Science.gov

Sample records for multi-qubit ghz state

  1. Quantum teleportation through noisy channels with multi-qubit GHZ states

    NASA Astrophysics Data System (ADS)

    Espoukeh, Pakhshan; Pedram, Pouria

    2014-08-01

    We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for -qubit GHZ states where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than GHZ state under most noisy channels. However, GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in direction in which the fidelity remains unchanged. We explicitly show that Jung et al.'s conjecture (Phys Rev A 78:012312, 2008), namely "average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels," is not valid for 3GHZ and 4GHZ states.

  2. Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong

    2011-12-01

    We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.

  3. Quantum Teleportation of Three and Four-Qubit State Using Multi-qubit Cluster States

    NASA Astrophysics Data System (ADS)

    Li, Yuan-hua; Li, Xiao-lan; Nie, Li-ping; Sang, Ming-huang

    2016-03-01

    We provide various schemes for quantum teleportation by using the four and five qubit cluster states. Explicit protocols for the perfect quantum teleportation of three and four qubit states are illustrated. It is found that the four-qubit cluster state can be used for perfect quantum teleportation of a special form of three-qubit state and the five-qubit cluster state can be used for perfect quantum teleportation of a special form of four-qubit state.

  4. Demonstrating Multi-Qubit Operations in a Superconducting 3D circuit QED Architecture

    NASA Astrophysics Data System (ADS)

    Paik, Hanhee; Sandberg, M. O.; Mezzacapo, A.; McClure, D. T.; Abdo, B.; Dial, O. E.; Cross, A. W.; Corcoles, A. D.; Sheldon, S.; Magesan, E.; Srinivasan, S. J.; Gambetta, J. M.; Chow, J. M.; Bogorin, D.; Plourde, B. L. T.

    We present our recent results on multi-qubit operations in a superconducting 3D circuit QED (cQED) system using a resonator-induced phase (RIP) gate. In our system, four qubits are coupled by a single bus resonator. The RIP gate is implemented by applying a microwave pulse to the bus that performs entangling operations. We demonstrate controlled-phase gates using RIP on 2-qubit subsystems with gate fidelities between 95%-97% evaluated by randomized benchmarking. Via a multi-qubit echo scheme, we perform isolated two-qubit interactions in the full 4-qubit system to generate a GHZ state. We acknowledge support from IARPA under Contract W911NF-10-1-0324.

  5. Generation of multi-qubit entanglement in a superconducting quantum circuit by parallelized parity measurements

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Riste', Diego; Huang, Meng-Zi; Bruno, Alessandro; Vesterinen, Visa; Saira, Olli-Pentti; Dicarlo, Leonardo

    2015-03-01

    We present the generation of multi-qubit entanglement using parallelized ancilla-based parity measurements in a five qubit superconducting processor. Two-qubit Bell states and three-qubit GHZ-type states are generated by single and double two-qubit parity measurements on superposition states, respectively, and characterized by both witnessing and state tomography. The protocol for generation of GHZ-type states can be used as the encoding step in the three-qubit bit-flip quantum error correction code, and made deterministic by digital feedback control. We assess its performance by state tomography of the six encoded cardinal states, and compare to the traditional method of encoding by gates. We acknowledge funding from NWO, FOM and EU FP7 project Scale QIT.

  6. Compiling quantum algorithms for architectures with multi-qubit gates

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Monz, Thomas; Nigg, Daniel; Schindler, Philipp; Blatt, Rainer

    2016-06-01

    In recent years, small-scale quantum information processors have been realized in multiple physical architectures. These systems provide a universal set of gates that allow one to implement any given unitary operation. The decomposition of a particular algorithm into a sequence of these available gates is not unique. Thus, the fidelity of the implementation of an algorithm can be increased by choosing an optimized decomposition into available gates. Here, we present a method to find such a decomposition, where a small-scale ion trap quantum information processor is used as an example. We demonstrate a numerical optimization protocol that minimizes the number of required multi-qubit entangling gates by design. Furthermore, we adapt the method for state preparation, and quantum algorithms including in-sequence measurements.

  7. Generation of a multi-qubit W entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays

    SciTech Connect

    Liu, Siping; Yu, Rong; Li, Jiahua; Wu, Ying

    2014-04-07

    Generating entangled states attract tremendous interest as the most vivid manifestation of nonlocality of quantum mechanics and also for emerging applications in quantum information processing (QIP). Here, we propose theoretically a scheme for the deterministic generation of a three-qubit W sate with three semiconductor quantum-dot-molecules (QDMs) trapped in spatially separated cavities connected by optical fibers. The proposed scheme takes full advantage of the voltage-controlled tunnelling effects in QDMs, which induces the quantum coherence and further controls the generation of the W entangled state. The influences of the system parameters and various decoherence processes including spontaneous decay and photon leakage on the fidelity of the W state are discussed in details. Numerical results indicate that our scheme is not only robust against these decoherence factors but also insensitive to the deviation of the system parameters from the ideal conditions. Furthermore, the present scheme can be directly extended to realize an N-qubit W state. Also, this scheme can be generically transferred to other physical systems, including circuit quantum electrodynamics and photonic crystal cavities. The results obtained here may be useful in real experiments for realizing QIP in a solid-state platform.

  8. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  9. Pairwise Quantum Discord for a Symmetric Multi-Qubit System in Different Types of Noisy Channels

    NASA Astrophysics Data System (ADS)

    Guo, You-Neng; Zeng, Ke; Wang, Guo-You

    2016-06-01

    We study the pairwise quantum discord (QD) for a symmetric multi-qubit system in different types of noisy channels, such as phase-flip, amplitude damping, phase-damping, and depolarizing channels. Using the QD and geometric quantum discord (GMQD) to quantify quantum correlations, some analytical and numerical results are presented. The results show that, the QD dynamics is strongly related to the number of spin particles N as well as the initial parameter 𝜃 of the one-axis twisting collective state. With the number of spin particles N increasing, the amount of the QD increases. However, when the amount of the QD arrives at a stable maximal value, the QD is independence of the number of spin particles N increasing. The behavior of the QD is symmetrical during a period 0 ≤ 𝜃 ≤ 2 π. Moreover, we compare the QD dynamics with the GMQD for a symmetric multi-qubit system in different types of noisy channels.

  10. Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2016-10-01

    We provide generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Using quantum Tsallis entropy of order q, we first provide a generalized monogamy inequality of multi-qubit entanglement for q = 2 or 3. This generalization encapsulates the multi-qubit CKW-type inequality as a special case. We further provide a generalized polygamy inequality of multi-qubit entanglement in terms of Tsallis- q entropy for 1 ≤ q ≤ 2 or 3 ≤ q ≤ 4, which also contains the multi-qubit polygamy inequality as a special case.

  11. Entanglement and quantum teleportation via decohered tripartite entangled states

    SciTech Connect

    Metwally, N.

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  12. Multiple teleportation via partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen

    2016-08-01

    Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

  13. Decay of N-qubit GHZ states in Pauli channels

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Yu; Wang, Ting-Ting

    2015-08-01

    An N-qubit Greenberger-Horne-Zeilinger (GHZ) state has many applications in various quantum information tasks and can be realized in different experimental schemes. A GHZ diagonal state evolves to another GHZ diagonal state in independent parallel Pauli channels. We give the explicit expression of the resultant GHZ diagonal state in terms of the initial state and channel parameters. If the initial state is a pure N qubit GHZ state or a three-qubit GHZ diagonal state admits a condition, the full separability criterion of the Pauli noisy state is equivalent to positive partial transpose (PPT) criterion. Thus the fully separable condition follows. Project supported by the National Natural Science Foundation of China (Grant No. 11375152).

  14. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    NASA Astrophysics Data System (ADS)

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  15. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    PubMed Central

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-01-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605

  16. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.

    PubMed

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-27

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  17. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.

    PubMed

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-01-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605

  18. Multifrequency multi-qubit entanglement based on plasmonic hot spots

    PubMed Central

    Ren, Jun; Wu, Tong; Zhang, Xiangdong

    2015-01-01

    The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051

  19. Realization of GHZ states and the GHZ test via cavity QED

    NASA Astrophysics Data System (ADS)

    Guerra, E. S.

    2005-09-01

    In this article we discuss the realization of atomic GHZ states involving three-level atoms and we show explicitly how to use this state to perform the GHZ test in which it is possible to decide between local realism theories and quantum mechanics. The experimental realizations proposed make use of the interaction of the Rydberg atoms with a cavity prepared in a coherent state.

  20. Modular cryogenic interconnects for multi-qubit devices.

    PubMed

    Colless, J I; Reilly, D J

    2014-11-01

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  1. Modular cryogenic interconnects for multi-qubit devices

    SciTech Connect

    Colless, J. I.; Reilly, D. J.

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with −3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  2. Asymptotic entanglement transformation between W and GHZ states

    SciTech Connect

    Vrana, Péter; Christandl, Matthias

    2015-02-15

    We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.

  3. Generation of GHZ states with invariant-based shortcuts

    NASA Astrophysics Data System (ADS)

    Ye, Li-Xiang; Lin, Xiu; Chen, Xiang; He, Juan; Yang, Rong-Can; Liu, Hong-Yu

    2016-07-01

    A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis-Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

  4. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    NASA Astrophysics Data System (ADS)

    Paz-Silva, Gerardo A.; Lee, Seung-Woo; Green, Todd J.; Viola, Lorenza

    2016-07-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols.

  5. Tunable All-Solid-State Local Oscillators to 1900 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran

    2004-01-01

    We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.

  6. The 20 GHz spacecraft FET solid state transmitter

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.

  7. Controlled Teleportation of a Qudit State by Partially Entangled GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Jin-wei; Shu, Lan; Mo, Zhi-wen; Zhang, Zhi-hua

    2014-08-01

    In this paper, we propose a controlled teleportation scheme which communicates an arbitrary ququart state via two sets of partially entangled GHZ state. The necessary measurements and operations are given detailedly. Furthmore the scheme is generalized to teleport a qudit state via s sets of partially entangled GHZ state.

  8. Microwave interferometer using 94-GHz solid-state sources

    SciTech Connect

    Coffield, F.E.; Thomas, S.R.; Lang, D.D.; Stever, R.D.

    1983-11-14

    A 94-GHz microwave interferometer has been designed for the Tandem Mirror Experiment Upgrade and the Mirror Fusion Test Facility to replace the 140-GHz system. The new system is smaller and has modular single-channel units designed for high reliability. It is magnetically shielded and can be mounted close to the machine, which allows the use of lower power solid-state sources. Test results of the 94-GHz prototype indicate that the phase resolution is better than 1/sup 0/, the Impatt FM noise is 5 MHz wide, and the Gunn FM noise is 6 kHz wide. This paper presents the antenna designs along with the test results and discusses the unique problems associated with diagnosing a high electron temperature plasma in the presence of electron cyclotron resonant heating.

  9. Semi-quantum information splitting using GHZ-type states

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Li, Yuan-hua; Wang, Zi-sheng

    2013-01-01

    By using a generalized Greenberger-Horne-Zeilinger (GHZ) state in which is locally unitarily connected with standard GHZ state as a communication channel, semi-quantum key distribution is extended to study semi-quantum information splitting protocols for secret sharing of quantum information. In our scheme, quantum Alice splits arbitrary two, three and N-qubit states with two classical parties, Bob and Charlie, in a way that both parties are sufficient to reconstruct Alice's original states only under the condition of which she/he obtains the help from another one, but one of them cannot. The presented protocols are helpful for both secure against certain eavesdropping attacks and economical in processing of quantum information.

  10. Gap protection and dynamical decoupling for reliable multi-qubit gates

    NASA Astrophysics Data System (ADS)

    Witzel, Wayne

    2014-03-01

    We propose a scheme for producing multi-qubit gates by adiabatically shuttling an electron between donors in silicon to produce operations that are diagonal in the computational basis. Exploiting the commutation of these diagonal operations, we can use single-qubit refocusing gates to cancel the sensitivity to low-frequency noise and details of the shuttling. This strategy of cancelling unwanted portions of an adiabatic process to build up robust multi-qubit operations could be applied to other systems. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8.

  11. Bidirectional Quantum States Sharing

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-qiang; Mo, Zhi-Wen

    2016-05-01

    With the help of the shared entanglement and LOCC, multidirectional quantum states sharing is considered. We first put forward a protocol for implementing four-party bidirectional states sharing (BQSS) by using eight-qubit cluster state as quantum channel. In order to extend BQSS, we generalize this protocol from four sharers to multi-sharers utilizing two multi-qubit GHZ-type states as channel, and propose two multi-party BQSS schemes. On the other hand, we generalize the three schemes from two senders to multi-senders with multi GHZ-type states of multi-qubit as quantum channel, and give a multidirectional quantum states sharing protocol. In our schemes, all receivers can reconstruct the original unknown single-qubit state if and only if all sharers can cooperate. Only Pauli operations, Bell-state measurement and single-qubit measurement are used in our schemes, so these schemes are easily realized in physical experiment and their successful probabilities are all one.

  12. Quantum Teleportation of a Two Qubit State Using GHZ- Like State

    NASA Astrophysics Data System (ADS)

    Nandi, Kaushik; Mazumdar, Chandan

    2014-04-01

    Recently Yang et al. (Int. J. Theor. Phys. 48:516, 2009) had shown that using a particular type of GHZ- Like state as quantum channel, it is possible to teleport an arbitrary unknown qubit. We investigate this channel for the teleportation of a particular type of two qubit state.

  13. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-07-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  14. Bidirectional teleportation of a pure EPR state by using GHZ states

    NASA Astrophysics Data System (ADS)

    Hassanpour, Shima; Houshmand, Monireh

    2016-02-01

    In the present paper, a novel bidirectional quantum teleportation protocol is proposed. By using entanglement swapping technique, two GHZ states are shared as a quantum channel between Alice and Bob as legitimate users. In this scheme, based on controlled-not operation, single-qubit measurement, and appropriate unitary operations, two users can simultaneously transmit a pure EPR state to each other, While, in the previous protocols, the users can just teleport a single-qubit state to each other via more than four-qubit state. Therefore, the proposed scheme is economical compared with previous protocols.

  15. Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement

    NASA Astrophysics Data System (ADS)

    Dong, Li; Xiu, Xiao-Ming; Gao, Ya-Jun; Ren, Yuan-Peng; Liu, Hui-Wei

    2011-02-01

    We present a controlled three-party communication protocol using Greenberger-Horne-Zeilinger (GHZ)-like state and imperfect Bell-state measurement. Using the idea of controlled quantum teleportation, it can realize the secret information transmission between the legitimate participants under the control of the controller. It needs no unitary operation to recover the original state for the receiver, and it saves half of communication cost publicized by the sender. The order rearrangement of particles and data block transmission ensure the security of communication. With imperfect Bell-state measurement, it is tolerant of some noise effects and is feasible by using the present optical technique.

  16. Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liu, Xing-tong; Wang, Jian; Tang, Chao-jing

    2016-03-01

    Recently Zhu (Int. J. Theor. Phys. 53, 4095, 2014) had shown that using GHZ-like states as quantum channel, it is possible to teleport an arbitrary unknown two-qubit state. We investigate this channel for the teleportation of an arbitrary N-qubit state. The strict proof through mathematical induction is presented and the rule for the receiver to reconstruct the desired state is explicitly derived in the most general case. We also discuss that if a system of quantum secret sharing of classical message is established, our protocol can be transformed to a N-qubit perfect controlled teleportation scheme from the controller's point of view.

  17. Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hwang, Tzonelih

    2016-09-01

    Recently, Yang and Hwang (Quantum Inf. Process. 13(3): 781-794, 19) proposed two fault-tolerant QKD protocols based on their proposed coding functions for resisting the collective noise, and their QKD protocols are free from Trojan horse attack without employing any specific detecting devices (e.g., photon number splitter (PNS) and wavelength filter). By using four-particle Greenberger-Horne-Zeilinger (GHZ) state and four-particle GHZ-like state in their proposed coding functions, Yang and Hwang's QKD protocols can resist each kind of the collective noise-collective-dephasing noise, collective-rotation noise. However, their proposed coding function can be improved by the utilization of three-particle GHZ state (three-particle GHZ-like state) instead of four-particle GHZ state (four-particle GHZ-like state) that will eventually reduce the consumption of the qubits. As a result, this study proposed the improved version of Yang and Hwang's coding functions to enhance the qubit efficiency of their schemes from 20 % to 22 %.

  18. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities

    PubMed Central

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-01-01

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the “Lewis-Riesenfeld (LR) invariants” in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems. PMID:27216575

  19. Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bin; Zhou, Xiao-Yan; An, Xing-xing; Cui, Meng-Meng; Fu, De-sheng

    2016-08-01

    A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.

  20. Quantum Information Splitting of Arbitrary Three-qubit State by Using Five-qubit Cluster state and GHZ-state

    NASA Astrophysics Data System (ADS)

    Yin, Aihan; Wang, Jiwei

    2016-09-01

    In this paper, a new scheme of quantum information splitting (8QIS) by using five-qubit state and GHZ-state as quantum channel is proposed. The sender Alice performs Bell-state measurements (BSMs) on her qubit-pairs respectively,then tells her measurement result to the receivers Bob. If Bob wants to reconstruct the original states, he must cooperates with the controller Charlie, that Charlie performs two single particle measurement on his qubits and tells Bob the results. According to Alice's and Bob's results, Bob can reconstruct the initial state by applying appropriate unitary operation.

  1. Generation of a three-qudit GHZ state with diamond defect spins

    NASA Astrophysics Data System (ADS)

    Hebbache, M.

    2016-07-01

    Diamond defect spins have emerged as potential qudits (d-dimensional quantum bit) in quantum information and quantum computing. A new scheme is proposed for realizing entangled states of GHZ (Greenberger-Horne-Zeilinger) class in a 3-qudit solid-state register. The qudits are the electron spin-1 carried by the negatively charged nitrogen-vacancy color center (NV-1) in diamond and the nuclear spin-\\frac{1}{2} of two carbon-13 impurities in the first neighbour shell. Multipartite entanglements between qudits are obtained by bringing the spin system in the vicinity of a level anticrossing. The degree of entanglement between all three qudits is quantified rigorously. GHZ and GHZ-like entangled states have applications in quantum communication and computation protocols.

  2. Composite multi-qubit gates dynamically corrected against charge noise and magnetic field noise for singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Barnes, Edwin; Wang, Xin; Bishop, Lev; Das Sarma, Sankar

    2013-03-01

    We use previously described single-qubit SUPCODE pulses on both intra-qubit and inter-qubit exchange couplings, integrated with existing strategies such as BB1, to theoretically construct a CNOT gate that is robust against both charge noise and magnetic field gradient fluctuations. We show how this allows scalable, high-fidelity implementation of arbitrary multi-qubit operations using singlet-triplet spin qubits in the presence of experimentally realistic noise. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  3. A Novel Quantum Blind Signature Scheme with Four-particle GHZ States

    NASA Astrophysics Data System (ADS)

    Fan, Ling; Zhang, Ke-Jia; Qin, Su-Juan; Guo, Fen-Zhuo

    2016-02-01

    In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by using four-particle entangled Greenberger-Horne-Zeilinger (GHZ) states. By using the special relationship of four-particle GHZ states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

  4. Two-party quantum key agreement based on four-particle GHZ states

    NASA Astrophysics Data System (ADS)

    He, Ye-Feng; Ma, Wen-Ping

    2016-04-01

    Based on four-particle GHZ states, the double CNOT operation and the delayed measurement technique, a two-party quantum key agreement (QKA) protocols is proposed. The double CNOT operation makes each four-particle GHZ state collapse into two independent quantum states without any entanglement. Furthermore, one party can directly know the two quantum states and the other party can be aware of the two quantum states by using the corresponding measurement. According to the initial states of the two quantum states, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Then the protocol achieves the fair establishment of a shared key. The security analysis shows that the new protocol can resist against participant attacks, the Trojan horse attacks and other outsider attacks. Furthermore, the new protocol also has no information leakage problem and has high qubit efficiency.

  5. A 32-GHz solid-state power amplifier for deep space communications

    NASA Technical Reports Server (NTRS)

    Wamhof, P. D.; Rascoe, D. L.; Lee, K. A.; Lansing, F. S.

