economic and life cycle analyses.« less

  14. 75 FR 34731 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to Daikin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... applies to certain basic models of the Daikin Altherma system, which consists of an air-to-water heat pump... pumps, and an application for interim waiver. The Daikin Altherma system consists of an air-to-water... operates either as a split system with the compressor unit outdoors and the hydronic components in an...

  15. 76 FR 11438 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to Daikin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Altherma system, which consists of an air-to-water heat pump that provides hydronic heating and cooling as... Altherma system consists of an air-to-water heat pump that provides hydronic space heating and cooling as well as domestic hot water functions. It operates either as a split system with the compressor unit...

  16. Photoelectrochemical devices for solar water splitting - materials and challenges.

    PubMed

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  17. Mesoscale, Radiometrically Referenced, Multi-Temporal Hyperspectral Data for Co2 Leak Detection by Locating Spatial Variation of Biophysically Relevant Parameters

    NASA Astrophysics Data System (ADS)

    McCann, Cooper Patrick

    Low-cost flight-based hyperspectral imaging systems have the potential to provide valuable information for ecosystem and environmental studies as well as aide in land management and land health monitoring. This thesis describes (1) a bootstrap method of producing mesoscale, radiometrically-referenced hyperspectral data using the Landsat surface reflectance (LaSRC) data product as a reference target, (2) biophysically relevant basis functions to model the reflectance spectra, (3) an unsupervised classification technique based on natural histogram splitting of these biophysically relevant parameters, and (4) local and multi-temporal anomaly detection. The bootstrap method extends standard processing techniques to remove uneven illumination conditions between flight passes, allowing the creation of radiometrically self-consistent data. Through selective spectral and spatial resampling, LaSRC data is used as a radiometric reference target. Advantages of the bootstrap method include the need for minimal site access, no ancillary instrumentation, and automated data processing. Data from a flight on 06/02/2016 is compared with concurrently collected ground based reflectance spectra as a means of validation achieving an average error of 2.74%. Fitting reflectance spectra using basis functions, based on biophysically relevant spectral features, allows both noise and data reductions while shifting information from spectral bands to biophysical features. Histogram splitting is used to determine a clustering based on natural splittings of these fit parameters. The Indian Pines reference data enabled comparisons of the efficacy of this technique to established techniques. The splitting technique is shown to be an improvement over the ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. This improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA. Three hyperspectral flights over the Kevin Dome area, covering 1843 ha, acquired 06/21/2014, 06/24/2015 and 06/26/2016 are examined with different methods of anomaly detection. Detection of anomalies within a single data set is examined to determine, on a local scale, areas that are significantly different from the surrounding area. Additionally, the detection and identification of persistent anomalies and non-persistent anomalies was investigated across multiple data sets.

  18. Solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators.

    PubMed

    Zhao, Jing; Zong, Haili

    2018-01-01

    In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.

  19. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    PubMed

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 °C) partial reduction and lower-temperature (∼800 °C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x≤ 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  20. Vacuum Stability in Split SUSY and Little Higgs Models

    NASA Astrophysics Data System (ADS)

    Datta, Alakabha; Zhang, Xinmin

    We study the stability of the effective Higgs potential in the split supersymmetry and Little Higgs models. In particular, we study the effects of higher dimensional operators in the effective potential on the Higgs mass predictions. We find that the size and sign of the higher dimensional operators can significantly change the Higgs mass required to maintain vacuum stability in Split SUSY models. In the Little Higgs models the effects of higher dimensional operators can be large because of a relatively lower cutoff scale. Working with a specific model we find that a contribution from the higher dimensional operator with coefficient of O(1) can destabilize the vacuum.

  1. Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less

  2. Computer assisted operations in Petroleum Development Oman (PDO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hinai, S.H.; Mutimer, K.

    1995-10-01

    Petroleum Development Oman (PDO) currently produces some 750,000 bopd and 900,000 bwpd from some 74 fields in a large geographical area and diverse operating conditions. A key corporate objective is to reduce operating costs by exploiting productivity gains from proven technology. Automation is seen as a means of managing the rapid growth of well population and production facilities. the overall objective is to improve field management through continuous monitoring of wells and facilities and dissemination of data throughout the whole organization. A major upgrade of PDO`s field Supervisory Control and Data Acquisition (SCADA) system is complete providing a platform tomore » exploit new initiatives particularly for production optimization of artificial lift systems and automatic well testing using multi selector valves, coriolis flow meter measurements and multi component (oil, gas, water) flowmeter. The paper describes PDO`s experience including benefits and challenges which have to be managed when developing Computer Assisted Operations (CAO).« less

  3. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flory, John Andrew; Padilla, Denise D.; Gauthier, John H.

    Upcoming weapon programs require an aggressive increase in Application Specific Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL). SNL has developed unique modeling and optimization tools that have been instrumental in improving ASIC production productivity and efficiency, identifying optimal operational and tactical execution plans under resource constraints, and providing confidence in successful mission execution. With ten products and unprecedented levels of demand, a single set of shared resources, highly variable processes, and the need for external supplier task synchronization, scheduling is an integral part of successful manufacturing. The scheduler uses an iterative multi-objective genetic algorithm and a multi-dimensional performancemore » evaluator. Schedule feasibility is assessed using a discrete event simulation (DES) that incorporates operational uncertainty, variability, and resource availability. The tools provide rapid scenario assessments and responses to variances in the operational environment, and have been used to inform major equipment investments and workforce planning decisions in multiple SNL facilities.« less

  5. Some Physical and Computational Issues in Land Surface Data Assimilation of Satellite Skin Temperatures

    NASA Astrophysics Data System (ADS)

    Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour

    2012-03-01

    Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.

  6. The Splitting Group

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.

    2012-01-01

    Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…

  7. The Splitting Loope

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  8. Polarization in Vector-Vector Decay of B Mesons at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans, Randal Milton

    1996-01-01

    The factorization assumption in bound state decays (splitting four-quark operators into the product of two two-quark operators) has proved to be a useful tool in B and D meson decays. The longitudinal polarization fraction,more » $,L/,,$ in the decays $$B_d \\to J/\\psi K^{*0}$$ and $$B_s \\to J/\\psi \\phi$$ can be calculated using various phenomenological models within the factorization assumption and, when compared to experimental measurements, provides a test of the factorization procedure when extended to color suppressed B decays....« less

  9. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  10. Vapor-fed microfluidic hydrogen generator.

    PubMed

    Modestino, M A; Dumortier, M; Hosseini Hashemi, S M; Haussener, S; Moser, C; Psaltis, D

    2015-05-21

    Water-splitting devices that operate with humid air feeds are an attractive alternative for hydrogen production as the required water input can be obtained directly from ambient air. This article presents a novel proof-of-concept microfluidic platform that makes use of polymeric ion conductor (Nafion®) thin films to absorb water from air and performs the electrochemical water-splitting process. Modelling and experimental tools are used to demonstrate that these microstructured devices can achieve the delicate balance between water, gas, and ionic transport processes required for vapor-fed devices to operate continuously and at steady state, at current densities above 3 mA cm(-2). The results presented here show that factors such as the thickness of the Nafion films covering the electrodes, convection of air streams, and water content of the ionomer can significantly affect the device performance. The insights presented in this work provide important guidelines for the material requirements and device designs that can be used to create practical electrochemical hydrogen generators that work directly under ambient air.

  11. Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wu, Wei

    2014-06-01

    We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.

  12. Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture.

    PubMed

    Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro

    2016-01-25

    We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.

  13. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    NASA Astrophysics Data System (ADS)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  14. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  15. Feasibility study analysis for multi-function dual energy oven (case study: tapioca crackers small medium enterprise)

    NASA Astrophysics Data System (ADS)

    Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.

    2017-12-01

    Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.

  16. Multi-Product Microalgae Biorefineries: From Concept Towards Reality.

    PubMed

    't Lam, G P; Vermuë, M H; Eppink, M H M; Wijffels, R H; van den Berg, C

    2018-02-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too expensive. Typically, downstream processing of industrial biotechnological bulk products accounts for 20-40% of the total production costs, while for a microalgae multi-product biorefinery the costs are substantially higher (50-60%). These costs are high due to the lack of appropriate and mild technologies to access the different product fractions such as proteins, carbohydrates, and lipids. To reduce the costs, simplified processes need to be developed for the main unit operations including harvesting, cell disruption, extraction, and possibly fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Predicting the valley physics of silicon quantum dots directly from a device layout

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  18. 16 CFR 1145.17 - Multi-purpose lighters that can be operated by children; risks of death or injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by children; risks of death or injury. 1145.17 Section 1145.17 Commercial Practices CONSUMER PRODUCT...; risks of death or injury. (a) The Commission finds that it is in the public interest to regulate under the Consumer Product Safety Act any risks of injury associated with the fact that multi-purpose...

  19. Recent Progress in Energy-Driven Water Splitting.

    PubMed

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  20. Recent Progress in Energy‐Driven Water Splitting

    PubMed Central

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng‐Duei; Liu, Shuhua; Teng, Choon Peng

    2017-01-01

    Hydrogen is readily obtained from renewable and non‐renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non‐renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost‐effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic‐integrated solar‐driven water electrolysis. PMID:28546906

  1. Non-destructive splitter of twisted light based on modes splitting in a ring cavity.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-08

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.

  2. Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH

    NASA Astrophysics Data System (ADS)

    Liu, W. T.; Sun, P. N.; Ming, F. R.; Zhang, A. M.

    2018-01-01

    Smoothed particle hydrodynamics (SPH) method with numerical diffusive terms shows satisfactory stability and accuracy in some violent fluid-solid interaction problems. However, in most simulations, uniform particle distributions are used and the multi-resolution, which can obviously improve the local accuracy and the overall computational efficiency, has seldom been applied. In this paper, a dynamic particle splitting method is applied and it allows for the simulation of both hydrostatic and hydrodynamic problems. The splitting algorithm is that, when a coarse (mother) particle enters the splitting region, it will be split into four daughter particles, which inherit the physical parameters of the mother particle. In the particle splitting process, conservations of mass, momentum and energy are ensured. Based on the error analysis, the splitting technique is designed to allow the optimal accuracy at the interface between the coarse and refined particles and this is particularly important in the simulation of hydrostatic cases. Finally, the scheme is validated by five basic cases, which demonstrate that the present SPH model with a particle splitting technique is of high accuracy and efficiency and is capable for the simulation of a wide range of hydrodynamic problems.

  3. Oil fuel delivery optimization for multi product and multi depot: the case of petrol station replenishment problem (PSRP)

    NASA Astrophysics Data System (ADS)

    Surjandari, Isti; Rachman, Amar; Dianawati, Fauzia; Wibowo, R. Pramono

    2011-10-01

    With the Oil and Gas Law No. 22 of 2001, national and foreign private enterprises can invest in all sectors of Oil and Gas in Indonesia. In anticipation of this free competition, Pertamina, as a state-owned enterprises, which previously had monopolized the oil and gas business activities in Indonesia, should be able to improve services as well as the efficiency in order to compete in the free market, especially in terms of cost efficiency of fuel distribution to gas station (SPBU). To optimize the distribution activity, it is necessary to design a scheduling system and its fuel delivery routes daily to every SPBU. The determination of routes and scheduling delivery of fuel to the SPBU can be modeled as a Petrol Station Replenishment Problem (PSRP) with the multi-depot, multi-product, time windows and split deliveries, which in this study will be completed by the Tabu Search algorithm (TS). This study was conducted in the area of Bandung, the capital of West Java province, which is a big city and the neighboring city of Jakarta, the capital city of Indonesia. By using the fuel delivery data for one day, the results showed a decrease of 16.38% of the distance of the route compared to the current conditions, which impacted on the reduction of distribution costs and decrease the number of total trips by 5.22% and 3.83%.

  4. Multi-response optimization of Artemia hatching process using split-split-plot design based response surface methodology

    PubMed Central

    Arun, V. V.; Saharan, Neelam; Ramasubramanian, V.; Babitha Rani, A. M.; Salin, K. R.; Sontakke, Ravindra; Haridas, Harsha; Pazhayamadom, Deepak George

    2017-01-01

    A novel method, BBD-SSPD is proposed by the combination of Box-Behnken Design (BBD) and Split-Split Plot Design (SSPD) which would ensure minimum number of experimental runs, leading to economical utilization in multi- factorial experiments. The brine shrimp Artemia was tested to study the combined effects of photoperiod, temperature and salinity, each with three levels, on the hatching percentage and hatching time of their cysts. The BBD was employed to select 13 treatment combinations out of the 27 possible combinations that were grouped in an SSPD arrangement. Multiple responses were optimized simultaneously using Derringer’s desirability function. Photoperiod and temperature as well as temperature-salinity interaction were found to significantly affect the hatching percentage of Artemia, while the hatching time was significantly influenced by photoperiod and temperature, and their interaction. The optimum conditions were 23 h photoperiod, 29 °C temperature and 28 ppt salinity resulting in 96.8% hatching in 18.94 h. In order to verify the results obtained from BBD-SSPD experiment, the experiment was repeated preserving the same set up. Results of verification experiment were found to be similar to experiment originally conducted. It is expected that this method would be suitable to optimize the hatching process of animal eggs. PMID:28091611

  5. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.

  6. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  7. Object-oriented technologies in a multi-mission data system

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Miller, Kevin J.; Louie, John J.

    1993-01-01

    The Operations Engineering Laboratory (OEL) at JPL is developing new technologies that can provide more efficient and productive ways of doing business in flight operations. Over the past three years, we have worked closely with the Multi-Mission Control Team to develop automation tools, providing technology transfer into operations and resulting in substantial cost savings and error reduction. The OEL development philosophy is characterized by object-oriented design, extensive reusability of code, and an iterative development model with active participation of the end users. Through our work, the benefits of object-oriented design became apparent for use in mission control data systems. Object-oriented technologies and how they can be used in a mission control center to improve efficiency and productivity are explained. The current research and development efforts in the JPL Operations Engineering Laboratory are also discussed to architect and prototype a new paradigm for mission control operations based on object-oriented concepts.

  8. Operator performance evaluation using multi criteria decision making methods

    NASA Astrophysics Data System (ADS)

    Rani, Ruzanita Mat; Ismail, Wan Rosmanira; Razali, Siti Fatihah

    2014-06-01

    Operator performance evaluation is a very important operation in labor-intensive manufacturing industry because the company's productivity depends on the performance of its operators. The aims of operator performance evaluation are to give feedback to operators on their performance, to increase company's productivity and to identify strengths and weaknesses of each operator. In this paper, six multi criteria decision making methods; Analytical Hierarchy Process (AHP), fuzzy AHP (FAHP), ELECTRE, PROMETHEE II, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) are used to evaluate the operators' performance and to rank the operators. The performance evaluation is based on six main criteria; competency, experience and skill, teamwork and time punctuality, personal characteristics, capability and outcome. The study was conducted at one of the SME food manufacturing companies in Selangor. From the study, it is found that AHP and FAHP yielded the "outcome" criteria as the most important criteria. The results of operator performance evaluation showed that the same operator is ranked the first using all six methods.

  9. A decision tree-based on-line preventive control strategy for power system transient instability prevention

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Dong, Zhao Yang; Zhang, Rui; Wong, Kit Po

    2014-02-01

    Maintaining transient stability is a basic requirement for secure power system operations. Preventive control deals with modifying the system operating point to withstand probable contingencies. In this article, a decision tree (DT)-based on-line preventive control strategy is proposed for transient instability prevention of power systems. Given a stability database, a distance-based feature estimation algorithm is first applied to identify the critical generators, which are then used as features to develop a DT. By interpreting the splitting rules of DT, preventive control is realised by formulating the rules in a standard optimal power flow model and solving it. The proposed method is transparent in control mechanism, on-line computation compatible and convenient to deal with multi-contingency. The effectiveness and efficiency of the method has been verified on New England 10-machine 39-bus test system.

  10. Managing computer-controlled operations

    NASA Technical Reports Server (NTRS)

    Plowden, J. B.

    1985-01-01

    A detailed discussion of Launch Processing System Ground Software Production is presented to establish the interrelationships of firing room resource utilization, configuration control, system build operations, and Shuttle data bank management. The production of a test configuration identifier is traced from requirement generation to program development. The challenge of the operational era is to implement fully automated utilities to interface with a resident system build requirements document to eliminate all manual intervention in the system build operations. Automatic update/processing of Shuttle data tapes will enhance operations during multi-flow processing.

  11. Development of a Novel Two Dimensional Surface Plasmon Resonance Sensor Using Multiplied Beam Splitting Optics

    PubMed Central

    Hemmi, Akihide; Mizumura, Ryosuke; Kawanishi, Ryuta; Nakajima, Hizuru; Zeng, Hulie; Uchiyama, Katsumi; Kaneki, Noriaki; Imato, Toshihiko

    2013-01-01

    A novel two dimensional surface plasmon resonance (SPR) sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0–10% with a correlation factor of 0.996–0.998 with a relative standard deviation of 0.090–4.0%. The detection limits defined as S/N = 3 were 1.98 × 10−6–3.91 × 10−5 RIU. This sensitivity is comparable to that of conventional SPR sensors. PMID:23299626

  12. SPHERES: From Ground Development to Operations on ISS

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of experts who can guide the Payload Developer (PD) and Principle Investigator (PI) in reaching critical milestones to make their science a reality using the SPHERES platform. From performing integrated safety and verification assessments, to assisting in developing crew procedures and operations products, to organizing, planning, and executing all test sessions, to helping manage data products, the SPHERES team at ARC is available to support microgravity research with the SPEHRES Guest Scientist Program.

  13. 26 CFR 1.482-6 - Profit split method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... business activity. Under this method, each uncontrolled taxpayer's percentage of the combined operating... general. Under this method, the combined operating profit or loss from the relevant business activity is... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Profit split method. 1.482-6 Section 1.482-6...

  14. A Quantitative Analysis of Children's Splitting Operations and Fraction Schemes

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.

    2009-01-01

    Teaching experiments with pairs of children have generated several hypotheses about students' construction of fractions. For example, Steffe (2004) hypothesized that robust conceptions of improper fractions depends on the development of a splitting operation. Results from teaching experiments that rely on scheme theory and Steffe's hierarchy of…

  15. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  16. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  17. Precision aligned split V-block

    DOEpatents

    George, Irwin S.

    1984-01-01

    A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.

  18. SCORPIO: A Scalable Two-Phase Parallel I/O Library With Application To A Large Scale Subsurface Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreepathi, Sarat; Sripathi, Vamsi; Mills, Richard T

    2013-01-01

    Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting themore » I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.« less

  19. Integrating Semiconducting Catalyst of ReS2 Nanosheets into P-silicon Photocathode toward Enhanced Solar Water Reduction.

    PubMed

    Zhao, Heng; Dai, Zhengyi; Xu, Xiaoyong; Pan, Jing; Hu, Jingguo

    2018-06-22

    Loading the electro-catalysts at the semiconductor-electrolyte interface is one of promising strategies to develop photoelectrochemical (PEC) water splitting cells. However, the assembly of compatible and synergistic heterojunction between the semiconductor and the selected catalyst remains challenging. Here, we report a hierarchical p-Si/ReS2 heterojunction photocathode fabricated through uniform growth vertically standing ReS2 nanosheets (NSs) on planar p-Si substrate for solar-driven hydrogen evolution reaction (HER). The laden ReS2 NSs not only serve as a high-activity HER catalyst but also render a suitable electronic band coupled with p-Si into a Ⅱ-type heterojunction, which facilitates the photo-induced charge production, separation and utilization. As a result, the assembled p-Si/ReS2 photocathode exhibits a 23-fold-increased photocurrent density at 0 VRHE and a 35-fold-enhanced photoconversion efficiency compared to pure p-Si counterpart. The bifunctional ReS2 as catalyst and semiconductor enables multi effects in improving light harvesting, charge separation and catalytic kinetics, highlighting the potential of semiconducting catalysts integrated into solar water splitting devices.

  20. Effect of splitting a mixed-model line on shortening the line length under open- and closed-boundary working area settings

    NASA Astrophysics Data System (ADS)

    Zhang, Donghao; Matsuura, Haruki; Asada, Akiko

    2017-04-01

    Some automobile factories have segmented mixed-model production lines into shorter sub-lines according to part group, such as engine, trim, and powertrain. The effects of splitting a line into sub-lines have been reported from the standpoints of worker motivation, productivity improvement, and autonomy based on risk spreading. There has been no mention of the possibility of shortening the line length by altering the product sequence using sub-lines. The purpose of the present paper is to determine the conditions under which sub-lines reduce the line length and the degree to which the line length may be shortened. The line lengths for a non-split line and a line that has been split into sub-lines are compared using three methods for determining the working area, the standard closed boundary, the optimized open boundary, and real-life constant-length stations. The results are discussed by analyzing the upper and lower bounds of the line length. Based on these results, a procedure for deciding whether or not to split a production line is proposed.

  1. Automated Planning and Scheduling for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Jonsson, Ari; Knight, Russell

    2005-01-01

    Research Trends: a) Finite-capacity scheduling under more complex constraints and increased problem dimensionality (subcontracting, overtime, lot splitting, inventory, etc.) b) Integrated planning and scheduling. c) Mixed-initiative frameworks. d) Management of uncertainty (proactive and reactive). e) Autonomous agent architectures and distributed production management. e) Integration of machine learning capabilities. f) Wider scope of applications: 1) analysis of supplier/buyer protocols & tradeoffs; 2) integration of strategic & tactical decision-making; and 3) enterprise integration.

  2. Experiences with Cray multi-tasking

    NASA Technical Reports Server (NTRS)

    Miya, E. N.

    1985-01-01

    The issues involved in modifying an existing code for multitasking is explored. They include Cray extensions to FORTRAN, an examination of the application code under study, designing workable modifications, specific code modifications to the VAX and Cray versions, performance, and efficiency results. The finished product is a faster, fully synchronous, parallel version of the original program. A production program is partitioned by hand to run on two CPUs. Loop splitting multitasks three key subroutines. Simply dividing subroutine data and control structure down the middle of a subroutine is not safe. Simple division produces results that are inconsistent with uniprocessor runs. The safest way to partition the code is to transfer one block of loops at a time and check the results of each on a test case. Other issues include debugging and performance. Task startup and maintenance (e.g., synchronization) are potentially expensive.

  3. Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.

  4. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less

  5. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space andmore » time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.« less

  6. The Role of Combination Techniques in Maximizing the Utility of Precipitation Estimates from Several Multi-Purpose Remote-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.

  7. Magnetic photon splitting and gamma ray burst spectra

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1992-01-01

    The splitting of photons into two photons becomes both possible and significant in magnetic fields in excess of 10(exp 12) Gauss. Below the threshold energy, 2m sub e c(exp 2) for single photon pair production, splitting can be an astronomically observable phenomenon evident in gamma ray burst spectra. In such circumstances, it was found that magnetic photon splitting reprocesses the gamma ray burst continuum by degrading the photon energy, with a net effect that is quite similar to pair cascade reprocessing of the spectrum. Results are presented for the spectral modifications due to splitting, taking into account the different probabilities for splitting for different polarization modes. Unpolarized and polarized pair cascade photon spectra form the input spectra for the model, which calculates the resulting splitting reprocessed spectra numerically by solving the photon kinetic equations for each polarization mode. This inclusion of photon polarizations is found to not alter previous predictions that splitting produce a significant flattening of the hard X ray continuum and a bump at MeV energies below a pair production turnover. The spectrum near the bump is always strongly polarized.

  8. Multi-Reader ROC studies with Split-Plot Designs: A Comparison of Statistical Methods

    PubMed Central

    Obuchowski, Nancy A.; Gallas, Brandon D.; Hillis, Stephen L.

    2012-01-01

    Rationale and Objectives Multi-reader imaging trials often use a factorial design, where study patients undergo testing with all imaging modalities and readers interpret the results of all tests for all patients. A drawback of the design is the large number of interpretations required of each reader. Split-plot designs have been proposed as an alternative, in which one or a subset of readers interprets all images of a sample of patients, while other readers interpret the images of other samples of patients. In this paper we compare three methods of analysis for the split-plot design. Materials and Methods Three statistical methods are presented: Obuchowski-Rockette method modified for the split-plot design, a newly proposed marginal-mean ANOVA approach, and an extension of the three-sample U-statistic method. A simulation study using the Roe-Metz model was performed to compare the type I error rate, power and confidence interval coverage of the three test statistics. Results The type I error rates for all three methods are close to the nominal level but tend to be slightly conservative. The statistical power is nearly identical for the three methods. The coverage of 95% CIs fall close to the nominal coverage for small and large sample sizes. Conclusions The split-plot MRMC study design can be statistically efficient compared with the factorial design, reducing the number of interpretations required per reader. Three methods of analysis, shown to have nominal type I error rate, similar power, and nominal CI coverage, are available for this study design. PMID:23122570

  9. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics.

    PubMed

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  10. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics

    PubMed Central

    Li, Shuang; Li, Rui

    2016-01-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977

  11. Numerical and analytical modeling of the end-loaded split (ELS) test specimens made of multi-directional coupled composite laminates

    NASA Astrophysics Data System (ADS)

    Samborski, Sylwester; Valvo, Paolo S.

    2018-01-01

    The paper deals with the numerical and analytical modelling of the end-loaded split test for multi-directional laminates affected by the typical elastic couplings. Numerical analysis of three-dimensional finite element models was performed with the Abaqus software exploiting the virtual crack closure technique (VCCT). The results show possible asymmetries in the widthwise deflections of the specimen, as well as in the strain energy release rate (SERR) distributions along the delamination front. Analytical modelling based on a beam-theory approach was also conducted in simpler cases, where only bending-extension coupling is present, but no out-of-plane effects. The analytical results matched the numerical ones, thus demonstrating that the analytical models are feasible for test design and experimental data reduction.

  12. Calculation of the vibrational excited states of malonaldehyde and their tunneling splittings with the multi-configuration time-dependent Hartree method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schröder, Markus, E-mail: Markus.Schroeder@pci.uni-heidelberg.de; Meyer, Hans-Dieter, E-mail: Hans-Dieter.Meyer@pci.uni-heidelberg.de

    2014-07-21

    We report energies and tunneling splittings of vibrational excited states of malonaldehyde which have been obtained using full dimensional quantum mechanical calculations. To this end we employed the multi configuration time-dependent Hartree method. The results have been obtained using a recently published potential energy surface [Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew, J. Chem. Phys. 128, 224314 (2008)] which has been brought into a suitable form by a modified version of the n-mode representation which was used with two different arrangements of coordinates. The relevant terms of the expansion have been identified withmore » a Metropolis algorithm and a diffusion Monte-Carlo technique, respectively.« less

  13. Improving laser system productivity through production line integration

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1994-09-01

    Thousands of laser systems are employed profitably in a variety of industrial applications. These installations have proved successful for economic and technical reasons. And, in certain applications: ceramic scribing, resistor trimming, sheet metal cutting, and air foil drilling, for example, have become the industry standard. Most of these installations are free standing or, at best, part of an off-line manufacturing cell. Examples of laser systems fully integrated into a production line, where the laser process is synchronized with up and down stream manufacturing operation, are rare. The laser has been under utilized in its potential contribution to production line productivity. Current development in laser beam delivery: multiplexing, beam splitting and other distributed energy concepts make the laser an attractive option for just-in-time manufacturing operations. The reasons for this apparent neglect of the laser's full potential are reviewed in this paper, and suggestions for improvement of this situation are offered. Examples of fully integrated laser systems and their successful implementation are described and a forecast of changes in the way lasers contribute to improved productivity and profitability will be made.

  14. An integrated assessment of location-dependent scaling for microalgae biofuel production facilities

    DOE PAGES

    Coleman, André M.; Abodeely, Jared M.; Skaggs, Richard L.; ...

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting and design through processing and upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are partially addressed by applying the Integrated Assessment Framework (IAF) – an integrated multi-scale modeling, analysis, and data management suite – to address key issues in developing and operating an open-pond microalgae production facility.more » This is done by analyzing how variability and uncertainty over space and through time affect feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. To provide a baseline analysis, the IAF was applied in this paper to a set of sites in the southeastern U.S. with the potential to cumulatively produce 5 billion gallons per year. Finally, the results indicate costs can be reduced by scaling downstream processing capabilities to fit site-specific growing conditions, available and economically viable resources, and specific microalgal strains.« less

  15. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  16. Silicon/Carbon Nanotube Photocathode for Splitting Water

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Manohara, Harish; Greer, Harold F.; Hall, Lee J.; Gray, Harry B.; Subbert, Bryan

    2013-01-01

    A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient.

  17. Matching-pursuit/split-operator-Fourier-transform computations of thermal correlation functions.

    PubMed

    Chen, Xin; Wu, Yinghua; Batista, Victor S

    2005-02-08

    A rigorous and practical methodology for evaluating thermal-equilibrium density matrices, finite-temperature time-dependent expectation values, and time-correlation functions is described. The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically adaptive coherent-state representations.

  18. Multi-Mission Geographic Information System for Science Operations: A Test Case Using MSL Data

    NASA Astrophysics Data System (ADS)

    Calef, F. J.; Abarca, H. E.; Soliman, T.; Abercrombie, S. P.; Powell, M. W.

    2017-06-01

    The Multi-Mission Geographic Information System (MMGIS) is a NASA AMMOS project in its second year of development, built to display and query science products in a spatial context. We present our progress building this tool using MSL in situ data.

  19. A different and safe method of split thickness skin graft fixation: medical honey application.

    PubMed

    Emsen, Ilteris Murat

    2007-09-01

    Honey has been used for medicinal purposes since ancient times. Its antibacterial effects have been established during the past few decades. Still, modern medical practitioners hesitate to apply honey for local treatment of wounds. This may be because of the expected messiness of such local application. Hence, if honey is to be used for medicinal purposes, it has to meet certain criteria. The authors evaluated its use for the split thickness skin graft fixation because of its adhesive and other beneficial effects in 11 patients. No complications such as graft loss, infection, and graft rejection were seen. Based on these results, the authors advised honey as a new agent for split thickness skin graft fixation. In recent years there has been a renewed interest in honey wound management. There are a range of regulated wound care products that contain honey available on the Drug Tariff. This article addresses key issues associated with the use of honey, outlining how it may be best used, in which methods of split thickness skin graft fixations it may be used, and what clinical outcomes may be anticipated. For this reason, 11 patients who underwent different diagnosis were included in this study. In all the patients same medical honey was used for the fixation of the skin graft. No graft loss was seen during both the first dressing and the last view of the grafted areas. As a result, it has been shown that honey is also a very effective agent for split thickness skin graft fixations. Because it is a natural agent, it can be easily used in all skin graft operation for the fixation of the split thickness skin grafts.

  20. Development of an Operational Multi-sensor and Multi-channel Aerosol Assimilation Package

    DTIC Science & Technology

    2011-08-18

    2010, EGU General Assembly 2010. Shi, Y., J. Zhang, J. S. Reid, E. Hyer, Evaluation of MISR Aerosol Optical Depth Product for Aerosol Data...empirical correction procedures for generating data-assimilation-friendly over-water MODIS aerosol products. This study has been published (Shi et al...type as large r\\ values are generally related to fine mode aerosols, such as sulfate and smoke aerosols, and small r\\ values typically indicate sea

  1. Fuzzy multi-objective optimization case study based on an anaerobic co-digestion process of food waste leachate and piggery wastewater.

    PubMed

    Choi, Angelo Earvin Sy; Park, Hung Suck

    2018-06-20

    This paper presents the development and evaluation of fuzzy multi-objective optimization for decision-making that includes the process optimization of anaerobic digestion (AD) process. The operating cost criteria which is a fundamental research gap in previous AD analysis was integrated for the case study in this research. In this study, the mixing ratio of food waste leachate (FWL) and piggery wastewater (PWW), calcium carbonate (CaCO 3 ) and sodium chloride (NaCl) concentrations were optimized to enhance methane production while minimizing operating cost. The results indicated a maximum of 63.3% satisfaction for both methane production and operating cost under the following optimal conditions: mixing ratio (FWL: PWW) - 1.4, CaCO 3 - 2970.5 mg/L and NaCl - 2.7 g/L. In multi-objective optimization, the specific methane yield (SMY) was 239.0 mL CH 4 /g VS added , while 41.2% volatile solids reduction (VSR) was obtained at an operating cost of 56.9 US$/ton. In comparison with the previous optimization study that utilized the response surface methodology, the SMY, VSR and operating cost of the AD process were 310 mL/g, 54% and 83.2 US$/ton, respectively. The results from multi-objective fuzzy optimization proves to show the potential application of this technique for practical decision-making in the process optimization of AD process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Introducing MISR Version 23: Resolution and Content Improvements to MISR Aerosol and Land Surface Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.

    2017-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.

  3. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  4. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  5. On Multi-Dimensional Unstructured Mesh Adaption

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1999-01-01

    Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.

  6. Solar Water Splitting at λ=600 nm: A Step Closer to Sustainable Hydrogen Production.

    PubMed

    Zhang, Jinshui; Wang, Xinchen

    2015-06-15

    Overall water splitting with a semiconductor photocatalyst under visible-light irradiation is considered as a "dream reaction" in chemistry. The development of a 600 nm photocatalyst for solar water splitting highlighted here is not only an important milestone towards sustainable hydrogen production, but also a new starting point for artificial photosynthesis. STH=solar-to-hydrogen energy conversion efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  8. The Army’s Armored Multi-Purpose Vehicle (AMPV): Background and Issues for Congress

    DTIC Science & Technology

    2016-09-14

    for Congress Congressional Research Service Summary The Armored Multi-Purpose Vehicle (AMPV) is the Army’s proposed replacement for the Vietnam ...for armor and mechanized infantry units. 1 Known as the M-113, it entered production in 1960 and saw extensive wartime service in Vietnam . Considered...needed to operate as part of combined arms teams within complex operational environments . For example, “commanders will not allow them to leave Forward

  9. Dose uniformity of scored and unscored tablets: Application of the FDA Tablet Scoring Guidance for Industry.

    PubMed

    Ciavarella, Anthony; Khan, Mansoor; Gupta, Abhay; Faustino, Patrick

    2016-06-20

    This FDA laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units <905>, which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5-2.1 standard deviation (SD) of the % label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3-9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting "can affect how much drug is present in the split tablet and available for absorption" as stated in the guidance (1). Copyright © 2016, Parenteral Drug Association.

  10. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    DOE PAGES

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; ...

    2015-08-06

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation wasmore » achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.« less

  11. Comparing the High School English Curriculum in Turkey through Multi-Analysis

    ERIC Educational Resources Information Center

    Batdi, Veli

    2017-01-01

    This study aimed to compare the High School English Curriculum (HSEC) in accordance with Stufflebeam's context, input, process and product (CIPP) model through multi-analysis. The research includes both quantitative and qualitative aspects. A descriptive analysis was operated through Rasch Measurement Model; SPSS program for the quantitative…

  12. The preparation and photocatalytic activity of CdS/(Cal-Ta2O5-SiO2) composite photocatalyst under visible light

    NASA Astrophysics Data System (ADS)

    Li, Juxia

    2018-02-01

    CdS/(Cal-Ta2O5-SiO2) composite photocatalyst has been successfully fabricated via wet chemistry method. Ta2O5-SiO2 with multi-step Ta2O5 deposition on SiO2 has more Ta2O5 on SiO2 to ensure the active sites. Trough multi-step calcination, Ta2O5 can load on SiO2 with uniform and stable, which make it have high photocatalytic activity. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). Without any co-catalysts, the as-prepared CdS/(Cal-Ta2O5-SiO2) exhibited remarkable photocatalytic activity and recyclability both in the degradation of rhodamine B and in the hydrogen production from water splitting under visible light.

  13. Statistical against dynamical PLF fission as seen by the IMF-IMF correlation functions and comparisons with CoMD model

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.

    2018-05-01

    In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.

  14. A dimensionally split Cartesian cut cell method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Gokhale, Nandan; Nikiforakis, Nikos; Klein, Rupert

    2018-07-01

    We present a dimensionally split method for solving hyperbolic conservation laws on Cartesian cut cell meshes. The approach combines local geometric and wave speed information to determine a novel stabilised cut cell flux, and we provide a full description of its three-dimensional implementation in the dimensionally split framework of Klein et al. [1]. The convergence and stability of the method are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. When compared to the cut cell flux of Klein et al., it was found that the new flux alleviates the problem of oscillatory boundary solutions produced by the former at higher Courant numbers, and also enables the computation of more accurate solutions near stagnation points. Being dimensionally split, the method is simple to implement and extends readily to multiple dimensions.

  15. Flying Cassini with Virtual Operations Teams

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne; Gustavson, Robert

    1998-01-01

    The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.

  16. Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces

    NASA Astrophysics Data System (ADS)

    Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.

    2017-10-01

    The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.

  17. A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production

    NASA Astrophysics Data System (ADS)

    Chen, Sha; Li, Kang; Zhao, Fang; Zhang, Lei; Pan, Mei; Fan, Yan-Zhong; Guo, Jing; Shi, Jianying; Su, Cheng-Yong

    2016-11-01

    Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium-palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h-1 and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications.

  18. MARVEL: A knowledge-based productivity enhancement tool for real-time multi-mission and multi-subsystem spacecraft operations

    NASA Astrophysics Data System (ADS)

    Schwuttke, Ursula M.; Veregge, John, R.; Angelino, Robert; Childs, Cynthia L.

    1990-10-01

    The Monitor/Analyzer of Real-time Voyager Engineering Link (MARVEL) is described. It is the first automation tool to be used in an online mode for telemetry monitoring and analysis in mission operations. MARVEL combines standard automation techniques with embedded knowledge base systems to simultaneously provide real time monitoring of data from subsystems, near real time analysis of anomaly conditions, and both real time and non-real time user interface functions. MARVEL is currently capable of monitoring the Computer Command Subsystem (CCS), Flight Data Subsystem (FDS), and Attitude and Articulation Control Subsystem (AACS) for both Voyager spacecraft, simultaneously, on a single workstation. The goal of MARVEL is to provide cost savings and productivity enhancement in mission operations and to reduce the need for constant availability of subsystem expertise.

  19. Repairing pipes on the fly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    When piping develops leaks, the natural instinct is to shut the process down, purge the lines and call in maintenance crews to make the repairs. There is, however, an alternative: on-the-fly repairs. Through the use of specialized tools, equipment and technicians, shut-off valves can be installed and leaks repaired without interrupting production. The split sleeve offers one of the simpler approaches to on-the-fly repairs. Two half cylinders with inside diameter slightly larger than the outside diameter slightly larger than the outside diameter of the pipe to be repaired are slipped over the latter some distance form the leak and looselymore » bolted together. The cylinder is then slid over the leaking area and the bolts tightened. Gaskets inside the half cylinders provide the needed seal between the pipe and the cylinder. Installing a shut-off valve in an operating pipeline requires much more specialized equipment and skills than does repairing a leak with a split sleeve. A device available from International Piping Services Co. allows a trained crew to isolate a section of pipe, drill out the isolated portion, install a blocking valve and then remove the isolation system--all while continuing to operate the pipeline at temperatures to 700 F and pressures to 700 psi. But Herb Porter, CEO of Ipsco, cautions that unlike the repairing leaks with a split sleeve, installing a blocking valve on-the-fly always demands the services of a highly trained crew.« less

  20. Numerical Issues Associated with Compensating and Competing Processes in Climate Models: an Example from ECHAM-HAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai

    2013-06-26

    The purpose of this paper is to draw attention to the need for appropriate numerical techniques to represent process interactions in climate models. In two versions of the ECHAM-HAM model, different time integration methods are used to solve the sulfuric acid (H2SO4) gas evolution equation, which lead to substantially different results in the H2SO4 gas concentration and the aerosol nucleation rate. Using convergence tests and sensitivity simulations performed with various time stepping schemes, it is confirmed that numerical errors in the second model version are significantly smaller than those in version one. The use of sequential operator splitting in combinationmore » with long time step is identified as the main reason for the large systematic biases in the old model. The remaining errors in version two in the nucleation rate, related to the competition between condensation and nucleation, have a clear impact on the simulated concentration of cloud condensation nuclei in the lower troposphere. These errors can be significantly reduced by employing an implicit solver that handles production, condensation and nucleation at the same time. Lessons learned in this work underline the need for more caution when treating multi-time-scale problems involving compensating and competing processes, a common occurrence in current climate models.« less

  1. New developments of the in-source spectroscopy method at RILIS/ISOLDE

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.; Andel, B.; Andreyev, A. N.; Antalic, S.; Atanasov, D.; Barzakh, A. E.; Bastin, B.; Borgmann, Ch.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Dehairs, M.; Derkx, X.; De Witte, H.; Fedorov, D. V.; Fedosseev, V. N.; Focker, G. J.; Fink, D. A.; Flanagan, K. T.; Franchoo, S.; Ghys, L.; Huyse, M.; Imai, N.; Kalaninova, Z.; Köster, U.; Kreim, S.; Kesteloot, N.; Kudryavtsev, Yu.; Lane, J.; Lecesne, N.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Molkanov, P. L.; Nicol, T.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wendt, K.; Wienholtz, F.; Wolf, R. N.; Zemlyanoy, S. G.

    2013-12-01

    At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi, Tl and Po) has been extended to include the gold and astatine isotope chains. Several developments were specifically required for the feasibility of the most recent measurements: new ionization schemes (Po, At); a remote controlled narrow line-width mode of operation for the RILIS Ti:sapphire laser (At, Au, Po); isobar free ionization using the Laser Ion Source Trap, LIST (Po); isobar selective particle identification using the multi-reflection time-of-flight mass separator (MR-ToF MS) of ISOLTRAP (Au, At). These are summarized as part of an overview of the current status of the in-source resonance ionization spectroscopy setup at ISOLDE.

  2. Design of supply chain in fuzzy environment

    NASA Astrophysics Data System (ADS)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  3. Conservative supra-characteristics method for splitting the hyperbolic systems of gasdynamics for real and perfect gases

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.

    1982-01-01

    A conservative flux difference splitting is presented for the hyperbolic systems of gasdynamics. The stable robust method is suitable for wide application in a variety of schemes, explicit or implicit, iterative or direct, for marching in either time or space. The splitting is modeled on the local quasi one dimensional characteristics system for multi-dimensional flow similar to Chakravarthy's nonconservative split coefficient matrix method; but, as the result of maintaining global conservation, the method is able to capture sharp shocks correctly. The embedded characteristics formulation is cast in a primitive variable the volumetric internal energy (rather than the pressure) that is effective for treating real as well as perfect gases. Finally the relationship of the splitting to characteristics boundary conditions is discussed and the associated conservative matrix formulation for a computed blown wall boundary condition is developed as an example. The theoretical development employs and extends the notion of Roe of constructing stable upwind difference formulae by sending split simple one sided flux difference pieces to appropriate mesh sites. The developments are also believed to have the potential for aiding in the analysis of both existing and new conservative difference schemes.

  4. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme

    PubMed Central

    Zhang, Junshe; Haribal, Vasudev; Li, Fanxing

    2017-01-01

    We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171

  5. Nonlinear Theory of The Geostrophic Adjustment

    NASA Astrophysics Data System (ADS)

    Zeitlin, V.

    Nonlinear geostrophic adjustment and splitting of the fast and slow dynamical vari- ables are analysed in the framework of multi-layer and continuously stratified prim- itive equations by means of the multi-scale perturbation theory in the Rossby num- ber applied to localized initial disturbances. Two basic dynamical regimes: the quasi- geostrophic (QG) and the frontal geostrophic (FG) with small and large deviations of the isopycnal surfaces, respectively, are considered and differences in corresponding adjustment scenarios are displayed. Decoupling of the fast component of the flow is proven up to the third order in Rossby number and long-time corrections to the stan- dard balanced QG and FG models are found. Peculiarities of splitting in the FG regime due to the quasi-inertial oscillations are displayed and a Schrodinger-like modulation equations for the envelope of these latter are derived.

  6. Computer-aided detection of human cone photoreceptor inner segments using multi-scale circular voting

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Dubra, Alfredo; Tam, Johnny

    2016-03-01

    Cone photoreceptors are highly specialized cells responsible for the origin of vision in the human eye. Their inner segments can be noninvasively visualized using adaptive optics scanning light ophthalmoscopes (AOSLOs) with nonconfocal split detection capabilities. Monitoring the number of cones can lead to more precise metrics for real-time diagnosis and assessment of disease progression. Cell identification in split detection AOSLO images is hindered by cell regions with heterogeneous intensity arising from shadowing effects and low contrast boundaries due to overlying blood vessels. Here, we present a multi-scale circular voting approach to overcome these challenges through the novel combination of: 1) iterative circular voting to identify candidate cells based on their circular structures, 2) a multi-scale strategy to identify the optimal circular voting response, and 3) clustering to improve robustness while removing false positives. We acquired images from three healthy subjects at various locations on the retina and manually labeled cell locations to create ground-truth for evaluating the detection accuracy. The images span a large range of cell densities. The overall recall, precision, and F1 score were 91±4%, 84±10%, and 87±7% (Mean±SD). Results showed that our method for the identification of cone photoreceptor inner segments performs well even with low contrast cell boundaries and vessel obscuration. These encouraging results demonstrate that the proposed approach can robustly and accurately identify cells in split detection AOSLO images.

  7. Xray: N-dimensional, labeled arrays for analyzing physical datasets in Python

    NASA Astrophysics Data System (ADS)

    Hoyer, S.

    2015-12-01

    Efficient analysis of geophysical datasets requires tools that both preserve and utilize metadata, and that transparently scale to process large datas. Xray is such a tool, in the form of an open source Python library for analyzing the labeled, multi-dimensional array (tensor) datasets that are ubiquitous in the Earth sciences. Xray's approach pairs Python data structures based on the data model of the netCDF file format with the proven design and user interface of pandas, the popular Python data analysis library for labeled tabular data. On top of the NumPy array, xray adds labeled dimensions (e.g., "time") and coordinate values (e.g., "2015-04-10"), which it uses to enable a host of operations powered by these labels: selection, aggregation, alignment, broadcasting, split-apply-combine, interoperability with pandas and serialization to netCDF/HDF5. Many of these operations are enabled by xray's tight integration with pandas. Finally, to allow for easy parallelism and to enable its labeled data operations to scale to datasets that does not fit into memory, xray integrates with the parallel processing library dask.

  8. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  9. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  10. Multi objective multi refinery optimization with environmental and catastrophic failure effects objectives

    NASA Astrophysics Data System (ADS)

    Khogeer, Ahmed Sirag

    2005-11-01

    Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not follow the same trends as either global or local single objective optimums. Catastrophic failure effects on refinery operations and on local objectives are more significant than environmental objective effects, and changes in the capacity or the local objectives follow a discrete behavioral pattern, in contrast to environmental objective cases in which the effects are smoother. (Abstract shortened by UMI.)

  11. Dose Uniformity of Scored and Unscored Tablets: Application of the FDA Tablet Scoring Guidance for Industry.

    PubMed

    Ciavarella, Anthony B; Khan, Mansoor A; Gupta, Abhay; Faustino, Patrick J

    This U.S. Food and Drug Administration (FDA) laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product, and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units <905>, which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5 to 2.1 standard deviation (SD) of the percent label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3 to 9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting can have an effect on the amount of drug present in a split tablet and available for absorption. Tablet splitting has become a very common practice in the United States and throughout the world. Tablets are often split to modify dose strength, make swallowing easier, and reduce cost to the consumer. To better address product quality for this widely used practice, the U.S. Food and Drug Administration (FDA) published a Guidance for Industry that addresses tablet splitting. The guidance provides testing criteria for scored tablets, which is a part of the FDA review process for drugs. The model drugs selected for this study were amlodipine and gabapentin, which have different sizes, shapes, and tablet scores. Whole and split amlodipine tablets were tested for drug content because of a concern that the low-dose strength may cause greater variability. Whole and split gabapentin tablets were tested for weight variation because of their higher dosage strength of 600 mg. All whole tablets met the acceptance criteria for the Uniformity of Dosage Units based on the guidance recommendations. When unscored amlodipine tablets were split by a splitter, all formulations did not meet the acceptance criteria. When fully scored gabapentin tablets were split by hand and by splitter, they met the acceptance criteria. The findings of this FDA study indicated physical characteristics such as size, shape, and tablet score can affect the uniformity of split tablets. © PDA, Inc. 2016.

  12. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels.

    PubMed

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations.

  13. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels

    PubMed Central

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations. PMID:26147663

  14. Pumping performance of a slow-rotating paddlewheel for split-ponds

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system. The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon by two...

  15. SPLICEFINDER – A Fast and Easy Screening Method for Active Protein Trans-Splicing Positions

    PubMed Central

    Eppmann, Simone; Busche, Alena; Dikovskaya, Dina; Dötsch, Volker; Mootz, Henning D.

    2013-01-01

    Split intein enabled protein trans-splicing (PTS) is a powerful method for the ligation of two protein fragments, thereby paving the way for various protein modification or protein function control applications. PTS activity is strongly influenced by the amino acids directly flanking the splice junctions. However, to date no reliable prediction can be made whether or not a split intein is active in a particular foreign extein context. Here we describe SPLICEFINDER, a PCR-based method, allowing fast and easy screening for active split intein insertions in any target protein. Furthermore we demonstrate the applicability of SPLICEFINDER for segmental isotopic labeling as well as for the generation of multi-domain and enzymatically active proteins. PMID:24023792

  16. Split ring containment attachment device

    DOEpatents

    Sammel, Alfred G.

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  17. Analysis of selected volatile organic compounds in split and nonsplit swiss cheese samples using selected-ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James

    2014-04-01

    Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect. © 2014 Institute of Food Technologists®

  18. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, andmore » light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.« less

  19. A feature-based inference model of numerical estimation: the split-seed effect.

    PubMed

    Murray, Kyle B; Brown, Norman R

    2009-07-01

    Prior research has identified two modes of quantitative estimation: numerical retrieval and ordinal conversion. In this paper we introduce a third mode, which operates by a feature-based inference process. In contrast to prior research, the results of three experiments demonstrate that people estimate automobile prices by combining metric information associated with two critical features: product class and brand status. In addition, Experiments 2 and 3 demonstrated that when participants are seeded with the actual current base price of one of the to-be-estimated vehicles, they respond by revising the general metric and splitting the information carried by the seed between the two critical features. As a result, the degree of post-seeding revision is directly related to the number of these features that the seed and the transfer items have in common. The paper concludes with a general discussion of the practical and theoretical implications of our findings.

  20. Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production

    NASA Astrophysics Data System (ADS)

    Levchenko, D. O.; Artyukhov, A. E.; Yurko, I. V.

    2017-08-01

    The article is devoted to the theoretical bases of multistage (multi-level) utilization modules as part of chemical plants (on the example of the technological line for obtaining nitrogen fertilizers). The possibility of recycling production waste (ammonia vapors, dust and substandard nitrogen fertilizers) using ejection devices and waste heat using Maisotsenko cycle technology (Maisotsenko heat and mass exchanger (HMX), Maisotsenko power cycles and recuperators, etc.) is substantiated. The principle of operation of studied recycling module and prospects for its implementation are presented. An improved technological scheme for obtaining granular fertilizers and granules with porous structure with multistage (multi-level) recycling module is proposed.

  1. Nano-ferrites for Water Splitting: Unprecedented High Photocatalytic Hydrogen Production under Visible Light

    EPA Science Inventory

    In the present investigation, hydrogen production via water splitting by nano ferrites has been studied using ethanol as the sacrificial donor. The nano ferrite has shown great potential in hydrogen generation with hydrogen yield of 8275 9moles/h/ g of photocatalyst under visible...

  2. Multi-electron transfer photochemistry: Caught in the act

    NASA Astrophysics Data System (ADS)

    Beiler, Anna M.; Moore, Gary F.

    2018-01-01

    The accumulation of multiple redox equivalents is essential in photo-driven catalytic reactions such as solar water splitting. However, direct spectroscopic observation of a twice-oxidized species under diffuse illumination has proved elusive until now.

  3. Pumping performance of a slow-rotating paddlewheel for split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system (PAS). The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon ...

  4. Overview of new GNSS tropospheric products for GNSS-meteorology and their assessment at Geodetic Observatory Pecny (CZ)

    NASA Astrophysics Data System (ADS)

    Dousa, J.; Vaclavovic, P.; Gyori, G.

    2012-12-01

    Geodetic Observatory Pecný (GOP) has a long-term experience in the estimation of precise tropospheric parameters from GNSS permanent stations, in particular under the limited timelines of near real time. More than a decade, the GOP zenith total delays (ZTD) contributed to various projects in Europe (COST-716, TOUGH, E-GVAP, E-GVAP II) and the operational ZTD hourly updated product flows via the meteorological observation exchange network - GTS - to the end users worldwide. Currently, the GOP regional ZTD product is operationally assimilated in Météo France and UK MetOffice at least and further exploited in various ways at many other meteorological institutions. New developments at GOP over last three years consist of a) implementation and assessment of the global hourly ZTD product of about 170 stations, b) implementation of routine multi-GNSS (GPS+GLONASS) ZTD European product, and c) implementation of ultra-fast/real-time ZTD product. The GOP global ZTD product has been implemented on request of the meteorological institutions running global numerical weather forecasting models. The global ZTD product was seriously evaluated over ten months (Oct 2009 - Aug 2011) when compared to reprocessed EUREF and IGS ZTDs, radiosondes and ZTDs derived from UK MetOffice's global numerical weather model. After the evaluation (and on special request of UK MetOffice) the product has been switched from testing to operational status within the framework of the EUMETNET EIG GPS Water Vapour Programme (E-GVAP) and officially disseminated via the GTS network. The GOP multi-GNSS ZTD solution has been tested since 2009 shortly after developing GOP ultra-rapid GPS+GLONASS orbits for the International GNSS Service (IGS). A specific bias of mean value 1.5 mm was identified between GPS- and GLONASS-only ZTD at that time, and relation to the IGS05 antenna phase centre offset and variation models (PCO+PCV) identified. Consequently, the implementation of a routine operation has been done after the GPS week 1632 together with adopting IGS08 PCO+PCVs, which eliminated the bias and demonstrated an overall general better consistence between GPS- and GLONASS-only ZTD estimates. The multi-GNSS ZTD product runs in parallel to the GPS-only and is going to replace the current official GPS-only product after more than a year assessment. This multi-GNSS product has assesses a satisfactory quality and robustness of unofficial IGS ultra-rapid GPS+GLONASS orbits necessary for multi-GNSS solution. The GOP ultra-fast and real-time ZTD estimation is being developed with in-house software application using own G-Nut library and Precise Point Positioning technique (in contrast to all other GOP ZTD products based on Bernese GPS software and based on double-difference observations). The IGS Real-time Pilot Project orbit and clock corrections are seriously exploited in these ultra-fast and real-time tropospheric products aimed for nowcasting and severe weather monitoring. Our implementation assesses an optimal balance between timelines and product quality required by these applications.