    1994-01-01

    A 1.5-W solid-state power amplifier (SSPA) has been demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 35 GHz for future deep space missions. Output power and efficiency measurements for a monolithic millimeter-wave integrated circuit (MMIC)-based SSPA are reported. Technical design details for the various modules and a thermal analysis are discussed, as well as future plans.

  6. Quantum dialogue protocols over collective noise using entanglement of GHZ state

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hzu, Geng-Rong; Hwang, Tzonelih; Kao, Shih-Hung

    2016-07-01

    In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.

  7. Deterministic generation of many-photon GHZ states using quantum dots in a cavity

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Erementchouk, Mikhail

    2014-05-01

    Compared to classical light sources, quantum sources based on N00N states consisting of N photons achieve an N-times higher phase sensitivity, giving rise to super-resolution.1, 2, 3 N00N-state creation schemes based on linear optics and projective measurements only have a success probability p that decreases exponentially with N,4, 5, 6 e.g. p = 4.4x10-14 for N = 20.7 Feed-forward improves the scaling but N fluctuates nondeterministically in each attempt.8, 9 Schemes based on parametric down-conversion suffer from low production efficiency and low fidelity.9 A recent scheme based on atoms in a cavity combines deterministic time evolution, local unitary operations, and projective measurements.10 Here we propose a novel scheme based on the off-resonant interaction of N photons with four semiconductor quantum dots (QDs) in a cavity to create GHZ states, also called polarization N00N states, deterministically with p = 1 and fidelity above 90% for N<= 60, without the need of any projective measurement or local unitary operation. Using our measure we obtain maximum N-photon entanglement EN = 1 for arbitrary N. Our method paves the way to the miniaturization of N00N and GHZ-state sources to the nanoscale regime, with the possibility to integrate them on a computer chip based on semiconductor materials.

  8. Deterministic Secure Quantum Communication and Authentication Protocol based on Extended GHZ-W State and Quantum One-time Pad

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao

    2016-08-01

    A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state | φ -> is used as the carrier. One photon of | φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.

  9. All-solid-state radiometers for environmental studies to 700 GHz

    NASA Technical Reports Server (NTRS)

    Zimmermann, Ralph; Zimmermann, Ruediger; Zimmermann, Peter

    1992-01-01

    We report results with an all-solid-state radiometer for measurements of the ClO molecule at 649 GHz. The project is part of a program to provide low-noise, low-weight, low-power radiometers for space operation, and special effort has been expended on the development of high-efficiency solid-state frequency multipliers and Schottky-barrier mixers with low local oscillator power requirements. The best measured system noise temperature was 1750 K with the mixer and preamplifier cooled to 77 K. The mixer diode was easily pumped into saturation, indicating that the design has excellent prospects of operating at higher frequencies - our present design goal being 1 THz. We comment on the principal design features of such systems and will report on stratospheric measurements performed with this system.

  10. The 20 GHz solid state transmitter design, impatt diode development and reliability assessment

    NASA Technical Reports Server (NTRS)

    Picone, S.; Cho, Y.; Asmus, J. R.

    1984-01-01

    A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.

  11. The 30 GHz solid state amplifier for low cost low data rate ground terminals

    NASA Technical Reports Server (NTRS)

    Ngan, Y. C.; Quijije, M. A.

    1984-01-01

    This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.

  12. Teleportation of GHZ-States in QED-Cavities without the Explicit Bell-State Measurement

    NASA Astrophysics Data System (ADS)

    Cardoso, W. B.

    2008-04-01

    In this paper we show how to teleport N-entangled states of N-QED-cavities without Bell-state measurements. The method has potential application in teleportation schemes requiring multipartite entanglements. The success probability and fidelity of the teleportation are also considered.

  13. Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Ming; Qu, Zhi-Guo

    2016-08-01

    Quantum secure communication brings a new direction for information security. As an important component of quantum secure communication, deterministic joint remote state preparation (DJRSP) could securely transmit a quantum state with 100 % success probability. In this paper, we study how the efficiency of DJRSP is affected when qubits involved in the protocol are subjected to noise or decoherence. Taking a GHZ-based DJRSP scheme as an example, we study all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise. Our study shows that the fidelity of the output state depends on the phase factor, the amplitude factor and the noise parameter in the bit-flip noise, while the fidelity only depends on the amplitude factor and the noise parameter in the other three types of noise. And the receiver will get different output states depending on the first preparer's measurement result in the amplitude-damping noise. Our results will be helpful for improving quantum secure communication in real implementation.

  14. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  15. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  16. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  17. Controlled Deterministic Secure Quantum Communication Protocol Based on Three-Particle GHZ States in X-Basis

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-03-01

    A controlled deterministic secure quantum communication (CDSQC) protocol is proposed based on three-particle GHZ state in X-basis. Only X-basis and Z1Z2X3-basis (composed of Z-basis and X-basis) measurement are required, which makes the scheme more convenient than others in practical applications. By distributing a random key between both sides of the communication and performing classical XOR operation, we realize a one-time-pad scheme, therefore our protocol achieves unconditional secure. Because only user with legitimate identity string can decrypt the secret, our protocol can resist man-in-the middle attack. The three-particle GHZ state in X-basis is used as decoy photons to detect eavesdropping. The detection rate reaches 75% per qubit. Supported by the National Natural Science Foundation of China under Grant No. 61402058, Science and Technology, Sichuan Province of China under Grant No. 2013GZX0137, Fund for Young Persons Project of Sichuan Province of China under Grant No. 12ZB017, and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions under Grant No. szjj2014-074

  18. Quantum Fisher information of the GHZ state due to classical phase noise lasers under non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin

    2016-08-01

    The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).

  19. Torsional Splitting in the Rotational Spectrum from 8 TO 650 GHz of the Ground State of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Margules, L.; Motiyenko, R. A.; Groner, P.; De Chirico, F.; Turk, A.; Cooke, S. A.

    2013-06-01

    Measurements on the rotational spectrum of 1,1-difluoroacetone have been extended from the cm-wave region into the mm-wave region. Measurements between 150 GHz and 600 GHz were performed a t Lille at room temperature. About 2000 transitions have been added to the known line listing for the ground state. The range of J and K_{-1} values, for both the A and E torsional substates, now span 1 - 60 and 0 - 30, respectively. Analysis of the cm-wave spectrum was only possible using the Watson S-reduced Hamiltonian, with the A-reduction producing a poor spectral fit. For that analysis only quartic centrifugal distortion terms were required. With the newly recorded higher J and K_{-1} measurements it is necessary to expand the Hamiltonian to now include sextic and octic centrifugal distortion terms. This should allow us to extend the assignment to even higher J and K_{-1} and perhaps to shed more light into failure of the A-reduction Hamiltonian to achieve a satisfactory fit for the cm-wave transitions. The effective barrier to methyl group internal rotation has been determined more accurately. G. S. Grubbs II, P. Groner, S. E. Novick and S. A. Cooke J. Mol. Spectrosc. {280} 21-26, 2012.

  20. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†

    PubMed Central

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.

    2015-01-01

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  1. Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state

    NASA Astrophysics Data System (ADS)

    Chakrabarty, I.

    2010-04-01

    In this work we study a state which is a random mixture of a two qubit subsystem of a N-qubit W state and GHZ state. We analyze several possibilities like separability criterion (Peres-Horodecki criterion [M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996); A. Peres, Phys. Rev. Lett. 77, 1413 (1996)]), non violation of Bell’s inequality [J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 80 (1969)] (M(ρ)<1) and teleportation fidelity [N. Gisin, Phys. Lett. A 210, 157 (1996); R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995); S. Massar, S. Popescu, Phys. Rev. Lett. 74, 1259 (1995); S. Popescu, Phys. Rev. Lett. 72, 797 (1994); C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)] (F_{max}>2/3) for this state. We also obtain a relationship between N (number of qubits) and p (the classical probability of random mixture) for each of these possibilities. Finally we present a detailed analysis of all these possibilities for N=3,4,5 qubit systems. We also report that for N=3 and pin(0.75,1], this entangled state can be used as a teleportation channel without violating Bell’s inequality.

  2. Preparation of W, GHZ, and two-qutrit states using bimodal cavities

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Agarwal, G. S.

    2004-11-01

    We show how one can prepare three-qubit entangled states like W-states, Greenberger-Horne-Zeilinger states as well as two-qutrit entangled states using the multi-atom two-mode entanglement. We propose a technique of preparing such a multi-particle entanglement using stimulated Raman adiabatic passage. We consider a collection of three-level atoms in Λ configuration simultaneously interacting with a resonant two-mode cavity for this purpose. Our approach permits a variety of multi-particle extensions.

  3. Optimal Remote Preparation of a Four-Qubit Entangled Cluster-Type State Via Two Non-Maximally Entangled GHZ-Type States

    NASA Astrophysics Data System (ADS)

    Wang, Zhang-yin; Wang, Dong; Han, Lian-fang

    2016-10-01

    We devise an highly efficient protocol for remotely preparing a four-qubit entangled cluster-type state. In this protocol, two non-maximally entangled GHZ-type states are employed to link the sender Alice and the receiver Bob, and the to-be-prepared state can be reconstructed successfully with the probability of ( b 1 b 2)2 in general case. Then to achieve our concerns of constructing efficient remote preparation with higher success probability, some special ensembles of four-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to twice or even fourfold as that in general case.

  4. Optimal Remote Preparation of a Four-Qubit Entangled Cluster-Type State Via Two Non-Maximally Entangled GHZ-Type States

    NASA Astrophysics Data System (ADS)

    Wang, Zhang-yin; Wang, Dong; Han, Lian-fang

    2016-06-01

    We devise an highly efficient protocol for remotely preparing a four-qubit entangled cluster-type state. In this protocol, two non-maximally entangled GHZ-type states are employed to link the sender Alice and the receiver Bob, and the to-be-prepared state can be reconstructed successfully with the probability of (b 1 b 2)2 in general case. Then to achieve our concerns of constructing efficient remote preparation with higher success probability, some special ensembles of four-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to twice or even fourfold as that in general case.

  5. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    SciTech Connect

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-12-09

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of {approx}4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  6. First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Ding, B. J.; Li, J. G.; Wan, B. N.; Shan, J. F.; Wang, M.; Liu, L.; Zhao, L. M.; Li, M. H.; Li, Y. C.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Huang, Y. Y.; Wei, W.; Cheng, M.; Xu, L.; Zang, Q.; Lyu, B.; Lin, S. Y.; Duan, Y. M.; Wu, J. H.; Peysson, Y.; Decker, J.; Hillairet, J.; Ekedahl, A.; Luo, Z. P.; Qian, J. P.; Shen, B.; Gong, X. Z.; Hu, L. Q.; the EAST Team

    2015-11-01

    A 4.6 GHz lower-hybrid current drive (LHCD) system has been firstly commissioned in EAST in the 2014 campaign. The first LHCD results with 4.6 GHz show that LHW can be coupled to plasma with a low reflection coefficient, drive plasma current and plasma rotation, modify the plasma current profile, and heat plasma effectively. By means of configuration optimization and local gas puffing near the LHW antenna, good LHW-plasma coupling with a reflection coefficient less than 5% is obtained. The maximum LHW power coupled to plasma is up to 3.5 MW. The current drive (CD) efficiency is up to 1.1  ×  1019 A m-2 W-1 and the central electron temperature is above 4 keV, suggesting that LH power could be mainly deposited in the core region, which is in agreement with code simulation. Experiments show that the current profile is effectively modified and toroidal rotation in the co-current direction is driven by the LHCD. Also, the CD efficiency and current profile depend on the launched wave spectrum, suggesting the possibility of controlling the current profile by changing the phase difference. Repeatable H-mode plasma is obtained by either the 4.6 GHz LHCD system alone, or together with a 2.45 GHz LHCD system, the NBI (neutral beam injection) system. The different ELM features of H-mode between the different heating methods are under investigation.

  7. 30/20 GHz spacecraft GaAs FET solid state transmitter for trunking and customer-premise-service application

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Nelson, S.

    1983-01-01

    Sixteen 30 dB 0.5 W amplifier modules were combined to satisfy the requirement for a graceful degradation. If one module fails, the output power drops by only 0.43 dB. Also, by incorporating all the gain stages within the combiner the overall combining efficiency is maximized. A 16 way waveguide divider combiner was developed to minimize the insertion loss associated with such a large corporate feed structure. Tests showed that the 16 way insertion loss was less than 0.5 dB. To minimize loss, a direct transition from waveguide to microstrip, using a finline on duroid substrate, was developed. The FETs fabricated on MBE grown material, demonstrated superior performances. For example, a 600 micrometer device was capable of 320 mW output power with 5 dB gain and 26.6% efficiency at 21 GHz. The 16 module amplifier gave 8.95 W saturated output power with 30 dB gain. The overall efficiency was 9%. The 3 dB bandwidth was 2.5 GHz. At 17.7 GHz the amplifier had 5 W output power and at 20.2 GHz it still had 4.4 W.

  8. The Torsional Fundamental Band and Rotational Spectra up to 940 GHz of the Ground, First and Second Excited Torsional States of Acetone

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.; Armieieva, Iuliia; Dorovskaya, Olga; Alekseev, E. A.; Tudorie, Marcela; Motiyenko, R. A.; Margulès, L.; Pirali, Olivier; Drouin, Brian

    2016-06-01

    A new global study of the acetone (CH_3)_2CO spectrum is reported. The new microwave measurements covering the frequency range from 34 GHz to 940 GHz have been carried out using spectrometers in IRA NASU (Ukraine) and PhLAM Lille (France). The far infrared spectrum of acetone has been recorded on the AILES beamline of the synchrotron SOLEIL using a Fourier transform infrared spectrometer coupled to a long path cell. The transitions belonging to the three lowest torsional states as well as to the observed fundamental band associated with the methyl-top torsion mode (νb{17} = 1) have been analyzed using recently developed model for the molecules with two equivalent methyl rotors and C2v symmetry at equilibrium (PAM_C2v_2tops program). The dataset consisting of more than 26100 microwave and 1100 FIR line frequencies and including transitions with J up to 89 was fit using a model consisting of 119 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, J.T. Hougen J. Mol. Spectrosc. 289 (2013) 41-49.

  9. A 20-GHz IMPATT transmitter

    NASA Technical Reports Server (NTRS)

    Chan, J. L.; Sun, C.

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band. The development effort involved a variety of disciplines including IMPATT device development, circulator design, simple and multiple diode circuits designs, and amplifier integration and test.

  10. Multi-state Quantum Teleportation via One Entanglement State

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee

    2008-08-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.

  11. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    NASA Astrophysics Data System (ADS)

    Bodendorfer, M.; Wurz, P.; Hohl, M.

    2010-08-01

    For the first time, the charge state distribution inside the MEsskammer für FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar1+ to Ar5+ and in good agreement for Ar6+.

  12. Efficient three-qubit entangling (Toffoli) gates via excited states in qubit-cavity systems.

    NASA Astrophysics Data System (ADS)

    Reinecke, Thomas; Economou, Sophia; Solenov, Dmitry

    2014-03-01

    Efficient multi-qubit quantum operations are crucial for further development of quantum information processing using available physical designs. We report our results on efficient three-qubit entangling operations in qubit-cavity systems. The proposed gate design is based on non-commutativity of single-qubit pulse controls that can be achieved for systems in which auxiliary states above the qubit subspace are available. It does not rely on dynamical tuning of energy states, and, unlike traditional decomposition approaches, it provides efficiency comparable to that of a single control-NOT operation. We will focus on the transmon qubit systems, which have recently demonstrated coherence times suitable for multi-qubit computation. Other systems will also be discussed.

  13. Classification of GHZ-type, W-type, and GHZ-W-type multiqubit entanglement

    SciTech Connect

    Chen Lin; Chen Yixin

    2006-12-15

    We propose the concept of SLOCC-equivalent basis in the multiqubit space. In particular, two special SEBs, the Greenberger-Horne-Zeilinger-(GHZ-) type and the W-type basis are introduced. They can make up a more general family of multiqubit states, the GHZ-W-type states, which is a useful kind of entanglement for quantum teleportation and error correction. We completely characterize the property of this type of state, and mainly classify the GHZ-type and the W-type states in a regular way, which is related to the enumerative combinatorics. Many concrete examples are given to exhibit our method of classification. We also propose the condition on which two GHZ-W-type states are interconvertible with probability 1.

  14. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  15. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  16. 230 GHz VLBI Observations of M87: Event-horizon-scale Structure during an Enhanced Very-high-energy γ-Ray State in 2012

    NASA Astrophysics Data System (ADS)

    Akiyama, Kazunori; Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Broderick, Avery E.; Dexter, Jason; Hada, Kazuhiro; Kino, Motoki; Nagai, Hiroshi; Honma, Mareki; Johnson, Michael D.; Algaba, Juan C.; Asada, Keiichi; Brinkerink, Christiaan; Blundell, Ray; Bower, Geoffrey C.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Matt; Dzib, Sergio A.; Freund, Robert; Friberg, Per; Gurwell, Mark; Ho, Paul T. P.; Inoue, Makoto; Krichbaum, Thomas P.; Loinard, Laurent; MacMahon, David; Marrone, Daniel P.; Moran, James M.; Nakamura, Masanori; Nagar, Neil M.; Ortiz-Leon, Gisela; Plambeck, Richard; Pradel, Nicolas; Primiani, Rurik A.; Rogers, Alan E. E.; Roy, Alan L.; SooHoo, Jason; Tavares, Jonathan-León; Tilanus, Remo P. J.; Titus, Michael; Wagner, Jan; Weintroub, Jonathan; Yamaguchi, Paul; Young, Ken H.; Zensus, Anton; Ziurys, Lucy M.

    2015-07-01

    We report on 230 GHz (1.3 mm) very long baseline interferometry (VLBI) observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona, and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of the closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0° as expected by physically motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is ˜ 1× {10}10 K derived from the compact flux density of ˜1 Jy and the angular size of ˜40 μ {as} ˜ 5.5 {R}{{s}}, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within ˜ {10}2 {R}{{s}}. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) γ -ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of ˜20-60 {R}{{s}}.

  17. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2011-10-14

    Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm(-2)) had bactericidal effects on Escherichia coli. This EMI (1h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  18. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  19. Entanglement of Multi-qudit States Constructed by Linearly Independent Coherent States: Balanced Case

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Mirzaei, S.

    2016-03-01

    Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.

  20. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-01-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  1. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  2. Phase locking and frequency locking of a 140 GHz klystron and a 280 GHz carcinotron

    SciTech Connect

    Sprehn, D.W.; Rettig, C.L.; Luhmann, N.C. Jr. )

    1992-10-01

    A phase and frequency-locked loop to synchronize two microwave tube oscillators for a high density plasma collective scattering diagnostic has been designed, assembled, and tested. A Varian (VRT2121A16) reflex klystron was down converted by mixing with the eighth harmonic of a 17.437 GHz phase-locked Gunn oscillator, and the resulting baseband was used to lock the klystron phase to a 200 MHz crystal. The down-converted 140 GHz klystron frequency spectrum shows a linewidth {lt}50 Hz and sideband power {lt}50 dB below the carrier (dBc). Frequency locking of a Thomson CSF TH4224S 280 GHz carcinotron was performed and the klystron was then down converted by the stabilized carcinotron and phase locked to the 200 MHz crystal. The klystron would track the frequency excursions of the carcinotron when the system was perturbed by direct modulation with frequencies of up to 10 MHz and remained locked as long as modulation sidebands were kept {lt}15 dBc. The locked states of both configurations show 3 to 4 orders of magnitude improvement in short and long term stability over the unlocked states.

  3. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; Soderstrom, J. R.

    1991-01-01

    Oscillations have been obtained at frequencies from 100 to 712 GHz in InAs/AlSb double-barrier resonant-tunneling diodes at room temperature. The measured power density at 360 GHz was 90 W/sq cm, which is 50 times that generated by GaAs/AlAs diodes at essentially the same frequency. The oscillation at 712 GHz represents the highest frequency reported to date from a solid-state electronic oscillator at room temperature.