  5. MRMS Experimental Testbed for Operational Products (METOP)

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2016-12-01

    Accurate high-resolution quantitative precipitation estimation (QPE) at the continental scale is of critical importance to the nation's weather, water and climate services. To address this need, a Multi-Radar Multi-Sensor (MRMS) system was developed at the National Severe Storms Lab of National Oceanic and Atmospheric Administration that integrates radar, gauge, model and satellite data and provides a suite of QPE products at 1-km and 2-min resolution. MRMS system consists of three components: 1) an operational system; 2) a real-time research system; 3) an archive testbed. The operational system currently provides instantaneous precipitation rate, type and 1- to 72-hr accumulations for conterminous United Stated and southern Canada. The research system has the similar hardware infrastructure and data environment as the operational system, but runs newer and more advanced algorithms. The newer algorithms are tested on the research system for robustness and computational efficiency in a pseudo operational environment before they are transitioned into operations. The archive testbed, also called the MRMS Experimental Testbed for Operational Products (METOP), consists of a large database that encompasses a wide range of hydroclimatological and geographical regimes. METOP is for the testing and refinements of the most advanced radar QPE techniques, which are often developed on specific data from limited times and locations. The archive data includes quality controlled in-situ observations for the validation of the new radar QPE across all seasons and geographic regions. A number of operational QPE products derived from different sensors/models are also included in METOP for the fusion of multiple sources of complementary precipitation information. This paper is an introduction of the METOP system.

  6. Solving general gauge theories on inner product spaces

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1995-02-01

    By means of a generalized quartet mechanism we show in a model independent way that a BRST quantization on an inner product space leads to physical states of the form ph> = exp [ Q, ψ]ph> 0 where Q is the nilpotent BRST operator, ψ a hermitian fermionic gauge-fixing operator, and ph> o BRST invariant states determined by a hermitian set of BRST doublets in involution. ph> 0 does not belong to an inner product space although ph> does. Since the BRST quartets are split into two sets of hermitian BRST doublets there are two choices for ph> 0 and the corresponding ψ. When applied to general, both irreducible and reducible, gauge theories of arbitrary rank within the BFV formulation we find that ph> 0 are trivial BRST invariant states which only depend on the matter variables for one set of solutions, and for the other set ph> 0 are solutions of a Dirac quantization. This generalizes previous Lie group solutions obtained by means of a bigrading.

  7. [Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence].

    PubMed

    Yang, Xiaofeng; Wu, Wei; Wang, Guoan

    2015-04-01

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.

  8. Multi-partitioning for ADI-schemes on message passing architectures

    NASA Technical Reports Server (NTRS)

    Vanderwijngaart, Rob F.

    1994-01-01

    A kind of discrete-operator splitting called Alternating Direction Implicit (ADI) has been found to be useful in simulating fluid flow problems. In particular, it is being used to study the effects of hot exhaust jets from high performance aircraft on landing surfaces. Decomposition techniques that minimize load imbalance and message-passing frequency are described. Three strategies that are investigated for implementing the NAS Scalar Penta-diagonal Parallel Benchmark (SP) are transposition, pipelined Gaussian elimination, and multipartitioning. The multipartitioning strategy, which was used on Ethernet, was found to be the most efficient, although it was considered only a moderate success because of Ethernet's limited communication properties. The efficiency derived largely from the coarse granularity of the strategy, which reduced latencies and allowed overlap of communication and computation.

  9. Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd

    2012-01-01

    For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001

  10. Persistent aerial video registration and fast multi-view mosaicing.

    PubMed

    Molina, Edgardo; Zhu, Zhigang

    2014-05-01

    Capturing aerial imagery at high resolutions often leads to very low frame rate video streams, well under full motion video standards, due to bandwidth, storage, and cost constraints. Low frame rates make registration difficult when an aircraft is moving at high speeds or when global positioning system (GPS) contains large errors or it fails. We present a method that takes advantage of persistent cyclic video data collections to perform an online registration with drift correction. We split the persistent aerial imagery collection into individual cycles of the scene, identify and correct the registration errors on the first cycle in a batch operation, and then use the corrected base cycle as a reference pass to register and correct subsequent passes online. A set of multi-view panoramic mosaics is then constructed for each aerial pass for representation, presentation and exploitation of the 3D dynamic scene. These sets of mosaics are all in alignment to the reference cycle allowing their direct use in change detection, tracking, and 3D reconstruction/visualization algorithms. Stereo viewing with adaptive baselines and varying view angles is realized by choosing a pair of mosaics from a set of multi-view mosaics. Further, the mosaics for the second pass and later can be generated and visualized online as their is no further batch error correction.

  11. [Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor].

    PubMed

    Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong

    2006-09-01

    Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.

  12. The effect of ultrasonic processing of multi-wall carbon nanotubes on properties of elastomeric compositions on the basis of synthetic isoprene rubber

    NASA Astrophysics Data System (ADS)

    Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.

    2017-08-01

    The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.

  13. The opto-mechanical design for GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Robberto, Massimo; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy M.

    2016-08-01

    We present the opto-mechanical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph, a potential next-generation (Gen-4 #3) facility-class instrument for Gemini. GMOX is a wide-band, multi-object, spectrograph with spectral coverage spanning 350 nm to 2.4 um with a nominal resolving power of R 5000. Through the use of Digital Micromirror Device (DMD) technology, GMOX will be able to acquire spectra from hundreds of sources simultaneously, offering unparalleled flexibility in target selection. Utilizing this technology, GMOX can rapidly adapt individual slits to either seeing-limited or diffraction-limited conditions. The optical design splits the bandpass into three arms, blue, red, and near infrared, with the near-infrared arm being split into three channels covering the Y+J band, H band, and K band. A slit viewing camera in each arm provides imaging capability for target acquisition and fast-feedback for adaptive optics control with either ALTAIR (Gemini North) or GeMS (Gemini South). Mounted at the Cassegrain focus, GMOX is a large (1.3 m x 2.8 m x 2.0 m) complex instrument, with six dichroics, three DMDs (one per arm), five science cameras, and three acquisition cameras. Roughly half of these optics, including one DMD, operate at cryogenic temperature. To maximize stiffness and simplify assembly and alignment, the opto-mechanics are divided into three main sub-assemblies, including a near-infrared cryostat, each having sub-benches to facilitate ease of alignment and testing of the optics. In this paper we present the conceptual opto-mechanical design of GMOX, with an emphasis on the mounting strategy for the optics and the thermal design details related to the near-infrared cryostat.

  14. A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting

    NASA Astrophysics Data System (ADS)

    Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei

    2018-02-01

    In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov-Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge-Kutta DG method.

  15. SMERGE: A multi-decadal root-zone soil moisture product for CONUS

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.

    2017-12-01

    Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.

  16. Thyra Abstract Interface Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A.

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilities to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Codemore » also currently exists for testing objects and providing composite objects such as product vectors.« less

  17. Mixing Of Mode Symmetries In Top Gated Bilayer And Multilayer Graphene Field Effect Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Biswanath; Das, Anindya; Sood, A. K.

    2011-07-15

    We report Raman study to investigate the influence of stacking on the inversion symmetry breaking in top gated bi- and multi-layer ({approx}10 layers) graphene field effect transistors. The G phonon mode splits into a low frequency (G{sub low}) and a high frequency (G{sub high}) mode in bi- and multi-layer graphene and the two modes show different dependence on doping. The mode splitting is explained in terms of mixing of zone-center in-plane optical phonons representing in-phase and out-of-phase inter-layer atomic motions. Unlike in bilayer graphene, there is no transfer of intensity from G{sub low} to G{sub high} in multilayer graphene. Amore » comparison is made for the bilayer graphene data with the recent theory of Gava et al. [Phys. Rev. B 80, 155422 (2009)].« less

  18. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  19. Conceptual Design and Optimal Power Control Strategy for AN Eco-Friendly Hybrid Vehicle

    NASA Astrophysics Data System (ADS)

    Nasiri, N. Mir; Chieng, Frederick T. A.

    2011-06-01

    This paper presents a new concept for a hybrid vehicle using a torque and speed splitting technique. It is implemented by the newly developed controller in combination with a two degree of freedom epicyclic gear transmission. This approach enables optimization of the power split between the less powerful electrical motor and more powerful engine while driving a car load. The power split is fundamentally a dual-energy integration mechanism as it is implemented by using the epicyclic gear transmission that has two inputs and one output for a proper power distribution. The developed power split control system manages the operation of both the inputs to have a known output with the condition of maintaining optimum operating efficiency of the internal combustion engine and electrical motor. This system has a huge potential as it is possible to integrate all the features of hybrid vehicle known to-date such as the regenerative braking system, series hybrid, parallel hybrid, series/parallel hybrid, and even complex hybrid (bidirectional). By using the new power split system it is possible to further reduce fuel consumption and increase overall efficiency.

  20. Performance evaluation of pumping systems used in commercial-scale, split-pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Split-pond aquaculture systems have been adopted widely by United States catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two b...

  1. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2016-01-01

    Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.

  2. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants.

    PubMed

    Lin, Ying-Tsong; Collis, Jon M; Duda, Timothy F

    2012-11-01

    An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.

  3. High Throughput Manufacturing of Thin-Film CdTe Photovoltaic Materials; Final Subcontract Report, 16 November 1993-31 December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandwisch, D. W.

    1999-09-02

    This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltagemore » product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below $1.00/W.« less

  4. Investigation of the Carbon Arc Source as an AM0 Solar Simulator for Use in Characterizing Multi-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Xu, Jianzeng; Woodyward, James R.

    2005-01-01

    The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.

  5. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.

  6. A multi-run chemistry module for the production of [18F]FDG

    NASA Astrophysics Data System (ADS)

    Sipe, B.; Murphy, M.; Best, B.; Zigler, S.; Lim, J.; Dorman, E.; Mangner, T.; Weichelt, M.

    2001-07-01

    We have developed a new chemistry module for the production of up to four batches of [18F]FDG. Prior to starting a batch sequence, the module automatically performs a series of self-diagnostic tests, including a reagent detection sequence. The module then executes a user-defined production sequence followed by an automated process to rinse tubing, valves, and the reaction vessel prior to the next production sequence. Process feedback from the module is provided to a graphical user interface by mass flow controllers, radiation detectors, a pressure switch, a pressure transducer, and an IR temperature sensor. This paper will describe the module, the operating system, and the results of multi-site trials, including production data and quality control results.

  7. Additive schemes for certain operator-differential equations

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2010-12-01

    Unconditionally stable finite difference schemes for the time approximation of first-order operator-differential systems with self-adjoint operators are constructed. Such systems arise in many applied problems, for example, in connection with nonstationary problems for the system of Stokes (Navier-Stokes) equations. Stability conditions in the corresponding Hilbert spaces for two-level weighted operator-difference schemes are obtained. Additive (splitting) schemes are proposed that involve the solution of simple problems at each time step. The results are used to construct splitting schemes with respect to spatial variables for nonstationary Navier-Stokes equations for incompressible fluid. The capabilities of additive schemes are illustrated using a two-dimensional model problem as an example.

  8. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James Jay

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  9. Gas and Oil Flow through Wellbore Flaws

    NASA Astrophysics Data System (ADS)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  10. Determining effective forecast horizons for multi-purpose reservoirs with short- and long-term operating objectives

    NASA Astrophysics Data System (ADS)

    Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea

    2017-04-01

    Real-time control of multi-purpose reservoirs can benefit significantly from hydro-meteorological forecast products. Because of their reliability, the most used forecasts range on time scales from hours to few days and are suitable for short-term operation targets such as flood control. In recent years, hydro-meteorological forecasts have become more accurate and reliable on longer time scales, which are more relevant to long-term reservoir operation targets such as water supply. While the forecast quality of such products has been studied extensively, the forecast value, i.e. the operational effectiveness of using forecasts to support water management, has been only relatively explored. It is comparatively easy to identify the most effective forecasting information needed to design reservoir operation rules for flood control but it is not straightforward to identify which forecast variable and lead time is needed to define effective hedging rules for operational targets with slow dynamics such as water supply. The task is even more complex when multiple targets, with diverse slow and fast dynamics, are considered at the same time. In these cases, the relative importance of different pieces of information, e.g. magnitude and timing of peak flow rate and accumulated inflow on different time lags, may vary depending on the season or the hydrological conditions. In this work, we analyze the relationship between operational forecast value and streamflow forecast horizon for different multi-purpose reservoir trade-offs. We use the Information Selection and Assessment (ISA) framework to identify the most effective forecast variables and horizons for informing multi-objective reservoir operation over short- and long-term temporal scales. The ISA framework is an automatic iterative procedure to discriminate the information with the highest potential to improve multi-objective reservoir operating performance. Forecast variables and horizons are selected using a feature selection technique. The technique determines the most informative combination in a multi-variate regression model to the optimal reservoir releases based on perfect information at a fixed objective trade-off. The improved reservoir operation is evaluated against optimal reservoir operation conditioned upon perfect information on future disturbances and basic reservoir operation using only the day of the year and the reservoir level. Different objective trade-offs are selected for analyzing resulting differences in improved reservoir operation and selected forecast variables and horizons. For comparison, the effective streamflow forecast horizon determined by the ISA framework is benchmarked against the performances obtained with a deterministic model predictive control (MPC) optimization scheme. Both the ISA framework and the MPC optimization scheme are applied to the real-world case study of Lake Como, Italy, using perfect streamflow forecast information. The principal operation targets for Lake Como are flood control and downstream water supply which makes its operation a suitable case study. Results provide critical feedback to reservoir operators on the use of long-term streamflow forecasts and to the hydro-meteorological forecasting community with respect to the forecast horizon needed from reliable streamflow forecasts.

  11. Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfei; Li, Mingzhe, E-mail: limz@jlu.edu.cn; Wang, Bolong

    2015-12-15

    A new high pressure device with a split cylinder was investigated on the basis of the belt-type apparatus. The belt-type die is subjected to excessive tangential tensile stress and the tungsten carbide cylinder is easily damaged in the running process. Taking into account the operating conditions and material properties of the tungsten carbide cylinder, it is divided into 6 blocks to eliminate the tangential tensile stress. We studied two forms of the split type: radial split and tangential split. Simulation results indicate that the split cylinder has more uniform stress distribution and smaller equivalent stress compared with the belt-type cylinder.more » The inner wall of the tangential split cylinder is in the situation that compressive stress is distributed in the axial, radial, and tangential directions. It is similar to the condition of hydrostatic pressure, and it is the best condition for tungsten carbide materials. The experimental results also verify that the tangential split die can bear the highest chamber pressure. Therefore, the tangential split structure can increase the pressure bearing capacity significantly.« less

  12. Discretely Conservative Finite-Difference Formulations for Nonlinear Conservation Laws in Split Form: Theory and Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles

    2011-01-01

    Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.

  13. FY17Q4 Ristra project: Release Version 1.0 of a production toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hungerford, Aimee L.; Daniel, David John

    2017-09-21

    The Next Generation Code project will release Version 1.0 of a production toolkit for multi-physics application development on advanced architectures. Features of this toolkit will include remap and link utilities, control and state manager, setup, visualization and I/O, as well as support for a variety of mesh and particle data representations. Numerical physics packages that operate atop this foundational toolkit will be employed in a multi-physics demonstration problem and released to the community along with results from the demonstration.

  14. Development of an Operational Multi-sensor and Multi-channel Aerosol Assimilation Package Using NAAPS and NAVDAS

    DTIC Science & Technology

    2010-09-30

    5593-1, 2010, EGU General Assembly 2010. Shi, Y., J. Zhang, J. S. Reid, E. Hyer, Evaluation of MISR Aerosol Optical Depth Product for Aerosol Data...a surrogate for aerosol type, as large η values are generally related to fine mode aerosols, such as sulfate and smoke aerosols, and small η values

  15. Comments on the Diffusive Behavior of Two Upwind Schemes

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.

  16. SciSpark: In-Memory Map-Reduce for Earth Science Algorithms

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Wilson, B. D.; Whitehall, K. D.; Palamuttam, R. S.; Mattmann, C. A.; Shah, S.; Goodman, A.; Burke, W.

    2016-12-01

    We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based Apache Hadoop by 100x in memory and by 10x on disk. SciSpark extends Spark to support Earth Science use in three ways: Efficient ingest of N-dimensional geo-located arrays (physical variables) from netCDF3/4, HDF4/5, and/or OPeNDAP URLS; Array operations for dense arrays in scala and Java using the ND4S/ND4J or Breeze libraries; Operations to "split" datasets across a Spark cluster by time or space or both. For example, a decade-long time-series of geo-variables can be split across time to enable parallel "speedups" of analysis by day, month, or season. Similarly, very high-resolution climate grids can be partitioned into spatial tiles for parallel operations across rows, columns, or blocks. In addition, using Spark's gateway into python, PySpark, one can utilize the entire ecosystem of numpy, scipy, etc. Finally, SciSpark Notebooks provide a modern eNotebook technology in which scala, python, or spark-sql codes are entered into cells in the Notebook and executed on the cluster, with results, plots, or graph visualizations displayed in "live widgets". We have exercised SciSpark by implementing three complex Use Cases: discovery and evolution of Mesoscale Convective Complexes (MCCs) in storms, yielding a graph of connected components; PDF Clustering of atmospheric state using parallel K-Means; and statistical "rollups" of geo-variables or model-to-obs. differences (i.e. mean, stddev, skewness, & kurtosis) by day, month, season, year, and multi-year. Geo-variables are ingested and split across the cluster using methods on the sciSparkContext object including netCDFVariables() for spatial decomposition and wholeNetCDFVariables() for time-series. The presentation will cover the architecture of SciSpark, the design of the scientific RDD (sRDD) data structures for N-dim. arrays, results from the three science Use Cases, example Notebooks, lessons learned from the algorithm implementations, and parallel performance metrics.

  17. 77 FR 72412 - International Mail Contract

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Inbound Competitive Multi-Service Agreements with Foreign Operators 1 product and identifies the TNT... of the TNT Agreement as the baseline agreement was confirmed in Order No. 840, issued September 7...

  18. Methanation process utilizing split cold gas recycle

    DOEpatents

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  19. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    PubMed Central

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as −0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at −0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under −0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  20. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement

    NASA Astrophysics Data System (ADS)

    Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.

    2017-08-01

    In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.

  1. Ultrafast optical transistor and router of multi-order fluorescence and spontaneous parametric four-wave mixing in Pr³⁺:YSO.

    PubMed

    Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng

    2015-10-15

    We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization).

  2. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less

  3. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    NASA Astrophysics Data System (ADS)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  4. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  5. Multidirectional hybrid algorithm for the split common fixed point problem and application to the split common null point problem.

    PubMed

    Li, Xia; Guo, Meifang; Su, Yongfu

    2016-01-01

    In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .

  6. Implications of Preference and Problem Formulation on the Operating Policies of Complex Multi-Reservoir Systems

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.

    2016-12-01

    Optimizing the operations of multi-reservoir systems poses several challenges: 1) the high dimension of the problem's states and controls, 2) the need to balance conflicting multi-sector objectives, and 3) understanding how uncertainties impact system performance. These difficulties motivated the development of the Evolutionary Multi-Objective Direct Policy Search (EMODPS) framework, in which multi-reservoir operating policies are parameterized in a given family of functions and then optimized for multiple objectives through simulation over a set of stochastic inputs. However, properly framing these objectives remains a severe challenge and a neglected source of uncertainty. Here, we use EMODPS to optimize operating policies for a 4-reservoir system in the Red River Basin in Vietnam, exploring the consequences of optimizing to different sets of objectives related to 1) hydropower production, 2) meeting multi-sector water demands, and 3) providing flood protection to the capital city of Hanoi. We show how coordinated operation of the reservoirs can differ markedly depending on how decision makers weigh these concerns. Moreover, we illustrate how formulation choices that emphasize the mean, tail, or variability of performance across objective combinations must be evaluated carefully. Our results show that these choices can significantly improve attainable system performance, or yield severe unintended consequences. Finally, we show that satisfactory validation of the operating policies on a set of out-of-sample stochastic inputs depends as much or more on the formulation of the objectives as on effective optimization of the policies. These observations highlight the importance of carefully considering how we abstract stakeholders' objectives and of iteratively optimizing and visualizing multiple problem formulation hypotheses to ensure that we capture the most important tradeoffs that emerge from different stakeholder preferences.

  7. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    PubMed

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. [Detection of split products of the immunoglobulins IgG, IgA and IgM during chronic otitis media (author's transl)].

    PubMed

    Kastenbauer, E R; Hochgesand, K; Hochstrasser, K; Tappermann, G

    1975-07-01

    Proteolytic enzymes such as pepsine or papaine are able to split IgG antibodies into large fragments in vitro. These immunoglobulin fragments (IgG, IgA, IgM) were now detected in vivo from the purulent secretions of cholesteatoma, chronic otitis media and radical mastoid cavities. During chronic otitis media the intact immunoglobulins are split due to the proteolytic activity of neutral proteinases. These fragments were qualitatively and quantitatively investigated by means of various immunological procedures. After the immunoelectrophoretic separation of the purulent middle-ear-secretions and after diffusion against anti-IgG-, anti-IgA- and anti-IgM- serum double precipitate lines could be observed especially in middle-ear-secretion with a bacterial flora of pseudomonas aeruginosa (pyocyanea) and of the proteus-providencia-group. This was the first proof of the presence of split products of the immunoglobulins. The exact demonstration of these split products could be carried out by gel-filtration and fractionation of the intact and split immunoglobulins. During chronic otitis media intact immunoglobulins are split by leucocytic and extracellular bacterial proteinases into fragments of different molecular weight. The most malignant extracellular proteinases with the greatest proteolytic activity against intact immunoglobulins are the bacterial proteinases of pseudomonas aeruginosa. These proteinases can not be inhibited by the other serum proteinaseinhibitors except for alpha-2-macroglobulin of the human blood serum. This inhibitor has a very high molecular weight so that we can not find it in a higher concentration in the middle-ear-secretion. We can liberate this inhibitor by injuring the blood vessels during a tympanoplasty. In this way we get an inhibitory effect against these proteinases and combined with an appropriate antibiotic therapy we can cure a chronic otitis media.

  9. A split-step method to include electron–electron collisions via Monte Carlo in multiple rate equation simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel

    2016-10-01

    A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less

  10. Improvement in Renal Function and Symptoms of Patients Treated with Laparoscopic Pyeloplasty for Ureteropelvic Junction Obstruction with Less Than 20% Split Renal Function.

    PubMed

    Nishi, Morihiro; Matsumoto, Kazumasa; Fujita, Tetsuo; Iwamura, Masatsugu

    2016-11-01

    To evaluate the efficacy of laparoscopic pyeloplasty (LPP) for lower functioning kidney, we investigated the outcome of this procedure for patients with ureteropelvic junction obstruction with decreased renal function, defined as less than 20% split renal function. Between October 1998 and June 2015, we performed transperitoneal dismembered LPP in 224 patients. Among them, 15 patients with less than 20% split renal function were included in this study. Patient characteristics, perioperative split renal functions, complications, and surgical outcomes were retrospectively investigated. Fourteen of 15 patients had preoperative symptoms, including flank pain in 13 patients and gross hematuria in 1 patient. Preoperative 99mTc-mercaptoacetyltriglycine (MAG3) renogram revealed no response to diuretic injection and median split renal function was 16.5%. Median operative time and blood loss were 170 minutes and 20 mL, respectively. There were no complications during the perioperative period. Postoperative MAG3 renogram at 6 and 12 months after the operation revealed significantly increased split renal function (median: 23.8% and 23.7%, p = 0.001 and 0.008, respectively) and response to diuretic injection in all patients. Preoperative symptoms disappeared and no recurrence was seen during the follow-up period for all patients except for one who experienced flank pain again 4 months after the surgery. He subsequently underwent open pyeloplasty, and flank pain disappeared soon after. LPP for patients with low split renal function and flank pain significantly improved symptoms and split renal functions. Although the long-term clinical effects of LPP are unknown, we recommend performing LPP before considering nephrectomy for patients with lower functioning kidney.

  11. Selective coherent perfect absorption in metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  12. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    PubMed

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development and Applications of a New, High-Resolution, Operational MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Kalashnikova, O.

    2014-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the operational MISR algorithm performs well, with about 75% of MISR AOD retrievals falling within 0.05 or 20% × AOD of the paired validation data from the ground-based Aerosol Robotic Network (AERONET), and is able to distinguish aerosol particles by size and sphericity, over both land and water. These attributes enable a variety of applications, including aerosol transport model validation and global air quality assessment. Motivated by the adverse impacts of aerosols on human health at the local level, and taking advantage of computational speed advances that have occurred since the launch of Terra, we have implemented an operational MISR aerosol product with 4.4 km spatial resolution that maintains, and sometimes improves upon, the quality of the 17.6 km resolution product. We will describe the performance of this product relative to the heritage 17.6 km product, the global AERONET validation network, and high spatial density AERONET-DRAGON sites. Other changes that simplify product content, and make working with the data much easier for users, will also be discussed. Examples of how the new product demonstrates finer spatial variability of aerosol fields than previously retrieved, and ways this new dataset can be used for studies of local aerosol effects, will be shown.

  14. A multi-echelon supply chain model for municipal solid waste management system.

    PubMed

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A multi-echelon supply chain model for municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less

  16. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods

    NASA Astrophysics Data System (ADS)

    Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.

    2017-06-01

    In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial-oriented CEDRE code, all developments allow to simulate realistic solid rocket motor configurations featuring the first polydisperse reactive computations with a fully Eulerian method.

  17. Closed Bipolar Electrodes for Spatial Separation of H2 and O2 Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells.

    PubMed

    Goodwin, Sean; Walsh, Darren A

    2017-07-19

    Electrolytic water splitting could potentially provide clean H 2 for a future "hydrogen economy". However, as H 2 and O 2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H 2 - and O 2 -evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K 3 Fe(CN) 6 /K 4 Fe(CN) 6 ). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K 3 Fe(CN) 6 /K 4 Fe(CN) redox couples in the separate compartments, affording completely spatially separated H 2 and O 2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni 2 P electrocatalysts for H 2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H 2 fuel cell, releasing the energy stored in the electrogenerated H 2 and O 2 . We also describe how the absence of an ionically conducting electrolyte bridging the H 2 - and O 2 -electrode compartments makes it possible to develop H 2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H 2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.

  18. Impact of split completeness on future liver remnant hypertrophy in associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) in hepatocellular carcinoma: Complete-ALPPS versus partial-ALPPS.

    PubMed

    Chan, Albert C Y; Chok, Kenneth; Dai, Jeff W C; Lo, Chung Mau

    2017-02-01

    Recent evidence suggested that associating liver partition and portal vein ligation for staged hepatectomy with a partial split could effectively induce the same degree of future liver remnant hypertrophy as a complete split in non-cirrhotic and non-cholestatic livers with better postoperative safety profiles. Our aim was to evaluate if the same phenomenon could be applied to hepatitis-related chronic liver diseases. In the study, 25 patients who underwent associating liver partition and portal vein ligation for staged hepatectomy from October 2013 to January 2016 for hepatocellular carcinoma were analyzed. Partial-associating liver partition and portal vein ligation for staged hepatectomy (n = 12) was defined as 50-80% of the transection surface split and complete-associating liver partition and portal vein ligation for staged hepatectomy (n = 13) was split down to inferior vena cava. Perioperative outcomes stratified by split completeness were evaluated. There was no significant difference in operating times and blood loss for stage I and II operations between complete-associating liver partition and portal vein ligation for staged hepatectomy and partial-associating liver partition and portal vein ligation for staged hepatectomy. All patients underwent stage II operation without any inter-stage complications. Complete split induced greater future liver remnant hypertrophy than partial split (hypertrophy rate: 31.2 vs 17.5 mL/day, P = .022) with more pronounced effect in chronic hepatitis (P = .007) than cirrhosis (P = .283). Complete-associating liver partition and portal vein ligation for staged hepatectomy was more likely to attain a future liver remnant/estimated standard liver volume ratio >35% within 10 days (76.9% vs 33.3%, P = .024) and proceed to stage II within 14 days after stage I (100% vs 58.4%, P = .009). The overall postoperative morbidity (≥grade 3a) after stage II was 16% (complete versus partial split: 7.7% vs 25%, P = .238) and hospital mortality after stage II was 8% (complete versus partial split: 0% vs 16.7%, P = .125). Complete-associating liver partition and portal vein ligation for staged hepatectomy induced more rapid future liver remnant hypertrophy than partial-associating liver partition and portal vein ligation for staged hepatectomy without increased perioperative risk in chronic liver diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Medicine's perception of reality - a split picture: critical reflections on apparent anomalies within the biomedical theory of science.

    PubMed

    Kirkengen, Anna Luise; Ekeland, Tor-Johan; Getz, Linn; Hetlevik, Irene; Schei, Edvin; Ulvestad, Elling; Vetlesen, Arne Johan

    2016-08-01

    Escalating costs, increasing multi-morbidity, medically unexplained health problems, complex risk, poly-pharmacy and antibiotic resistance can be regarded as artefacts of the traditional knowledge production in Western medicine, arising from its particular worldview. Our paper presents a historically grounded critical analysis of this view. The materialistic shift of Enlightenment philosophy, separating subjectivity from bodily matter, became normative for modern medicine and yielded astonishing results. The traditional dichotomies of mind/body and subjective/objective are, however, incompatible with modern biological theory. Medical knowledge ignores central tenets of human existence, notably the physiological impact of subjective experience, relationships, history and sociocultural contexts. Biomedicine will not succeed in resolving today's poorly understood health problems by doing 'more of the same'. We must acknowledge that health, sickness and bodily functioning are interwoven with human meaning-production, fundamentally personal and biographical. This implies that the biomedical framework, although having engendered 'success stories' like the era of antibiotics, needs to be radically revised. © 2015 John Wiley & Sons, Ltd.

  20. Spatial organization of heterologous metabolic system in vivo based on TALE.

    PubMed

    Zhu, Lv-yun; Qiu, Xin-Yuan; Zhu, Ling-Yun; Wu, Xiao-Min; Zhang, Yuan; Zhu, Qian-Hui; Fan, Dong-Yu; Zhu, Chu-Shu; Zhang, Dong-Yi

    2016-05-17

    For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications.

  1. Dynamics and control of fast ion crystal splitting in segmented Paul traps (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2014-07-09

    operations, in addition to laser - or microwave-driven logic gates. Essential shuttling operations are splitting and merging of linear ion crystals. It is...from stray charges, laser induced charging of the trap [19], trap geometry imperfections or residual ponderomotive forces along the trap axis. The...transfer expressed as the mean phonon number Δ ω¯ = n E / f . We distinguish several regimes of laser –ion interaction: (i) if the vibrational

  2. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.

    PubMed

    Lin, Ying-Tsong; Duda, Timothy F

    2012-08-01

    A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.

  3. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    PubMed

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A method for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    NASA Astrophysics Data System (ADS)

    Ai, Xueshan; Dong, Zuo; Mo, Mingzhu

    2017-04-01

    The optimal reservoir operation is in generally a multi-objective problem. In real life, most of the reservoir operation optimization problems involve conflicting objectives, for which there is no single optimal solution which can simultaneously gain an optimal result of all the purposes, but rather a set of well distributed non-inferior solutions or Pareto frontier exists. On the other hand, most of the reservoirs operation rules is to gain greater social and economic benefits at the expense of ecological environment, resulting to the destruction of riverine ecology and reduction of aquatic biodiversity. To overcome these drawbacks, this study developed a multi-objective model for the reservoir operating with the conflicting functions of hydroelectric energy generation, irrigation and ecological protection. To solve the model with the objectives of maximize energy production, maximize the water demand satisfaction rate of irrigation and ecology, we proposed a multi-objective optimization method of variable penalty coefficient (VPC), which was based on integrate dynamic programming (DP) with discrete differential dynamic programming (DDDP), to generate a well distributed non-inferior along the Pareto front by changing the penalties coefficient of different objectives. This method was applied to an existing China reservoir named Donggu, through a course of a year, which is a multi-annual storage reservoir with multiple purposes. The case study results showed a good relationship between any two of the objectives and a good Pareto optimal solutions, which provide a reference for the reservoir decision makers.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  6. U.S. NIC

    Science.gov Websites

    U. S. National Ice Center HOME ORGANIZATION SERVICES PRODUCTS OUTSIDE LINKS CONTACT US MISSION STATEMENT Our mission is to provide global to tactical scale ice and snow products, ice forecasting, and . National Ice Center (NIC) is a multi-agency center operated by the United States Navy, the National Oceanic

  7. CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Holst, B.; Toth, G.; Sokolov, I. V.

    We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less

  8. Forecast horizon of multi-item dynamic lot size model with perishable inventory.

    PubMed

    Jing, Fuying; Lan, Zirui

    2017-01-01

    This paper studies a multi-item dynamic lot size problem for perishable products where stock deterioration rates and inventory costs are age-dependent. We explore structural properties in an optimal solution under two cost structures and develop a dynamic programming algorithm to solve the problem in polynomial time when the number of products is fixed. We establish forecast horizon results that can help the operation manager to decide the precise forecast horizon in a rolling decision-making process. Finally, based on a detailed test bed of instance, we obtain useful managerial insights on the impact of deterioration rate and lifetime of products on the length of forecast horizon.

  9. Forecast horizon of multi-item dynamic lot size model with perishable inventory

    PubMed Central

    Jing, Fuying

    2017-01-01

    This paper studies a multi-item dynamic lot size problem for perishable products where stock deterioration rates and inventory costs are age-dependent. We explore structural properties in an optimal solution under two cost structures and develop a dynamic programming algorithm to solve the problem in polynomial time when the number of products is fixed. We establish forecast horizon results that can help the operation manager to decide the precise forecast horizon in a rolling decision-making process. Finally, based on a detailed test bed of instance, we obtain useful managerial insights on the impact of deterioration rate and lifetime of products on the length of forecast horizon. PMID:29125856

  10. Simulation analysis of an integrated model for dynamic cellular manufacturing system

    NASA Astrophysics Data System (ADS)

    Hao, Chunfeng; Luan, Shichao; Kong, Jili

    2017-05-01

    Application of dynamic cellular manufacturing system (DCMS) is a well-known strategy to improve manufacturing efficiency in the production environment with high variety and low volume of production. Often, neither the trade-off of inter and intra-cell material movements nor the trade-off of hiring and firing of operators are examined in details. This paper presents simulation results of an integrated mixed-integer model including sensitivity analysis for several numerical examples. The comprehensive model includes cell formation, inter and intracellular materials handling, inventory and backorder holding, operator assignment (including resource adjustment) and flexible production routing. The model considers multi-production planning with flexible resources (machines and operators) where each period has different demands. The results verify the validity and sensitivity of the proposed model using a genetic algorithm.

  11. Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis.

    PubMed

    Yu-Kang, Tu

    2016-12-01

    Network meta-analysis for multiple treatment comparisons has been a major development in evidence synthesis methodology. The validity of a network meta-analysis, however, can be threatened by inconsistency in evidence within the network. One particular issue of inconsistency is how to directly evaluate the inconsistency between direct and indirect evidence with regard to the effects difference between two treatments. A Bayesian node-splitting model was first proposed and a similar frequentist side-splitting model has been put forward recently. Yet, assigning the inconsistency parameter to one or the other of the two treatments or splitting the parameter symmetrically between the two treatments can yield different results when multi-arm trials are involved in the evaluation. We aimed to show that a side-splitting model can be viewed as a special case of design-by-treatment interaction model, and different parameterizations correspond to different design-by-treatment interactions. We demonstrated how to evaluate the side-splitting model using the arm-based generalized linear mixed model, and an example data set was used to compare results from the arm-based models with those from the contrast-based models. The three parameterizations of side-splitting make slightly different assumptions: the symmetrical method assumes that both treatments in a treatment contrast contribute to inconsistency between direct and indirect evidence, whereas the other two parameterizations assume that only one of the two treatments contributes to this inconsistency. With this understanding in mind, meta-analysts can then make a choice about how to implement the side-splitting method for their analysis. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng

    A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less

  13. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  14. Operational Testing of Satellite based Hydrological Model (SHM)

    NASA Astrophysics Data System (ADS)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow gauging sites as reference, viz., Muri, Jamshedpur and Ghatshila. Individual model set-up has been prepared for these sub-basins and calibration and validation using Split-sample test, first level of operational testing scheme is in progress. Subsequently for geographic transposability, Proxy-basin test will be done using Muri and Jamshedpur as proxy basins. Climatic transposability will be tested for dry and wet years using Differential split-sample test. For incorporating both geographic and climatic transposability Proxy-basin differential split sample test will be used. For quantitative evaluation of SHM, during Split-sample test Nash-Sutcliffe efficiency (NSE), Coefficient of Determination (R R^2)) and Percent BIAS (PBIAS) are being used. However, for transposability, a productive approach involving these performance measures, i.e. NSE*R R^2)*PBIAS will be used to decide the best value of parameters. Keywords: SHM, credibility, operational testing, transposability.

  15. 49 CFR 387.29 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Financial responsibility the financial reserves (e.g., insurance policies or surety bonds) sufficient to... motor carrier. Insurance premium the monetary sum an insured pays an insurer for acceptance of liability... bench or split bench seat in a passenger car, truck or multi-purpose passenger vehicle with a gross...

  16. Understanding charge transfer dynamics in QDs-TiO2 nanorod array photoanodes for solar fuel generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; McClure, Joshua P.; Fu, Richard; Jiang, Rongzhong; Chu, Deryn

    2018-01-01

    Harvesting light to drive water splitting for hydrogen generation is an attractive approach to satisfy the urgent energy demands. The design and fabrication of photoelectrode materials that are able to harvest sunlight is an important scientific undertaking. In this study, a two-quantum-dot (QD) layer is developed to decorate one-dimensional TiO2 nanorod arrays, which are subsequently utilized as photoanodes to harvest the wide-spectrum sunlight for water splitting. The QD-coated TiO2 nanorod arrays extend the light absorption range from the UV into the visible region yielding increased solar-to-hydrogen efficiencies. Transient photocurrent decay measurements demonstrate that the multi-layer CdSe-CdS QDs deposited onto the TiO2 nanorod arrays result in a stepwise band alignment that not only improves the hole extraction but also facilitates electron injection from the QDs to TiO2 rods. Moreover, the multi-heterojunction photoanode introduces interfacial states that act as recombination centers to trap the photogenerated electrons.

  17. Implementation and value of using a split-plot reader design in a study of digital breast tomosynthesis in a breast cancer assessment clinic

    NASA Astrophysics Data System (ADS)

    Mall, Suneeta; Brennan, Patrick C.; Mello-Thoms, Claudia

    2015-03-01

    The rapid evolution in medical imaging has led to an increased number of recurrent trials, primarily to ensure that the efficacy of new imaging techniques is known. The cost associated with time and resources in conducting such trials is usually high. The recruitment of participants, in a medium to large reader study, is often very challenging as the demanding number of cases discourages involvement with the trial. We aim to evaluate the efficacy of Digital Breast Tomosynthesis (DBT) in a recall assessment clinic in Australia in a prospective multi-reader-multi-case (MRMC) trial. Conducting such a study with the more commonly used fully crossed MRMC study design would require more cases and more cases read per reader, which was not viable in our setting. With an aim to perform a cost effective yet statistically efficient clinical trial, we evaluated alternative study designs, particularly the alternative split-plot MRMC study design and compared and contrasted it with more commonly used fully crossed MRMC study design. Our results suggest that `split-plot', an alternative MRMC study design, could be very beneficial for medium to large clinical trials and the cost associated with conducting such trials can be greatly reduced without adversely effecting the variance of the study. We have also noted an inverse dependency between number of required readers and cases to achieve a target variance. This suggests that split-plot could also be very beneficial for studies that focus on cases that are hard to procure or readers that are hard to recruit. We believe that our results may be relevant to other researchers seeking to design a medium to large clinical trials.

  18. [Comparisons and analysis of the spectral response functions' difference between FY-2E's and FY2C's split window channels].

    PubMed

    Zhang, Yong; Li, Yuan; Rong, Zhi-Guo

    2010-06-01

    Remote sensors' channel spectral response function (SRF) was one of the key factors to influence the quantitative products' inversion algorithm, accuracy and the geophysical characteristics. Aiming at the adjustments of FY-2E's split window channels' SRF, detailed comparisons between the FY-2E and FY-2C corresponding channels' SRF differences were carried out based on three data collections: the NOAA AVHRR corresponding channels' calibration look up tables, field measured water surface radiance and atmospheric profiles at Lake Qinghai and radiance calculated from the PLANK function within all dynamic range of FY-2E/C. The results showed that the adjustments of FY-2E's split window channels' SRF would result in the spectral range's movements and influence the inversion algorithms of some ground quantitative products. On the other hand, these adjustments of FY-2E SRFs would increase the brightness temperature differences between FY-2E's two split window channels within all dynamic range relative to FY-2C's. This would improve the inversion ability of FY-2E's split window channels.

  19. The key to successful management of STS operations: An integrated production planning system

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Thomasen, C. T.

    1985-01-01

    Space Transportation System operations managers are being confronted with a unique set of challenges as a result of increasing flight rates, the demand for flight manifest/production schedule flexibility and an emphasis on continued cost reduction. These challenges have created the need for an integrated production planning system that provides managers with the capability to plan, schedule, status and account for an orderly flow of products and services across a large, multi-discipline organization. With increased visibility into the end-to-end production flow for individual and parallel missions in process, managers can assess the integrated impact of changes, identify and measure the interrelationships of resource, schedule, and technical performance requirements and prioritize productivity enhancements.

  20. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    DOE PAGES

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...

    2017-09-19

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  1. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, these types of problems are solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulatormore » with a solid mechanics simulator via input files. FALCON eliminates the need for using operator-splitting methods to simulate these systems, and the scalability of the underlying MOOSE architecture allows for simulating these tightly coupled processes at the reservoir scale, allowing for examination of the system as a whole (something the operator-splitting methodologies generally cannot do).« less

  2. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  3. Copper Oxide Nanograss for Efficient and Stable Photoelectrochemical Hydrogen Production by Water Splitting

    NASA Astrophysics Data System (ADS)

    Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit

    2018-03-01

    A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.

  4. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun

    2016-07-28

    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

  5. TOTAL ORE PROCESSING INTEGRATION AND MANAGEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie Gertsch; Richard Gertsch

    2005-05-16

    The lessons learned from ore segregation test No.3 were presented to Minntac Mine personnel during the reporting period. Ore was segregated by A-Factor, with low values going to Step 1/2 and high values going to Step 3. During the test, the mine maintained the best split possible for the given production and location constraints. During the test, Step 1&2 A-Factor was lowered more than Step 3 was raised. All other ore quality changes were not manipulated, but the segregation by A-Factor affected most of the other qualities. Magnetic iron, coarse tails, fine tails, silica, and grind changed in response tomore » the split. Segregation was achieved by adding ore from HIS to the Step 3 blend and lowering the amount of LC 1&2 and somewhat lowering the amount of LC 3&4. Conversely, Step 1&2 received less HIS with a corresponding increase in LC 1&2. The amount of IBC was increased to both Steps about one-third of the way into the test. For about the center half of the test, LC 3&4 was reduced to both Steps. The most noticeable layer changes were, then: an increase in the HIS split; a decrease in the LC 1&2 split; adding IBC to both Steps; and lowering LC 3&4 to both Steps. Statistical analysis of the dataset collected during ordinary, non-segregated operation of the mine and mill is continuing. Graphical analysis of blast patterns according to drill monitor data was slowed by student classwork. It is expected to resume after the semester ends in May.« less

  6. Operating tool for a distributed data and information management system

    NASA Astrophysics Data System (ADS)

    Reck, C.; Mikusch, E.; Kiemle, S.; Wolfmüller, M.; Böttcher, M.

    2002-07-01

    The German Remote Sensing Data Center has developed the Data Information and Management System DIMS which provides multi-mission ground system services for earth observation product processing, archiving, ordering and delivery. DIMS successfully uses newest technologies within its services. This paper presents the solution taken to simplify operation tasks for this large and distributed system.

  7. Implementing asyncronous collective operations in a multi-node processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    A method, system, and computer program product are disclosed for implementing an asynchronous collective operation in a multi-node data processing system. In one embodiment, the method comprises sending data to a plurality of nodes in the data processing system, broadcasting a remote get to the plurality of nodes, and using this remote get to implement asynchronous collective operations on the data by the plurality of nodes. In one embodiment, each of the nodes performs only one task in the asynchronous operations, and each nodes sets up a base address table with an entry for a base address of a memorymore » buffer associated with said each node. In another embodiment, each of the nodes performs a plurality of tasks in said collective operations, and each task of each node sets up a base address table with an entry for a base address of a memory buffer associated with the task.« less

  8. Using Multi-Core Systems for Rover Autonomy

    NASA Technical Reports Server (NTRS)

    Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.

    2010-01-01

    Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality

  9. Reconstruction of Abdominal Wall of a Chronically Infected Postoperative Wound with a Rectus Abdominis Myofascial Splitting Flap

    PubMed Central

    Bae, Sung Kyu; Kang, Seok Joo; Kim, Jin Woo; Kim, Young Hwan

    2013-01-01

    Background If a chronically infected abdominal wound develops, complications such as peritonitis and an abdominal wall defect could occur. This could prolong the patient's hospital stay and increase the possibility of re-operation or another infection as well. For this reason, a solution for infection control is necessary. In this study, surgery using a rectus abdominis muscle myofascial splitting flap was performed on an abdominal wall defect. Methods From 2009 to 2012, 5 patients who underwent surgery due to ovarian rupture, cesarean section, or uterine myoma were chosen. In each case, during the first week after operation, the wound showed signs of infection. Surgery was chosen because the wounds did not resolve with dressing. Debridement was performed along the previous operation wound and dissection of the skin was performed to separate the skin and subcutaneous tissue from the attenuated rectus muscle and Scarpa's fascial layers. Once the anterior rectus sheath and muscle were adequately mobilized, the fascia and muscle flap were advanced medially so that the skin defect could be covered for reconstruction. Results Upon 3-week follow-up after a rectus abdominis myofascial splitting flap operation, no major complication occurred. In addition, all of the patients showed satisfaction in terms of function and esthetics at 3 to 6 months post-surgery. Conclusions Using a rectus abdominis myofascial splitting flap has many esthetic and functional benefits over previous methods of abdominal defect treatment, and notably, it enabled infection control by reconstruction using muscle. PMID:23362477

  10. COMPARISON OF IMPLICIT SCHEMES TO SOLVE EQUATIONS OF RADIATION HYDRODYNAMICS WITH A FLUX-LIMITED DIFFUSION APPROXIMATION: NEWTON–RAPHSON, OPERATOR SPLITTING, AND LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme,more » we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.« less

  11. Tablet splitting and weight uniformity of half-tablets of 4 medications in pharmacy practice.

    PubMed

    Tahaineh, Linda M; Gharaibeh, Shadi F

    2012-08-01

    Tablet splitting is a common practice for multiple reasons including cost savings; however, it does not necessarily result in weight-uniform half-tablets. To determine weight uniformity of half-tablets resulting from splitting 4 products available in the Jordanian market and investigate the effect of tablet characteristics on weight uniformity of half-tablets. Ten random tablets each of warfarin 5 mg, digoxin 0.25 mg, phenobarbital 30 mg, and prednisolone 5 mg were weighed and split by 6 PharmD students using a knife. The resulting half-tablets were weighed and evaluated for weight uniformity. Other relevant physical characteristics of the 4 products were measured. The average tablet hardness of the sampled tablets ranged from 40.3 N to 68.9 N. Digoxin, phenobarbital, and prednisolone half-tablets failed the weight uniformity test; however, warfarin half-tablets passed. Digoxin, warfarin, and phenobarbital tablets had a score line and warfarin tablets had the deepest score line of 0.81 mm. Splitting warfarin tablets produces weight-uniform half-tablets that may possibly be attributed to the hardness and the presence of a deep score line. Digoxin, phenobarbital, and prednisolone tablet splitting produces highly weight variable half-tablets. This can be of clinical significance in the case of the narrow therapeutic index medication digoxin.

  12. Comparison of applying particulate demineralized bone matrix (DBM), putty DBM and open flap debridement in periodontal horizontal bone defects. A 12-month longitudinal, multi-centre, triple-blind, split-mouth, randomized, controlled clinical study. Part 2 - evaluation of the interdental soft tissue.

    PubMed

    Kaya, Y; Yalim, M; Bahçecitapar, M; Baloş, K

    2009-07-01

    To date, there have been many studies clinically evaluating periodontal regenerative procedures by the help of routinely used hard and soft tissue parameters; however, these parameters are not capable of assessing interdental soft tissue located above the regenerative periodontal surgery area. The purpose of this study was to assess interproximal soft tissue changes following application of (i) particulate form demineralized bone matrix (DBM), (ii) putty form DBM and (ii) open flap debridement (OFD, control), using modified curtain technique in the treatment of interproximal suprabony (horizontal) defects located in anterior maxillary region, as previously reported. Twenty-five chronic periodontitis patients with 125 interproximal surgery sites (radiologically >or=4 mm horizontal bone defect) were also participate in this second stage of the triple-blind, split mouth, randomized, controlled clinical trial. Surgery sites were assessed by (i) plaque index (PI), (ii) gingival index (GI), (iii) the presence of interdental soft tissue clefts or craters and (iv) the loss of interdental papilla height by using papilla presence index (PPI), during the healing period. At the baseline and 3, 6, 9 and 12 months after the operations, these measurements were repeated. In all groups, there is a significant increase in the prevalence of soft tissue cleft and crater formation (P < 0.01), with increase in PI and GI scores at interdental soft tissue defect areas (P < 0.001), 3 months after the operations. There was also an increase in PPI scores after the operations in all treatment groups (P < 0.01). Three procedures affected the interproximal soft tissues similarly. There was no significant difference among groups in terms of all parameters (P > 0.05). Particulate DBM, putty DBM and OFD demostrated similar interproximal soft tissue changes especially increasing interproximal PI and GI scores in 3 months follow-up.

  13. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.

    2018-04-01

    We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.

  14. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework.

    PubMed

    Si, Yuan; Li, Xiang; Yin, Dongqin; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO's capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model's accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000-2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference.

  15. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework

    PubMed Central

    Si, Yuan; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO’s capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model’s accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000–2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference. PMID:29370206

  16. Multi-well sample plate cover penetration system

    DOEpatents

    Beer, Neil Reginald [Pleasanton, CA

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  17. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  18. Multi-Service Doctrine for Chemical, Biological, Radiological, and Nuclear Operations

    DTIC Science & Technology

    2011-07-01

    currently valid OMB control number. 1. REPORT DATE JUL 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Multi...research reactors, research and development facilities, laboratories, production facilities, radioisotope thermoelectric generators, pharmaceutical...requests from the U.S. armed forces for emergency, up-to- date medical intelligence assessments. It is the nation’s premier producer and coordinator of

  19. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peronio, P.; Acconcia, G.; Rech, I.

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach basedmore » on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.« less

  20. Baseline process description for simulating plutonium oxide production for precalc project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J. A.

    Savannah River National Laboratory (SRNL) started a multi-year project, the PreCalc Project, to develop a computational simulation of a plutonium oxide (PuO 2) production facility with the objective to study the fundamental relationships between morphological and physicochemical properties. This report provides a detailed baseline process description to be used by SRNL personnel and collaborators to facilitate the initial design and construction of the simulation. The PreCalc Project team selected the HB-Line Plutonium Finishing Facility as the basis for a nominal baseline process since the facility is operational and significant model validation data can be obtained. The process boundary as wellmore » as process and facility design details necessary for multi-scale, multi-physics models are provided.« less

  1. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  2. Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases.

    PubMed

    Combet, Emilie; Vlassopoulos, Antonis; Mölenberg, Famke; Gressier, Mathilde; Privet, Lisa; Wratten, Craig; Sharif, Sahar; Vieux, Florent; Lehmann, Undine; Masset, Gabriel

    2017-04-21

    Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets (UK, US, China, Brazil, France). Products ( n = 7183) were split into 35 categories based on the Nestlé Nutritional Profiling Systems (NNPS) and were then classified as NNPS 'Pass' if all nutrient targets were met (energy (E), total fat (TF), saturated fat (SFA), sodium (Na), added sugars (AS), protein, calcium). In a modelling scenario, all NNPS Fail products were 'reformulated' to meet NNPS standards. Overall, a third (36%) of all products achieved the NNPS standard/pass (inter-country and inter-category range: 32%-40%; 5%-72%, respectively), with most products requiring reformulation in two or more nutrients. The most common nutrients to require reformulation were SFA (22%-44%) and TF (23%-42%). Modelled compliance with NNPS standards could reduce the average content of SFA, Na and AS (10%, 8% and 6%, respectively) at the food supply level. Despite the good potential to stimulate reformulation across the five countries, the study highlights the need for better data quality and granularity of food composition databases.

  3. Particulate photocatalysts for overall water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  4. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.

    PubMed

    Chiu, Yi-Hsuan; Lai, Ting-Hsuan; Chen, Chun-Yi; Hsieh, Ping-Yen; Ozasa, Kazunari; Niinomi, Mitsuo; Okada, Kiyoshi; Chang, Tso-Fu Mark; Matsushita, Nobuhiro; Sone, Masato; Hsu, Yung-Jung

    2018-05-01

    Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO 2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO 2 , with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO 2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Robin; Davenport, Roger; Talbot, Jan

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle formore » reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.« less

  6. Harmonic Composition of the Currents of Power Windings in 500 KV Thyristor Controlled Shunt Reactor with Split Valveside Windings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.

    2016-09-15

    The design and current spectrum of a thyristor valve controlled shunt reactor (TCSR) with split valveside windings are described. The dependence of the amplitudes of higher-order harmonics of the power winding current on the TCSR operating regime are presented for this TCSR design.

  7. Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis.

    PubMed

    Bajracharya, Suman; Yuliasni, Rustiana; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-02-01

    In microbial electrosynthesis (MES), CO 2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO 2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO 2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H 2 :CO 2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO 2 electro-reduction accomplished a maximum acetate production rate of 400mgL catholyte -1 d -1 at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL -1 was repeatedly attained by supplying (80:20) CO 2 :N 2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO 2 reduction. Thus, a robust CO 2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co3N for Hydrogen Production in Alkaline Solution.

    PubMed

    Xu, Zhe; Li, Wenchao; Yan, Yadong; Wang, HongXu; Zhu, Heng; Zhao, Meiming; Yan, Shicheng; Zou, Zhigang

    2018-06-21

    Sluggish water dissociation kinetics on nonprecious metal electrocatalysts limits the development of economical hydrogen production from water-alkali electrolyzers. Here, using Co 3 N electrocatalyst as a prototype, we find that during water splitting in alkaline electrolyte a cobalt-containing hydroxide formed on the surface of Co 3 N, which greatly decreased the activation energy of water dissociation (Volmer step, a main rate-determining step for water splitting in alkaline electrolytes). Combining the cobalt ion poisoning test and theoretical calculations, the efficient hydrogen production on Co 3 N electrocatalysts would benefit from favorable water dissociation on in-situ formed cobalt-containing hydroxide and low hydrogen production barrier on the nitrogen sites of Co 3 N. As a result, the Co 3 N catalyst exhibits a low water-splitting activation energy (26.57 kJ mol -1 ) that approaches the value of platinum electrodes (11.69 kJ mol -1 ). Our findings offer new insight into understanding the catalytic mechanism of nitride electrocatalysts, thus contributing to the development of economical hydrogen production in alkaline electrolytes.