  4. Low temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides†

    PubMed Central

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2008-01-01

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rb. sphaeroides R-26.1, 2.4.1 and two double mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the ‘A’ and ‘B’ branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1 and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260) indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  5. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  6. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    PubMed

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  7. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    NASA Technical Reports Server (NTRS)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  8. A 492 GHz cooled Schottky receiver for radio-astronomy

    NASA Technical Reports Server (NTRS)

    Hernichel, J.; Schieder, R.; Stutzki, J.; Vowinkel, B.; Winnewisser, G.; Zimmermann, Peter

    1992-01-01

    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements.

  9. A 492 GHz cooled Schottky receiver for radio-astronomy

    NASA Astrophysics Data System (ADS)

    Hernichel, J.; Schieder, R.; Stutzki, J.; Vowinkel, B.; Winnewisser, G.; Zimmermann, Peter

    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements.

  10. Test results for 20-GHz GaAs FET spacecraft power amplifier

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.

    1985-01-01

    Test were conducted to measure the performance of the 20-GHz solid state, proof-of-concept amplifier. The amplifier operates over the 17.7 to 20.2-GHz frequency range and uses high power gallium arsenide field effect transistors. The amplifier design and test methods are briefly described. NASA and contractor performance data are compared.

  11. IMPATT power building blocks for 20 GHz spaceborne transmit amplifier

    NASA Technical Reports Server (NTRS)

    Asmus, J.; Cho, Y.; Degruyl, J.; Ng, E.; Giannakopoulos, A.; Okean, H. C.

    1982-01-01

    Single-stage circulator coupled IMPATT building block constituents of a 20-GHz solid state power amplifier (SSPA) currently under development for spaceborne downlink transmitter usage have been demonstrated as providing 1.5 to 2.0W RF power output at 4 to 5 dB operating gain over a 1 GHz bandwidth. Using either commercially available or recently developed in-house GaAs Schottky Read-profile IMPATT diodes, DC/RF power added efficiencies of 14 to 15% were achieved in these amplifier stages. A two stage IMPATT driver amplifier with similar RF output power capability exhibited 13 + or - 0.5 dB operating gain over a 1 GHz bandwidth.

  12. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  13. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    PubMed

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-01

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm.

  14. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    PubMed

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-01

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm. PMID:27505789

  15. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  16. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  17. Contact gating at GHz frequency in graphene

    PubMed Central

    Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-01-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates. PMID:26879709

  18. Contact gating at GHz frequency in graphene

    NASA Astrophysics Data System (ADS)

    Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-02-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates.

  19. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  20. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  1. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  2. A 17 GHz molecular rectifier

    NASA Astrophysics Data System (ADS)

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-10-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation.

  3. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  4. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    The design of a complete vector measurement system being tested over 560-635 GHz is presented. The topics include: 1) Current State-of-the-Art in Vector Measurements; 2) Submillimeter Active Imaging Requirements; 3) 600 GHz Vector Measurement System; 4) 450 MHz IF Signal; 5) 450 MHz IF signal @ 1 kHz Res. BW; 6) 450 MHz IF Signal Mixed with Shifted 450 MHz Reference Signal; 7) Reference Signal Offset Generator; 8) Cavity Bandpass Filter; 9) Miniature Multistage Helical Filter; 10) X36 450 MHz Multiplier; 11) 600 GHz Test Setup; 12) 600 GHz Transmit Module; 13) 600 GHz Receive Module; 14) Performance Tests: Amplitude Stability & Dynamic Range; 15) Performance Tests: Phase Stability; 16) Stability at Imaging Bandwidths; 17) Phase Measurement Verification; and 18) The Next Step: Imaging.

  5. The MALT 90 GHz Pilot Survey

    NASA Astrophysics Data System (ADS)

    Jackson, James; Rathborne, Jill; Muller, Erik; Cunningham, Maria; Brooks, Kate; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Longmore, Steven; Wyrowski, Friedrich; Walsh, Andrew; Peretto, Nicolas

    2009-04-01

    In early November, 2008, Australian and international Galactic astronomers met to plan future surveys of the Galactic plane with ATNF facilities. We intend to coordinate our efforts so that such surveys produce the maximum scientific return with minimal overlap in observations. To this end, the Millimetre Astronomers Large-area multi-Transition (MALT) team was formed. The MALT team has identified key Galactic plane surveys: a 42--50 GHz survey, a 90 GHz survey and a 115 GHz survey. In this proposal, we aim to conduct a pilot survey to explore options in the 90 GHz (3 mm) range. This pilot survey will provide detection rates, typical line strengths, and source sizes for various "finder charts" for high-mass star-forming cores. Such information is crucial for a rational design of a complete 90 GHz MALT survey.

  6. A 32-GHz phased array transmit feed for spacecraft telecommunications

    NASA Technical Reports Server (NTRS)

    Lee, K. A.; Rascoe, D. L.; Crist, R. A.; Huang, J.; Wamhof, P. D.; Lansing, F. S.

    1992-01-01

    A 21-element phased array transmit feed was demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 34 GHz for future deep-space missions. Antenna pattern measurements demonstrating electronic beam steering of the two-dimensional array are reported and compared with predictions based on measured performance of MMIC-based phase shifter and amplifier modules and Vivaldi slotline radiating elements.

  7. Next generation ECR ion sources: First results of the superconducting 28 GHz ECRIS VENUS

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Collins, D.; Dwinell, R. D.; Galloway, M. L.; Leitner, M.; Todd, D. S.

    2005-07-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (rare isotope accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 200 eμA of U30+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5 eμA of U48+, a low current, very high charge state beam. To achieve those ambitious goals, the VENUS ECR ion source has been designed for optimum operation at 28 GHz. The nominal design fields of the axial magnets are 4 T at injection and 3 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2 T, making VENUS currently the world’s most powerful ECR plasma confinement structure. Recently, the six year project has made significant progress. In June 2002, the first plasma was ignited at 18 GHz. During 2003, the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. In May 2004 28 GHz microwave power has been coupled into the VENUS ECR ion source for the first time. Preliminary performance-tests with oxygen, xenon and bismuth at 18 GHz and 28 GHz have shown promising results. Intensities close to or exceeding the RIA requirements have been produced for those few test beams. The paper will briefly describe the design of the VENUS source and its beam analyzing system. Results at 18 GHz and 28 GHz including first emittance measurements will be described.

  8. 23 GHz ferroelectric electron gun based gyrotron

    NASA Astrophysics Data System (ADS)

    Ben-Moshe, R.; Einat, M.

    2011-04-01

    Ferroelectric cathodes have been explored as an alternative electron source for microwave tubes. Past experiments have demonstrated operation at frequencies of 2-10 GHz. Since the ferroelectric cathode is based on surface plasma, the relatively high energy spread limits the tube operation frequency. Hence, the possibility to obtain higher frequencies remained questionable. In this experimental work a gyrotron oscillator was designed with the operation frequency increased toward that of millimeter waves. A cylindrical tube with a cutoff frequency of ˜22 GHz was integrated to a ferroelectric electron gun. Pulses of ˜0.5 μs duration with a frequency of 23 GHz were obtained.

  9. Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele

    2005-01-01

    This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.

  10. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  11. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  12. Decoherence suppression for three-qubit W-like state using weak measurement and iteration method

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Lian, Bao-Wang; Nie, Min

    2016-08-01

    Multi-qubit entanglement states are the key resources for various multipartite quantum communication tasks. For a class of generalized three-qubit quantum entanglement, W-like state, we demonstrate that the weak measurement and the reversal measurement are capable of suppressing the amplitude damping decoherence by reducing the initial damping factor into a smaller equivalent damping factor. Furthermore, we propose an iteration method in the weak measurement and the reversal measurement to enhance the success probability of the total measurements. Finally, we discuss how the number of the iterations influences the overall effect of decoherence suppression, and find that the “half iteration” method is a better option that has more practical value. Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).

  13. Transmission Line for 258 GHz Gyrotron DNP Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.

    2011-06-01

    We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.

  14. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  15. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  16. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  17. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  18. First Results of the Superconducting ECR Ion Source Venus with 28 GHz

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Dwinell, R. D.; Collins, D.; Leitner, M.

    2005-03-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. From the beginning, VENUS has been designed for optimum operation at 28 GHz with high power (10 kW). In 2003 the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. During this commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. At the initial commissioning tests at 18 GHz, 1100 eμA of O6+, 160 eμA of Xe20+, 160 eμA of Bi25+ and 100 eμA of Bi30+ and 11 eμA of Bi41+ were produced. In May 2004 the 28 GHz microwave power has been coupled into the VENUS ECR ion source. At initial operation more than 320 eμA of Xe20+ (twice the amount extracted at 18 GHz), 240 eμA of Bi24+ and Bi25+, and 245 eμA of Bi29+ were extracted. The paper briefly describes the design of the VENUS source, the 28 GHz microwave system and its beam analyzing system. First results at 28 GHz including emittance measurements are presented.

  19. First Results of the Superconducting ECR Ion Source Venus with 28 GHz

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Abbott, S.R.; Dwinell, R.D.; Collins, D.; Leitner, M.

    2005-03-15

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. From the beginning, VENUS has been designed for optimum operation at 28 GHz with high power (10 kW).In 2003 the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. During this commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. At the initial commissioning tests at 18 GHz, 1100 e{mu}A of O6+, 160 e{mu}A of Xe20+, 160 e{mu}A of Bi25+ and 100 e{mu}A of Bi30+ and 11 e{mu}A of Bi41+ were produced.In May 2004 the 28 GHz microwave power has been coupled into the VENUS ECR ion source. At initial operation more than 320 e{mu}A of Xe20+ (twice the amount extracted at 18 GHz), 240 e{mu}A of Bi24+ and Bi25+, and 245 e{mu}A of Bi29+ were extracted. The paper briefly describes the design of the VENUS source, the 28 GHz microwave system and its beam analyzing system. First results at 28 GHz including emittance measurements are presented.

  20. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  1. A 12 GHz RF Power Source for the CLIC Study

    SciTech Connect

    Schirm, Karl; Curt, Stephane; Dobert, Steffen; McMonagle, Gerard; Rossat, Ghislain; Syratchev, Igor; Timeo, Luca; Haase, Andrew Jensen, Aaron; Jongewaard, Erik; Nantista, Christopher; Sprehn, Daryl; Vlieks, Arnold; Hamdi, Abdallah; Peauger, Franck; Kuzikov, Sergey; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  2. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz.

    PubMed

    Chalfin, Steven; D'Andrea, John A; Comeau, Paul D; Belt, Michael E; Hatcher, Donald J

    2002-07-01

    The purpose of this study was to evaluate anterior segment bioeffects of pulsed 35 GHz and 94 GHz microwave exposure in the nonhuman primate eye. Five juvenile rhesus monkeys (Macaca mulatta) underwent baseline anterior segment ocular assessment consisting of slit lamp examination, corneal topography, specular microscopy, and pachymetry. These studies were repeated after exposure of one eye to pulsed 35 GHz or 94 GHz microwaves at varied fluences, with the other eye serving as a control. The mean fluence required to produce a threshold corneal lesion (faint epithelial edema and fluorescein staining) was 7.5 J cm(-2) at 35 GHz and 5 J cm(-2) at 94 GHz. Transient changes in corneal topography and pachymetry were noted at these fluences. Endothelial cell counts remained unchanged. Threshold corneal injury from 35 GHz and 94 GHz microwave exposure is produced at fluences below those previously reported for CO2 laser radiation. These data may help elucidate the mechanism of thermal injury to the cornea, and resolve discrepancies between IEEE C95.1 (1999), NCRP (1986), and ICNIRP (1998) safety standards for exposure to non-ionizing radiation at millimeter wavelengths.

  3. Quantum state sharing against the controller's cheating

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng

    2013-08-01

    Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.

  4. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  5. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  6. Status report of the 28 GHz superconducting electron cyclotronresonance ion source VENUS

    SciTech Connect

    Leitner, Daniela; Lyneis, Claude M.; Loew, Timothy; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2005-09-01

    The superconducting versatile electron cyclotron resonance ECR ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator RIA front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p mu A of Kr17+ (260 e mu A), 12 p mu A of Xe20+ (240e mu A), and 8 p mu A of U28+ (230 e mu A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e mu A of Xe27+ and 245 e mu A of Bi29+, while for the higher charge states 15 e mu A of Xe34+, 15 e mu A of Bi41+, and 0.5 e mu A of Bi50+ could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80 percent of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  7. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  8. 95 GHz Gyrotron with Ferroelectric Cathode

    NASA Astrophysics Data System (ADS)

    Einat, M.; Pilossof, M.; Ben-Moshe, R.; Hirshbein, H.; Borodin, D.

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ˜0.5μs pulses are reported; a duty cycle of 10% is estimated to be achievable.

  9. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Footnote 5.353A in 47 CFR 2.106 and the priority and real-time preemption requirements imposed by Footnote... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile-Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE...

  10. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-08-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  11. Propagation handbook, frequencies above 10 GHz

    NASA Astrophysics Data System (ADS)

    Ippolito, Louis J.

    1988-08-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  12. Propagation handbook, frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1988-01-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  13. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    SciTech Connect

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-06-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 240e{micro}A of U{sup 30+}, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e{micro}A of U{sup 48+}, a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004.

  14. Comparative study of millimeter wave propagation at 30 GHz and 60 GHz in indoor environment

    NASA Astrophysics Data System (ADS)

    Polydorou, A.; Stratakos, G.; Capsalis, C.; Uzunoglu, N.

    1995-10-01

    The millimeter wave band appears to be a favourable choice for personal wireless communication systems for indoor environment, as it meets the requirements for sufficient bandwidth, small terminal dimensions and sporadic usage for commercial applications. In this paper measurements of millimeter wave propagation in both 30 GHz and 60 GHz bands, are presented in a comparative way. The topology of measurements covers both a line-of-sight situation and also a case where a direct path between transmitter and receiver does not exist. Although the second case does not seem obvious for outdoor applications in these frequencies, in indoor environment the multipath signals produced by objects like walls, doors, furniture etc., can be utilised in order to overcome the man-made shadowing. Both slow and fast fading characteristics of the received signal are studied and the measurements are modelled by the conventional Rician and Rayleigh distributions. Both frequency bands offer advantages for usage in in-house wireless communication systems. Although in 30 GHz band the coverage area is bigger than in 60 GHz (with the same transmitting power), frequency reuse is easier in 60 GHz band. because even if millimeter waves ‘escape’ through ‘windows’, the specific attenuation due to atmospheric oxygen (15 dB/km) at 60 GHz eliminates the interference between communication channels in neighbouring buildings.

  15. MALT 90: The Millimeter Astronomy Legacy Team 90 GHz Survey

    NASA Astrophysics Data System (ADS)

    Jackson, James M.; Foster, J.; Brooks, K.; Rathborne, J.; Longmore, S.

    2011-05-01

    We present the first season results of the Millimeter Astronomy Legacy Team 90 GHz Survey (MALT90), which will image 3 mm molecular line emission from 3,000 dense star-forming cores. MALT90 exploits the capability of the ATNF Mopra 22 m telescope for fast mapping and simultaneous imaging of 16 molecular lines near 90 GHz. These molecular lines will probe the cores’ physical, chemical, and evolutionary state. The target cores are selected from the 870 micron ATLASGAL survey to host the early stages of high-mass star formation and to span the complete range of evolutionary states from pre-stellar cores, to protostellar cores, and on to H II regions. Each core will be mapped at excellent angular (40'') and spectral (0.1 km/s) resolution. We present preliminary results for four key science projects: (1) determining the kinematic distances and Galactic distribution of dense cores, (2) establishing the distribution and evolution of angular momentum in a large sample of high-mass cores, (3) investigating the chemical evolution of dense cores, and (4) comparing the extragalactic molecular line-infrared luminosity correlations with those in Galactic cores. MALT90 will provide the definitive source list of high-mass dense cores for ALMA.

  16. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  17. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267..., Additional Provisions § 15.251 Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz... spectrum analyzer or equivalent measuring receiver; (2) The angular separation between the direction...

  18. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267..., Additional Provisions § 15.251 Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz... spectrum analyzer or equivalent measuring receiver; (2) The angular separation between the direction...

  19. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz...

  20. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz...

  1. 77 FR 45503 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... errors in these provisions. These changes affecting the 4.9 GHz band in particular will improve spectrum... GHz Band AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The Commission adopts...-4990 MHz (4.9 GHz) band applicants from certified frequency coordination. Next, the Commission...

  2. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  3. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  4. VLBI survey at 2. 29 GHz

    SciTech Connect

    Preston, R.A.; Morabito, D.D.; Williams, J.G.; Faulkner, J.; Jauncey, D.L.

    1985-09-01

    VLBI observations at 2.29 GHz with fringe spacings of about 3 milliarcsec have been performed on 1398 radio sources spread over the entire sky. 917 sources were detected, including 93 percent of the identified BL Lacertae objects, 86 percent of the quasars, and 36 percent of the galaxies. The resulting catalog of compact radio sources is useful for various astrophysical studies and in the formation of VLBI celestial reference frames. 252 references.

  5. Australia 31-GHz brightness temperature exceedance statistics

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.

  6. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  7. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  8. COMPREHENSIVE ANALYSIS OF PREBIOTIC PROPENAL UP TO 660 GHz

    SciTech Connect

    Daly, A. M.; Bermúdez, C.; Kolesniková, L.; Alonso, J. L.

    2015-06-22

    Since interstellar detection of propenal is only based on two rotational transitions in the centimeter wave region, its high resolution rotational spectrum has been measured up to 660 GHz and fully characterized by assignment of more than 12,000 transitions to provide direct laboratory data to the astronomical community. Spectral assignments and analysis include transitions from the ground state of the trans and cis isomers, three trans-{sup 13}C isotopologues, and ten excited vibrational states of the trans form. Combining new millimeter and submillimeter data with those from the far-infrared region has yielded the most precise set of spectroscopic constants of trans-propenal obtained to date. Newly determined rotational constants, centrifugal distortion constants, vibrational energies, and Coriolis and Fermi interaction constants are given with high accuracy and were used to predict transition frequencies and intensities over a wide frequency range. Results of this work should facilitate astronomers further observation of propenal in the interstellar medium.

  9. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  10. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  11. 75 FR 9850 - Tank Level Probing Radars in the Frequency Band 77-81 GHz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Proceedings, 63 FR 24121 (1998). Electronic Filers: Comments may be filed electronically using the Internet by... Astronomy Observatory (NRAO) states that it would not object to the Ohmart/VEGA waiver if it Frequency Band of Operation. Authorized operations in the 77-81 GHz band currently include radio astronomy...

  12. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.

  13. MMIC Amplifier Produces Gain of 10 dB at 235 GHz

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Fung, King Man; Lee, Karen; Samoska, Lorene; Wells, Mary; Gaier, Todd; Kangaslahti, Pekka; Grundbacher, Ronald; Lai, Richard; Raja, Rohit; Liu, Po-Hsin

    2007-01-01

    The first solid-state amplifier capable of producing gain at a frequency >215 GHz has been demonstrated. This amplifier was fabricated as a monolithic microwave integrated-circuit (MMIC) chip containing InP high-electron-mobility transistors (HEMTs) of 0.07 micron gate length on a 50- m-thick InP substrate.

  14. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1975-01-01

    The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.

  15. Amplitude scintillation at 2 and 30 GHz on earth space paths

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Theobold, D. M.; Devasirvatham, D. M. J.

    1977-01-01

    Extensive amplitude scintillation measurements were made simultaneously at 2.075 and 30 GHz on earth-space propagation paths. These measurements were performed as the Applications Technology Satellite (ATS-6) was moved slowly from a synchronous position over India to a new synchronous position over the United States. The variance, path loss, covariance, and spectra are discussed as functions of the path elevation angle. These results are also compared with earlier simultaneous scintillation measurements at 20 and 30 GHz during the movement of ATS-6 to its position over India.