  9. Resonant-frequency discharge in a multi-cell radio frequency cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, S; Upadhyay, J; Mammosser, J

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less

  10. Dynamic protein assembly by programmable DNA strand displacement.

    PubMed

    Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-04-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  11. Model-Based Self-Tuning Multiscale Method for Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  12. Dynamic protein assembly by programmable DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-03-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  13. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  14. A Spectral Multi-Domain Penalty Method for Elliptic Problems Arising From a Time-Splitting Algorithm For the Incompressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter

    2017-11-01

    The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.

  15. Theory study on the bandgap of antimonide-based multi-element alloys

    NASA Astrophysics Data System (ADS)

    An, Ning; Liu, Cheng-Zhi; Fan, Cun-Bo; Dong, Xue; Song, Qing-Li

    2017-05-01

    In order to meet the design requirements of the high-performance antimonide-based optoelectronic devices, the spin-orbit splitting correction method for bandgaps of Sb-based multi-element alloys is proposed. Based on the analysis of band structure, a correction factor is introduced in the InxGa1-xAsySb1-y bandgaps calculation with taking into account the spin-orbit coupling sufficiently. In addition, the InxGa1-xAsySb1-y films with different compositions are grown on GaSb substrates by molecular beam epitaxy (MBE), and the corresponding bandgaps are obtained by photoluminescence (PL) to test the accuracy and reliability of this new method. The results show that the calculated values agree fairly well with the experimental results. To further verify this new method, the bandgaps of a series of experimental samples reported before are calculated. The error rate analysis reveals that the α of spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the common method. It means this new method can calculate the antimonide multi-element more accurately and has the merit of wide applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.

  16. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.

  17. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Saumil S.; Fischer, Paul F.; Min, Misun

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  18. Uncoupled hydrogen and volatile fatty acids generation in a two-step biotechnological anaerobic process fed with actual site wastewater.

    PubMed

    Monti, Matilde; Scoma, Alberto; Martinez, Gonzalo; Bertin, Lorenzo; Fava, Fabio

    2015-05-25

    Among agro-wastes, olive mill wastewater (OMW) truly qualifies as a high impact organic residue due to its biochemical-rich composition and high annual production. In the present investigation, dephenolized OMW (OMWdeph) was employed as the feedstock for a biotechnological two-stage anaerobic process dedicated to the production of biohydrogen and volatile fatty acids (VFAs), respectively. To this end, two identically configured packed-bed biofilm reactors were operated sequentially. In the first, the hydraulic retention time was set to 1 day, whereas in the second it was equal to 5 days. The rationale was to decouple the hydrolysis of the organic macronutrients held by the OMWdeph, so as to quantitatively generate a biogas enriched in H2 (first stage aim), for the acidogenesis of the residual components left after hydrolysis, to then produce a highly concentrated mixture of VFAs (second stage aim). Results showed that the generation of H2 and VFAs was effectively split, with carbohydrates and lipids, respectively, being the main substrates of the two processes. About 250 ml H2 L(-1) day(-1) was produced, corresponding to a yield of 0.36 mol mol(-1) of consumed carbohydrates (expressed as glucose equivalents). The overall concentration of VFAs in the acidogenic process was 13.80 g COD L(-1), so that 2.76 g COD L(-1) day(-1) was obtained. Second generation biorefineries use a selected fraction of an organic waste to conduct a microbiologically-driven pathway towards the generation of one target molecule. With the proposed approach, a greater value of the waste was attained, since the multi-purpose two-stage process did not entail competition for substrates between the first and the second steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    PubMed

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhancing moderate-resolution ocean color products over coastal/inland waters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevan, Nima; Schott, John R.; Zibordi, Giuseppe

    2016-10-01

    With the successful launch of Landsat-8 in 2013 followed by a very recent launch of Sentinel-2A, we are entering a new area where frequent moderate resolution water quality products over coastal/inland waters will be available to scientists and operational agencies. Although designed for land observations, the Operational Land Imager (OLI) has proven to provide high-fidelity products in these aquatic systems where coarse-resolution ocean color imagers fail to provide valid observations. High-quality, multi-scale ocean color products can give insights into the biogeochemical/physical processes from the upstream in watersheds, into near-shore regions, and further out in ocean basins. In this research, we describe a robust cross-calibration approach, which facilitates seamless ocean color products at multi scales. The top-of-atmosphere (TOA) OLI imagery is cross-calibrated against near-simultaneous MODIS and VIIRS ocean color observations in high-latitude regions. This allows for not only examining the overall relative performance of OLI but also for characterizing non-uniformity (i.e., banding) across its swath. The uncertainty of this approach is, on average, found to be less than 0.5% in the blue channels. The adjustments made for OLI TOA reflectance products are then validated against in-situ measurements of remote sensing reflectance collected in research cruises or at the AERONET-OC.

  1. The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction

    NASA Technical Reports Server (NTRS)

    Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily; hide

    2013-01-01

    The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.

  2. Reactor Experiments at the University of Minnesota.

    DTIC Science & Technology

    1987-07-15

    metallurgy; zinc, zinc oxide; solar thermal,’ solar Pi% thermoelectrochemical’ water splitting, separation devices; reactors e, ? 20. AeSiRACT (Continue oe...reported. Water splitting, recovery of hydrogen 4. and sulfur from hydrogen sulfide, electrolysis of zinc oxide in vapor and liquid phases, oil...CH4-CO2 reforming process. 2. Hydrogen production from water and the production of hydrogen and sulfur (or ammonia and sulfuric acid) from H2S. 3

  3. Validation of a multi-analyte panel with cell-bound complement activation products for systemic lupus erythematosus.

    PubMed

    Dervieux, Thierry; Conklin, John; Ligayon, Jo-Anne; Wolover, Leilani; O'Malley, Tyler; Alexander, Roberta Vezza; Weinstein, Arthur; Ibarra, Claudia A

    2017-07-01

    We describe the analytical validation of an assay panel intended to assist clinicians with the diagnosis of systemic lupus erythematosus (SLE). The multi-analyte panel includes quantitative assessment of complement activation and measurement of autoantibodies. The levels of the complement split product C4d bound to erythrocytes (EC4d) and B-lymphocytes (BC4d) (expressed as mean fluorescence intensity [MFI]) are measured by quantitative flow cytometry, while autoantibodies (inclusive of antinuclear and anti-double stranded DNA antibodies) are determined by immunoassays. Results of the multi-analyte panel are reported as positive or negative based on a 2-tiered index score. Post-phlebotomy stability of EC4d and BC4d in EDTA-anticoagulated blood is determined using specimens collected from patients with SLE and normal donors. Three-level C4 coated positive beads are run daily as controls. Analytical validity is reported using intra-day and inter-day coefficient of variation (CV). EC4d and BC4d are stable for 2days at ambient temperature and for 4days at 4°C post-phlebotomy. Median intra-day and inter-day CV range from 2.9% to 7.8% (n=30) and 7.3% to 12.4% (n=66), respectively. The 2-tiered index score is reproducible over 4 consecutive daysupon storage of blood at 4°C. A total of 2,888 three-level quality control data were collected from 6 flow cytometers with an overall failure rate below 3%. Median EC4d level is 6 net MFI (Interquartile [IQ] range 4-9 net MFI) and median BC4d is 18 net MFI (IQ range 13-27 net MFI) among 86,852 specimens submitted for testing. The incidence of 2-tiered positive test results is 13.4%. We have established the analytical validity of a multi-analyte assay panel for SLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  5. Development of a structural concept to resist impacts from multiyear ice floes, ridges, and icebergs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerwick, B.C.; Potter, R.E.; Rojansky, M.

    1984-05-01

    Large multi-year ice features and icebergs may have masses ranging up to 20 million tons or more and may move in the open water at speeds up to 1 knot, thus developing tremendous kinetic energy. A stepped structure concept has been developed to resist these impacts and to transfer the resultant forces and moments into the foundation thus developing a relatively high concentrated reaction force against the ice tending to spall and split it, thus causing a multi-modal failure of the ice, as well as using up kinetic energy at a relatively controlled rate. Calculated ice forces and ice failuremore » modes will be presented. The stepped structure concept is primarily applicable to production platforms in water depths of 50 to 200 meters, which are subject to impact of large ice features such as multi-year ridges, floes, and icebergs The resulting global ice loads are reduced by 50 percent or more as compared to those developed by a vertical or a steep sided structure. Overturning moments are reduced, thus reducing maxima soil bearing values. The structure itself is efficient in its use of structural materials, and is practicable for construction in prestressed reinforced concrete or steel/ concrete hybrid construction. It has acceptable draft during tow and can carry a fully outfitted deck. It is stable during all stages of installation.« less

  6. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    NASA Astrophysics Data System (ADS)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  7. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    PubMed

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  9. A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo

    A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less

  10. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    NASA Astrophysics Data System (ADS)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  11. Instruments for Characterizing Carbon and Sulfur-Resistant Core-Shell Redox Catalysts for Combined Hydrocarbon Reforming and Water-Splitting

    DTIC Science & Technology

    2015-11-22

    SECURITY CLASSIFICATION OF: This project aims to investigate a novel core-shell redox catalyst for combined methane partial oxidation and water...Properly designed redox catalyst are shown to be highly effective for syngas production (from methane ) and water-splitting. The resulting syngas has a...27709-2211 redox catalyst, methane partial oxidation, water-splitting REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  12. Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Ash, Robert L.

    1992-01-01

    The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of code, and assessment of performance, as well as demonstration of flexibility.

  13. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  14. Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0)

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2018-04-01

    In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.

  15. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    NASA Astrophysics Data System (ADS)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  16. Measuring and Evaluating TCP Splitting for Cloud Services

    NASA Astrophysics Data System (ADS)

    Pathak, Abhinav; Wang, Y. Angela; Huang, Cheng; Greenberg, Albert; Hu, Y. Charlie; Kern, Randy; Li, Jin; Ross, Keith W.

    In this paper, we examine the benefits of split-TCP proxies, deployed in an operational world-wide network, for accelerating cloud services. We consider a fraction of a network consisting of a large number of satellite datacenters, which host split-TCP proxies, and a smaller number of mega datacenters, which ultimately perform computation or provide storage. Using web search as an exemplary case study, our detailed measurements reveal that a vanilla TCP splitting solution deployed at the satellite DCs reduces the 95 th percentile of latency by as much as 43% when compared to serving queries directly from the mega DCs. Through careful dissection of the measurement results, we characterize how individual components, including proxy stacks, network protocols, packet losses and network load, can impact the latency. Finally, we shed light on further optimizations that can fully realize the potential of the TCP splitting solution.

  17. Development of Face Gear Technology for Industrial and Aerospace Power Transmission

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Filler, Robert R.; Tan, Jie

    2002-01-01

    Tests of a 250 horsepower proof-of-concept (POC) split torque face gear transmission were completed by The Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) This report provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA Design, manufacture and testing of the scaled-power TRP split torque gearbox followed preliminary evaluations of the concept performed early in the program The testing demonstrated the theory of operation for the concentric, tapered face gear assembly The results showed that the use of floating pinions in a concentric face gear arrangement produces a nearly even torque split The POC split torque tests determined that, with some improvements, face gears can be applied effectively in a split torque configuration which yields significant weight, cost and reliability improvements over conventional designs.

  18. First principles studies on the redox ability of (Ga(1-x)Zn(x))N(1-x)O(x) solid solutions and thermal reactions for H2 and O2 production on their surfaces.

    PubMed

    Du, Yaojun A; Chen, Yun-Wen; Kuo, Jer-Lai

    2013-12-07

    The (Ga1-xZnx)N1-xOx solid solution has been emerging as an effective photocatalyst for water splitting utilizing the visible solar spectrum, regarded as a host GaN bulk doped with ZnO impurities. H2 and O2 production occur simultaneously and stoichiometrically on the surface of (Ga1-xZnx)N1-xOx particles. In this work, we characterize the redox ability of (Ga1-xZnx)N1-xOx and find that a solid solution with a ZnO concentration of 0.125 < x < 0.250 is optimal for water splitting. This is consistent with the experimental finding that the maximum photocatalytic activity of (Ga1-xZnx)N1-xOx is achieved at x = 0.13. The thermal reactions of water splitting are modeled on both the GaN and an idealized (Ga1-xZnx)N1-xOx (101[combining macron]0) surface. The computed activation barriers allow us to gain some clues on the efficiency of water splitting on a specific photocatalyst surface. Our results suggest that the non-polar (101[combining macron]0) and polar (0001) surfaces may play different roles in water splitting, i.e., the (101[combining macron]0) surface is responsible for O2 production, while hydroxyl groups could dissociate on the (0001) surface.

  19. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  20. SSALTO/DUACS: Faster data delivery for operational oceanography and GMES

    NASA Astrophysics Data System (ADS)

    Dorandeu, J.; Dibarboure, G.; Larnicol, G.; Picot, N.

    2008-12-01

    This paper describes the DUACS multi-mission system, and its most relevant improvements and changes. Initiated 10 years ago with an EC project, DUACS is now a part of the CNES multi-mission ground segment SSALTO, and the backbone of the Sea Level Thematic Assembly Centre (SL-TAC) of the GMES Marine Core Service. Near Real Time (NRT): Daily Operational Products DUACS-NRT provides GODAE, climate forecasting centres, the MyOcean EU FP7 project, and real time oceanographic research (e.g.: in-situ campaigns) with directly useable, high quality near real time altimeter data. Regional products (European Shelves, Mediterranean Sea, and Black Sea) are delivered to operational projects. Commercial applications are also developed for the fishery and offshore drilling industries. All DUACS near real time products are generated and distributed on a daily basis to reduce the NRT delay, and to smooth the operational procedures of NRT users. DUACS features a systematic quality control of the input data, the system itself, and its products with detailed reports put online twice per week. The system also carries out on-the-fly editing and reprocessing of erroneous datasets, as well as a long term monitoring of NRT data it has used, to quickly detect anomalies, drifts and discontinuities in incoming altimeter data. Delayed Time (DT): A consistent data set from built upon all altimeters The second generation of DUACS-DT products is composed of global data sets of along track and gridded Sea Level Anomaly, Absolute Dynamic Topography, and geostrophic currents, but also of regional-specific products (higher resolution, optimized parameters). DUACS reprocessed all past altimeter data: Jason-1, T/P, ENVISAT, GFO, ERS1/2 and GEOSAT. These delayed time products are regularly updated when new Level2 data are released and fully validated. The system operationally integrates the state-of-the-art corrections, models and references recommended by the altimeter community, as well as the best Cal/Val and cross-calibration and merging algorithms. Ongoing Improvements to secure multi-mission products Adding Jason-2 to the system is arguably the most important improvement on DUACS in 2008. Additionally, the effort to improve the quality of DUACS combined data and the robustness of the NRT system are ongoing with the release of Key Performance Indicators on the system, and Ocean Indicators for a near real time ocean monitoring. Last year, preliminary studies were carried out to merge into the high-accuracy NRT system, innovative information of lower quality altimeter data flows such as OSDR / FDGDR / OGDR (real time data delivered in a few hours as opposed to 2 or 3 days for classical NRT data), as well as CryoSat data. These offline studies and experimental NRT productions will be integrated to the system in order to guarantee sustainability and quality in the operational DUACS framework.

  1. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  2. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data

    PubMed Central

    Tang, Bohui; Bi, Yuyun; Li, Zhao-Liang; Xia, Jun

    2008-01-01

    On the basis of the radiative transfer theory, this paper addressed the estimate of Land Surface Temperature (LST) from the Chinese first operational geostationary meteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1, 10.3-11.3 μm and IR2, 11.5-12.5 μm), using the Generalized Split-Window (GSW) algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithm corresponding to a series of overlapping ranging of the mean emissivity, the atmospheric Water Vapor Content (WVC), and the LST were derived using a statistical regression method from the numerical values simulated with an accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of atmospheric and surface conditions. The simulation analysis showed that the LST could be estimated by the GSW algorithm with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the Viewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60° and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities (LSEs) are known. In order to determine the range for the optimum coefficients of the GSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according to the land surface classification or using the method proposed by Jiang et al. (2006); and the WVC could be obtained from MODIS total precipitable water product MOD05, or be retrieved using Li et al.' method (2003). The sensitivity and error analyses in term of the uncertainty of the LSE and WVC as well as the instrumental noise were performed. In addition, in order to compare the different formulations of the split-window algorithms, several recently proposed split-window algorithms were used to estimate the LST with the same simulated FY-2C data. The result of the intercomparsion showed that most of the algorithms give comparable results. PMID:27879744

  3. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data.

    PubMed

    Tang, Bohui; Bi, Yuyun; Li, Zhao-Liang; Xia, Jun

    2008-02-14

    On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST) from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m ), using the Generalized Split-Window (GSW)algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC), and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm² provided that the Land Surface Emissivities(LSEs) are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006); and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.' method (2003). The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give comparable results.

  4. NIMBUS: A Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.; Mandell, Avi; Woodgate, Bruce E.; Spiegel, David S.; Madhusudhan, Nikku; Amatucci, Edward; Blake, Cullen; Budinoff, Jason; Burgasser, Adam; Burrows, Adam; hide

    2012-01-01

    We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This instrument will enable many exciting observations in the new age of precision astronomy. This optical design splits the beam into 8 separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise photometry for a wide variety of astrophysical sources

  5. Integrating black liquor gasification with pulping - Process simulation, economics and potential benefits

    NASA Astrophysics Data System (ADS)

    Lindstrom, Erik Vilhelm Mathias

    Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit operations, utilizing high sulfidity green liquor pretreatment, PSAQ with auto-causticization, or converting the process to mini-sulfide sulfite-AQ.

  6. Energy distribution analysis in boosted HCCI-like / LTGC engines – Understanding the trade-offs to maximize the thermal efficiency

    DOE PAGES

    Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng

    2015-04-14

    A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less

  7. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  8. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

    PubMed

    Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F

    2006-09-01

    This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

  9. Assessing water reservoir management and development in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.

    2012-04-01

    In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  10. Why the different responses between single and split nitrogen applications?

    USDA-ARS?s Scientific Manuscript database

    Split- opposed to single-nitrogen applications may improve corn (Zea mays L.) production, N use efficiency, and lessen environmental impacts due to fertilization. However, there has been an inconsistent response of yield, plant nitrogen (N) uptake, and residual soil nitrates (RSN) when comparing sin...

  11. P-8A Poseidon Multi-Mission Maritime Aircraft (P-8A)

    DTIC Science & Technology

    2013-12-01

    NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...2013 rated the P-8A as operationally effective , operationally suitable, and recommended Fleet introduction. Integrated testing of deficiency...lot through effective negotiations with the prime contractor and through development and implementation of production process improvement

  12. Continuous downstream processing for high value biological products: A Review.

    PubMed

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  13. 75 FR 13114 - Energy Conservation Program for Certain Industrial Equipment: Publication of the Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... capacity ECO-i (commercial) multi- split heat pumps. Through this document, DOE: (1) Solicits comments.... Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J/1000... Technologies Program, 950 L'Enfant Plaza, SW., Suite 600, Washington, DC 20024. Please submit one signed...

  14. The cryptomnesic origins of Jung's dream of the multi-storeyed house.

    PubMed

    Myers, Steve

    2009-09-01

    Jung first recounted his dream of the multi-storeyed house in the 1925 seminars to illustrate the concept of the collective unconscious and explain the influence of phylogeny on his split with Freud. However, his telling the story of the dream belies a cryptomnesic influence of the early writings of psychoanalysis because Josef Breuer used a similar image to illustrate the structure of the psyche which Edouard Claparède associated with a phylogenetic inheritance. When telling the story of the dream, Jung misrepresented Freud's position, creating the impression of there being a bigger difference between their theories than was actually the case, and giving the dream a fictional significance for the breakdown of their relationship. In fact, Jung followed Freud into the fields of mythology and phylogenetics, and their split was due primarily to their different attitudes towards sexuality rather than phylogeny. The dream image has therefore led to a misunderstanding of Freudian theory when viewed from within a Jungian perspective. Freud believed there was a phylogenetic layer in the psyche, though he held a different view to Jung on its nature and importance.

  15. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  16. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3.

    PubMed

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-14

    We report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2 H 3 . The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2 H 3 . All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from that of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2 H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. In addition, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2 H 3 without the requirement of explicit wavefunctions.

  17. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE PAGES

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-12

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Simon A., E-mail: simon.hunt@ucl.ac.uk; McCormack, Richard J.; Bailey, Edward

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to highmore » strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1–2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C.« less

  19. Adding Semantics and OPM Ontology for the Provenance of Multi-sensor Merged Climate Data Records. Now What About Reproducibility?

    NASA Astrophysics Data System (ADS)

    Hua, H.; Wilson, B. D.; Manipon, G.; Pan, L.; Fetzer, E.

    2011-12-01

    Multi-decadal climate data records are critical to studying climate variability and change. These often also require merging data from multiple instruments such as those from NASA's A-Train that contain measurements covering a wide range of atmospheric conditions and phenomena. Multi-decadal climate data record of water vapor measurements from sensors on A-Train, operational weather, and other satellites are being assembled from existing data sources, or produced from well-established methods published in peer-reviewed literature. However, the immense volume and inhomogeneity of data often requires an "exploratory computing" approach to product generation where data is processed in a variety of different ways with varying algorithms, parameters, and code changes until an acceptable intermediate product is generated. This process is repeated until a desirable final merged product can be generated. Typically the production legacy is often lost due to the complexity of processing steps that were tried along the way. The data product information associated with source data, processing methods, parameters used, intermediate product outputs, and associated materials are often hidden in each of the trials and scattered throughout the processing system(s). We will discuss methods to help users better capture and explore the production legacy of the data, metadata, ancillary files, code, and computing environment changes used during the production of these merged and multi-sensor data products. By leveraging existing semantic and provenance tools, we can capture sufficient information to enable users to track, perform faceted searches, and visualize the provenance of the products and processing lineage. We will explore if sufficient provenance information can be captured to enable science reproducibility of these climate data records.

  20. Dye-Sensitized Hydrobromic Acid Splitting for Hydrogen Solar Fuel Production.

    PubMed

    Brady, Matthew D; Sampaio, Renato N; Wang, Degao; Meyer, Thomas J; Meyer, Gerald J

    2017-11-08

    Hydrobromic acid (HBr) has significant potential as an inexpensive feedstock for hydrogen gas (H 2 ) solar fuel production through HBr splitting. Mesoporous thin films of anatase TiO 2 or SnO 2 /TiO 2 core-shell nanoparticles were sensitized to visible light with a new Ru II polypyridyl complex that served as a photocatalyst for bromide oxidation. These thin films were tested as photoelectrodes in dye-sensitized photoelectrosynthesis cells. In 1 N HBr (aq), the photocatalyst undergoes excited-state electron injection and light-driven Br - oxidation. The injected electrons induce proton reduction at a Pt electrode. Under 100 mW cm -2 white-light illumination, sustained photocurrents of 1.5 mA cm -2 were measured under an applied bias. Faradaic efficiencies of 71 ± 5% for Br - oxidation and 94 ± 2% for H 2 production were measured. A 12 μmol h -1 sustained rate of H 2 production was maintained during illumination. The results demonstrate a molecular approach to HBr splitting with a visible light absorbing complex capable of aqueous Br - oxidation and excited-state electron injection.

  1. Management of split skin graft donor site in the West African sub region: survey of plastic surgeons' practice.

    PubMed

    Olawoye, O A; Ademola, S A; Iyun, A O; Michael, A I; Oluwatosin, O M

    2017-06-30

    Split skin graft (SSG) is one of the most commonly performed operations on any Plastic Surgery service. Rate of donor site healing is affected by various factors including the type of dressing applied. The aim of this study was to survey the practice of plastic surgeons in the sub region with respect to management of SSG donor site and see how it conforms to international standards. Structured questionnaires on various aspects of the harvest and management of SSG donor sites were administered to plastic surgeons during the 53rd annual conference of the West African College of Surgeons (WACS) at Lome, Togo in March 2013. The data were analyzed using descriptive statistics. There were 47 respondents out of 55 plastic surgeons from four West African countries, which represented 85.4% of registered participants at the plastic surgery section of the conference. All the respondents performed SSG regularly, and the thigh was the most commonly used donor site. Different types of paraffin gauze remained the most commonly used primary donor site dressing. Only 17% of the respondents apply a topical local anaesthetic agent on the donor site. The choice of SSG donor site dressing in the sub region was driven mainly by availability. Concerted efforts must be made to access newer wound care products for optimum management of this commonly performed operation.

  2. Innovative solar thermochemical water splitting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximitymore » and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.« less

  3. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs

    NASA Astrophysics Data System (ADS)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.

    2018-01-01

    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  4. Reduction of Biomass Moisture by Crushing/Splitting - A Concept

    Treesearch

    Paul E. Barnett; Donald L. Sirois; Colin Ashmore

    1986-01-01

    A biomass crusher/splitter concept is presented as a possible n&ant of tsafntainfng rights-of-way (ROW) or harvesting energy wood plantations. The conceptual system would cut, crush, and split small woody biomass leaving it in windrows for drying. A subsequent operation would bale and transport the dried material for use as an energy source. A survey of twenty...

  5. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    NASA Astrophysics Data System (ADS)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  6. Impact of Multi-GNSS Observations on Precise Orbit Determination and Precise Point Positioning Solutions

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Bertiger, W. I.; Lu, W.; Miller, M. A.; David, M. W.; Ries, P.; Romans, L.; Sibois, A. E.; Sibthorpe, A.; Sakumura, C.

    2017-12-01

    Impact of Multi-GNSS Observations on Precise Orbit Determination and Precise Point Positioning Solutions Authors: Nikta Amiri, Willy Bertiger, Wenwen Lu, Mark Miller, David Murphy, Paul Ries, Larry Romans, Carly Sakumura, Aurore Sibois, Anthony Sibthorpe All at the Jet Propulsion Laboratory, California Institute of Technology Multiple Global Navigation Satellite Systems (GNSS) are now in various stages of completion. The four current constellations (GPS, GLONASS, BeiDou, Galileo) comprise more than 80 satellites as of July 2017, with 120 satellites expected to be available when all four constellations become fully operational. We investigate the impact of simultaneous observations to these four constellations on global network precise orbit determination (POD) solutions, and compare them to available sets of orbit and clock products submitted to the Multi-GNSS Experiment (MGEX). Using JPL's GipsyX software, we generate orbit and clock products for the four constellations. The resulting solutions are evaluated based on a number of metrics including day-to-day internal and external orbit and/or clock overlaps and estimated constellation biases. Additionally, we examine estimated station positions obtained from precise point positioning (PPP) solutions by comparing results generated from multi-GNSS and GPS-only orbit and clock products.

  7. Silicon technology compatible photonic molecules for compact optical signal processing

    NASA Astrophysics Data System (ADS)

    Barea, Luis A. M.; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-01

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (QT), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high QT. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ˜55 GHz.

  8. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior under varied global and local scale climatic influences from the developed BHMM.

  9. Improving machine operation management efficiency via improving the vehicle park structure and using the production operation information database

    NASA Astrophysics Data System (ADS)

    Koptev, V. Yu

    2017-02-01

    The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.

  10. The hydrogen tunneling splitting in malonaldehyde: A full-dimensional time-independent quantum mechanical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Ren, Yinghui; Bian, Wensheng, E-mail: bian@iccas.ac.cn

    The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm{sup −1} is in excellent agreement with the benchmark value of 23.8 cm{sup −1}more » computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm{sup −1}. Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed.« less

  11. Multi-objective optimization for the economic production of d-psicose using simulated moving bed chromatography.

    PubMed

    Wagner, N; Håkansson, E; Wahler, S; Panke, S; Bechtold, M

    2015-06-12

    The biocatalytic production of rare carbohydrates from available sugar sources rapidly gains interest as a route to acquire industrial amounts of rare sugars for food and fine chemical applications. Here we present a multi-objective optimization procedure for a simulated moving bed (SMB) process for the production of the rare sugar d-psicose from enzymatically produced mixtures with its epimer d-fructose. First, model parameters were determined using the inverse method and experimentally validated on a 2-2-2-2 lab-scale SMB plant. The obtained experimental purities (PUs) were in excellent agreement with the simulated data derived from a transport-dispersive true-moving bed model demonstrating the feasibility of the proposed design. In the second part the performance of the separation was investigated in a multi-objective optimization study addressing the cost-contributing performance parameters productivity (PR) and desorbent requirement (DR) as a function of temperature. While rare sugar SMB operation under conditions of low desorbent consumption was found to be widely unaffected by temperature, SMB operation focusing on increased PR significantly benefited from high temperatures, with possible productivities increasing from 3.4kg(Lday)(-1) at 20°C to 5kg(Lday)(-1) at 70°C, indicating that decreased selectivity at higher temperatures could be fully compensated for by the higher mass transfer rates, as they translate into reduced switch times and hence higher PR. A DR/PR Pareto optimization suggested a similar but even more pronounced trend also under relaxed PU requirements, with the PR increasing from 4.3kg(Lday)(-1) to a maximum of 7.8kg(Lday)(-1) for SMB operation at 50°C when the PU of the non-product stream was reduced from 99.5% to 90%. Based on the in silico optimization results experimental SMB runs were performed yielding considerable PRs of 1.9 (30°C), 2.4 (50°C) and 2.6kg(Lday)(-1) (70°C) with rather low DR (27L per kg of rare sugar produced) on a lab-scale SMB installation. Copyright © 2015. Published by Elsevier B.V.

  12. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution

    NASA Astrophysics Data System (ADS)

    Park, Sunghak; Chang, Woo Je; Lee, Chan Woo; Park, Sangbaek; Ahn, Hyo-Yong; Nam, Ki Tae

    2017-01-01

    The solar-driven splitting of hydrohalic acids (HX) is an important and fast growing research direction for H2 production. In addition to the hydrogen, the resulting chemicals (X2/X3-) can be used to propagate a continuous process in a closed cycle and are themselves useful products. Here we present a strategy for photocatalytic hydrogen iodide (HI) splitting using methylammonium lead iodide (MAPbI3) in an effort to develop a cost-effective and easily scalable process. Considering that MAPbI3 is a water-soluble ionic compound, we exploit the dynamic equilibrium of the dissolution and precipitation of MAPbI3 in saturated aqueous solutions. The I- and H+ concentrations of the aqueous solution are determined to be the critical parameters for the stabilization of the tetragonal MAPbI3 phase. Stable and efficient H2 production under visible light irradiation was demonstrated. The solar HI splitting efficiency of MAPbI3 was 0.81% when using Pt as a cocatalyst.

  13. Architectures Toward Reusable Science Data Systems

    NASA Technical Reports Server (NTRS)

    Moses, John Firor

    2014-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAA's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today.

  14. Evaluation of the accuracy of linear measurements on multi-slice and cone beam computed tomography scans to detect the mandibular canal during bilateral sagittal split osteotomy of the mandible.

    PubMed

    Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C

    2017-03-01

    The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. NASA Tech Briefs, May 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Test Waveform Applications for JPL STRS Operating Environment; Pneumatic Proboscis Heat-Flow Probe; Method to Measure Total Noise Temperature of a Wireless Receiver During Operation; Cursor Control Device Test Battery; Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex; ESD Test Apparatus for Soldering Irons; FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter; Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions; Silicon/Carbon Nanotube Photocathode for Splitting Water; Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor; Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements; RF Reference Switch for Spaceflight Radiometer Calibration; An Offload NIC for NASA, NLR, and Grid Computing; Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures; Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles; Self-Healing Nanocomposites for Reusable Composite Cryotanks; Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications; Aerogel-Based Multilayer Insulation with Micrometeoroid Protection; Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders; Optimized Radiator Geometries for Hot Lunar Thermal Environments; A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars); New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications; Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments; Using a Blender to Assess the Microbial Density of Encapsulated Organisms; Mixed Integer Programming and Heuristic Scheduling for Space Communication; Video Altimeter and Obstruction Detector for an Aircraft; Control Software for Piezo Stepping Actuators; Galactic Cosmic Ray Event-Based Risk Model (GERM) Code; Sasquatch Footprint Tool; and Multi-User Space Link Extension (SLE) System.

  16. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    PubMed Central

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  17. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  18. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  19. A Novel Iterative Scheme for the Very Fast and Accurate Solution of Non-LTE Radiative Transfer Problems

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.; Fabiani Bendicho, P.

    1995-12-01

    Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.

  20. On channel interactions in nested Hall thrusters

    NASA Astrophysics Data System (ADS)

    Cusson, S. E.; Georgin, M. P.; Dragnea, H. C.; Dale, E. T.; Dhaliwal, V.; Boyd, I. D.; Gallimore, A. D.

    2018-04-01

    Nested Hall thrusters use multiple, concentric discharge channels to increase thrust density. They have shown enhanced performance in multi-channel operation relative to the superposition of individual channels. The X2, a two-channel nested Hall thruster, was used to investigate the mechanism behind this improved performance. It is shown that the local pressure near the thruster exit plane is an order of magnitude higher in two-channel operation. This is due to the increased neutral flow inherent to the multi-channel operation. Due to the proximity of the discharge channels in nested Hall thrusters, these local pressure effects are shown to be responsible for the enhanced production of thrust during multi-channel operation via two mechanisms. The first mechanism is the reduction of the divergence angle due to an upstream shift of the acceleration region. The displacement of the acceleration region was detected using laser induced fluorescence measurements of the ion velocity profile. Analysis of the change in beam divergence indicates that, at an operating condition of 150 V and 30 A, this effect increases the thrust by 8.7 ± 1.2 mN. The second mechanism is neutral ingestion from the adjacent channel resulting in a 2.0 + 0/-0.2 mN increase in thrust. Combined, these mechanisms are shown to explain, within uncertainty, the 17 ± 6.2 mN improvement in thrust during dual channel operation of the X2.

  1. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency.

    PubMed

    Hsu, Shao-Hui; Miao, Jianwei; Zhang, Liping; Gao, Jiajian; Wang, Hongming; Tao, Huabing; Hung, Sung-Fu; Vasileff, Anthony; Qiao, Shi Zhang; Liu, Bin

    2018-05-01

    The implementation of water splitting systems, powered by sustainable energy resources, appears to be an attractive strategy for producing high-purity H 2 in the absence of the release of carbon dioxide (CO 2 ). However, the high cost, impractical operating conditions, and unsatisfactory efficiency and stability of conventional methods restrain their large-scale development. Seawater covers 70% of the Earth's surface and is one of the most abundant natural resources on the planet. New research is looking into the possibility of using seawater to produce hydrogen through electrolysis and will provide remarkable insight into sustainable H 2 production, if successful. Here, guided by density functional theory (DFT) calculations to predict the selectivity of gas-evolving catalysts, a seawater-splitting device equipped with affordable state-of-the-art electrocatalysts composed of earth-abundant elements (Fe, Co, Ni, and Mo) is demonstrated. This device shows excellent durability and specific selectivity toward the oxygen evolution reaction in seawater with near 100% Faradaic efficiency for the production of H 2 and O 2 . Powered by a single commercial III-V triple-junction photovoltaic cell, the integrated system achieves spontaneous and efficient generation of high-purity H 2 and O 2 from seawater at neutral pH with a remarkable 17.9% solar-to-hydrogen efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Split-face vitamin C consumer preference study.

    PubMed

    Baumann, Leslie; Duque, Deysi K; Schirripa, Michael J

    2014-10-01

    Vitamin C is commonly used to treat aged skin. It has shown regenerative effects on skin wrinkles, texture, strength, and evenness of tone through its roles as an antioxidant, tyrosinase inhibitor, and inducer of collagen synthesis. Available vitamin C formulations on the anti-aging skin care market vary by their pH, packaging, and vehicle, which may decrease absorption, and therefore, the efficacy of the product. The purpose of this study was to assess the subjective efficacy, wearability, tolerance and overall preference of two professional vitamin C topical serums and sunscreens in Caucasian females using a split face method. A virtual split-face study of 39 Caucasian women compared two popular vitamin C and SPF product combinations - C-ESTA® Face Serum and Marini Physical Protectant SPF 45 (Jan Marini Skin, San Jose, CA; Products A) and CE Ferulic® and Physical Fusion UV Defense SPF 50 (Products B; SkinCeuticals Inc, Garland, TX). The products were assigned to each subject's left or right side of the face, and subjects rated and compared products through 5 online surveys at baseline, 24 hours, days 3, 7, and 14. Over 86% of the 35 subjects who completed the study preferred the smell and 83% preferred the feel and application of vitamin C Serum A over Serum B. Seventy-one percent of subjects preferred the feel and application of Sunscreen A over Sunscreen B. Results also showed a significant skin texture improvement and skin tone with Products A vs Product B. Products A trended higher for multiple additional categories. Products A exhibited superior anti-aging benefits than Products B. Subjects preferred the smell, feel, and application of Products A and experienced significantly less irritation than Products B. Overall, Products A were preferred over Products B with subjects willing to pay more for Products A over Products B.

  3. Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases

    PubMed Central

    Combet, Emilie; Vlassopoulos, Antonis; Mölenberg, Famke; Gressier, Mathilde; Privet, Lisa; Wratten, Craig; Sharif, Sahar; Vieux, Florent; Lehmann, Undine; Masset, Gabriel

    2017-01-01

    Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets (UK, US, China, Brazil, France). Products (n = 7183) were split into 35 categories based on the Nestlé Nutritional Profiling Systems (NNPS) and were then classified as NNPS ‘Pass’ if all nutrient targets were met (energy (E), total fat (TF), saturated fat (SFA), sodium (Na), added sugars (AS), protein, calcium). In a modelling scenario, all NNPS Fail products were ‘reformulated’ to meet NNPS standards. Overall, a third (36%) of all products achieved the NNPS standard/pass (inter-country and inter-category range: 32%–40%; 5%–72%, respectively), with most products requiring reformulation in two or more nutrients. The most common nutrients to require reformulation were SFA (22%–44%) and TF (23%–42%). Modelled compliance with NNPS standards could reduce the average content of SFA, Na and AS (10%, 8% and 6%, respectively) at the food supply level. Despite the good potential to stimulate reformulation across the five countries, the study highlights the need for better data quality and granularity of food composition databases. PMID:28430118

  4. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Dillert, Ralf; Taffa, Dereje H.; Wark, Michael; Bredow, Thomas; Bahnemann, Detlef W.

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe2O4 and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  5. A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.

    2017-06-01

    This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.

  6. A hybrid prognostic model for multistep ahead prediction of machine condition

    NASA Astrophysics Data System (ADS)

    Roulias, D.; Loutas, T. H.; Kostopoulos, V.

    2012-05-01

    Prognostics are the future trend in condition based maintenance. In the current framework a data driven prognostic model is developed. The typical procedure of developing such a model comprises a) the selection of features which correlate well with the gradual degradation of the machine and b) the training of a mathematical tool. In this work the data are taken from a laboratory scale single stage gearbox under multi-sensor monitoring. Tests monitoring the condition of the gear pair from healthy state until total brake down following several days of continuous operation were conducted. After basic pre-processing of the derived data, an indicator that correlated well with the gearbox condition was obtained. Consecutively the time series is split in few distinguishable time regions via an intelligent data clustering scheme. Each operating region is modelled with a feed-forward artificial neural network (FFANN) scheme. The performance of the proposed model is tested by applying the system to predict the machine degradation level on unseen data. The results show the plausibility and effectiveness of the model in following the trend of the timeseries even in the case that a sudden change occurs. Moreover the model shows ability to generalise for application in similar mechanical assets.

  7. Earthy and musty off-flavor episodes in catfish split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The interest and use of variations of partitioned aquaculture systems (PAS) by the southeastern U.S. catfish farming industry continues to grow. Split-pond systems, one type of PAS, are designed to improve management of dissolved oxygen levels and fish waste products (e.g., ammonia) compared to conv...

  8. What plant and soil testing from 16 sites in eight midwestern states tells us about split nitrogen applications

    USDA-ARS?s Scientific Manuscript database

    It is hypothesized that split-nitrogen (N) relative to single near-planting applications improve corn (Zea mays L.) production, N recovery efficiency, and lessen environmental impacts of fertilization. However, these hypotheses have not been fully tested. A 16-site study across eight US Midwestern s...

  9. Optimization of the p-xylene oxidation process by a multi-objective differential evolution algorithm with adaptive parameters co-derived with the population-based incremental learning algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Zhan; Yan, Xuefeng

    2018-04-01

    Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.

  10. Tc-99m Hydroxymethylene Diphosphonate (HMDP) Renal Uptake as a Surrogate Marker of Postoperative Impairment of the Glomerular Filtration Rate in Renal Tumor Patients Following Nephron-Sparing Surgery.

    PubMed

    Choi, Hongyoon; Lee, Won Woo; So, Young; Ha, Seunggyun; Byun, Seok-Soo; Kim, Sang Eun

    2014-12-01

    We investigated Tc-99m hydroxymethylene diphosphonate (HMDP) scintigraphy findings in renal tumor patients from the perspective of postoperative renal dysfunction following nephron-sparing surgery (NSS). Forty-three renal tumor patients (M:F = 28:15, age 53.9 ± 12.5 years) who had undergone Tc-99m HMDP scintigraphy after NSS were enrolled. The patients were divided into HMDP(+) or HMDP(-) groups by visual assessment, and the asymmetric index (ASI) was calculated using a region-of-interest analysis. In 16 patients, the total and split glomerular filtration rate (GFR) was assessed using Tc-99m diethylenetriaminepentaacetic acid (DTPA) scintigraphy at baseline and at 3 and 6 months post-NSS. High Tc-99m HMDP uptake was observed in the operated kidneys, but this did not persist later than 7 days post-NSS. Split GFR of the operated kidneys at baseline (58.5 ± 9.3 ml/min) was significantly reduced at 6 months post-NSS (40.1 ± 5.9 ml/min, p < 0.001) in only those who showed intense uptake of Tc-99m HMDP. Declines in both total GFR (p = 0.010 and p = 0.002 for 3 and 6 months, respectively) and split GFR of the operated kidneys (p < 0.001 and p < 0.001 for 3 and 6 months, respectively) were clearly evidenced at 3 and 6 months post-NSS only in patients with high Tc-99m HMDP in the operated kidneys. The ASI was negatively correlated with %change in the split GFR of these operated kidneys at 6 months post-NSS (rho =-0.578, p = 0.0304). Tc-99m HMDP uptake within 1 week following NSS is a surrogate marker of GFR impairment over 6 months post-NSS.

  11. Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur W.; Bailey, Harry E.

    1976-01-01

    A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split differencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-order-accurate mixed explicit-implicit procedure that solves the inviscid adiabatic and nondiffusive equations for chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and differential forms of the equations is examined and the relative merits of each discussed. The method admits initial Cauchy data situated on any arbitrary surface and integrates them forward along a general curvilinear coordinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the convective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this splitting technique is analyzed, a sufficient stability criterion is established, a representative flow computation is discussed, and some comparisons are made with another method.

  12. Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information

    PubMed Central

    Wang, Xiaohong; Wang, Lizhi

    2017-01-01

    Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system. PMID:28926930

  13. Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.

    PubMed

    Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi

    2017-09-15

    Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.

  14. Investigations of Air-cooled Turbine Rotors for Turbojet Engines II : Mechanical Design, Stress Analysis, and Burst Test of Modified J33 Split-disk Rotor / Richard H. Kemp and Merland L. Moseson

    NASA Technical Reports Server (NTRS)

    Kemp, Richard H; Moseson, Merland L

    1952-01-01

    A full-scale J33 air-cooled split turbine rotor was designed and spin-pit tested to destruction. Stress analysis and spin-pit results indicated that the rotor in a J33 turbojet engine, however, showed that the rear disk of the rotor operated at temperatures substantially higher than the forward disk. An extension of the stress analysis to include the temperature difference between the two disks indicated that engine modifications are required to permit operation of the two disks at more nearly the same temperature level.

  15. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    NASA Astrophysics Data System (ADS)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  16. Flux trapping in multi-loop SQUIDs and its impact on SQUID-based absolute magnetometry

    NASA Astrophysics Data System (ADS)

    Schönau, T.; Zakosarenko, V.; Schmelz, M.; Anders, S.; Meyer, H.-G.; Stolz, R.

    2018-07-01

    The effect of flux trapping on the flux-voltage characteristics of multi-loop SQUID magnetometers was investigated by means of repeated cool-down cycles in a stepwise increased magnetic background field. For a SQUID with N parallel loops, N different flux offsets, each separated by {{{Φ }}}0/N, were observed even in zero magnetic field. These flux offsets further split into a so called fine structure, which can be explained by minor asymmetries in the SQUID design. The observed results are discussed with particular regard to their impact on the previously presented absolute SQUID cascade vector magnetometer.

  17. Distributing flight dynamics products via the World Wide Web

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Matusow, David

    1996-01-01

    The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.

  18. A new method for defining and managing process alarms and for correcting process operation when an alarm occurs.

    PubMed

    Brooks, Robin; Thorpe, Richard; Wilson, John

    2004-11-11

    A new mathematical treatment of alarms that considers them as multi-variable interactions between process variables has provided the first-ever method to calculate values for alarm limits. This has resulted in substantial reductions in false alarms and hence in alarm annunciation rates in field trials. It has also unified alarm management, process control and product quality control into a single mathematical framework so that operations improvement and hence economic benefits are obtained at the same time as increased process safety. Additionally, an algorithm has been developed that advises what changes should be made to Manipulable process variables to clear an alarm. The multi-variable Best Operating Zone at the heart of the method is derived from existing historical data using equation-free methods. It does not require a first-principles process model or an expensive series of process identification experiments. Integral with the method is a new format Process Operator Display that uses only existing variables to fully describe the multi-variable operating space. This combination of features makes it an affordable and maintainable solution for small plants and single items of equipment as well as for the largest plants. In many cases, it also provides the justification for the investments about to be made or already made in process historian systems. Field Trials have been and are being conducted at IneosChlor and Mallinckrodt Chemicals, both in the UK, of the new geometric process control (GPC) method for improving the quality of both process operations and product by providing Process Alarms and Alerts of much high quality than ever before. The paper describes the methods used, including a simple visual method for Alarm Rationalisation that quickly delivers large sets of Consistent Alarm Limits, and the extension to full Alert Management with highlights from the Field Trials to indicate the overall effectiveness of the method in practice.

  19. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-06-01

    Photoelectrochemical (PEC) water splitting hydrogen production provides a promising way for sustainable development. In this work, we prepared Ni-doped TiO2 (Ti-Ni-O) nanotubes through anodizing different Ti-Ni alloys and further annealing them at elevated temperatures, and reported their PEC water splitting performance. It was found that Ni doping could improve light absorption and facilitate separation of photo-excited electron-hole pair. The nanotubes fabricated on Ti-1 wt.% Ni alloy and annealed at 550 °C exhibited better PEC water splitting performance than those on Ti-10 wt.% Ni alloy. The photoconversion efficiency was 0.67%, which was 3.35 times the photoconversion efficiency of undoped TiO2. It demonstrated that it was feasible to fabricate high-performance Ti-Ni-O nanotubes on Ti-Ni alloys and used as photoanode for improving PEC water splitting.

  20. Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides WX 2 (X = S, Se)

    NASA Astrophysics Data System (ADS)

    Affandi, Y.; Absor, M. A. U.; Abraha, K.

    2018-04-01

    Tungsten dichalcogenides WX 2 (X=S, Se) monolayer (ML) attracted much attention due their large spin splitting, which is promising for spintronics applications. However, manipulation of the spin splitting using an external electric field plays a crucial role in the spintronic device operation, such as the spin-field effect transistor. By using first-principles calculations based on density functional theory (DFT), we investigate the impact of external electric field on the spin splitting properties of the WX 2 ML. We find that large spin-splitting up to 441 meV and 493 meV is observed on the K point of the valence band maximum, for the case of the WS2 and WSe2 ML, respectively. Moreover, we also find that the large spin-orbit splitting is also identified in the conduction band minimum around Q points with energy splitting of 285 meV and 270 meV, respectively. Our calculation also show that existence of the direct semiconducting – indirect semiconducting – metallic transition by applying the external electric field. Our study clarify that the electric field plays a significant role in spin-orbit interaction of the WX 2 ML, which has very important implications in designing future spintronic devices.

  1. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  2. Use and Assessment of Multi-Spectral Satellite Imagery in NWS Operational Forecasting Environments

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Fuell, Kevin; Stano, Geoffrey; McGrath, Kevin; Schultz, Lori; LeRoy, Anita

    2015-01-01

    NOAA's Satellite Proving Grounds have established partnerships between product developers and NWS WFOs for the evaluation of new capabilities from the GOES-R and JPSS satellite systems. SPoRT has partnered with various WFOs to evaluate multispectral (RGB) products from MODIS, VIIRS and Himawari/AHI to prepare for GOES-R/ABI. Assisted through partnerships with GINA, UW/CIMSS, NOAA, and NASA Direct Broadcast capabilities.

  3. Development concept for a small, split-core, heat-pipe-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Breitwieser, R.; Niederauer, G. F.

    1974-01-01

    There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.

  4. Recycling of rare earth particle by mini-hydrocyclones.

    PubMed

    Yu, Jian-Feng; Fu, Jian; Cheng, Hao; Cui, Zhengwei

    2017-03-01

    Mini-hydrocyclones were applied to separate the fine rare earth particles from the suspensions. The effects of the flow rate, split ratio, and feed concentration on the total separation efficiency and grade separation efficiency were studied. The combined effects of the flow rate (1200-1600L/h), split ratio (20-60%) and concentration (0.6-1.0wt%) on the total separation efficiency in mini-hydrocyclones were investigated using a response surface methodology. The optimum operating parameters for a total separation efficiency of 92.5% were: feed flow rate=1406L/h, split ratio=20%, and feed concentration=1wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.

    2013-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.

  6. Improving Precipitation Forcings for the National Water Model

    NASA Astrophysics Data System (ADS)

    Fall, G. M.; Zhang, Z.; Miller, D.; Kitzmiller, D.; Patrick, N.; Sparrow, K.; Olheiser, C.; Szeliga, T.

    2017-12-01

    The National Weather Service's Office of Water Prediction (NWS/OWP) produces operational hydrologic products, many of which are generated by the National Water Model (NWM). NWM analysis cycles (also known as "near-real-time" or "update" cycles) are of key importance, since the land surface states and fluxes they produce are used to initialize all forecast cycles. Among all forcing fields (which include precipitation, temperature, humidity, radiation, and wind), precipitation is particularly important. Currently, NWM precipitation forcings for analysis cycles are generated by combining hourly radar-derived precipitation products from the Multi-Radar, Multi-Sensor (MRMS) system with short-term quantitative precipitation forecasts (QPF) from the Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) systems. Short term QPF is used in analysis cycles to fill coverage gaps in MRMS products, and its inclusion is necessary due to the short latency associated with NWM analysis cycles relative to the availability of other operational precipitation analyses. This presentation will describe the methodology used to remove QPF bias and to spatially merge MRMS, HRRR, and RAP into hourly forcing inputs for NWM version 2.0, expected to enter into operations in late 2018. The accuracy of version 2.0 precipitation forcings relative to reference data sources, and the degree to which these forcings will represent an improvement over those used to drive the previous NWM version (1.2), will be described.

  7. Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    NASA Astrophysics Data System (ADS)

    Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela

    2018-07-01

    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.

  8. Online terahertz thickness measurement in films and coatings

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  9. Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes.

    PubMed

    Toropov, Andrey A; Toropova, Alla P

    2015-04-01

    Available on the Internet, the CORAL software (http://www.insilico.eu/coral) has been used to build up quasi-quantitative structure-activity relationships (quasi-QSAR) for prediction of mutagenic potential of multi-walled carbon-nanotubes (MWCNTs). In contrast with the previous models built up by CORAL which were based on representation of the molecular structure by simplified molecular input-line entry system (SMILES) the quasi-QSARs based on the representation of conditions (not on the molecular structure) such as concentration, presence (absence) S9 mix, the using (or without the using) of preincubation were encoded by so-called quasi-SMILES. The statistical characteristics of these models (quasi-QSARs) for three random splits into the visible training set and test set and invisible validation set are the following: (i) split 1: n=13, r(2)=0.8037, q(2)=0.7260, s=0.033, F=45 (training set); n=5, r(2)=0.9102, s=0.071 (test set); n=6, r(2)=0.7627, s=0.044 (validation set); (ii) split 2: n=13, r(2)=0.6446, q(2)=0.4733, s=0.045, F=20 (training set); n=5, r(2)=0.6785, s=0.054 (test set); n=6, r(2)=0.9593, s=0.032 (validation set); and (iii) n=14, r(2)=0.8087, q(2)=0.6975, s=0.026, F=51 (training set); n=5, r(2)=0.9453, s=0.074 (test set); n=5, r(2)=0.8951, s=0.052 (validation set). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Influence of F- on stark splitting of Yb3+ and the thermal expansion of silica glass

    NASA Astrophysics Data System (ADS)

    Cao, Yabin; Chen, Si; Shao, Chongyun; Yu, Chunlei

    2018-06-01

    A local phosphate/fluoride environment of Yb3+ was created in silica glass using a multi-step method. The influence of F- on the Stark splitting of Yb3+ in Al3+/P5+/F- co-doped silica glass was studied at room-temperature, in addition to its effect on the thermal expansion performance of the glass matrix. The results indicate that Yb3+ ions in Al3+/P5+/F- co-doped silica glass have a larger Stark splitting energy of 2F7/2 compared to Al3+/P5+ co-doped silica glass. Moreover, a larger integrated absorption cross-section (34.58 pm2 × nm), stimulated emission cross-section (0.63 pm2), and better thermal expansion performance (1.3062 × 10-6 K- at 100 °C) are achieved in Al3+/P5+/F- co-doped silica glass. Finally, different function mechanisms of F- in silica and phosphate glasses were analyzed and the F-Si bond was used to explain the results in silica glass. The combination of low refractive index, large Stark splitting energy of 2F7/2, and small thermal expansion makes Al3+/P5+/F- co-doped silica glass a preferred material for large mode area fibers for high-power laser applications.