  16. A 75-116-Ghz LNA with 23-K Noise Temperature at 108 Ghz

    NASA Technical Reports Server (NTRS)

    Varonen, Mikko; Reeves, Rodrigo; Kangaslahti, Pekka; Samoska, Lorene; Cleary, Kieran; Gawande, Rohit; Fung, Andy; Gaier, Todd; Weinreb, Sander; Readhead, Anthony C. S.; Sarkozy, Stephen; Lai, Richard

    2013-01-01

    In this paper we present the design and measurement results, both on-wafer and in package, of an ultra-low-noise and wideband monolithic microwave integrated circuit (MMIC) amplifier in the frequency range of 75 to 116 GHz. The three-stage amplifier packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology achieves a record noise temperature of 23 K at 108 GHz when cryogenically cooled to 27 K. The measured gain is 22 to 27 dB for frequency range of 75 to 116 GHz. Furthermore, the amplifier utilizes four finger devices with total gate width of 60 um resulting for improved linearity.

  17. Spacecraft mass trade-offs versus radio-frequency power and antenna size at 8 GHz and 32 GHz

    NASA Technical Reports Server (NTRS)

    Gilchriest, C. E.

    1987-01-01

    The purpose of this analysis is to help determine the relative merits of 32 GHz over 8 GHz for future deep space communications. This analysis is only a piece of the overall analysis and only considers the downlink communication mass, power, and size comparisons for 8 and 32 GHz. Both parabolic antennas and flat-plate arrays are considered. The Mars Sample Return mission is considered in some detail as an example of the tradeoffs involved; for this mission the mass, power, and size show a definite advantage of roughly 2:1 in using the 32 GHz over 8 GHz.

  18. On the origin of 140 GHz emission from the 4 July 2012 solar flare

    NASA Astrophysics Data System (ADS)

    Tsap, Yuriy T.; Smirnova, Victoria V.; Morgachev, Alexander S.; Motorina, Galina G.; Kontar, Eduard P.; Nagnibeda, Valery G.; Strekalova, Polina V.

    2016-04-01

    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140 GHz as well as Kislovodsk and Metsähovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5 MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near 10 GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1 MK.

  19. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  20. The 8-18 GHz radar spectrometer

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.

  1. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  2. A wideband 12 GHz down converter

    NASA Technical Reports Server (NTRS)

    Newman, B. A.; Rosenbaum, F. J.

    1972-01-01

    The design, fabrication, and evaluation of a single ended 12 GHz down-converter suitable for use in a low cost satellite ground terminal is described. The mixer uses waveguide, coaxial and MIC (microwave integrated circuit) transmission line components. Theoretical and experimental analyses of several microstrip circuit elements are presented including the traveling wave-directional filter, quarter wave-length proximity directional coupler, low pass filter and the quarterwave band stop filter. The optimum performance achieved for the mixer using a packaged diode was 9.4 db conversion loss and a bandwidth of 275 MHz.

  3. An LTCC 94 GHz Antenna Array

    SciTech Connect

    Aguirre, J; Pao, H; Lin, H; Garland, P; O'Neill, D; Horton, K

    2007-12-21

    An antenna array is designed in low-temperature cofired ceramic (LTCC) Ferro A6M{trademark} for a mm-wave application. The antenna is designed to operate at 94 GHz with a few percent bandwidth. A key manufacturing technology is the use of 3 mil diameter vias on a 6 mil pitch to construct the laminated waveguides that form the beamforming network and radiating elements. Measurements for loss in the laminated waveguide are presented. The slot-fed cavity-radiating element is designed to account for extremely tight mutual coupling between elements. The array incorporates a slot-fed multi-layer beamforming network.

  4. Improved Speed and Functionality of a 580-GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Cooper, Ken; Chattopadhyay, Goutam; Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Skalare, Anders; Gill, John

    2010-01-01

    With this high-resolution imaging radar system, coherent illumination in the 576-to-589-GHz range and phase-sensitive detection are implemented in an all-solid-state design based on Schottky diode sensors and sources. By employing the frequency-modulated, continuous-wave (FMCW) radar technique, centimeter-scale range resolution has been achieved while using fractional bandwidths of less than 3 percent. The high operating frequencies also permit centimeter-scale cross-range resolution at several-meter standoff distances without large apertures. Scanning of a single-pixel transceiver enables targets to be rapidly mapped in three dimensions, so that the technology can be applied to the detection of concealed objects on persons.

  5. A 17 GHz molecular rectifier

    PubMed Central

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-01-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833

  6. 28 GHz Gyrotron ECRH on LDX

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.; Kesner, J.; Michael, P. C.; Garnier, D. T.; Mauel, M. E.

    2010-12-01

    A 10 kW, CW, 28 GHz gyrotron has been implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. This added power represents about a 60% increase in ECRH to a new total of 26.9 kW with sources at 2.45, 6.4, and 10.5 GHz. The 1 Tesla resonances in LDX form small rings encompassing the entire plasma cross-section above and below the floating coil (F-coil) near the dipole axial region. A 32.5 mm diameter TE01 waveguide with a partial Vlasov step cut launches a diverging beam from above the F-coil that depends on internal wall reflections for plasma coupling. Initial gyrotron only plasmas exhibit steep natural profiles with fewer hot electrons than with the other sources. The background scattered radiation suggests that only about half the power is being absorbed with the present launcher.

  7. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Loew, T.; Todd, D. S.; Virostek, S.; Tarvainen, O.

    2006-03-01

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p μA of Kr17+(260 e μA), 12 p μA of Xe20+ (240 e μA of Xe20+), and 8 p μA of U28+(230 e μA). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e μA of Xe27+ and 245 e μA of Bi29+, while for the higher charge states 15 e μA of Xe34+, 15 e μA of Bi41+, and 0.5 e μA of Bi50+ could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  8. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  9. Preliminary Bremstrahlung Measurements on VENUS at 18 and 28 GHz

    SciTech Connect

    Lyneis, C.M.; Leitner, D.

    2005-03-15

    The bremstrahlung produced by the VENUS ECR ion source at 18 GHz and 28 GHz in the axial direction has been measured with a germanium detector. The bremstrahlung spectrum goes out beyond 1 MeV at 28 GHz and this complicates analysis of the data and the design of the collimators and detection system. Preliminary spectra and the geometry of the detection system will be described.

  10. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  11. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  12. GHz Electroluminescence Modulation in Nanoscale Subwavelength Emitters.

    PubMed

    Rossella, Francesco; Piazza, Vincenzo; Rocci, Mirko; Ercolani, Daniele; Sorba, Lucia; Beltram, Fabio; Roddaro, Stefano

    2016-09-14

    We investigate light emission from nanoscale point-sources obtained in hybrid metal-GaAs nanowires embedding two sharp axial Schottky barriers. Devices are obtained via the formation of Ni-rich metallic alloy regions in the nanostructure body thanks to a technique of controlled thermal annealing of Ni/Au electrodes. In agreement with recent findings, visible-light electroluminescence can be observed upon suitable voltage biasing of the junctions. We investigate the time-resolved emission properties of our devices and demonstrate an electrical modulation of light generation up to 1 GHz. We explore different drive configurations and discuss the intrinsic bottlenecks of the present device architecture. Our results demonstrate a novel technique for the realization of fast subwavelength light sources with possible applications in sensing and microscopy beyond the diffraction limit. PMID:27532324

  13. Operation of the SUPARAMP at 33GHz

    NASA Technical Reports Server (NTRS)

    Chiao, R. Y.; Parrish, P. T.

    1975-01-01

    A 9mm degenerate parametric amplifier was constructed using a linear, series array of unbiased Josephson junctions as the active, nonlinear element. A balanced diode mixer was used as a synchronous detector, with a single source serving both as the pump and as the mixer local oscillator. A stable, net gain of 15 dB in an instantaneous bandwith (FWHM) of 3.4 GHz was achieved. A system noise temperature of 220 K + or - 5 K (DSB) was measured with a SUPARAMP contribution of only 20 K x or - 10 K. Output saturation was observed and complicates the interpretation of the noise temperature measurements and may render them upper limits. A comparison was made with the results of an earlier 3 cm suparamp. The data is in substantial agreement with theoretical predictions.

  14. Direct satellite TV - The 12-GHz challenge

    NASA Astrophysics Data System (ADS)

    Fawcette, J.

    1982-02-01

    Manufacturers in Japan and Europe are developing the hardware necessary for commercially feasible direct broadcast satellite TV, including high-frequency circuits and mini-dishes for spacecasting. US companies are lagging behind due to formidable regulatory and legal difficulties. The article focuses on efforts to develop simple, inexpensive receivers which will be able to convert 12-GHz satellite transmissions into high-quality TV images. Three basic receiver designs are being developed: the mixer-downcaster, microwave integrated circuits using FET-preamplifier front ends with transistors connected by bond-wires, and monolithic gallium arsenide integrated circuits. Several companies are on the verge of introducing commercialized receivers utilizing these different basic designs.

  15. Quantum limited quasiparticle mixers at 100 GHz

    SciTech Connect

    Mears, C.A; Hu, Qing; Richards, P.L. ); Worsham, A.H.; Prober, D.E. . Dept. of Applied Physics); Raeisaenen, A.V. . Radio Lab.)

    1990-09-01

    We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1{mu}m{sup 2}) Ta/Ta{sub 2}O{sub 5}/Pb{sub 0.9}Bi{sub 0.1} tunnel junctions. We have measured an added mixer noise of 0.61 +/{minus} 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs.

  16. 120-GHz HEMT Oscillator With Surface-Wave-Assisted Antenna

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Siegel, Peter; Leong, Kevin; Itoh, Tatsuo; Qian, Yongxi; Radisic, Vesna

    2003-01-01

    Two monolithic microwave integrated circuits (MMICs) have been designed and built to function together as a source of electromagnetic radiation at a frequency of 120 GHz. One of the MMICs is an oscillator and is the highest-power 120-GHz oscillator reported thus far in the literature. The other MMIC is an end-fire antenna that radiates the oscillator signal. Although these MMICs were constructed as separate units and electrically connected with wire bonds, future oscillator/ antenna combinations could readily be fabricated as monolithic integrated units. Such units could be used as relatively high-power solid-state microwave sources in diverse applications that include automotive radar, imaging, scientific instrumentation, communications, and radio astronomy. As such, these units would be attractive alternatives to vacuum-tube oscillators, which are still used to obtain acceptably high power in the frequency range of interest. The oscillator (see figure) includes a high-electron-mobility transistor (HEMT), with gate-periphery dimensions of 4 by 37 m, in a common-source configuration. The series feedback element of the oscillator is a grounded coplanar waveguide (CPW) at the source. The HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle) to maximize the output power of the oscillator. Input and output impedance-matching circuit elements are designed to maximize output power and to establish the conditions needed for oscillation. The design of the antenna takes advantage of surface waves, which, heretofore, have been regarded as highly disadvantageous because they can leak power and degrade the performances of antennas that have not been designed to exploit them. Measures taken to suppress surface waves have included complex machining of circuit substrates and addition of separate substrates. These measures are difficult to implement in standard MMIC fabrication processes. In contrast, because the design of the

  17. A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz

    PubMed Central

    Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon

    2015-01-01

    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351

  18. 100-GHz and 300-GHz coherent radio-over-fiber transmission using optical frequency comb source

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yasumura, Yoshihiro; Yoshida, Yuki; Kitayama, Ken-ichi

    2013-01-01

    Millimeter-wave and sub-millimeter-wave radio-over-fiber (RoF) technology with digital-signal-processing­ aided coherent detection can be a promising candidate for high-speed radio transmission links with a capacity of greater than 10 Gb/s if the energy consumption does not increase drastically. We demonstrate 100-GHz­ and 300-GHz-band simultaneous RoF signal generation using an optical frequency comb source comprising an optical frequency shifter in an amplified optical fiber loop, and its radio transmission over the air. 10-Gbaud quadrature-phase-shift-keying provides a capacity of 18.6 Gb /s with a 7% forward error correction overhead in single carrier signal transmission as well as in multi-carrier transmission.

  19. Noise in waveguide between 18 GHz and 26.5 GHz

    NASA Astrophysics Data System (ADS)

    Allal, D.

    2016-01-01

    This report summarises the results of the Key Comparison CCEM.RF-K22.W on noise temperature, performed between October 2007 and February 2011. In this comparison, the available noise temperature of three noise sources was determined by six National Metrology Institutes (NMIs) in the frequency range from 18 GHz to 26.5 GHz. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  1. Rectenna Technology Program: Ultra light 2.45 GHz rectenna 20 GHz rectenna

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1987-01-01

    The program had two general objectives. The first objective was to develop the two plane rectenna format for space application at 2.45 GHz. The resultant foreplane was a thin-film, etched-circuit format fabricated from a laminate composed of 2 mil Kapton F sandwiched between sheets of 1 oz copper. The thin-film foreplane contains half wave dipoles, filter circuits, rectifying Schottky diode, and dc bussing lead. It weighs 160 grams per square meter. Efficiency and dc power output density were measured at 85% and 1 kw/sq m, respectively. Special testing techniques to measure temperature of circuit and diode without perturbing microwave operation using the fluoroptic thermometer were developed. A second objective was to investigate rectenna technology for use at 20 GHz and higher frequencies. Several fabrication formats including the thin-film scaled from 2.45 GHz, ceramic substrate and silk-screening, and monolithic were investigated, with the conclusion that the monolithic approach was the best. A preliminary design of the monolithic rectenna structure and the integrated Schottky diode were made.

  2. Spain 31-GHz observations of sky brightness temperatures

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    A water vapor radiometer was deployed at DSS 63 for 3 months of sky brightness temperature measurements at 31 GHz. An exceedance plot was derived from this data showing the fraction of time that 31 GHz 30 degree elevation angle brightness temperature exceeds specified values. The 5 percent exceedance statistics occurs at 75 K, compared with 70 K in Australia.

  3. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  4. 177-207 GHz Radiometer Front End: Single Sideband Measurements

    NASA Technical Reports Server (NTRS)

    Galin, I.; Schnitzer, C. A.; Dengler, R. J.; Quintero, O.

    1999-01-01

    Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.

  5. Millimetre Astronomy Legacy Team 90 GHz Survey (MALT 90)

    NASA Astrophysics Data System (ADS)

    Jackson, James; Lo, Nadia; Rathborne, Jill; Jones, Paul; Muller, Erik; Cunningham, Maria; Brooks, Kate; Fuller, Gary; Barnes, Peter; Menten, Karl; Schilke, Peter; Garay, Guido; Mardones, Diego; Minier, Vincent; Longmore, Steven; Wyrowski, Friedrich; Herpin, Fabrice; Hill, Tracey; Bronfman, Leonardo; Deharveng, Lise; Finn, Susanna; Schuller, Frederic; Motte, Frédérique; Peretto, Nicolas; Bontemps, Sylvain; Wienen, Marion; Contreras, Yanett; Lenfestey, Clare; Foster, Jonathan; Sanhueza, Patricio; Claysmith, Christopher

    2011-04-01

    We request Mopra telescope time to complete MALT90, a new, international project to survey molecular line emission from 3,000 dense cores. MALT90 exploits Mopra's capability for fast mapping and simultaneous imaging of 16 molecular lines near 90 GHz. These molecular lines will probe the cores physical, chemical, and evolutionary state. The target cores are selected from the 870 um ATLASGAL survey to host the early stages of high-mass star formation and to span the complete range of evolutionary states from pre-stellar cores, to protostellar cores, and on to H II regions. Each core will be mapped at excellent angular (40'') and spectral (0.1 km/s) resolution. The survey data will be made available to the public via the internet. We require 875 hours per year for the next 4 winter seasons to complete the project, and request pre-graded (continuing) status. MALT90 will provide a key legacy database for the star-formation community and supply the definitive source list of high-mass dense cores for ALMA.

  6. Flux monitoring observations of Sgr A* at 8 GHz and 2 GHz with the NICT Kashima-Koganei VLBI System

    NASA Astrophysics Data System (ADS)

    Takekawa, S.; Oka, T.; Sekido, M.

    2014-05-01

    We have been conducting flux monitoring observations of Sgr A* at 8 GHz and 2 GHz using the NICT Kashima-Koganei VLBI system (109 km baseline) since mid-February 2013. The primary objective of the monitoring is a search for flux variation which is expected to be caused by the interaction between the G2 cloud and the accretion disk. Until 2013 September 22, we observed Sgr A* for 39 days, five hours on each day. Four quasars (NRAO 530, PKS 1622-253, PKS 1622-297, PKS 1921-293) were also observed as flux calibrators every 6 minutes. No significant change nor variation has been detected in the 8 GHz flux density of Sgr A*. The 8 GHz flux density was 0.81 ± 0.07 Jy (preliminary), while no significant 2 GHz emission was detected by our system. We will continue monitoring as often as possible until at least 2014 May.

  7. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  8. 110 GHz, 1 MW Gyrotron Design Upgrades

    NASA Astrophysics Data System (ADS)

    Cauffman, Steve; Felch, Kevin; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Dubrule, Craig

    1999-11-01

    Communications and Power Industries has incorporated a number of design changes into its most recent series of 110 GHz 1 MW gyrotrons, for use in ECH and ECCD experiments on the DIII-D tokamak. Two development gyrotrons previously installed at DIII-D used a modulating-anode electron gun design and output windows consisting of double-disk face-cooled sapphire on one system and an edge-cooled CVD diamond disk on the other. Three new systems presently in fabrication and test employ (a) a single-anode electron gun to avoid excitation of spurious modes during turn-on and turn-off and to simplify power supply requirements, (b) a modified TE_22,6 cavity to reduce competition from neighboring modes, (c) a two inch aperture edge-cooled CVD diamond window to allow transmission of a 1 MW Gaussian output beam, (d) a superconducting magnet system with a cryo-cooler to reduce liquid helium consumption, and (e) a number of internal and external plumbing simplifications to make cooling system connections more straightforward. Initial test results, if available, will be presented.

  9. Antenna study for 60 GHz intersatellite link

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    1989-04-01

    This report describes a detailed study of the antenna design and operation for the 60 GHz intersatellite cross links to a geostationary relay satellite. Intersatellite links will be used extensively in the future to achieve global connectivity of satellite constellations. Scenarios for inter-orbital linkages were examined with respect to the following antenna characteristics: inter-orbital link parameters, pointing and tracking requirements, radio frequency (RF) design encompassing transmission and receiving links, tracking and anti-jamming measures, mechanical and thermal design, positioner mechanism, mounting and deployment, and signal routing. A comparative study of the options is given wherever appropriate, to highlight the key features. The key features of the proposed antenna system are: (1) a rotating reflector design to allow tracking with a fast moving satellite; (2) a beam waveguide arrangement which allows the transmitter and receiver equipment to be entirely located in a controlled environment; (3) a multi-function feed system (transmit receive, beacon) inside the antenna boom ensures a reliable and compact feed network; and (4) positional mechanisms for azimuth and elevation tracking that allow unconstrained RF signal routing through beam waveguides.

  10. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  11. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  12. Development of 1.3GHz HTc rf SQUID

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Yuan; Xie, Fei-Xiang; Meng, Shu-Chao; Dai, Yuan-Dong; Li, Zhuang-Zhi; Ma, Ping; Yang, Tao; Nie, Rui-Juan; Wang, Fu-Ren

    2004-01-01

    A new HTc rf SQUID working at around 1.3GHz has been developed to avoid electromagnetic interference such as growing mobile communication jamming. This new system works in a frequency range from 1.23 to 1.42GHz (centred at 1.3GHz), which is not occupied by commercial communication. The sensor used in the 1.3GHz rf SQUID is made of a HTc coplanar superconducting resonator and a large-area HTc superconducting film concentrator. We have achieved in the 1.3GHz HTc rf SQUID system a minimal flux noise of 2.5×10-5Phi0/(Hz)1/2 and a magnetic field sensitivity of 38fT/(Hz)1/2 in white noise range, respectively. The effective area of the concentrator fabricated on a 15×15mm2 substrate is 1.35mm2. It is shown that the 1.3GHz rf SQUID system has a high field sensitivity. Design and implementation of 1.3GHz HTc rf SQUID offers a promising direction of rf SQUID development for higher working frequency ranges.

  13. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  14. The 30/20 GHz communications system functional requirements

    NASA Technical Reports Server (NTRS)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  15. A search for methanol masers at 44 GHz

    NASA Astrophysics Data System (ADS)

    Kalenskij, S. V.; Bachiller, R.; Berulis, I. I.; Val'tts, I. E.; Gomez-Gonzalez, J.; Martin-Pintado, J.; Rodriguez-Franco, A.; Slysh, V. I.

    1992-10-01

    Results of an extensive survey of young stellar objects in the methanol line 7(0) - 6(1)A(+) (44 GHz) are presented. Three new masers were detected towards cold IRAS sources in the dark clouds L 291 (GGD 27), L 379, and IC 1396 N. The new masers were also observed in 4(-1) - 3(0) E (36 GHz) and 1(0) - 0(0)A(+) (48 GHz) methanol transitions. A relationship between methanol masers and high-velocity flows with dense disks around central sources is proposed, and a possible correlation between maser emission and their intensity in the FIR is suggested.

  16. ATS-6 attenuation diversity measurements at 20 and 30 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Straiton, A. W.; Fannin, B. M.; Wagner, N. K.

    1975-01-01

    The results of data obtained at The University of Texas at Austin in conjunction with the ATS-6 millimeter wave experiment are presented. Attenuation measurements at 30 GHz and sky noise data at 20 GHz were obtained simultaneously at each of two sites separated by 11 km. Space diversity reduces outage time for a system in Austin, Texas with a 10 dB fade margin at 30 GHz from 15 hours to 16 minutes per year. The maximum cloud height shows a good correlation to the maximum attenuations measured.

  17. Packaging of microwave integrated circuits operating beyond 100 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.

    2002-01-01

    Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.

  18. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  19. Millimetre Astronomy Legacy Team 90 GHz Survey (MALT 90)

    NASA Astrophysics Data System (ADS)

    Jackson, James; Lo, Nadia; Rathborne, Jill; Jones, Paul; Muller, Erik; Cunningham, Maria; Brooks, Kate; Fuller, Gary; Barnes, Peter; Menten, Karl; Schilke, Peter; Garay, Guido; Mardones, Diego; Minier, Vincent; Longmore, Steven; Wyrowski, Friedrich; Herpin, Fabrice; Hill, Tracey; Bronfman, Leonardo; Deharveng, Lise; Schuller, Frederic; Motte, Frédérique; Peretto, Nicolas; Bontemps, Sylvain; Wienen, Marion; Contreras, Yanett; Lenfestey, Clare; Foster, Jonathan; Sanhueza, Patricio; Claysmith, Christopher; Hoq, Sadia

    2012-04-01

    We request Mopra time to complete MALT90, a large, volume-complete survey of high-mass star-forming cores. MALT90 is unique and exploits Mopra's capability for OTF mapping and simultaneous imaging of 16 molecular lines near 90GHz. These molecular lines probe the cores' physical, chemical, and evolutionary state. The target cores are selected from the 870um ATLASGAL survey to host the early stages of high-mass star formation and to span their complete range in evolution. Each core will be mapped at excellent angular (40'') and spectral (0.1km/s) resolution. As in the previous years, fully reduced data products will be made available to the community through the ATOA. In order for MALT90 to be volume-complete, we require 1397 hours to map 942 remaining cores. This time allocation is necessary so that MALT90 is complete to all high-mass cores out to 7kpc: a carefully chosen distance limit to adequate sample a range of Galactic environments and to include all high-mass regions for which individual cores can be resolved with ALMA. When complete, MALT90 will provide an important legacy database for the community and supply the definitive source list of high-mass cores for ALMA.

  20. MALT90: The Millimetre Astronomy Legacy Team 90 GHz Survey

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Rathborne, J. M.; Foster, J. B.; Whitaker, J. S.; Sanhueza, P.; Claysmith, C.; Mascoop, J. L.; Wienen, M.; Breen, S. L.; Herpin, F.; Duarte-Cabral, A.; Csengeri, T.; Longmore, S. N.; Contreras, Y.; Indermuehle, B.; Barnes, P. J.; Walsh, A. J.; Cunningham, M. R.; Brooks, K. J.; Britton, T. R.; Voronkov, M. A.; Urquhart, J. S.; Alves, J.; Jordan, C. H.; Hill, T.; Hoq, S.; Finn, S. C.; Bains, I.; Bontemps, S.; Bronfman, L.; Caswell, J. L.; Deharveng, L.; Ellingsen, S. P.; Fuller, G. A.; Garay, G.; Green, J. A.; Hindson, L.; Jones, P. A.; Lenfestey, C.; Lo, N.; Lowe, V.; Mardones, D.; Menten, K. M.; Minier, V.; Morgan, L. K.; Motte, F.; Muller, E.; Peretto, N.; Purcell, C. R.; Schilke, P.; Bontemps, Schneider-N.; Schuller, F.; Titmarsh, A.; Wyrowski, F.; Zavagno, A.

    2013-11-01

    The Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey aims to characterise the physical and chemical evolution of high-mass star-forming clumps. Exploiting the unique broad frequency range and on-the-fly mapping capabilities of the Australia Telescope National Facility Mopra 22 m single-dish telescope 1 , MALT90 has obtained 3' × 3' maps towards ~2 000 dense molecular clumps identified in the ATLASGAL 870 μm Galactic plane survey. The clumps were selected to host the early stages of high-mass star formation and to span the complete range in their evolutionary states (from prestellar, to protostellar, and on to H II regions and photodissociation regions). Because MALT90 mapped 16 lines simultaneously with excellent spatial (38 arcsec) and spectral (0.11 km s-1) resolution, the data reveal a wealth of information about the clumps' morphologies, chemistry, and kinematics. In this paper we outline the survey strategy, observing mode, data reduction procedure, and highlight some early science results. All MALT90 raw and processed data products are available to the community. With its unprecedented large sample of clumps, MALT90 is the largest survey of its type ever conducted and an excellent resource for identifying interesting candidates for high-resolution studies with ALMA.

  1. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  2. 77 FR 45558 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Rulemaking Proceedings, 63 FR 24121, May 1 (1998). Electronic Filers: Comments may be filed electronically..., system configurations, or geographic morphologies that are best suited for fixed use in the 4.9 GHz...

  3. Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.

    2016-05-01

    Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz, all using the frequency-modulated continuous-wave technique, are in various stages of development for both defense and science applications at the Jet Propulsion Laboratory. For standoff security screening, a 340 GHz imaging radar now achieves an 8.3 Hz frame, and it has been tested using power-efficient MMIC-based active multiplier sources into its front end. That system evolved from a 680 GHz security radar platform, which has also been modified to operate in a Doppler mode for probing the dynamics of blowing sand and sensing small-amplitude target vibrations. Meanwhile, 95 and 183 GHz radars based on similar RF architectures are currently being developed to probe cometary jets in space and, using a differential absorption technique, humidity inside upper-tropospheric clouds.

  4. Experimental evaluation of a ruby maser at 43 GHz

    NASA Technical Reports Server (NTRS)

    Moore, C. R.; Neff, D.

    1982-01-01

    Inversion ratio measurements were conducted at several frequencies between 27 and 43 GHz for a pink ruby material (0.05% Cr/3+/ in Al2O3) at the push-pull pump angle of 54.7 degrees in order to determine the upper frequency limit where pink ruby could be expected to operate as a practical maser amplifier. Based on these measurements, a single-stage maser was developed which yielded 8 + or - 1 dB net gain and a 3 dB bandwidth of 180 MHz at a center frequency of 42.5 GHz. It is concluded that a multistage reflected wave maser could achieve bandwidths exceeding 1 GHz with 30 dB net gain at center frequencies near 40 GHz.

  5. Complementary 45 GHz Observations of the MALT-90 Pilot Sources

    NASA Astrophysics Data System (ADS)

    Fuller, Gary; Rathborne, Jill; Muller, Erik; Cunningham, Maria; Brooks, Kate; Barnes, Peter; Ellingsen, Simon; Longmore, Steven; Wyrowski, Friedrich; Walsh, Andrew; Peretto, Nicolas; Jackson, James

    2009-10-01

    The MALT-90 pilot survey is mapping 200 sources selected from different "finder charts" of massive star forming cores. This pilot survey is designed to provide detection rates, typical line strengths, and source sizes for the various types of objects. Such information is crucial, along with an understanding of the nature of the sources observed, for a rational design of a complete 90 GHz MALT survey. In this proposal we request time to obtain 45 GHz spectra of all the targets in MALT-90 pilot. As well as providing observations of a complementary set of lines to the 90 GHz data, better constraining the properties of the sources, these observations will provide a link allowing a comparison of the results of the MALT-90 and the 45GHz ATCA galactic plane pilot projects.

  6. 1.3 GHz superconducting RF cavity program at Fermilab

    SciTech Connect

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  7. Low-power 24.1-GHz propagation effects on roadways

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Simas de Oliveria, Marcelo G.

    2001-08-01

    This paper discusses the experimental design and analysis of low power 24.1 GHz propagation effects on roadways around the Atlanta, Georgia metropolitan area. The transmitter used was a 24.1 GHz Safety Warning System (SWS) transmitter operating in the continuous wave (CW) mode. The Federal Communications Commission (FCC) has licensed the Safety Warning System for Part 90 operation. A Part 90-compliant transmitter was used during the tests. The receiver was a modified Bel 855Sti radar detector that was calibrated in an anechoic chamber. The receiver was placed in a Ford F-150 truck and driven toward the transmitter. Three distinct propagation environments are characterized including a rural road, state route, and interstate highway. Shadowing effects from terrain features such as hills are examined as well as the effects of other vehicles, including large tractor-trailers. Signal strength is analyzed as a function of distance to the transmitter and using probability distribution function (pdf) modeling. It was found that the Weibull distribution provided the best statistical description for both the line of sight and shadowing cases. In many instances, the statistics of the received signal would change rapidly depending on the terrain features and interaction with surrounding traffic. The results provide insight into how the unlicensed 24.1 GHz band in the United States might be used for low power, intelligent transportation system (ITS) applications.

  8. Superconducting magnets for 110-150 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Baze, J.-M.; Lesmond, C.; Lottin, J.-C.; Capitain, J.-J.; Lafon, D.; Magne, R.; Bonnet, P.; Bourquard, A.; Bresson, D.; Lacaze, A.

    1994-07-01

    Seven superconducting focusing magnets have been constructed for vertical gyrotrons devoted to the plasma heating of the tokomak Tore Supra. The performances in magnetic field strength, profile and homogeneity are spread over a large range so as to suit gyrotrons of microwave frequencies extending from 110 GHz to 150 GHz. The cryostats have a low consumption in cryogenic fluids which insure a one week autonomy.

  9. 60 GHz ecrh system for the PPL PDX machine

    SciTech Connect

    Bowen, N.; Doane, J.; Newman, W.

    1981-01-01

    A 60-GHz kW Electron Cyclotron Resonance (ECR) heating system for the PDX machine is now under construction. It will use two of the pulse-type 60 GHz gyrotrons now being developed by Varian for the U.S. Department of Energy under a subcontract for Oak Ridge National Laboratory. The system will be used for various temperature profile, start-up, and heating experiments. This paper describes the design of the system and its physical configuration.

  10. Forty and 80 GHz technology assessment and forecast including executive summary

    NASA Technical Reports Server (NTRS)

    Mazur, D. G.; Mackey, R. J., Jr.; Tanner, S. G.; Altman, F. J.; Nicholas, J. J., Jr.; Duchaine, K. A.

    1976-01-01

    The results of a survey to determine current demand and to forecast growth in demand for use of the 40 and 80 GHz bands during the 1980-2000 time period are given. The current state-of-the-art is presented, as well as the technology requirements of current and projected services. Potential developments were identified, and a forecast is made. The impacts of atmospheric attenuation in the 40 and 80 GHz bands were estimated for both with and without diversity. Three services for the 1980-2000 time period -- interactive television, high quality three stereo pair audio, and 30 MB data -- are given with system requirements and up and down-link calculations.

  11. ATS-6 - Millimeter Wave Propagation and Communications Experiments at 20 and 30 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1975-01-01

    The Applications Technology Satellite (ATS-6) Millimeter Wave Experiment, developed and implemented by the NASA Goddard Space Flight Center, has provided the first direct measurements of 20- and 30-GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20- and 30-GHz links, methods of attenuation prediction with radars, rain gauges, and radiometers were developed and compared with the directly measured attenuation. This paper presents a review of the major results of the first year of measurements with ATS-6, with emphasis on the impact of the measurements on millimeter wave space systems design.

  12. Amplitude scintillations on earth-space propagation paths at 2 and 30 GHz. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1977-01-01

    Amplitude scintillation measurements were made simultaneously at 2.075 and 30 GHz on earth-space propagation paths over elevation angles in the range 0.4 to 44 deg. The experiment was performed as the Applications Technology Satellite (ATS-6) was moved slowly from a synchronous position over Africa to a new synchronous position over the United States. The received signal, variance, level, covariance, spectra and fade distributions are discussed as functions of the path elevation angle. These results are also compared wherever possible with similar measurements made earlier at 20 and 30 GHz.

  13. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-29

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. PMID:21937989

  14. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  15. Comprehensive Analysis of Interstellar Iso-PROPYL Cyanide up to 480 GHZ

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Alonso, E. R.; Cabezas, Carlos; Mata, Santiago; Alonso, José L.

    2016-06-01

    Iso-propyl cyanide, also known as iso-butyronitrile, is a branched alkyl molecule recently detected in the interstellar medium. A combination of Stark-modulated microwave spectroscopy and frequency-modulated millimeter and submillimeter wave spectroscopy was used to analyze its rotational spectrum from 26 to 480 GHz. Spectral assignments and analysis include transitions from the ground state, eight excited vibrational states and 13C isotopologues. Results of this work should facilitate astronomers further observations of iso-propyl cyanide in the interstellar medium. A. Belloche, R. T. Garrod, H. S. P. Müller, K. M. Menten, Science, 2014, 345, 1584

  16. Multi-GHz bandpass, high-repetition rate single channel mobile diagnostic system for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Miner, Lynn M.; Voss, Donald E.

    1993-01-01

    Characterizing radiated ultra-wideband (UWB) signals poses challenges due to requirements for (1) multi-GHz bandpass recording of the signal's leading edge; (2) GHz-bandpass recording of long record lengths (10s-100s of ns); and (3) determining shot-to-shot reproducibility at rep-rates exceeding 10 kHz. The System Verification Apparatus (SVA) is a novel diagnostic system which can measure 60-ps rise-time signals on a single-shot basis, while monitoring pulse-to-pulse variation. The fully-integrated SVA includes a broadband sensor, signal and trigger conditioning electronics, multiple parallel digitizers with deep local storge, and automated software for acquiring, archiving, and analyzing waveform data with rapid (secs-minute) turnaround time. The instruments are housed in a portable 100-dB shielded aluminum enclosure. The SVA utilizes a 6-GHz bandpass free-field D-dot sensor to measure the incident electric field. Three separate digitizers together meet the requirements of high bandwidth, long record length, and high repetition rate. A 6-GHz bandpass scan converter digitizer captures the leading edge (few ns) of the radiated signal. 1-GHz and 600 MHz bandwidth solid-state digitizers supporting long record lengths (greater than 2 micrometers) record the balance of the signal, which typically contains negligible content above 1 GHz. These solid-state digitizers can store greater than 900 waveforms locally at rep-rates exceeding 65 Hz and 100 kHz, respectively. Data management and instrument control use an 80486-based PC, operating in a user-friendly Windows environment. All waveform and system configuration data are automatically stored in a built-in database. A fiber-optic link, up to 2 km long, provides electromagnetic isolation of the computer.

  17. Integrated 1.55 µm photomixer local oscillator sources for heterodyne receivers from 70 GHz to beyond 250 GHz

    NASA Astrophysics Data System (ADS)

    Huggard, Peter G.; Azcona, Luis; Laisné, Alexandre; Ellison, Brian N.; Shen, Pengbo; Gomes, Nathan J.; Davies, Phil A.

    2004-10-01

    Photomixing is a flexible and efficient method of providing both local oscillator signals for heterodyne receivers and high frequency phase reference signals. Ultrafast, 70 GHz bandwidth, λ = 1.55 µm, photodiodes from u2t Photonics AG have been incorporated into three designs of mm-wave waveguide mounts. The photomixers utilise a thin freestanding gold foil, or a gold on dielectric, probe to couple power into the waveguide and to deliver the photodiode bias. The frequency coverage of the designs is from 70 GHz to 300 GHz. A method of rapidly characterizing the frequency response of these photomixers using spontaneous-spontaneous beating of light from an EDFA is described. Recent work has been directed at increasing the degree of integration of the photodiode with the waveguide probe and choke filter to reduce the frequency dependence of the output power. A simplified photomixer block manufacturing process has also been introduced. A combined probe and filter structure, impedance matched to both the coplanar output line on the photodiode chip and to 0.4 height milled waveguide, is presented. This matching is achieved over the W-band with a fixed waveguide backshort. We present modelled and experimental results showing the increased efficiency and smoother tuning. The design and frequency response of such a probe is reported. We also present the performance of a simpler mount, operating in the frequency range from 160 GHz to 300 GHz, which generates powers of around 10 µW up to 250 GHz.

  18. Astronomical Masers: Polarization Properties of 22-GHZ Water and 6.7-GHZ Methanol Masers.

    NASA Astrophysics Data System (ADS)

    Surcis, Gabriele; Vlemmings, Wouter H. T.; van Langevelde, Huib Jan

    2014-06-01

    By observing the astronomical masers in the Milky Way we can determine for instance high-accurate distances of the hosting Galactic sources (e.g., Galactic star-forming regions) and the kinematic of the gas where the masers arise (e.g., the kinematic of Keplerian accretion disks and outflows in massive star-forming regions). In addition, the bright and narrow spectral line emissions of water and methanol masers are ideal for measuring the Zeeman splitting as well as for determining the orientation of the magnetic field in 3-dimensions around massive young stellar objects (YSOs). Therefore, water and methanol maser species can help us to answer several crucial questions about massive star-formation. For instance, one of the most debated question is whether magnetic fields are important in the formation of high-mass stars (M>8 {Msun}). The main difficulty in answering this question is related to the fast evolution of the high-mass stars that makes the massive YSOs rare. Furthermore, they are typically found at fairly large distance. Hence, it is very difficult to measure the magnetic fields at distances <100 Astronomical Units from the central protostar by using dust polarized emissions. But fortunately, the direct measurement of magnetic fields at small scale (10-100 Astronomical Units) around massive YSOs is possible by observing the polarized emission of masers. In my oral contribution, besides showing the polarization properties of 22-GHz water and 6.7-GHz methanol masers, I will show our most interesting results about the determination of the orientation and of the strength of magnetic fields around massive YSOs. We have also started a systematic study for determining if there exists a real alignment between magnetic fields and the large scale outflows that are launched from the central protostar, which is important to constrain future simulations. Furthermore, we are involved in laboratory and modelling efforts to calibrate the magnitude of the Zeeman effect

  19. 47 CFR 15.256 - Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of level probing radars within the..., Additional Provisions § 15.256 Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz. (a) Operation under this section is limited to level probing radar...

  20. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  1. Solar Patrol Polarization Telescopes at 45 and 90 GHz

    NASA Astrophysics Data System (ADS)

    Valio, A.; Kaufmann, P.; Gimenez de Castro, C. G.; Raulin, J.-P.; Fernandes, L. O.; Marun, A.

    2012-12-01

    The spectra of solar flares provide important information about the physics involved in the flaring process. Presently, however, there is a large frequency gap at radio frequencies between 20 and 200 GHz. Unfortunately, this gap hinders the determination of important flare parameters such as: (i) the frequency of the peak of the spectra, or turnover frequency, which yields the magnetic field intensity in the flaring source and electron density; (ii) the optically thin frequency slope, that is related to the accelerated electrons with a power-law energy distribution, allowing information about the acceleration mechanism; (iii) and other physical parameters such as source size and inhomogeneities that may also be estimated from spectra with complete spectral coverage. Recently a new spectral component at high frequencies was discovered with fluxes increasing above 200 GHz, distinct from the traditional microwave component, with peak frequencies at about 10 GHz. To elucidate the nature of both components and fully characterize the spectra of solar flares, we analyze new observations at the intermediate frequencies obtained by two antennas with receivers at 45 and 90 GHz, capable of measuring circular polarization. The telescope, installed at CASLEO Observatory (Argentina), is described in detail. We also analyze the observations of the flares it has already detected, including their spectra especially when data at 212 and 405 GHz from the Solar Submillimeter Telescope (SST), located at the same site, is available.