  11. Combined orbits and clocks from IGS second reprocessing

    NASA Astrophysics Data System (ADS)

    Griffiths, Jake

    2018-05-01

    The Analysis Centers (ACs) of the International GNSS Service (IGS) have reprocessed a large global network of GPS tracking data from 1994.0 until 2014.0 or later. Each AC product time series was extended uniformly till early 2015 using their weekly operational IGS contributions so that the complete combined product set covers GPS weeks 730 through 1831. Three ACs also included GLONASS data from as early as 2002 but that was insufficient to permit combined GLONASS products. The reprocessed terrestrial frame combination procedures and results have been reported already, and those were incorporated into the ITRF2014 multi-technique global frame released in 2016. This paper describes the orbit and clock submissions and their multi-AC combinations and assessments. These were released to users in early 2017 in time for the adoption of IGS14 for generating the operational IGS products. While the reprocessing goal was to enable homogeneous modeling, consistent with the current operational procedures, to be applied retrospectively to the full history of observation data in order to achieve a more suitable reference for geophysical studies, that objective has only been partially achieved. Ongoing AC analysis changes and a lack of full participation limit the consistency and precision of the finished IG2 products. Quantitative internal measures indicate that the reprocessed orbits are somewhat less precise than current operational orbits or even the later orbits from the first IGS reprocessing campaign. That is even more apparent for the clocks where a lack of robust AC participation means that it was only possible to form combined 5-min clocks but not the 30-s satellite clocks published operationally. Therefore, retrospective precise point positioning solutions by users are not recommended using the orbits and clocks. Nevertheless, the orbits do support long-term stable user solutions when used with network processing with either double differencing or explicit clock estimation. Among the main benefits of the reprocessing effort is a more consistent long product set to analyze for sources of systematic error and accuracy. Work to do that is underway but the reprocessing experience already points to a number of ways future IGS performance and reprocessing campaigns can be improved.

  12. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    PubMed

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Influence of Constraint in Parameter Space on Quantum Games

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Jun; Fang, Xi-Ming

    2004-04-01

    We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.

  14. Observability considerations for multi-sensor and product fusion: Bias, information content, and validation (Invited)

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Zhang, J.; Hyer, E. J.; Campbell, J. R.; Christopher, S. A.; Ferrare, R. A.; Leptoukh, G. G.; Stackhouse, P. W.

    2009-12-01

    With the successful development of many aerosol products from the NASA A-train as well as new operational geostationary and polar orbiting sensors, the scientific community now has a host of new parameters to use in their analyses. The variety and quality of products has reached a point where the community has moved from basic observation-based science to sophisticated multi-component research that addresses the complex atmospheric environment. In order for these satellite data contribute to the science their uncertainty levels must move from semi-quantitative to quantitative. Initial attempts to quantify uncertainties have led to some recent debate in the community as to the efficacy of aerosol products from current and future NASA satellite sensors. In an effort to understand the state of satellite product fidelity, the Naval Research Laboratory and a newly reformed Global Energy and Water Cycle Experiment (GEWEX) aerosol panel have both initiated assessments of the nature of aerosol remote sensing uncertainty and bias. In this talk we go over areas of specific concern based on the authors’ experiences with the data, emphasizing the multi-sensor problem. We first enumerate potential biases, including retrieval, sampling/contextual, and cognitive bias. We show examples of how these biases can subsequently lead to the pitfalls of correlated/compensating errors, tautology, and confounding. The nature of bias is closely related to the information content of the sensor signal and its subsequent application to the derived aerosol quantity of interest (e.g., optical depth, flux, index of refraction, etc.). Consequently, purpose-specific validation methods must be employed, especially when generating multi-sensor products. Indeed, cloud and lower boundary condition biases in particular complicate the more typical methods of regressional bias elimination and histogram matching. We close with a discussion of sequestration of uncertainty in multi-sensor applications of these products in both pair-wise and fused fashions.

  15. Adjustment of multi-CCD-chip-color-camera heads

    NASA Astrophysics Data System (ADS)

    Guyenot, Volker; Tittelbach, Guenther; Palme, Martin

    1999-09-01

    The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.

  16. Delayed grafting for banked skin graft in lymph node flap transfer.

    PubMed

    Ciudad, Pedro; Date, Shivprasad; Orfaniotis, Georgios; Dower, Rory; Nicoli, Fabio; Maruccia, Michele; Lin, Shu-Ping; Chuang, Chu-Yi; Chuang, Tsan-Yu; Wang, Gou-Jen; Chen, Hung-Chi

    2017-02-01

    Over the last decade, lymph node flap (LNF) transfer has turned out to be an effective method in the management of lymphoedema of extremities. Most of the time, the pockets created for LNF cannot be closed primarily and need to be resurfaced with split thickness skin grafts. Partial graft loss was frequently noted in these cases. The need to prevent graft loss on these iatrogenic wounds made us explore the possibility of attempting delayed skin grafting. We have herein reported our experience with delayed grafting with autologous banked split skin grafts in cases of LNF transfer for lymphoedema of the extremities. Ten patients with International Society of Lymphology stage II-III lymphoedema of upper or lower extremity were included in this study over an 8-month period. All patients were thoroughly evaluated and subjected to lymph node flap transfer. The split skin graft was harvested and banked at the donor site, avoiding immediate resurfacing over the flap. The same was carried out in an aseptic manner as a bedside procedure after confirming flap viability and allowing flap swelling to subside. Patients were followed up to evaluate long-term outcomes. Flap survival was 100%. Successful delayed skin grafting was done between the 4th and 6th post-operative day as a bedside procedure under local anaesthesia. The split thickness skin grafts (STSG) takes more than 97%. One patient needed additional medications during the bedside procedure. All patients had minimal post-operative pain and skin graft requirement. The patients were also reported to be satisfied with the final aesthetic results. There were no complications related to either the skin grafts or donor sites during the entire period of follow-up. Delayed split skin grafting is a reliable method of resurfacing lymph node flaps and has been shown to reduce the possibility of flap complications as well as the operative time and costs. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order.

    PubMed

    Xia, Yangkun; Fu, Zhuo; Pan, Lijun; Duan, Fenghua

    2018-01-01

    The vehicle routing problem (VRP) has a wide range of applications in the field of logistics distribution. In order to reduce the cost of logistics distribution, the distance-constrained and capacitated VRP with split deliveries by order (DCVRPSDO) was studied. We show that the customer demand, which can't be split in the classical VRP model, can only be discrete split deliveries by order. A model of double objective programming is constructed by taking the minimum number of vehicles used and minimum vehicle traveling cost as the first and the second objective, respectively. This approach contains a series of constraints, such as single depot, single vehicle type, distance-constrained and load capacity limit, split delivery by order, etc. DCVRPSDO is a new type of VRP. A new tabu search algorithm is designed to solve the problem and the examples testing show the efficiency of the proposed algorithm. This paper focuses on constructing a double objective mathematical programming model for DCVRPSDO and designing an adaptive tabu search algorithm (ATSA) with good performance to solving the problem. The performance of the ATSA is improved by adding some strategies into the search process, including: (a) a strategy of discrete split deliveries by order is used to split the customer demand; (b) a multi-neighborhood structure is designed to enhance the ability of global optimization; (c) two levels of evaluation objectives are set to select the current solution and the best solution; (d) a discriminating strategy of that the best solution must be feasible and the current solution can accept some infeasible solution, helps to balance the performance of the solution and the diversity of the neighborhood solution; (e) an adaptive penalty mechanism will help the candidate solution be closer to the neighborhood of feasible solution; (f) a strategy of tabu releasing is used to transfer the current solution into a new neighborhood of the better solution.

  18. Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order

    PubMed Central

    Xia, Yangkun; Pan, Lijun; Duan, Fenghua

    2018-01-01

    The vehicle routing problem (VRP) has a wide range of applications in the field of logistics distribution. In order to reduce the cost of logistics distribution, the distance-constrained and capacitated VRP with split deliveries by order (DCVRPSDO) was studied. We show that the customer demand, which can’t be split in the classical VRP model, can only be discrete split deliveries by order. A model of double objective programming is constructed by taking the minimum number of vehicles used and minimum vehicle traveling cost as the first and the second objective, respectively. This approach contains a series of constraints, such as single depot, single vehicle type, distance-constrained and load capacity limit, split delivery by order, etc. DCVRPSDO is a new type of VRP. A new tabu search algorithm is designed to solve the problem and the examples testing show the efficiency of the proposed algorithm. This paper focuses on constructing a double objective mathematical programming model for DCVRPSDO and designing an adaptive tabu search algorithm (ATSA) with good performance to solving the problem. The performance of the ATSA is improved by adding some strategies into the search process, including: (a) a strategy of discrete split deliveries by order is used to split the customer demand; (b) a multi-neighborhood structure is designed to enhance the ability of global optimization; (c) two levels of evaluation objectives are set to select the current solution and the best solution; (d) a discriminating strategy of that the best solution must be feasible and the current solution can accept some infeasible solution, helps to balance the performance of the solution and the diversity of the neighborhood solution; (e) an adaptive penalty mechanism will help the candidate solution be closer to the neighborhood of feasible solution; (f) a strategy of tabu releasing is used to transfer the current solution into a new neighborhood of the better solution. PMID:29763419

  19. Meshless Method with Operator Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-Dimensional Skin Tissues

    PubMed Central

    Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua

    2015-01-01

    A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue. PMID:25603180

  20. Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues.

    PubMed

    Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua

    2015-01-16

    A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue.

  1. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  2. Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2

    NASA Astrophysics Data System (ADS)

    Absor, Moh. Adhib Ulil; Santoso, Iman; Harsojo, Abraha, Kamsul; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo

    2018-05-01

    The recent epitaxial growth of the 1 T phase of the PtSe2 monolayer (ML) has opened the possibility for novel applications, in particular for a spintronics device. However, in contrast to the 2 H phase of transition-metal dichalcogenides (TMDs), the absence of spin splitting in the PtSe2 ML may limit the functionality for spintronics application. Through fully relativistic density-functional theory calculations, we show that large spin splitting can be induced in the PtSe2 ML by introducing a substitutional halogen impurity. Depending on the atomic number Z of the halogen dopants, we observe an enhancement of the spin splitting in the localized impurity states (LIS), which is due to the increased contribution of the p -d orbital coupling. More importantly, we identify very large Rashba splitting in the LIS near the Fermi level around the Γ point characterized by hexagonal warping of the Fermi surface. We show that the Rashba splitting can be controlled by adjusting the doping concentration. Therefore, this work provides a possible way to induce significant Rashba splitting in the two-dimensional TMDs, which is useful for spintronic devices operating at room temperature.

  3. INNOVATIVE TECHNOLOGY EVALUATION REPORT ...

    EPA Pesticide Factsheets

    The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the samplers ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Split Core Sampler and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Split Core Sampler performed as well as or better than the reference samplers. Based on visual observations, both the Split Core Sampler and reference samplers collected partially compressed samples of consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved for both consolidated and unconsolidated sediment samples collected by the Split Core Sampler and reference samplers. No sampler was able to collect samples

  4. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang

    2016-01-01

    Many factors containing bias, spin-orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin-orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments.

  5. Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion

    NASA Astrophysics Data System (ADS)

    Li, Y.; Levin, V. L.; Chen, X.

    2017-12-01

    Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more complicated models of anisotropy, including dipping fast axes and multiple layers. Figure 1. The best fit anisotropic parameters, orientations of fast axes (top) and strength of anisotropy (bottom), assuming a single 100 km thick horizontal layer with a horizontal fast axis. The red line in top represents the absolute plate motion in a hot spot reference frame.

  6. Collective operations in a file system based execution model

    DOEpatents

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-12

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  7. Collective operations in a file system based execution model

    DOEpatents

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-19

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  8. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe{sub 2}O{sub 4}) under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillert, Ralf; Laboratorium für Nano- und Quantenengineering, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover; Taffa, Dereje H.

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe{sub 2}O{sub 4} and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  9. Flyby Error Analysis Based on Contour Plots for the Cassini Tour

    NASA Technical Reports Server (NTRS)

    Stumpf, P. W.; Gist, E. M.; Goodson, T. D.; Hahn, Y.; Wagner, S. V.; Williams, P. N.

    2008-01-01

    The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using contours plotted with the dot product of vectors B and R and the dot product of vectors B and T components, it is possible to view the effects delta V on for various encounter positions in the B-plane. The plot is used in operations to help determine if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of an integrated solution.

  10. UV-laser-based longitudinal illuminated diffuser (LID) incorporating diffractive and Lambertian reflectance for the disinfection of beverages

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing results.

  11. Multinational Activities of Major U.S. Automotive Producers : Volume 5. Diffusion of Production and Sales Operations Abroad.

    DOT National Transportation Integrated Search

    1978-09-01

    This is Volume V on the multi-national activities of the major U.S. automotive producers. The purpose of this Volume is to evaluate the foreign manufacturing and sales activities of the General Motors Corporation, Ford Motor Company, and Chrysler Cor...

  12. Assessment of the measurement performance of the in-vessel system of gap 6 of the ITER plasma position reflectometer using a finite-difference time-domain Maxwell full-wave code.

    PubMed

    da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J

    2016-11-01

    We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.

  13. Efficiency of True-Green Light Emitting Diodes: Non-Uniformity and Temperature Effects

    PubMed Central

    Titkov, Ilya E.; Karpov, Sergey Yu.; Yadav, Amit; Mamedov, Denis; Zerova, Vera L.

    2017-01-01

    External quantum efficiency of industrial-grade green InGaN light-emitting diodes (LEDs) has been measured in a wide range of operating currents at various temperatures from 13 K to 300 K. Unlike blue LEDs, the efficiency as a function of current is found to have a multi-peak character, which could not be fitted by a simple ABC-model. This observation correlated with splitting of LED emission spectra into two peaks at certain currents. The characterization data are interpreted in terms of non-uniformity of the LED active region, which is tentatively attributed to extended defects like V-pits. We suggest a new approach to evaluation of temperature-dependent light extraction and internal quantum efficiencies taking into account the active region non-uniformity. As a result, the temperature dependence of light extraction and internal quantum efficiencies have been evaluated in the temperature range mentioned above and compared with those of blue LEDs. PMID:29156543

  14. Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics

    NASA Astrophysics Data System (ADS)

    Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero

    2016-10-01

    In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.

  15. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  16. Graphene-Based Photocatalysts for Solar-Fuel Generation.

    PubMed

    Xiang, Quanjun; Cheng, Bei; Yu, Jiaguo

    2015-09-21

    The production of solar fuel through photocatalytic water splitting and CO2 reduction using photocatalysts has attracted considerable attention owing to the global energy shortage and growing environmental problems. During the past few years, many studies have demonstrated that graphene can markedly enhance the efficiency of photocatalysts for solar-fuel generation because of its unique 2D conjugated structure and electronic properties. Herein we summarize the recent advances in the application of graphene-based photocatalysts for solar-fuel production, including CO2 reduction to hydrocarbon fuel and water splitting to H2. A brief overview of the fundamental principles for splitting of water and reduction of CO2 is given. The different roles of graphene in these graphene-based photocatalysts for improving photocatalytic performance are discussed. Finally, the perspectives on the challenges and opportunities for future research in this promising area are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 76 FR 53889 - Publication of the Petition for Waiver From LG Electronics, Inc. and Granting of the Interim...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ...] Publication of the Petition for Waiver From LG Electronics, Inc. and Granting of the Interim Waiver From the... receipt of and publishes a petition for waiver from LG Electronics, Inc. (LG). The petition for waiver... & Electronics USA, Inc. (Mitsubishi) and other manufacturers for similar lines of commercial multi-split air...

  18. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.

    PubMed

    Trappe, Kathrin; Emde, Anne-Katrin; Ehrlich, Hans-Christian; Reinert, Knut

    2014-12-15

    The landscape of structural variation (SV) including complex duplication and translocation patterns is far from resolved. SV detection tools usually exhibit low agreement, are often geared toward certain types or size ranges of variation and struggle to correctly classify the type and exact size of SVs. We present Gustaf (Generic mUlti-SpliT Alignment Finder), a sound generic multi-split SV detection tool that detects and classifies deletions, inversions, dispersed duplications and translocations of ≥ 30 bp. Our approach is based on a generic multi-split alignment strategy that can identify SV breakpoints with base pair resolution. We show that Gustaf correctly identifies SVs, especially in the range from 30 to 100 bp, which we call the next-generation sequencing (NGS) twilight zone of SVs, as well as larger SVs >500 bp. Gustaf performs better than similar tools in our benchmark and is furthermore able to correctly identify size and location of dispersed duplications and translocations, which otherwise might be wrongly classified, for example, as large deletions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Analysis and design of numerical schemes for gas dynamics 1: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum diminishing (LED) principle that maxima should not increase and minima should not decrease. This principle can be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to the total variation diminishing (TVD) principle for one-dimensional problems. A new formulation of symmetric limited positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary high order of accuracy in regions where the solution contains no extrema, and which can also be implemented on multi-dimensional unstructured meshes. Systems of equations lead to waves traveling with distinct speeds and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive fluxes are examined, together with modification of the scalar diffusion through the addition of pressure differences to the momentum equations to produce full upwinding in supersonic flow. This convective upwind and split pressure (CUSP) scheme exhibits very rapid convergence in multigrid calculations of transonic flow, and provides excellent shock resolution at very high Mach numbers.

  20. Splitting a colon geometry with multiplanar clipping

    NASA Astrophysics Data System (ADS)

    Ahn, David K.; Vining, David J.; Ge, Yaorong; Stelts, David R.

    1998-06-01

    Virtual colonoscopy, a recent three-dimensional (3D) visualization technique, has provided radiologists with a unique diagnostic tool. Using this technique, a radiologist can examine the internal morphology of a patient's colon by navigating through a surface-rendered model that is constructed from helical computed tomography image data. Virtual colonoscopy can be used to detect early forms of colon cancer in a way that is less invasive and expensive compared to conventional endoscopy. However, the common approach of 'flying' through the colon lumen to visually search for polyps is tedious and time-consuming, especially when a radiologist loses his or her orientation within the colon. Furthermore, a radiologist's field of view is often limited by the 3D camera position located inside the colon lumen. We have developed a new technique, called multi-planar geometry clipping, that addresses these problems. Our algorithm divides a complex colon anatomy into several smaller segments, and then splits each of these segments in half for display on a static medium. Multi-planar geometry clipping eliminates virtual colonoscopy's dependence upon expensive, real-time graphics workstations by enabling radiologists to globally inspect the entire internal surface of the colon from a single viewpoint.

  1. A conceptual framework for economic optimization of an animal health surveillance portfolio.

    PubMed

    Guo, X; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W

    2016-04-01

    Decision making on hazard surveillance in livestock product chains is a multi-hazard, multi-stakeholder, and multi-criteria process that includes a variety of decision alternatives. The multi-hazard aspect means that the allocation of the scarce resource for surveillance should be optimized from the point of view of a surveillance portfolio (SP) rather than a single hazard. In this paper, we present a novel conceptual approach for economic optimization of a SP to address the resource allocation problem for a surveillance organization from a theoretical perspective. This approach uses multi-criteria techniques to evaluate the performances of different settings of a SP, taking cost-benefit aspects of surveillance and stakeholders' preferences into account. The credibility of the approach has also been checked for conceptual validity, data needs and operational validity; the application potentials of the approach are also discussed.

  2. Multi-resolution MPS method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid

    2018-04-01

    In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.

  3. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  4. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  5. Guidelines for Risk-Based Changeover of Biopharma Multi-Product Facilities.

    PubMed

    Lynch, Rob; Barabani, David; Bellorado, Kathy; Canisius, Peter; Heathcote, Doug; Johnson, Alan; Wyman, Ned; Parry, Derek Willison

    2018-01-01

    In multi-product biopharma facilities, the protection from product contamination due to the manufacture of multiple products simultaneously is paramount to assure product quality. To that end, the use of traditional changeover methods (elastomer change-out, full sampling, etc.) have been widely used within the industry and have been accepted by regulatory agencies. However, with the endorsement of Quality Risk Management (1), the use of risk-based approaches may be applied to assess and continuously improve established changeover processes. All processes, including changeover, can be improved with investment (money/resources), parallel activities, equipment design improvements, and standardization. However, processes can also be improved by eliminating waste. For product changeover, waste is any activity not needed for the new process or that does not provide added assurance of the quality of the subsequent product. The application of a risk-based approach to changeover aligns with the principles of Quality Risk Management. Through the use of risk assessments, the appropriate changeover controls can be identified and controlled to assure product quality is maintained. Likewise, the use of risk assessments and risk-based approaches may be used to improve operational efficiency, reduce waste, and permit concurrent manufacturing of products. © PDA, Inc. 2018.

  6. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiationmore » MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.« less

  7. New watershed-based climate forecast products for hydrologists and water managers

    NASA Astrophysics Data System (ADS)

    Baker, S. A.; Wood, A.; Rajagopalan, B.; Lehner, F.; Peng, P.; Ray, A. J.; Barsugli, J. J.; Werner, K.

    2017-12-01

    Operational sub-seasonal to seasonal (S2S) climate predictions have advanced in skill in recent years but are yet to be broadly utilized by stakeholders in the water management sector. While some of the challenges that relate to fundamental predictability are difficult or impossible to surmount, other hurdles related to forecast product formulation, translation, relevance, and accessibility can be directly addressed. These include products being misaligned with users' space-time needs, products disseminated in formats users cannot easily process, and products based on raw model outputs that are biased relative to user climatologies. In each of these areas, more can be done to bridge the gap by enhancing the usability, quality, and relevance of water-oriented predictions. In addition, water stakeholder impacts can benefit from short-range extremes predictions (such as 2-3 day storms or 1-week heat waves) at S2S time-scales, for which few products exist. We present interim results of a Research to Operations (R2O) effort sponsored by the NOAA MAPP Climate Testbed to (1) formulate climate prediction products so as to reduce hurdles to in water stakeholder adoption, and to (2) explore opportunities for extremes prediction at S2S time scales. The project is currently using CFSv2 and National Multi-­Model Ensemble (NMME) reforecasts and forecasts to develop real-time watershed-based climate forecast products, and to train post-processing approaches to enhance the skill and reliability of raw real-time S2S forecasts. Prototype S2S climate data products (forecasts and associated skill analyses) are now being operationally staged at NCAR on a public website to facilitate further product development through interactions with water managers. Initial demonstration products include CFSv2-based bi-weekly climate forecasts (weeks 1-2, 2-3, and 3-4) for sub-regional scale hydrologic units, and NMME-based monthly and seasonal prediction products. Raw model mean skill at these time-space resolutions for some periods (e.g., weeks 3-4) is unusably low, but for other periods, and for multi-month leads with NMME, precipitation and particularly temperature forecasts exhibit useful skill. Website: http://hydro.rap.ucar.edu/s2s/

  8. Mass Gauging Demonstrator for Any Gravitational Conditions

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)

    2013-01-01

    The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.

  9. An efficient three-dimensional Poisson solver for SIMD high-performance-computing architectures

    NASA Technical Reports Server (NTRS)

    Cohl, H.

    1994-01-01

    We present an algorithm that solves the three-dimensional Poisson equation on a cylindrical grid. The technique uses a finite-difference scheme with operator splitting. This splitting maps the banded structure of the operator matrix into a two-dimensional set of tridiagonal matrices, which are then solved in parallel. Our algorithm couples FFT techniques with the well-known ADI (Alternating Direction Implicit) method for solving Elliptic PDE's, and the implementation is extremely well suited for a massively parallel environment like the SIMD architecture of the MasPar MP-1. Due to the highly recursive nature of our problem, we believe that our method is highly efficient, as it avoids excessive interprocessor communication.

  10. A New TS Algorithm for Solving Low-Carbon Logistics Vehicle Routing Problem with Split Deliveries by Backpack-From a Green Operation Perspective.

    PubMed

    Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao

    2018-05-10

    In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.

  11. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  12. Environmental Assessment for the Construction and Operation of a New Shoppette/Gas Station, Class Six Store, and Name-Brand Fast Food Store at Joint Base Andrews Camp Springs, Prince George’s County, Maryland

    DTIC Science & Technology

    2010-02-01

    approximately 3.0-acre site. The facility would include retail gasoline sales through the installation of three 20,000-gallon double -walled tanks; 16 multi...construction activities; soil erosion control methods and best management practices would reduce potential for effects; additional impervious surfaces...through the installation of three 20,000-gallon, double -walled tanks; 16 multi- product dispensers with 32 fuel dispenser nozzles; a canopy roofing

  13. Luminescence signal profiling: a new proxy for sedimentologically "invisible" marine Mass Transport Deposits (MTDs)

    NASA Astrophysics Data System (ADS)

    López, Gloria I.; Bialik, Or; Waldmann, Nicolas

    2017-04-01

    When dealing with fine-grained, organic-rich, colour-monotone, underwater marine sediment cores retrieved from the continental shelf or slope, the initial visual impression, upon split-opening the vessels, is often of a "disappointing" homogeneous, monotonous, continuous archive. Only after thorough, micro- to macro-scale, multi-parameter investigations the sediment reveals its treasures, initially by performing some measurements on the intact core itself, hence depicting for the first time its contents, and subsequently by carrying out the destructive, multi-proxy sample-based analyses. Usually, routine Multi-Sensor Core Logger (MSCL) measurements of petrophysical parameters (e.g. magnetic susceptibility, density, P-Wave velocity) on un-split sediment cores are the first undertaken while still on-board in the field or back at the laboratory. Less often done, but equally valuable, are continuous X-Ray and CT scan imaging of the same intact archives. Upon splitting, routine granulometry, micro- and macro-fossil and invertebrate identification, total organic / inorganic carbon content (TOC / TIC), amid other analyses take place. The geochronology component is also established usually by AMS 14C on selected organic-rich units, and less common is Optically Stimulated Luminescence (OSL) dating used on the coarser-grained, siliciclastic layers. A relatively new tool used in Luminescence, the Portable OSL Reader, employed to rapidly assess the luminescence signal of untreated poly-mineral samples to assist with targeted field sampling for full OSL dating, was used for the first time in marine sediment cores as a novel petrophysical characterization tool with astonishing results. In this study, two 2 m-long underwater piston sediment cores recovered from 200 m depths on the continental shelf off-southern Israel, were subjected to pulsed-photon stimulation (PPSL) obtaining favourable luminescence signals along their entire lengths. Astoundingly, luminescence signals were obtained on both, already split-opened cores. Both cores depicted the monotonous characteristics of homogeneousness down-core as per most of the results obtained from the non-destructive and destructive tests. One of the cores showed several small higher energy events, including a Mass Transport Deposit (MTD) within its first 10 cm, only fully visible on the CT scan imaging, the PPSL profile and particle size distribution plot. This initial investigation demonstrates the feasibility and usefulness of luminescence profiling as a new sedimentological and petrophysical proxy to better visualize homogeneous yet complex, fine-grained, underwater archives. Moreover, it helps to understand the continuity of the stratigraphy and linearity of deposition of the sediment, besides assisting on the estimation of relative ages provided that good OSL ages are obtained throughout the recovered archive.

  14. Co₃O₄ nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting.

    PubMed

    Du, Shichao; Ren, Zhiyu; Zhang, Jun; Wu, Jun; Xi, Wang; Zhu, Jiaqing; Fu, Honggang

    2015-05-11

    A large-area, self-supported Co3O4 nanocrystal/carbon fiber electrode for oxygen and hydrogen evolution reaction was fabricated via thermal decomposition of the [Co(NH3)n](2+)-oleic acid complex and subsequent spray deposition. Due to the exposed active sites and good electrical conductivity, its operate voltage for overall water splitting is nearly the same as commercial Pt/C.