  2. STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS

    SciTech Connect

    Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Ellingsen, S. P.; Fuller, G. A.; Quinn, L. J.; Avison, A.

    2011-06-01

    We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

  3. Design and implementation of a 150 GHz single-channel millimeter wave interferometer on Joint TEXT tokamak

    SciTech Connect

    Feng, X. D.; Zhuang, G.; Yang, Z. J.; Gao, L.; Hu, X. W.

    2013-04-15

    A simple, single-channel millimeter-wave interferometer system has been designed, fabricated, and installed on the J-TEXT tokamak. For the plasma density anticipated on J-TEXT, a solid-state source operating at 150 GHz has been chosen to minimize errors due to both vibration along the beam path and refraction in the plasma. The new aspect of the interferometer design is to use a subharmonic mixer for detection with a frequency doubled 150 GHz source. It employs a single source which is bias-tuned and modulated with a sawtooth wave form up to 100 kHz in order to generate the intermediate frequency. The 12.5 GHz voltage-controlled oscillator is multiplied to 75 GHz before a final doubler raises it to 150 GHz. A portion of the 75 GHZ power is used for the local oscillator (LO) and is directly connected to the LO input of the subharmonic mixer. The phase is evaluated by a digital phase comparator using a software-based algorithm. Detection noise limits the minimum resolvable phase change with the interferometer to {+-}0.05 fringe, which corresponds to an averaged electron density change along the chord of {+-}1.1 Multiplication-Sign 10{sup 17} m{sup -2}. The maximum measurable electron density is expected to be {approx}9 Multiplication-Sign 10{sup 19} m{sup -3}. A comparison of preliminary results from the millimeter wave interferometer with that from the far-infrared hydrogen cyanide laser (wavelength of 337 {mu}m) interferometer shows good agreement during the pulse flat-top period. The millimeter wave interferometer system will be used as a part of the density feedback control system in the future.

  4. 47 CFR 25.287 - Requirements pertaining to operation of mobile stations in the NVNG, 1.5/1.6 GHz, 1.6/2.4 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... capabilities to ensure compliance with Footnote 5.353A in 47 CFR 2.106 and the priority and real-time... stations in the NVNG, 1.5/1.6 GHz, 1.6/2.4 GHz, and 2 GHz Mobile-Satellite Service bands. 25.287 Section 25.287 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES...

  5. VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011

    NASA Astrophysics Data System (ADS)

    Lico, R.; Giroletti, M.; Orienti, M.; Giovannini, G.; Cotton, W.; Edwards, P. G.; Fuhrmann, L.; Krichbaum, T. P.; Sokolovsky, K. V.; Kovalev, Y. Y.; Jorstad, S.; Marscher, A.; Kino, M.; Paneque, D.; Perez-Torres, M. A.; Piner, G.

    2012-09-01

    Context. High-resolution radio observations are ideal for constraining the value of physical parameters in the inner regions of active-galactic-nucleus jets and complement results on multiwavelength (MWL) observations. This study is part of a wider multifrequency campaign targeting the nearby TeV blazar Markarian 421 (z = 0.031), with observations in the sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and γ rays (Fermi-LAT, MAGIC, VERITAS). Aims: We investigate the jet's morphology and any proper motions, and the time evolution of physical parameters such as flux densities and spectral index. The aim of our wider multifrequency campaign is to try to shed light on questions such as the nature of the radiating particles, the connection between the radio and γ-ray emission, the location of the emitting regions and the origin of the flux variability. Methods: We consider data obtained with the Very Long Baseline Array (VLBA) over twelve epochs (one observation per month from January to December 2011) at 15 GHz and 24 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. Results: The structure of Mrk 421 is dominated by a compact (~0.13 mas) and bright component, with a one-sided jet detected out to ~10 mas. We identify 5-6 components in the jet that are consistent with being stationary during the 12-month period studied here. Measurements of the spectral index agree with those of other works: they are fairly flat in the core region and steepen along the jet length. Significant flux-density variations are detected for the core component. Conclusions: From our results, we draw an overall scenario in which we estimate a viewing angle 2° < θ < 5° and a different jet velocity for the radio and the high-energy emission regions, such that the respective Doppler factors are δr ~ 3 and δh.e. ~ 14. Table 2 is available in electronic form at http://www.aanda.orgFITS files are only available at

  6. A 200 GHz tripler using single barrier varactor

    NASA Technical Reports Server (NTRS)

    Choudhury, Debabani; Frerking, Margaret A.; Batelaan, Paul D.

    1992-01-01

    The GaAs Schottky varactor diode is the nonlinear device most commonly used for submillimeter wave harmonic generation. Output power adequate to serve as a local oscillator source for SIS tunnel junctions has been demonstrated with whisker-contacted GaAs Schottky varactor multipliers in waveguide mounts up to about 800 GHz. In this paper, we present results for a tripler to 200 GHz using a new multiplier device, the single barrier varactor (SBV). This new varactor has a potential advantages such as stronger nonlinearities or special symmetry, which make it attractive for submillimeter wave frequency multiplication. The performance of a tripler using a SBV over a output frequency range from 186 to 207 GHz has been measured in a crossed waveguide mount. The theoretical performance of the device has been calculated using large signal analysis. A comparison of theoretical and measured results and a discussion of various losses in the mount and the varactor have also been presented.

  7. Observations of neutral atomic carbon at 809 GHz.

    PubMed

    Zmuidzinas, J; Betz, A L; Goldhaber, D M

    1986-08-15

    We have detected the 809 GHz 3P2-3P1 fine-structure line of neutral atomic carbon in four dense molecular clouds: M17, W51, W3, and DR 21(OH). These observations complement the published observations of the 492 GHz 3P1-3P0 line and allow the excitation temperature of the 3P levels along with the line optical depths to be determined. The results indicate excitation temperatures Tx approximately 30-60 K and optical depths of tau 10 < or approximately 1. This implies that the approximately 10(18) cm-2 lower limit to the C I abundance derived from 492 GHz observations is probably the actual abundance, which gives C I/CO approximately 0.1 in dense molecular clouds.

  8. Towards hard x-ray imaging at GHz frame rate

    SciTech Connect

    Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N.

    2012-10-15

    Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  9. Towards hard x-ray imaging at GHz frame rate.

    PubMed

    Wang, Zhehui; Morris, C L; Kapustinsky, J S; Kwiatkowski, K; Luo, S-N

    2012-10-01

    Gigahertz (GHz) imaging using hard x-rays (> or approximately equal to 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  10. 324GHz CMOS VCO Using Linear Superimposition Technique

    NASA Technical Reports Server (NTRS)

    Daquan, Huang; LaRocca, Tim R.; Samoska, Lorene A; Fung, Andy; Chang, Frank

    2007-01-01

    Terahertz (frequencies ranged from 300GHz to 3THz) imaging and spectroscopic systems have drawn increasing attention recently due to their unique capabilities in detecting and possibly analyzing concealed objects. The generation of terahertz signals is nonetheless nontrivial and traditionally accomplished by using either free-electron radiation, optical lasers, Gunn diodes or fundamental oscillation by using III-V based HBT/HEMT technology[1-3]... We have substantially extended the operation range of deep-scaled CMOS by using a linear superimposition method, in which we have realized a 324GHz VCO in 90nm digital CMOS with 4GHz tuning range under 1V supply voltage. This may also pave the way for ultra-high data rate wireless communications beyond that of IEEE 802.15.3c and reach data rates comparable to that of fiber optical communications, such as OC768 (40Gbps) and beyond.

  11. Towards hard X-ray imaging at GHz frame rate

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Luo, Shengnian; Kwiatkowski, Kris K.; Kapustinsky, Jon S.

    2012-05-02

    Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  12. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  13. Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Wake, K.; Watanabe, S.

    2014-08-01

    Numerous studies have reported the measurements of the dielectric properties of the skin. Clarifying the manner in which the human body interacts with electromagnetic waves is essential for medical research and development, as well as for the safety assessment of electromagnetic wave exposure. The skin comprises several layers: the epidermis, the dermis, and the subcutaneous fat. Each of these skin layers has a different constitution; however, the previous measurements of their dielectric properties were typically conducted on tissue which included all three layers of the skin. This study presents novel dielectric property data for the epidermis and dermis with in vitro measurement at frequencies ranging from 0.5 GHz to 110 GHz. Measured data was compared with literature values; in particular, the findings were compared with Gabriel’s widely used data on skin dielectric properties. The experimental results agreed with the data reported by Gabriel for the dermis of up to 20 GHz, which is the upper limit of the range of frequencies at which Gabriel reported measurements. For frequencies of 20-100 GHz, the experimental results indicated larger values than those extrapolated from Gabriel’s data using parametric expansion. For frequencies over 20 GHz, the dielectric properties provided by the parametric model tend toward the experimental results for the epidermis with increasing frequency.

  14. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  15. GHz-range surface acoustic wave interdigital transducers and applications

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Kazuhiko

    1989-11-01

    GHz-range interdigital transducers (IDTs) with nanometer electrodes fabricated by using a new method of direct electron beam lithography and O2-plasma ashing techniques are examined. Various kinds of unidirectional transducers for low-loss devices are described and a new fabrication technology for higher operating frequencies using a lift-off anodic oxidation method is presented. Electrode separations are obtained by dielectric thin film fabricated by anodic oxidation of the edge of an Al film covered by the photoresist. Various kinds of GHz-range unidirectional IDTs using the lift-off anodic oxidation method are described.

  16. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  17. Imaging in a Gregorian antenna from 12 to 30 GHz

    NASA Astrophysics Data System (ADS)

    Dragone, Corrado; Ruscio, J. T.

    1988-02-01

    A Gregorian antenna with the main reflector illuminated by a magnified image of a small horn aperture was built and tested from 12 to 30 GHz. The image is approximately frequency-independent, and the main reflector is illuminated with negligible spillover. Polarization distortion caused by aberration is very small, in excellent agreement with a simple expression derived previously by the author (1987). Spatial filtering by the subreflector causes the far-field sidelobes in the principal plane orthogonal to the symmetry plane to be very low, about 80 dB below the main beam at 16.5 GHz for angles from the axis that are greater than 20 deg.

  18. Lightweight Reflectarray Antenna for 7.115 and 32 GHz

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Huang, John

    2007-01-01

    A lightweight reflectarray antenna that would enable simultaneous operation at frequencies near 7.115 GHz and frequencies near 32 GHz is undergoing development. More precisely, what is being developed is a combination of two reflectarray antennas -- one for each frequency band -- that share the same aperture. (A single reflectarray cannot work in both frequency bands.) The main advantage of the single dual-band reflectarray is that it would weigh less and occupy less space than do two single-band reflectarray antennas

  19. Measurement of 460 GHz Atmospheric Opacity at Yangbajin Observing Station

    NASA Astrophysics Data System (ADS)

    Zhou, M. F.; Yao, Q. J.; Li, S.; Luo, Z. Q.; Yang, J.

    2011-01-01

    To assess the observational condition of Yangbajin, the Portable Submillimeter Telescope (POST) is used to measure the atmospheric opacity at 460 GHz from November 2008 to December 2008. The result shows that the quartile of atmospheric opacity during the observing time at 460 GHz at Yangbajin Observatory is 1.25, 1.42 and 1.63 and the time proportion of atmospheric opacity less than 1 is about 3.4%. At last, we compare the submillimeter site conditions of Yangbajin with those of other submillimeter observatories in the world, and try to explore the possible causes that may influence the submillimeter atmospheric opacity.

  20. Measurements of 460 GHz Atmospheric Opacity at Yangbajing Observational Station†

    NASA Astrophysics Data System (ADS)

    Ming-feng, Zhou; Qi-jun, Yao; Sheng, Li; Zhi-quan, Luo; Ji, Yang

    2011-07-01

    In order to assess the submillimeter wave observational conditions of Yangbajin, a Portable Submillimeter Telescope (POST) is used to measure the zenith atmospheric opacity at 460 GHz from November 2008 to December 2008. The results show that the quartiles of atmospheric opacity during the observing time at 460 GHz at Yangbajin Observatory is 1.25, 1.42 and 1.63, and the time proportion of atmospheric opacity less than 1 is about 3.4%. At last, the submillimeter wave site conditions of Yangbajin with those of other submillimeter observatories in the world are compared, and the possible causes that may influence the submillimeter atmospheric opacity are explored.

  1. A 32 GHz microstrip array antenna for microspacecraft application

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1994-01-01

    JPL/NASA is currently developing microspacecraft systems for future deep space applications. One of the frequency bands being investigated for microspacecraft is the Ka-band (32 GHz), which can be used with smaller equipment and provides a larger bandwidth. This article describes the successful development of a circularly polarized microstrip array with 28 dBic of gain at 32 GHz. This antenna, which is thin, flat, and small, can be surface-mounted onto the microspacecraft and, hence, takes very little volume and mass of the spacecraft. The challenges in developing this antenna are minimizing the microstrip antenna's insertion loss and maintaining a reasonable frequency bandwidth.

  2. Simulation of n-qubit quantum systems. IV. Parametrizations of quantum states, matrices and probability distributions

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2008-11-01

    with ⩾2GHz or newer, and about 5-20 MB of working memory (in addition to the memory for the Maple environment). Especially when working with symbolic expressions, however, the requirements on CPU time and memory critically depend on the size of the quantum registers, owing to the exponential growth of the dimension of the associated Hilbert space. For example, complex (symbolic) noise models, i.e. with several symbolic Kraus operators, result for multi-qubit systems often in very large expressions that dramatically slow down the evaluation of e.g. distance measures or the final-state entropy, etc. In these cases, Maple's assume facility sometimes helps to reduce the complexity of the symbolic expressions, but more often only a numerical evaluation is possible eventually. Since the complexity of the various commands of the FEYNMAN program and the possible usage scenarios can be very different, no general scaling law for CPU time or the memory requirements can be given. References: [1] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 (2005) 91. [2] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 175 (2006) 145. [3] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 176 (2007) 617.

  3. Observacoes do Cometa de Halley no Continuo de 22 GHz E 44 GHz, E NA Raia Maser de Vapor de H20 EM 22.2 GHz

    NASA Astrophysics Data System (ADS)

    Abraham, Z.; Scalise, E., Jr.; Botti, L. C. L.; Cancoro, A. C. O.; Monteiro Do Vale, J. L.; del Ciampo, L. F.; Tateyama, C. E.; Vilas Boas, J. W. S.; Homor, J. L.; Kaufmann, P.

    1987-05-01

    0 cometa de Halley foi observado no contínuo nas frequencias de 22 GHz e 44 GHz no Observatório de Itapetinga, Brasil, no período Fevereiro-Abril de 1986. 0 cometa foi detetado em ambas frequẽncias, apresentando variabilidade corn escalas de tempo de horas. Cálculos teóricos mostram que a radicão não pode ser devida a transicões livre-livre na região ionizada resultante da interacão do cometa corn 0 vento solar. A emissão seria então devida à radiacão térmica dos gráos da coma do cometa, cuja densidade também foi variável em intervalo de horas. Não foi detetada emissão maser de H2O maior que 4 Jy.

  4. Optimal detection of entanglement in Greenberger-Horne-Zeilinger states

    SciTech Connect

    Kay, Alastair

    2011-02-15

    We present a broad class of N-qubit Greenberger-Horne-Zeilinger (GHZ)-diagonal states such that nonpositivity under the partial transpose operation is necessary and sufficient for the presence of entanglement, including many naturally arising instances such as dephased GHZ states. Furthermore, our proof directly leads to an entanglement witness which saturates this bound. The witness is applied to thermal GHZ states to prove that the entanglement can be extremely robust to system imperfections.

  5. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Kalvas, T; Koivisto, H; Komppula, J; Kronholm, R; Laulainen, J; Izotov, I; Mansfeld, D; Skalyga, V

    2016-02-01

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime. PMID:26931919

  6. The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Lyneis, C.; Leitner, D.; Leitner, M.; Taylor, C.; Abbott, S.

    2010-02-15

    VENUS is a third generation electron cyclotron resonance (ECR) ion source, which incorporates a high field superconducting NbTi magnet structure, a 28 GHz gryotron microwave source and a state of the art closed cycle cryosystem. During the decade from initial concept to regular operation, it has demonstrated both the feasibility and the performance levels of this new generation of ECR ion sources and required innovation on magnet construction, plasma chamber design, and beam transport. In this paper, the development, performance, and major innovations are described as well as a look to the potential to construct a fourth generation ECR ion source.

  7. Feb2010 GHZ Ebw Heating, Current Drive and Emission Experiments at the Wega Stellarator

    NASA Astrophysics Data System (ADS)

    Laqua, H. P.; Chlechowitz, E.; Glaubitz, M.; Marsen, S.; Stange, T.; Otte, M.; Zhang, D.; Preinhaelter, J.; Urban, J.

    2011-02-01

    This paper reports on detailed investigation of a fully 28 GHz EBW (electron Bernstein wave) heated plasma in the WEGA stellarator. The plasma shows a fast transition into the "OXB-state" when the threshold density is reached. The profiles become peaked. The EBW emission diagnostic measures a radiation temperature of several keV, which origins from a supra-thermal electron population. The angular dependence of the mode conversion could be confirmed with a movable launching mirror. The toroidal current and the plasma conductivity were measured for different microwave launch positions.

  8. 90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis

    NASA Technical Reports Server (NTRS)

    Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.; Maddalena, R. J.; McMullin, J. P.; Shepherd, D. S.; Sievers, A.; Staguhn, J. G.; Tucker, C.

    2009-01-01

    We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).

  9. Decoherence suppression for three-qubit W-like state using weak measurement and iteration method

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Lian, Bao-Wang; Nie, Min

    2016-08-01

    Multi-qubit entanglement states are the key resources for various multipartite quantum communication tasks. For a class of generalized three-qubit quantum entanglement, W-like state, we demonstrate that the weak measurement and the reversal measurement are capable of suppressing the amplitude damping decoherence by reducing the initial damping factor into a smaller equivalent damping factor. Furthermore, we propose an iteration method in the weak measurement and the reversal measurement to enhance the success probability of the total measurements. Finally, we discuss how the number of the iterations influences the overall effect of decoherence suppression, and find that the “half iteration” method is a better option that has more practical value. Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).

  10. 670-GHz Down- and Up-Converting HEMT-Based Mixers

    NASA Technical Reports Server (NTRS)

    Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry

    2012-01-01

    A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers

  11. A broadband DC to 20 GHz 3-bit MEMS digital attenuator

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Zhu, Jian; Jiang, Lili; Yu, Yuanwei; Li, Zhiqun

    2016-05-01

    A 3-bit microelectromechanical system (MEMS) digital attenuator is designed with 0–20 GHz bandwidth. The attenuation ranges from 0 to 35 dB with 5 dB step. The attenuator, with the coplanar waveguide (CPW), is implemented by surface sacrificial layer technology. The DC-contact MEMS switches with three contact dimples are symmetrically placed around the T type resistor network, making the switches minimum in number and the structure compact. Through the lumped parameter method, the attenuator has good terminal matches in different attenuation states. The test results show that eight different attenuation states are realized within 0–20 GHz. The attenuation deviation is less than  ±5%, the insertion loss is less than 1.7 dB and the voltage standing wave rations is less than 1.4 under most of the attenuation states. With the MEMS switches and CPW being adopted, the attenuator has the advantages of higher linearity, lower insertion loss and power consumption. The chip size is about 3.2 mm2 including the pad. This work was supported by the International Science & Technology Cooperation Program of China (2013DFB10300).