  15. Methods and circuitry for reconfigurable SEU/SET tolerance

    NASA Technical Reports Server (NTRS)

    Shuler, Jr., Robert L. (Inventor)

    2010-01-01

    A device is disclosed in one embodiment that has multiple identical sets of programmable functional elements, programmable routing resources, and majority voters that correct errors. The voters accept a mode input for a redundancy mode and a split mode. In the redundancy mode, the programmable functional elements are identical and are programmed identically so the voters produce an output corresponding to the majority of inputs that agree. In a split mode, each voter selects a particular programmable functional element output as the output of the voter. Therefore, in the split mode, the programmable functional elements can perform different functions, operate independently, and/or be connected together to process different parts of the same problem.

  16. Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration

    DOE PAGES

    Mohammad, N.; Schulz, M.; Wang, P.; ...

    2016-09-16

    In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under directmore » sunlight demonstrated an increase of ~25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. As a result, this system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.« less

  17. Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammad, N.; Schulz, M.; Wang, P.

    In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under directmore » sunlight demonstrated an increase of ~25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. As a result, this system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.« less

  18. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst

    NASA Astrophysics Data System (ADS)

    Liao, Longb; Zhang, Qiuhui; Su, Zhihua; Zhao, Zhongzheng; Wang, Yanan; Li, Yang; Lu, Xiaoxiang; Wei, Dongguang; Feng, Guoying; Yu, Qingkai; Cai, Xiaojun; Zhao, Jimin; Ren, Zhifeng; Fang, Hui; Robles-Hernandez, Francisco; Baldelli, Steven; Bao, Jiming

    2014-01-01

    The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy. Various water-splitting methods have been investigated previously, but the use of photocatalysts to split water into stoichiometric amounts of H2 and O2 (overall water splitting) without the use of external bias or sacrificial reagents is of particular interest because of its simplicity and potential low cost of operation. However, despite progress in the past decade, semiconductor water-splitting photocatalysts (such as (Ga1-xZnx)(N1-xOx)) do not exhibit good activity beyond 440 nm (refs 1,2,9) and water-splitting devices that can harvest visible light typically have a low solar-to-hydrogen efficiency of around 0.1%. Here we show that cobalt(II) oxide (CoO) nanoparticles can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The photocatalysts were synthesized from non-active CoO micropowders using two distinct methods (femtosecond laser ablation and mechanical ball milling), and the CoO nanoparticles that result can decompose pure water under visible-light irradiation without any co-catalysts or sacrificial reagents. Using electrochemical impedance spectroscopy, we show that the high photocatalytic activity of the nanoparticles arises from a significant shift in the position of the band edge of the material.

  19. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  20. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  1. Dermal Coverage of Traumatic War Wounds

    DTIC Science & Technology

    2017-01-01

    Device for re-epithelialization of full thickness wounds treated with INTEGRA MBWM. The ReCell Device is a stand-alone, battery operated cell...standalone, battery operated cell separation device that enables preparation of a cell suspension from a small, thin, split-thickness skin biopsy

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chua, S.E.; Abito, G.F.; Berbano, M.C.

    A 1 MWth multi-crop dehydration plant using waste geothermal energy is being operated by the Philippine National Oil Company-Energy Development Corporation (PNOC-EDC) at one of the reinjection pads at the Southern Negros Geothermal Project (SNGP). The facility is composed of two heat exchange systems, seven modular dryers of three different designs, a processing and storage area, a laboratory for quality control tests and an office for general administration and other services. Products from the plant include copra (dried coconut meat), dried fruits, fish and squid, and other agricultural products. Pilot demonstration runs showed the techno-economic: viability of the drying plant.more » Calculated IRR for production of copra and fruits is 19.3 %, giving a payback period on capital investment of 4.2 years. Sustainability of the operation of the plant requires detailed logistical, production, and marketing plans for the assumed production mix. The facility, which is from a grant from the United Nations Development Programme, is proposed to be {open_quotes}turned over{close_quotes} to a PNOC-formed consortium of farmers cooperatives and associations for its continuous operation and management as a profitable business venture for the community.« less

  3. Production and detection of atomic hexadecapole at Earth's magnetic field.

    PubMed

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  4. Analysis of operator splitting errors for near-limit flame simulations

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.

    2017-04-01

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.

  5. Analysis of operator splitting errors for near-limit flame simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhen; Zhou, Hua; Li, Shan

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction ofmore » ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.« less

  6. New Developments in the SCIAMACHY L2 Ground Processor

    NASA Astrophysics Data System (ADS)

    Gretschany, Sergei; Lichtenberg, Günter; Meringer, Markus; Theys, Nicolas; Lerot, Christophe; Liebing, Patricia; Noel, Stefan; Dehn, Angelika; Fehr, Thorsten

    2016-04-01

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA's environmental satellite ENVISAT observed the Earth's atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002. SCIAMACHY doubled its originally planned in-orbit lifetime of five years before the communication to ENVISAT was severed in April 2012, and the mission entered its post-operational phase. In order to preserve the best quality of the outstanding data recorded by SCIAMACHY, data processors are still being updated. This presentation will highlight three new developments that are currently being incorporated into the forthcoming Version 7 of ESA's operational Level 2 processor: 1. Tropospheric BrO, a new retrieval based on the scientific algorithm of (Theys et al., 2011). This algorithm had been originally developed for the GOME-2 sensor and later adapted for SCIAMACHY. The main principle of the new algorithm is to utilize BrO total columns (already an operational product) and split them into stratospheric VCDstrat and tropospheric VCDtrop fractions. BrO VCDstrat is determined from a climatological approach, driven by SCIAMACHY O3 and NO2 observations. VCDtrop is then determined simply as a difference: VCDtrop = VCDtotal - VCDstrat. 2. Improved cloud flagging using limb measurements (Liebing, 2015). Limb cloud flags are already part of the SCIAMACHY L2 product. They are currently calculated employing the scientific algorithm developed by (Eichmann et al., 2015). Clouds are categorized into four types: water, ice, polar stratospheric and noctilucent clouds. High atmospheric aerosol loadings, however, often lead to spurious cloud flags, when aerosols had been misidentified as clouds. The new algorithm will better discriminate between aerosol and clouds. It will also have a higher sensitivity w.r.t. thin clouds. 3. A new, future-proof file format for the level 2 product based on NetCDF. Although the final concept for the new format is still under discussion within the SCIAMACHY Quality Working Group, main features of the new format have already been clarified. The data format should be aligned and harmonized with other missions (esp. Sentinels and GOME-1). Splitting of the L2 products into profile and column products is also considered. Additionally, reading routines for the new formats will be developed and provided. References: K.-U. Eichmann et al., Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results, Atmos. Meas. Tech. Discuss., 8, 8295-8352, 2015. P. Liebing, New Limb Cloud Detection Algorithm Theoretical Basis Document, 2015. N. Theys et al., Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 11, 1791-1811, 2011.

  7. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  8. Integrated approach using multi-platform sensors for enhanced high-resolution daily ice cover product

    NASA Astrophysics Data System (ADS)

    Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean

    2016-09-01

    The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.

  9. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    PubMed

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  10. Spectral factorization of wavefields and wave operators

    NASA Astrophysics Data System (ADS)

    Rickett, James Edward

    Spectral factorization is the problem of finding a minimum-phase function with a given power spectrum. Minimum phase functions have the property that they are causal with a causal (stable) inverse. In this thesis, I factor multidimensional systems into their minimum-phase components. Helical boundary conditions resolve any ambiguities over causality, allowing me to factor multi-dimensional systems with conventional one-dimensional spectral factorization algorithms. In the first part, I factor passive seismic wavefields recorded in two-dimensional spatial arrays. The result provides an estimate of the acoustic impulse response of the medium that has higher bandwidth than autocorrelation-derived estimates. Also, the function's minimum-phase nature mimics the physics of the system better than the zero-phase autocorrelation model. I demonstrate this on helioseismic data recorded by the satellite-based Michelson Doppler Imager (MDI) instrument, and shallow seismic data recorded at Long Beach, California. In the second part of this thesis, I take advantage of the stable-inverse property of minimum-phase functions to solve wave-equation partial differential equations. By factoring multi-dimensional finite-difference stencils into minimum-phase components, I can invert them efficiently, facilitating rapid implicit extrapolation without the azimuthal anisotropy that is observed with splitting approximations. The final part of this thesis describes how to calculate diagonal weighting functions that approximate the combined operation of seismic modeling and migration. These weighting functions capture the effects of irregular subsurface illumination, which can be the result of either the surface-recording geometry, or focusing and defocusing of the seismic wavefield as it propagates through the earth. Since they are diagonal, they can be easily both factored and inverted to compensate for uneven subsurface illumination in migrated images. Experimental results show that applying these weighting functions after migration leads to significantly improved estimates of seismic reflectivity.

  11. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.

    2011-10-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  12. Broadband Gerchberg-Saxton algorithm for freeform diffractive spectral filter design.

    PubMed

    Vorndran, Shelby; Russo, Juan M; Wu, Yuechen; Pelaez, Silvana Ayala; Kostuk, Raymond K

    2015-11-30

    A multi-wavelength expansion of the Gerchberg-Saxton (GS) algorithm is developed to design and optimize a surface relief Diffractive Optical Element (DOE). The DOE simultaneously diffracts distinct wavelength bands into separate target regions. A description of the algorithm is provided, and parameters that affect filter performance are examined. Performance is based on the spectral power collected within specified regions on a receiver plane. The modified GS algorithm is used to design spectrum splitting optics for CdSe and Si photovoltaic (PV) cells. The DOE has average optical efficiency of 87.5% over the spectral bands of interest (400-710 nm and 710-1100 nm). Simulated PV conversion efficiency is 37.7%, which is 29.3% higher than the efficiency of the better performing PV cell without spectrum splitting optics.

  13. How to increase the efficiency of the electrical discharge method for destruction of nonconductive solid materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voitenko, N. V., E-mail: tevn@hvd.tpu.ru; Yudin, A. S.; Kuznetsova, N. S.

    The paper deals with the relevance of using electrical discharge technology for construction works in the city. The technical capabilities of the installation for the multi-borehole electro-discharge splitting off and destruction of rocks and concrete are described. The ways to increase the efficiency of the electrical discharge method for the destruction of solids are proposed. In order to augment the discharge circuit energy, the energy storage is separated into two individual capacitor batteries. The throttle with the inductance of 28.6 μH is installed in one of the batteries, which increases the duration of the channel energy release to 400 μsmore » and the efficiency of electrical discharge splitting off of concrete.« less

  14. Crack propagation of brittle rock under high geostress

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  15. Propel: A Discontinuous-Galerkin Finite Element Code for Solving the Reacting Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra

    2017-11-01

    This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.

  16. Multi-reader ROC studies with split-plot designs: a comparison of statistical methods.

    PubMed

    Obuchowski, Nancy A; Gallas, Brandon D; Hillis, Stephen L

    2012-12-01

    Multireader imaging trials often use a factorial design, in which study patients undergo testing with all imaging modalities and readers interpret the results of all tests for all patients. A drawback of this design is the large number of interpretations required of each reader. Split-plot designs have been proposed as an alternative, in which one or a subset of readers interprets all images of a sample of patients, while other readers interpret the images of other samples of patients. In this paper, the authors compare three methods of analysis for the split-plot design. Three statistical methods are presented: the Obuchowski-Rockette method modified for the split-plot design, a newly proposed marginal-mean analysis-of-variance approach, and an extension of the three-sample U-statistic method. A simulation study using the Roe-Metz model was performed to compare the type I error rate, power, and confidence interval coverage of the three test statistics. The type I error rates for all three methods are close to the nominal level but tend to be slightly conservative. The statistical power is nearly identical for the three methods. The coverage of 95% confidence intervals falls close to the nominal coverage for small and large sample sizes. The split-plot multireader, multicase study design can be statistically efficient compared to the factorial design, reducing the number of interpretations required per reader. Three methods of analysis, shown to have nominal type I error rates, similar power, and nominal confidence interval coverage, are available for this study design. Copyright © 2012 AUR. All rights reserved.

  17. Automatic Command Sequence Generation

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat

    2007-01-01

    Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the desired uplink command products. With the aid of Autogen, sequences may be produced in a matter of hours instead of weeks, with a significant reduction in the number of people on the sequence team. As a result, the uplink product generation process is significantly streamlined and mission risk is significantly reduced. Autogen is used for operations of MRO, Mars Global Surveyor (MGS), Mars Exploration Rover (MER), Mars Odyssey, and will be used for operations of Phoenix. Autogen Version 3.0 is the operational version of Autogen including the MRO adaptation for the cruise mission phase, and was also used for development of the aerobraking and mapping mission phases for MRO.

  18. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.

  19. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    PubMed

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Gustavo, E-mail: Gustavo-Avila@telefonica.net; Carrington, Tucker, E-mail: Tucker.Carrington@queensu.ca

    In this paper, we improve the collocation method for computing vibrational spectra that was presented in Avila and Carrington, Jr. [J. Chem. Phys. 139, 134114 (2013)]. Using an iterative eigensolver, energy levels and wavefunctions are determined from values of the potential on a Smolyak grid. The kinetic energy matrix-vector product is evaluated by transforming a vector labelled with (nondirect product) grid indices to a vector labelled by (nondirect product) basis indices. Both the transformation and application of the kinetic energy operator (KEO) scale favorably. Collocation facilitates dealing with complicated KEOs because it obviates the need to calculate integrals of coordinatemore » dependent coefficients of differential operators. The ideas are tested by computing energy levels of HONO using a KEO in bond coordinates.« less

  1. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and Lidar Campaigns to Radar-Optical Satellite Data Multi-temporal, multi-frequency SAR for landscape dynamics Coastal zone and freshwater monitoring: Optical and SAR-based EO in support of Integrated Coastal Zone Management Dynamics and conservation ecology of emergent and submerged macrophytes in Lake Balaton using airborne remote sensing Satellite remote sensing of water quality (chlorophyll and suspended sediment) using MODIS and ship-mounted LIDAR Geohazards and emergency response: Methods for detection and monitoring of small scale land surface feature changes in complex crisis situations Monitoring landslide displacements with Radar Interferometry DINSAR/PSI hybrid methodologies for ground-motion monitoring Climate adaptation and emergency response: Earth Observation based analysis of regional impact of climate change induced water stress patterns fuelling human crisis and conflict situations in semi dry climate regimes Satellite Derived Information for Drought Detection and Estimation of the Water Balance GIONET will also cover methodologies including (i) modelling fundamental radiative processes determining the satellite signal, (ii) atmospheric correction and calibration, (iii) processing higher-order data products, (iii) developing information products from satellite data to meet user requirements, and (iv) statistical methods for assessing the quality and accuracy of data products.

  2. Multi-model Ensemble of Ocean Data Assimilation Products in The Northwestern Pacific and Their Quality Assessment

    NASA Astrophysics Data System (ADS)

    Isoguchi, O.; Matsui, K.; Kamachi, M.; Usui, N.; Miyazawa, Y.; Ishikawa, Y.; Hirose, N.

    2017-12-01

    Several operational ocean assimilation models are currently available for the Northwestern Pacific and surrounding marginal seas. One of the main targets is predicting the Kuroshio/Kuroshio Extension, which have an impact not only on social activities, such as fishery and ship routing, but also on local weather. There is a demand to assess their quality comprehensively and make the best out the available products. In the present study, several ocean data assimilation products and their multi-ensemble product were assessed by comparing with satellite-derived sea surface temperature (SST), sea surface height (SSH), and in-situ hydrographic sections. The Kuroshio axes were also computed from the surface currents of these products and were compared with the Kuroshio Axis data produced analyzing satellite-SST, SSH, and in-situ observations by Marine Information Research Center (MIRC). The multi-model ensemble products generally showed the best accuracy in terms of the comparisons with the satellite-derived SST and SSH. On the other hand, the ensemble products didn't result in the best one in the comparison with the hydrographic sections. It is thus suggested that the multi-model ensemble works efficiently for the horizontally 2D parameters for which each assimilation product tends to have random errors while it does not work well for the vertical 2D comparisons for which it tends to have bias errors with respect to in-situ data. In the assessment with the Kuroshio Axis Data, some products showed more energetic behavior than the Kuroshio Axis data, resulting in the large path errors which are defined as a ratio between an area surrounded by the reference and model-derived ones and a path length. It is however not determined which are real, because in-situ observations are still lacking to resolve energetic Kuroshio behavior even though the Kuroshio is one of the strongest current.

  3. Symmetric operation of the resonant exchange qubit

    NASA Astrophysics Data System (ADS)

    Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand

    2017-07-01

    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated rf pulses. We find that the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between rf drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to 32 π pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of symmetric configurations in the operation of triple-dot qubits.

  4. Water splitting on semiconductor catalysts under visible-light irradiation.

    PubMed

    Navarro Yerga, Rufino M; Alvarez Galván, M Consuelo; del Valle, F; Villoria de la Mano, José A; Fierro, José L G

    2009-01-01

    Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. The Sun is a source of silent and precious energy that is distributed fairly all over the Earth daily. However, its tremendous potential as a clean, safe, and economical energy source cannot be exploited unless the energy is accumulated or converted into more useful forms. The conversion of solar energy into hydrogen via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can potentially be generated in a clean and sustainable manner. This Minireview provides an overview of the principles, approaches, and research progress on solar hydrogen production via the water-splitting reaction on photo-semiconductor catalysts. It presents a survey of the advances made over the last decades in the development of catalysts for photochemical water splitting under visible-light irradiation. The Minireview also analyzes the energy requirements and main factors that determine the activity of photocatalysts in the conversion of water into hydrogen and oxygen using sunlight. Remarkable progress has been made since the pioneering work by Fujishima and Honda in 1972, but he development of photocatalysts with improved efficiencies for hydrogen production from water using solar energy still faces major challenges. Research strategies and approaches adopted in the search for active and efficient photocatalysts, for example through new materials and synthesis methods, are presented and analyzed.

  5. Exploration of Force Transition in Stability Operations Using Multi-Agent Simulation

    DTIC Science & Technology

    2006-09-01

    risk, mission failure risk, and time in the context of the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming...NUMBER OF PAGES 173 14. SUBJECT TERMS Stability Operations, Peace Operations, Data Farming, Pythagoras , Agent- Based Model, Multi-Agent Simulation...the operational threat environment. The Pythagoras Multi-Agent Simulation and Data Farming techniques are used to investigate force-level

  6. Knowledge Production within the Innovation System: A Case Study from the United Kingdom

    ERIC Educational Resources Information Center

    Wilson-Medhurst, Sarah

    2010-01-01

    This paper focuses on a key issue for university managers, educational developers and teaching practitioners: that of producing new operational knowledge in the innovation system. More specifically, it explores the knowledge required to guide individual and institutional styles of teaching and learning in a large multi-disciplinary faculty. The…

  7. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  8. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  9. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  10. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOEpatents

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  11. Network-Centric Quantum Communications

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2014-03-01

    Single-photon quantum communications (QC) offers ``future-proof'' cryptographic security rooted in the laws of physics. Today's quantum-secured communications cannot be compromised by unanticipated future technological advances. But to date, QC has only existed in point-to-point instantiations that have limited ability to address the cyber security challenges of our increasingly networked world. In my talk I will describe a fundamentally new paradigm of network-centric quantum communications (NQC) that leverages the network to bring scalable, QC-based security to user groups that may have no direct user-to-user QC connectivity. With QC links only between each of N users and a trusted network node, NQC brings quantum security to N2 user pairs, and to multi-user groups. I will describe a novel integrated photonics quantum smartcard (``QKarD'') and its operation in a multi-node NQC test bed. The QKarDs are used to implement the quantum cryptographic protocols of quantum identification, quantum key distribution and quantum secret splitting. I will explain how these cryptographic primitives are used to provide key management for encryption, authentication, and non-repudiation for user-to-user communications. My talk will conclude with a description of a recent demonstration that QC can meet both the security and quality-of-service (latency) requirements for electric grid control commands and data. These requirements cannot be met simultaneously with present-day cryptography.

  12. Investigating Quantum Data Encrypted Modulation States

    DTIC Science & Technology

    2014-11-01

    propagation of entangled photon pairs through a hyper spectral filter device originally designed for multi-access laser communications between a hub...and multiple spokes. 15. SUBJECT TERMS Coherent optical detection, Long wavelength infrared, combined optical/RF link, entangled photon pairs , Lyot...Figure 36. Entangled photon pair amplitudes enter one port of a beam splitter (BS). There they split into two paths. They recombine when entering a

  13. The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, W. W.; Speldrich, M.; Yang, P.; ...

    2016-01-01

    The electronic structures of 4f 3/5f 3Cp" 3M and Cp"sub>3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions.

  14. Influence of Photobiomodulation Therapy on Gingivitis Induced by Multi-Bracket Appliances: A Split-Mouth Randomized Controlled Trial.

    PubMed

    Stein, Steffen; Schauseil, Michael; Hellak, Andreas; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-05-18

    The objective of this split-mouth trial was to investigate the influence of photobiomodulation therapy (PBMT) on adjuvant treatment of gingivitis induced by multi-bracket appliances, after bracket debonding and professional tooth cleaning. Thirteen patients (mean age 16.15 years; standard deviation ±2.12 years) who had completed active orthodontic treatment with fixed orthodontic appliances in an orthodontic clinic were included on a randomized basis. At time point T0, after bracket debonding and professional tooth cleaning, the papilla bleeding index (PBI) and bleeding on probing (BOP) were assessed in the upper jaw by the blinded investigator (M.S.), who was not aware at any time of which quadrant received PBMT. The study was based on a patient-blinded split-mouth design. In each patient, PBMT was administered by a practitioner (S.S.) in one upper quadrant (wavelength: 660 nm; Power: 100 mW; Power density: 100 mW/cm 2 ; Energy density per application point = 2 J/cm 2 ; Energy per application point = 2 J; Total dose = 52 J/cm 2 ; Total energy = 52 J; Irradiation time: 26 × 20 sec), while the other upper quadrant received a simulated laser application with the laser system turned off. Randomized equal allocation of the sides was accomplished. The second PBI and BOP assessment followed 4-6 days after laser irradiation (T1) by M.S. No statistical differences were observed between the sides with regard to PBI and BOP values at T0 (p > 0.05). The PBI and BOP values decreased significantly between T0 and T1 on both sides (p < 0.05). At T1, the PBI and BOP values were significantly lower in the laser side in comparison with the control side (p < 0.05). On the basis of these results and study parameters, adjuvant PBMT is able to accelerate the healing process in patients with gingivitis induced by multi-bracket appliances.

  15. Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations

    NASA Astrophysics Data System (ADS)

    Ren, Zhuyin; Xu, Chao; Lu, Tianfeng; Singer, Michael A.

    2014-04-01

    A numerical technique that uses dynamic adaptive chemistry (DAC) with operator splitting schemes to solve the equations governing reactive flows is developed and demonstrated. Strang-based splitting schemes are used to separate the governing equations into transport fractional substeps and chemical reaction fractional substeps. The DAC method expedites the numerical integration of reaction fractional substeps by using locally valid skeletal mechanisms that are obtained using the directed relation graph (DRG) reduction method to eliminate unimportant species and reactions from the full mechanism. Second-order temporal accuracy of the Strang-based splitting schemes with DAC is demonstrated on one-dimensional, unsteady, freely-propagating, premixed methane/air laminar flames with detailed chemical kinetics and realistic transport. The use of DAC dramatically reduces the CPU time required to perform the simulation, and there is minimal impact on solution accuracy. It is shown that with DAC the starting species and resulting skeletal mechanisms strongly depend on the local composition in the flames. In addition, the number of retained species may be significant only near the flame front region where chemical reactions are significant. For the one-dimensional methane/air flame considered, speed-up factors of three and five are achieved over the entire simulation for GRI-Mech 3.0 and USC-Mech II, respectively. Greater speed-up factors are expected for larger chemical kinetics mechanisms.

  16. Combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of cervix.

    PubMed

    Zhang, Xuyin; Han, Tiantian; Ding, Jingxin; Hua, Keqin

    2015-01-01

    The aim of this study was to introduce a new technique which is combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of cervix and to evaluate the feasibility and the safety of it. This is a prospective observational study of 10 patients with congenital atresia of cervix who underwent combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft for cervicovaginal reconstruction from February 2013 to August 2014 in our hospital. All of the surgical procedures were carried out by the same operation team. Patient data were collected including operating time, estimated blood loss, hospital stay post-surgery, complications, total cost, and median vaginal length at 3 month, resumption of menstruation, vaginal stenosis and stricture of the cervix postoperatively. The operative procedure lasted 237±46 (175-380) min. The estimated blood loss was 160±76 (50-300) ml. The hospital stay post-surgery was 12±2 (9-18) days. None of the patients had complications or required a blood transfusion. The mean total cost was $3352±1025. The average vaginal length at 3 month was 8.3±1.1 (8-10) cm. All patients had resumption of menstruation. The patients were followed for a mean of 5±2 (1-10) months. Cervical or vaginal stenosis did not occur in any of the patients. Our experiences of combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in10 patients with congenital atresia of cervix were positive, with successful results and without complications, and cervical or vaginal stenosis.

  17. Combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of cervix

    PubMed Central

    Zhang, Xuyin; Han, Tiantian; Ding, Jingxin; Hua, Keqin

    2015-01-01

    Objective: The aim of this study was to introduce a new technique which is combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in patients with congenital atresia of cervix and to evaluate the feasibility and the safety of it. Methods: This is a prospective observational study of 10 patients with congenital atresia of cervix who underwent combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft for cervicovaginal reconstruction from February 2013 to August 2014 in our hospital. All of the surgical procedures were carried out by the same operation team. Patient data were collected including operating time, estimated blood loss, hospital stay post-surgery, complications, total cost, and median vaginal length at 3 month, resumption of menstruation, vaginal stenosis and stricture of the cervix postoperatively. Results: The operative procedure lasted 237±46 (175-380) min. The estimated blood loss was 160±76 (50-300) ml. The hospital stay post-surgery was 12±2 (9-18) days. None of the patients had complications or required a blood transfusion. The mean total cost was $3352±1025. The average vaginal length at 3 month was 8.3±1.1 (8-10) cm. All patients had resumption of menstruation. The patients were followed for a mean of 5±2 (1-10) months. Cervical or vaginal stenosis did not occur in any of the patients. Conclusions: Our experiences of combined laparoscopic and vaginal cervicovaginal reconstruction using split thickness skin graft in10 patients with congenital atresia of cervix were positive, with successful results and without complications, and cervical or vaginal stenosis. PMID:26309703

  18. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  19. A deterministic aggregate production planning model considering quality of products

    NASA Astrophysics Data System (ADS)

    Madadi, Najmeh; Yew Wong, Kuan

    2013-06-01

    Aggregate Production Planning (APP) is a medium-term planning which is concerned with the lowest-cost method of production planning to meet customers' requirements and to satisfy fluctuating demand over a planning time horizon. APP problem has been studied widely since it was introduced and formulated in 1950s. However, in several conducted studies in the APP area, most of the researchers have concentrated on some common objectives such as minimization of cost, fluctuation in the number of workers, and inventory level. Specifically, maintaining quality at the desirable level as an objective while minimizing cost has not been considered in previous studies. In this study, an attempt has been made to develop a multi-objective mixed integer linear programming model that serves those companies aiming to incur the minimum level of operational cost while maintaining quality at an acceptable level. In order to obtain the solution to the multi-objective model, the Fuzzy Goal Programming approach and max-min operator of Bellman-Zadeh were applied to the model. At the final step, IBM ILOG CPLEX Optimization Studio software was used to obtain the experimental results based on the data collected from an automotive parts manufacturing company. The results show that incorporating quality in the model imposes some costs, however a trade-off should be done between the cost resulting from producing products with higher quality and the cost that the firm may incur due to customer dissatisfaction and sale losses.

  20. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

Top