  12. A broadband DC to 20 GHz 3-bit MEMS digital attenuator

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Zhu, Jian; Jiang, Lili; Yu, Yuanwei; Li, Zhiqun

    2016-05-01

    A 3-bit microelectromechanical system (MEMS) digital attenuator is designed with 0-20 GHz bandwidth. The attenuation ranges from 0 to 35 dB with 5 dB step. The attenuator, with the coplanar waveguide (CPW), is implemented by surface sacrificial layer technology. The DC-contact MEMS switches with three contact dimples are symmetrically placed around the T type resistor network, making the switches minimum in number and the structure compact. Through the lumped parameter method, the attenuator has good terminal matches in different attenuation states. The test results show that eight different attenuation states are realized within 0-20 GHz. The attenuation deviation is less than  ±5%, the insertion loss is less than 1.7 dB and the voltage standing wave rations is less than 1.4 under most of the attenuation states. With the MEMS switches and CPW being adopted, the attenuator has the advantages of higher linearity, lower insertion loss and power consumption. The chip size is about 3.2 mm2 including the pad. This work was supported by the International Science & Technology Cooperation Program of China (2013DFB10300).

  13. Contactless Water Status Measurements on Plants at 35 GHz

    NASA Astrophysics Data System (ADS)

    Gente, R.; Rehn, A.; Koch, M.

    2015-03-01

    We demonstrate a method for non-destructive and contactless measurements of the water content of plants, e.g. agricultural crops. The measurement is based on the absorption of microwave radiation at 35 GHz inside the plant and additionally takes scattering on the surface of the plant into account.

  14. Radially combined 30 W, 14-16 GHz amplifier

    SciTech Connect

    Sechi, F.; Bujatti, M.; Knudson, R.; Bugos, R.

    1994-04-01

    The paper describes a highly integrated 30 W power amplifier for a Synthetic Aperture Radar, operating in the 14--16 GHz band. The use of a waveguide radial combiner, a microstrip power divider and direct microstrip to waveguide miniaturized ceramic technology, leads to an unusually compact and accessible structure, well suited for commercial production.

  15. 60-GHz gyrotron development program alternate frequency study

    SciTech Connect

    Evans, S.J.; Nordquist, A.L.; Wendell, G.E.

    1981-08-01

    The purpose of this study was to take a preliminary look at what the considerations are when scaling the frequency of a gyrotron oscillator a few percent from an existing design. To minimize construction costs, it would be most advantageous to keep all parts the same and operate only with slightly different voltages and magnetic fields. There are two tube parts that must be changed for any frequency modification: the tube output window and the oscillation cavity. This study assumed that the output window and the cavity would be scaled in dimensions for best operation at the new frequency. The main thrust of the study was to examine the feasibility of using the 60 GHz gun (K-8060) and magnet (VYW-8060) for operation at 56 and 52 GHz, and the 28 GHz gun (K-8000) and magnet (VYW-8000) for operation at 26 and 30 GHz. All work was done using Varian computer gun codes and hand calculations. It must be mentioned that these results are only a guideline and that a final design would need some further fine tuning.

  16. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  17. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  18. A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER

    SciTech Connect

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77 GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q – U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.

  19. Feasible logic Bell-state analysis with linear optics.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state. PMID:26877208

  20. Feasible logic Bell-state analysis with linear optics

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state. PMID:26877208

  1. CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells.

    PubMed

    Akhtar, W; Schnegg, A; Veber, S; Meier, C; Fehr, M; Lips, K

    2015-08-01

    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263GHz and resonance fields between 0 and 12T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5K and 90K was studied by in operando 263GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.

  2. CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells.

    PubMed

    Akhtar, W; Schnegg, A; Veber, S; Meier, C; Fehr, M; Lips, K

    2015-08-01

    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263GHz and resonance fields between 0 and 12T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5K and 90K was studied by in operando 263GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states. PMID:26112328

  3. Searching for inflationary B modes: can dust emission properties be extrapolated from 350 GHz to 150 GHz?

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Pavlidou, Vasiliki

    2015-07-01

    Recent Planck results have shown that radiation from the cosmic microwave background passes through foregrounds in which aligned dust grains produce polarized dust emission, even in regions of the sky with the lowest level of dust emission. One of the most commonly used ways to remove the dust foreground is to extrapolate the polarized dust emission signal from frequencies where it dominates (e.g. ˜350 GHz) to frequencies commonly targeted by cosmic microwave background experiments (e.g. ˜150 GHz). In this Letter, we describe an interstellar medium effect that can lead to decorrelation of the dust emission polarization pattern between different frequencies due to multiple contributions along the line of sight. Using a simple 2-cloud model we show that there are two conditions under which this decorrelation can be large: (a) the ratio of polarized intensities between the two clouds changes between the two frequencies; (b) the magnetic fields between the two clouds contributing along a line of sight are significantly misaligned. In such cases, the 350 GHz polarized sky map is not predictive of that at 150 GHz. We propose a possible correction for this effect, using information from optopolarimetric surveys of dichroicly absorbed starlight.

  4. Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces

    NASA Astrophysics Data System (ADS)

    Hu, Shi; Cui, Wen-Xue; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-09-01

    Non-adiabatic holonomic quantum gate in decoherence-free subspaces is of greatly practical importance due to its built-in fault tolerance, coherence stabilization virtues, and short run-time. Here, we propose some compact schemes to implement two- and three-qubit controlled unitary quantum gates and Fredkin gate. For the controlled unitary quantum gates, the unitary operator acting on the target qubit is an arbitrary single-qubit gate operation. The controlled quantum gates can be directly implemented by utilizing non-adiabatic holonomy in decoherence-free subspaces and the required resource for the decoherence-free subspace encoding is minimal by using only two neighboring physical qubits undergoing collective dephasing to encode a logical qubit.

  5. Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces

    NASA Astrophysics Data System (ADS)

    Hu, Shi; Cui, Wen-Xue; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-06-01

    Non-adiabatic holonomic quantum gate in decoherence-free subspaces is of greatly practical importance due to its built-in fault tolerance, coherence stabilization virtues, and short run-time. Here, we propose some compact schemes to implement two- and three-qubit controlled unitary quantum gates and Fredkin gate. For the controlled unitary quantum gates, the unitary operator acting on the target qubit is an arbitrary single-qubit gate operation. The controlled quantum gates can be directly implemented by utilizing non-adiabatic holonomy in decoherence-free subspaces and the required resource for the decoherence-free subspace encoding is minimal by using only two neighboring physical qubits undergoing collective dephasing to encode a logical qubit.

  6. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    DOE PAGES

    Witzel, Wayne; Montano, Ines; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.« less

  7. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    SciTech Connect

    Witzel, Wayne; Montano, Ines; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interact with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.

  8. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates.

    PubMed

    Wei, Wei; Pallecchi, Emiliano; Haque, Samiul; Borini, Stefano; Avramovic, Vanessa; Centeno, Alba; Amaia, Zurutuza; Happy, Henri

    2016-08-01

    Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To demonstrate the reliability of our devices, we performed a fatigue stress test for RF-GFETs which were dynamically bend tested 1000 times at 1 Hz. The devices are mechanically robust, and performances are stable with typical variations of 15%. Finally we investigate thermal dissipation, which is a critical parameter for flexible electronics. We show that at the optimum polarization the normalized power dissipated by the GFETs is about 0.35 mW μm(-2) and that the substrate temperature is around 200 degree centigrade. At a higher power, irreversible degradations of the performances are observed. Our study on state of the art flexible GFETs demonstrates mechanical robustness and stability upon heating, two important elements to assess the potential of GFETs for flexible electronics. PMID:27396243

  9. An integrated membrane sub-harmonic Schottky diode mixers at 340GHz

    NASA Astrophysics Data System (ADS)

    Wang, Junlong; Yang, Dabao; Xing, Dong; Liang, Shixiong; Zhang, Lisen; Zhao, Xiangyang; Feng, Zhihong

    2015-11-01

    This paper presents a sub-harmonic mixer operating over the spectral band 332-348 GHz. The mixers employ integrated GaAs membrane Schottky diode technology. The simulated results show that the conversion loss of the mixer is below dB in the band from 333 GHz to 347 GHz with a local oscillator power requirement of 5mW.The minimum is 8.2dB at 344GHz.

  10. Perfect teleportation and superdense coding with W states

    SciTech Connect

    Agrawal, Pankaj; Pati, Arun

    2006-12-15

    True tripartite entanglement of the state of a system of three qubits can be classified on the basis of stochastic local operations and classical communications. Such states can be classified into two categories: GHZ states and W states. It is known that GHZ states can be used for teleportation and superdense coding, but the prototype W state cannot be. However, we show that there is a class of W states that can be used for perfect teleportation and superdense coding.

  11. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz...

  12. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz...

  13. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz...

  14. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz...

  15. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz...

  16. The 18/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized.

  17. Development of 26GHz dielectric-based wakefield power extractor.

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.; Gao, F.; Kazakov, S.; Kustov, A.; High Energy Physics; Euclid Techlabs; KEK; Dynamics Software

    2009-01-01

    High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. In this article we present a design of a 26 GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. Using a 20 nC bunch train (bunch length of 1.5 mm) at the Argonne Wakefield Accelerator (AWA) facility, we can obtain a steady 26 GHz output power of 148 MW. The extractor has been fabricated and bench tested, with the first high power beam experiments to be performed in the coming year.

  18. Development of 26 GHz Dielectric-Based Wakefield Power Extractor

    SciTech Connect

    Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.; Gao, F.; Kazakov, S.; Kustov, A.

    2009-01-22

    High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. In this article we present a design of a 26 GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. Using a 20 nC bunch train (bunch length of 1.5 mm) at the Argonne Wakefield Accelerator (AWA) facility, we can obtain a steady 26 GHz output power of 148 MW. The extractor has been fabricated and bench tested, with the first high power beam experiments to be performed in the coming year.

  19. The effect of cirrus clouds on 118-GHz brightness temperatures

    NASA Technical Reports Server (NTRS)

    Weinman, J. A.

    1988-01-01

    A microwave radiative transfer model that describes the effect of scattering by cirrus clouds on the brightness temperatures that may be measured by a geostationary temperature-sounding radiometer has been developed. The model assumes that cirrus clouds are situated at an altitude where the temperature is about 230 K above completely absorbing land surfaces. It is shown that the brightness temperature at 118.75 + or - 3.9 GHz is depressed by 0.3-0.4 K per g per sq m of ice. The channels that operate at frequencies closer to 118.75 GHz are less affected by cirrus clouds. The brightness temperature reduction is most pronounced in warm temperate and tropical conditions.

  20. Snow backscatter in the 1-8 GHz region

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    The 1-8 GHz microwave active spectrometer system was used to measure the backscatter response of snow covered ground. The scattering coefficient was measured for all linear polarization combinations at angles of incidence between nadir and 70 deg. Ground truth data consisted of soil moisture, soil temperature profile, snow depth, snow temperature profile, and snow water equivalent. The radar sensitivity to snow water equivalent increased in magnitude with increasing frequency and was almost angle independent for angles of incidence higher than 30 deg, particularly at the higher frequencies. In the 50 deg to 70 deg angular range and in the 6 to 8 GHz frequency range, the sensitivity was typically between -0.4 dB/.1 g/sq cm and -0.5 dB/,1 g/sq cm, and the associated linear correlation coefficient had a magnitude of about 0.8.

  1. Future mobile satellite communication concepts at 20/30 GHz

    NASA Technical Reports Server (NTRS)

    Barton, S. K.; Norbury, J. R.

    1990-01-01

    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept.

  2. Investigation of an electronically tuned 100 GHz superconducting phase shifter

    SciTech Connect

    Tvack, E.K.; Shen, Z.Y.; Dang, H.; Radparvar, M.; Faris, S.M. )

    1991-03-01

    This paper presents the results of an investigation aimed at realizing a tunable superconducting mm-wave phase shifter. The tuning mechanism is based on inductance modulation of NbN microstrips by excess quasiparticle injection. When measured by a dc method, using the interference patterns and resonances of specially designed dc SQUIDs, the inductance of NbN microstrips can be varied by up to 300%. Based on these results, we have designed and fabricated superconducting microstrip interferometers to operate as low power 100 GHz phase shifters. The 100 GHZ signal is coupled into and out of the interferometers by finline antennas. Amplitude modulation of the output is used as the criterion for phase shift in one of the interferometer branches.

  3. 100 GHz, 1 MW, CW gyrotron study program. Final report

    SciTech Connect

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues.

  4. The 30/20 GHz communications satellite trunking network study

    NASA Technical Reports Server (NTRS)

    Kolb, W.

    1981-01-01

    Alternative transmission media for a CONUS-wide trunking network in the years 1990 and 2000 are examined. The alternative technologies comprised fiber optic cable, conventional C- and Ku-band satellites, and 30/20 GHz satellites. Three levels of implementation were considered - a 10-city network, a 20-city network, and a 40-city network. The cities selected were the major metropolitan areas with the greatest communications demand. All intercity voice, data, and video traffic carried more than 40 miles was included in the analysis. In the optimized network, traffic transmitted less than 500 miles was found to be better served by fiber optic cable in 1990. By the year 2000, the crossover point would be down to 200 miles, assuming availability of 30/20 GHz satellites.

  5. 13 GHz direct modulation of terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Barbieri, Stefano; Maineult, Wilfried; Dhillon, Sukhdeep S.; Sirtori, Carlo; Alton, Jesse; Breuil, Nicolas; Beere, Harvey E.; Ritchie, David A.

    2007-10-01

    By directly modulating the bias voltage of a double-metal waveguide, 2.8THz quantum cascade laser, we observe the appearance of multiple gigahertz sidebands in the emission spectrum, with a spacing that can be continuously tuned up to 13GHz. By using an upconversion technique, the terahertz spectrum is shifted at 1.57μm, and displayed on an optical spectrum analyzer. A marked increase in the number of sidebands is observed when the modulation frequency approaches the round-trip frequency (˜12.3GHz). The laser packaging high frequency response has been measured using a microwave rectification technique, and is limited by the bond-wire parasitic inductance.

  6. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  7. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  8. 35 GHz varactor analogue phase modulator in integrating waveguide technology

    NASA Astrophysics Data System (ADS)

    Modelski, J.; Hinken, J. H.

    1986-07-01

    Design method, fabrication process, and measurement results of a linear analog phase modulator in Ka-band with abrupt varactor diode are presented. The modulator was realized in integrating waveguide technology, which is based on a completely dielectric-filled rectangular waveguide. The 180 deg phase shift over the frequency band 34.3-35.4 GHz been received with phase nonlinearity less than 3.5 percent and insertion loss of 3 + or - 0.4 dB.

  9. Jupiter's radio spectrum from 74 MHz up to 8 GHz

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Butler, B. J.; Green, D. A.; Strom, R.; Millan, R.; Klein, M. J.; Bird, M. K.; Funke, O.; Neidhöfer, J.; Maddalena, R.; Sault, R. J.; Kesteven, M.; Smits, D. P.; Hunstead, R.

    2003-06-01

    We carried out a brief campaign in September 1998 to determine Jupiter's radio spectrum at frequencies spanning a range from 74 MHz up to 8 GHz. Eleven different telescopes were used in this effort, each uniquely suited to observe at a particular frequency. We find that Jupiter's spectrum is basically flat shortwards of 1-2 GHz, and drops off steeply at frequencies greater than 2 GHz. We compared the 1998 spectrum with a spectrum (330 MHz-8 GHz) obtained in June 1994, and report a large difference in spectral shape, being most pronounced at the lowest frequencies. The difference seems to be linear with log(ν), with the largest deviations at the lowest frequencies (ν). We have compared our spectra with calculations of Jupiter's synchrotron radiation using several published models. The spectral shape is determined by the energy-dependent spatial distribution of the electrons in Jupiter's magnetic field, which in turn is determined by the detailed diffusion process across L-shells and in pitch angle, as well as energy-dependent particle losses. The spectral shape observed in September 1998 can be matched well if the electron energy spectrum at L = 6 is modeled by a double power law E- a (1+( E/ E0)) - b, with a = 0.4, b = 3, E0 = 100 MeV, and a lifetime against local losses τ 0 = 6 × 10 7 s. In June 1994 the observations can be matched equally well with two different sets of parameters: (1) a = 0.6, b = 3, E0 = 100 MeV, τ 0 = 6 × 10 7 s, or (2) a = 0.4, b = 3, E0 = 100 MeV, τ 0 = 8.6 × 10 6 s. We attribute the large variation in spectral shape between 1994 and 1998 to pitch angle scattering, coulomb scattering and/or energy degradation by dust in Jupiter's inner radiation belts.

  10. Beam Width Robustness of a 670 GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Cooper, K. B.; Llombart, N.; Dengler, R. J.; Siegel, P. H.

    2009-01-01

    Detection of a replica bomb belt concealed on a mannequin at 4 m standoff range is achieved using a 670 GHz imaging radar. At a somewhat larger standoff range of 4.6 m, the radar's beam width increases substantially, but the through-shirt image quality remains good. This suggests that a relatively modest increase in aperture size over the current design will be sufficient to detect person-borne concealed weapons at ranges exceeding 25 meters.

  11. Design of a 60 GHz beam waveguide antenna positioner

    NASA Technical Reports Server (NTRS)

    Emerick, Kenneth S.

    1989-01-01

    A development model antenna positioner mechanism with an integral 60 GHz radio frequency beam waveguide is discussed. The system features a 2-ft diameter carbon-fiber reinforced epoxy antenna reflector and support structure, and a 2-degree-of-freedom elevation over azimuth mechanism providing hemispherical field of view. Emphasis is placed on the constraints imposed on the mechanism by the radio frequency subsystems and how they impacted the mechanical configuration.

  12. Lightning and 85-GHz MCSs in the Global Tropics

    NASA Technical Reports Server (NTRS)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  13. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  14. An 8-18 GHz broadband high power amplifier

    NASA Astrophysics Data System (ADS)

    Lifa, Wang; Ruixia, Yang; Jingfeng, Wu; Yanlei, Li

    2011-11-01

    An 8-18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8-13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm3.

  15. A monolithic 60 GHz balanced low noise amplifier

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Hao, Yang; Haiying, Zhang; Xinnian, Zheng; Zhiwei, Dai; Zhiqiang, Li; Zebao, Du

    2015-04-01

    This paper presents a 60 GHz balanced low noise amplifier. Compared with single-ended structures, the balanced structure can obtain a better input/output return loss, a lower noise figure (NF), a 3 dB improvement of the 1 dB compression point, a 6 dB improvement of IM3 and a doubled dynamic range. Each single-ended amplifier in this paper uses a four-stage cascade structure to achieve a high gain in broadband. At the operating frequency range of 59-64 GHz, the small signal gain of the balanced amplifier is more than 20 dB. Both the input and output return losses are less than -12 dB. The output 1 dB compression power is 10.5 dBm at 60 GHz. The simulation result for the NF is better than 3.9 dB. The chip is fabricated using a 0.15 μm GaAs pHEMT process with a size of 2.25 × 1.7 mm2. Project supported by the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 172511KYSB20130108).

  16. 650 GHz bistatic scattering measurements on human skin

    NASA Astrophysics Data System (ADS)

    Chamberlin, Richard A.; Mujica-Schwahn, Natalie; Grossman, Erich N.

    2014-06-01

    Many groups are developing submillimeter cameras that will be used to screen human subjects for improvised explosive devices (IEDs) and other threat items hidden beneath their clothing. To interpret submillimeter camera images the scattering properties, specifically the bidirectional scattering distribution function (BSDF) must be known. This problem is not trivial because surfaces of man-made objects and human skin have topographic features comparable to the wavelength of submillimeter radiation—thus simple, theoretical scattering approximations do not apply. To address this problem we built a goniometer instrument to measure the BSDF from skin surfaces of live human subjects illuminated with a beam from a 650 GHz synthesized source. To obtain some multi-spectral information, the instrument was reconfigured with a 160 GHz source. Skin areas sampled are from the hand, interior of the forearm, abdomen, and back. The 650 GHz beam has an approximately Gaussian profile with a FWHM of approximately 1 cm. Instrument characteristics: angular resolution 2.9⍛; noise floor -45 dB/sr; dynamic range ˃ 70 dB; either s or p-polarization; 25⍛ bidirectional-scattering-angle ≤ 180⍛ ; The human scattering target skin area was placed exactly on the goniometer center of rotation with normal angle of incidence to the source beam. Scattering power increased at the higher frequency. This new work enables radiometrically correct models of humans.

  17. NASA 60 GHz intersatellite communication link definition study. Baseline document

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS) are described. The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. The use of 60 GHz for the anticipated successor to TDRSS, the Tracking and Data Acquisition System (TDAS), was selected because of current technology development that will enable multigigibit data rates. Additionally, the attenuation of the earth's atmosphere at 60 GHz means that there is virtually no possibility of terrestrially generated interference (intentional or accidental) or terrestrially based intercept. The ICLS includes the following functional areas: (1) the ICLS payload package on the GEO TDAS satellite that communicates simultaneously with up to five LEO USAT's; (2) the payload package on the USAT that communicates with the TDAS satellite; and (3) the crosslink payload package on the TDAS satellite that communicates with another TDAS satellite. Two methods of data relay on-board the TDAS spacecraft were addressed. One is a complete baseband system (demod and remod) with a bi-directional 2 Gbps data stream; the other is a channelized system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical designs are presented.

  18. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  19. GHz low noise short wavelength infrared (SWIR) photoreceivers

    NASA Astrophysics Data System (ADS)

    Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Chang, James; Woo, Robyn; Labios, Eduardo; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei; McIntosh, Dion; Zhou, Qiugui; Campbell, Joe

    2011-06-01

    Next generation LIDAR mapping systems require multiple channels of sensitive photoreceivers that operate in the wavelength region of 1.06 to 1.55 microns, with GHz bandwidth and sensitivity less than 300 fW/√Hz. Spectrolab has been developing high sensitivity photoreceivers using InAlAs impact ionization engineering (I2E) avalanche photodiodes (APDs) structures for this application. APD structures were grown using metal organic vapor epitaxy (MOVPE) and mesa devices were fabricated using these structures. We have achieved low excess noise at high gain in these APD devices; an impact ionization parameter, k, of about 0.15 has been achieved at gains >20 using InAlAs/InGaAlAs as a multiplier layer. Electrical characterization data of these devices show dark current less than 2 nA at a gain of 20 at room temperature; and capacitance of 0.4 pF for a typical 75 micron diameter APD. Photoreceivers were built by integrating I2E APDs with a low noise GHz transimpedance amplifier (TIA). The photoreceivers showed a bandwidth of 1 GHz and a noise equivalent power (NEP) of 150 fW/rt(Hz) at room temperature.

  20. CARM and harmonic gyro-amplifier experiments at 17 GHz

    SciTech Connect

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.; Giguet, E. |

    1993-11-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE{sub 31} mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE{sub 11} mode is also discussed.

  1. Rain rate statistics and fade distributions at 20 and 30 GHz derived from a network of rain gauges in the Mid-Atlantic coast over a five year period

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman E.

    1992-01-01

    A network of ten tipping bucket rain gauges located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States was used to analyze rain rate and modeled slant path attenuation distributions at 20 and 30 GHz. It was shown that, for realistic fade margins at 20 GHz and above, the variable integration times results are adequate to estimate slant path attenuations using models which require 1 min averages. Crane's Global Model was used to derive fade distributions at 20 and 30 GHz.

  2. The laboratory spectrum of acetaldehyde at 1 millimeter (230-325 GHz)

    NASA Technical Reports Server (NTRS)

    Barclay, W. L., Jr.; Anderson, M. A.; Ziurys, L. M.; Kleiner, I.; Hougen, J. T.

    1993-01-01

    The rotational spectrum of acetaldehyde (CH3CHO) in the frequency range 230-325 GHz has been measured in the laboratory using millimeter/submillimeter direct absorption spectroscopy. Over 250 transition frequencies are presented for this molecule for both A and E symmetry species in its ground (upsilon(sub t) = 0) and first excited (upsilon(sub t) = 1) torsional state, with experimental uncertainties of +/- 50 kHz. The data were fitted with a model involving an internal rotation potential function, which typically reproduces the measured frequencies to nu(sub obs) - nu(sub calc) less than or approximately 50 kHz for both ground and upsilon(sub t) = 1 state. These newly measured rest frequencies should aid in the identification of interstellar CH3CHO and in spectral line assignments for millimeter-band scans.

  3. AN INTERFEROMETRIC SPECTRAL-LINE SURVEY OF IRC+10216 IN THE 345 GHz BAND

    SciTech Connect

    Patel, Nimesh A.; Young, Ken H.; Gottlieb, Carl A.; Thaddeus, Patrick; Wilson, Robert W.; Reid, Mark J.; McCarthy, Michael C.; Keto, Eric; Menten, Karl M.; Cernicharo, Jose; He Jinhua; Bruenken, Sandra; Trung, Dinh-V.

    2011-03-15

    We report a spectral-line survey of the extreme carbon star IRC+10216 carried out between 293.9 and 354.8 GHz with the Submillimeter Array. A total of 442 lines were detected, more than 200 for the first time; 149 are unassigned. Maps at an angular resolution of {approx}3'' were obtained for each line. A substantial new population of narrow lines with an expansion velocity of {approx}4 km s{sup -1} (i.e., {approx}30% of the terminal velocity) was detected. Most of these are attributed to rotational transitions within vibrationally excited states, emitted from energy levels above the v = 0, J = 0 ground state with excitation energy of 1000-3000 K. Emission from these lines appears to be centered on the star with an angular extent of <1''. We use multiple transitions detected in several molecules to derive physical conditions in this inner envelope of IRC+10216.

  4. A search for vibrationally excited H2O at 68 GHz

    NASA Technical Reports Server (NTRS)

    Petuchowski, Sam J.; Bennett, Charles L.

    1991-01-01

    Water vapor may be one of the most abundant constituents of shocked molecular clouds. The nonequilibrium distribution of population among its rotational energy states requires the observation of a multiplicity of transitions to constrain its abundance and excitation state. Flux limits are presented for emission due to the (010) 4(14) - 3(21) rotational transition of ortho-H2O at 67.804 GHz in several nebular and stellar sources. Upper limits for a beam-averaged column density of H2O in its nu2 vibrational manifold are derived for Orion BN-KL. Constraints placed by these observations on an internal source of infrared radiation in the Orion shock are discussed.

  5. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF. PMID:26931932

  6. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  7. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  8. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  9. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications.

    PubMed

    Paquet, Romain; Blin, Stéphane; Myara, Mikhaël; Gratiet, Luc Le; Sellahi, Mohamed; Chomet, Baptiste; Beaudoin, Grégoire; Sagnes, Isabelle; Garnache, Arnaud

    2016-08-15

    We report a continuous-wave highly-coherent and tunable dual-frequency laser emitting at two frequencies separated by 30 GHz to 3 THz, based on compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology. The concept is based on the stable simultaneous operation of two Laguerre-Gauss transverse modes in a single-axis short cavity, using an integrated sub-wavelength-thick metallic mask. Simultaneous operation is demonstrated theoretically and experimentally by recording intensity noises and beat frequency, and time-resolved optical spectra. We demonstrated a >80  mW output power, diffraction-limited beam, narrow linewidth of <300  kHz, linear polarization state (>45  dB), and low intensity noise class-A dynamics of <0.3% rms, thus opening the path to a compact low-cost coherent GHz to THz source development. PMID:27519080

  10. Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1972-01-01

    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included.

  11. Electromagnetic characteristics of a superconducting magnet for the 28 GHz ECR ion source according to the series resistance of the protection circuit

    NASA Astrophysics Data System (ADS)

    Lee, Hongseok; Mo, Young Kyu; Kang, Jong O.; Bang, Seungmin; Kim, Junil; Lee, Onyou; Kang, Hyoungku; Hong, Jonggi; Choi, Sukjin; Hong, In Seok; Nam, Seokho; Ahn, Min Chul

    2015-10-01

    A linear accelerator, called RAON, is being developed as a part of the Rare Isotope Science Project (RISP) at the Institute for Basic Science (IBS). The linear accelerator utilizes an electron cyclotron resonance (ECR) ion source for providing intense highly-charged ion beams to the linear accelerator. The 28-GHz ECR ion source can extract heavy-ion beams from protons to uranium. The superconducting magnet system for the 28-GHz ECR ion source is composed of hexapole coils and four solenoid coils made with low-Tc superconducting wires of NbTi. An electromagnetic force acts on the superconducting magnets due to the magnetic field and flowing current in the case of not only the normal state but also the quench state. In the case of quench on hexapole coils, an unbalanced flowing current among the hexapole coils is generated and causes an unbalanced electromagnetic force. Coil motions and coil strains in the quench state are larger than those in the normal state due to the unbalanced electromagnetic force among hexapole coils. Therefore, an analysis of the electromagnetic characteristics of the superconducting magnet for the 28-GHz ECR ion source on series resistance of the protection circuit in the case of quench should be conducted. In this paper, an analysis of electromagnetic characteristics of Superconducting hexapole coils for the 28-GHz ECR ion source according to the series resistance of the protection circuit in the case of quench performed by using finite-elements-method (FEM) simulations is reported.

  12. Studying Star Formation in the Central Molecular Zone using 22 GHz Water and 6.7 GHz Methanol Masers

    NASA Astrophysics Data System (ADS)

    Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; SWAG

    2016-01-01

    The inner 400 pc of our Galaxy, or the so-called the central molecular zone (CMZ), has a unique environment with a large mass of dense, warm molecular gas. One of the premier questions is how star formation (SF) differs in this unique environment from elsewhere in the Galaxy. We intend to address this issue by identifying improved numbers and locations of early sites of SF. We have conducted high resolution surveys of the CMZ, looking for early SF indicators such as 22 GHz water and 6.7 GHz methanol masers. We present the initial water maser results from the SWAG survey and methanol results from the first full VLA survey of 6.7 GHz methanol masers in the CMZ. These surveys span beyond the inner 1.2ο x 0.5ο of the Galaxy, including Sgr B through Sgr C. The improved spatial and spectral resolutions (~26" and 2 km s-1) and sensitivity (RMS ~10 mJy beam-1) of our ATCA observations have allowed us to identify over 140 water maser candidates in the SWAG survey. This is a factor of 3 more than detected from prior surveys of the CMZ. The preliminary distribution of these candidates appears to be uniform along Galactic longitude. Should this distribution persist for water masers associated with star formation (as opposed to those produced by evolved stars), then this result would imply a more uniform distribution of recent SF activity in the CMZ. Prior works have shown that 2/3 of the molecular gas mass is located at positive Galactic longitudes, and young stellar objects (YSOs) identified by IR SEDs are located predominantly at negative Galactic longitudes. A combination of these results can provide insight on the evolution of SF within the CMZ. We are currently comparing the water maser positions to other catalogs (ex. OH/IR stars) in order to distinguish between the mechanisms producing these masers. We are also currently working on determining the distribution of 6.7 GHz methanol masers. These masers do not contain the same ambiguity as water masers as to their source

  13. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  14. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  15. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  16. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  17. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  18. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Satellite Service and 2 GHz Mobile-Satellite Service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2...

  19. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. 25.139 Section 25.139 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and...

  20. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. 25.139 Section 25.139 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and...

  1. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2...

  2. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. 25.139 Section 25.139 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and...

  3. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2...

  4. 47 CFR 25.264 - Requirements to facilitate reverse-band operation in the 17.3-17.8 GHz band of 17/24 GHz...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operation in the 17.3-17.8 GHz band of 17/24 GHz Broadcasting-satellite Service and Direct Broadcast Satellite Service space stations. 25.264 Section 25.264 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.264 Requirements...

  5. 47 CFR 25.264 - Requirements to facilitate reverse-band operation in the 17.3-17.8 GHz band of 17/24 GHz...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operation in the 17.3-17.8 GHz band of 17/24 GHz Broadcasting-satellite Service and Direct Broadcast Satellite Service space stations. 25.264 Section 25.264 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.264 Requirements...

  6. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. 25.139 Section 25.139 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and...

  7. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. 25.139 Section 25.139 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and...

  8. 47 CFR 25.264 - Requirements to facilitate reverse-band operation in the 17.3-17.8 GHz band of 17/24 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operation in the 17.3-17.8 GHz band of 17/24 GHz Broadcasting-satellite Service and Direct Broadcast Satellite Service space stations. 25.264 Section 25.264 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.264 Requirements...

  9. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Satellite Service and 2 GHz Mobile-Satellite Service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2...

  10. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2...

  11. Quasi-Optical Transmission Line for 94-GHz Radar

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.; Veruttipong, Watt

    2008-01-01

    A quasi-optical transmission line (QOTL) has been developed as a low-loss transmission line for a spaceborne cloudobserving radar instrument that operates at a nominal frequency of 94 GHz. This QOTL could also readily be redesigned for use in terrestrial millimeter-wave radar systems and millimeter-wave imaging systems. In the absence of this or another lowloss transmission line, it would be necessary to use a waveguide transmission line in the original radar application. Unfortunately, transmission losses increase and power-handling capacities of waveguides generally decrease with frequency, such that at 94 GHz, the limitation on transmitting power and the combined transmission and reception losses (greater than 5 dB) in a waveguide transmission line previously considered for the original application would be unacceptable. The QOTL functions as a very-lowloss, three-port circulator. The QOTL includes a shaped input mirror that can be rotated to accept 94-GHz transmitter power from either of two high-power amplifiers. Inside the QOTL, the transmitter power takes the form of a linearly polarized beam radiated from a feed horn. This beam propagates through a system of mirrors, each of which refocuses the beam to minimize diffraction losses. A magnetically biased ferrite disc is placed at one of the foci to utilize the Faraday effect to rotate the polarization of the beam by 45 degrees. The beam is then transmitted via an antenna system. The radar return (scatter from clouds, and/or reflections from other objects) is collected by the same antenna and propagates through the Faraday rotator in the reverse of the direction of propagation of the transmitted beam. In the Faraday rotator, the polarization of the received signal is rotated a further 45 degrees, so that upon emerging from the Faraday rotator, the received beam is polarized at 90 with respect to the transmitted beam. The transmitted and received signals are then separated by a wire-grid polarizer.

  12. 280  GHz dark soliton fiber laser.

    PubMed

    Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y

    2014-06-15

    We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280  GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.

  13. 15.6 GHz Ceramic RF Power Extractor Design

    SciTech Connect

    Smirnov, A.V.; Luo, Y.; Yu, D.

    2004-12-07

    A 15.6GHz, slow-wave dielectric structure with matched RF power outcoupler is described. The extractor is to be driven at the 12th harmonic of a bunched electron beam at the upgraded AWA facility at ANL. The design includes a single-port output with two stubs, an upstream absorber, and a ceramic tube matched for the fundamental mode at the downstream end and for the dipole mode at the upstream end. Two codes (Microwave Studio registered and Gd1) were used to optimize and analyze the design in frequency and time domains including wakefields.

  14. Feasiblity study for a 34 GHz (Ka band) gyroamplifier

    NASA Technical Reports Server (NTRS)

    Stone, D. S.; Bier, R. E.; Caplan, M.; Huey, H. E.; Pirkle, D. R.; Robinson, J. D.; Thompson, L.

    1984-01-01

    The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed.

  15. 280 GHz Gyro-BWO design study: Final report

    SciTech Connect

    Not Available

    1988-07-01

    This report summarizes the results of a design study of a 280 GHz Gyro-BWO tunable source. The purpose of this study is to identify and propose viable design alternatives for any significant technological risk associated with building an operational BWO system. The tunable Gyro-BWO system will have three major components: a Gyro-BWO microwave tube, a superconducting magnet, and a power supply/modulator. The design tasks for this study in order of decreasing importance are: design and specification of the superconducting magnet; preliminary design and layout of a Gyro-BWO microwave tube; and specification for the power supply/modulator. 2 refs., 4 figs.

  16. Feasibility studies for a wireless 60 GHz tracking detector readout

    NASA Astrophysics Data System (ADS)

    Dittmeier, S.; Schöning, A.; Soltveit, H. K.; Wiedner, D.

    2016-09-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  17. Solar temperature at 4 GHz: An undergraduate experiment

    NASA Astrophysics Data System (ADS)

    Lo, George; Lonc, William P.

    1986-09-01

    An experiment is described using readily available satellite television receiving equipment to obtain an approximate value for the solar (quiet Sun) temperature at a frequency of 4 GHz (7.5 cm), using a comparison method. The procedure described here appears to be quite suitable for use at the undergraduate level inasmuch as it does not require any special electronic equipment. It is found that the observed value is within 10% of the accepted value (approximately 28 000 K). The results are considered to be satisfactory, given the substantial approximations made in the performance of the experiment and analysis of the data.

  18. Propagation study of 850nm/58 GHz hybrid municipal system

    NASA Astrophysics Data System (ADS)

    Wilfert, Otakar; Kvicera, Vaclav; Kolka, Zdenek; Grabner, Martin; Fiser, Ondrej

    2010-08-01

    The paper deals with the results of a propagation study on a fixed hybrid Free Space Optical (FSO) and Radio Frequency (RF) system operating in 850 nm / 58 GHz bands. Propagation models for the availability assessment of both FSO and RF links were examined against a comprehensive database of meteorological attenuation events. The influences of individual hydrometeors were analyzed and the availability performances of the simulated FSO/MMW hybrid link were evaluated. The study pointed out that visibility and rainfall measurements can be only used for the raw assessment of availability performance due to the concurrent occurrence of different attenuation effect.

  19. A photomixer local oscillator for a 630-GHz heterodyne receiver

    NASA Astrophysics Data System (ADS)

    Verghese, Simon; Duerr, Erik K.; McIntosh, K. A.; Duffy, Sean M.; Calawa, Stephen D.; Tong, Cheuk-yu Edward; Kimberk, Robert; Blundell, Raymond

    1999-06-01

    A photomixer local oscillator (LO) operating at the 630-GHz difference frequency of two laser diodes was successfully demonstrated with a heterodyne detector based on a niobium superconducting tunnel junction. The low-temperature-grown GaAs photomixer generated 0.20 μW in the input spatial mode of the receiver. Using the photomixer LO, the double-sideband noise temperature of the receiver was 331 K-in good agreement with the 323 K noise temperature obtained when a multiplied Gunn oscillator generating 0.25 μW was substituted for the photomixer.

  20. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    NASA Technical Reports Server (NTRS)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  1. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  2. Design of a 26 GHZ wakefield power extractor.

    SciTech Connect

    Konecny, R.; Gai, W.; Gao, F.; Jing, C.; Kanareykin, A.; Kazakov, S.; High Energy Physics; Euclid Techlabs, LLC; KEK

    2008-01-01

    High frequency, high output power, and high efficiency RF sources have compelling applications in accelerators for high energy physics. The 26 GHz RF power extractor proposed in this paper provides a practical approach for generating high power RF in this particular frequency range. The extractor is designed to couple out RF power generated from the high charge electron bunch train at the Argonne Wakefield Accelerator (AWA) facility traversing a dielectric loaded waveguide. Designs are presented including parameter optimization, electromagnetic modeling of structures and RF couplers, and analysis of beam dynamics.

  3. 8 GHz tunable Gunn oscillator in WR-137 waveguide

    NASA Astrophysics Data System (ADS)

    Rakshit, P. C.; Ghosh, G.; Saha, P. K.; Nag, B. R.

    1983-01-01

    The conventional technique of realizing waveguide resonators for Gunn diode oscillators to operate at the band edge of the waveguide fails owing to the excitation of a coaxial mode resonance formed by the post and the side walls of the waveguide. One of the solutions to the problem is to mount the diode in a ridged waveguide resonator. This has been demonstrated by constructing an 8 GHz Gunn oscillator using a single ridge in WR-137 waveguide. The steps in designing the oscillator system are also presented.

  4. A 20 Ghz Depolarization Experiment Using the ATS-6 Satellite

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Manus, E. A.; Marshall, R. E.; Pendrak, H. N.; Stutzman, W. L.; Wiley, P. H.; Kauffman, S. R.

    1975-01-01

    A depolarization experiment using the 20 GHz downlink from the ATS-6 satellite was described. The following subjects were covered: (1) an operational summary of the experiment, (2) a description of the equipment used with emphasis on improvements made to the signal processing receiver used with the ATS-5 satellite, (3) data on depolarization and attenuation in one snow storm and two rain storms at 45 deg elevation, (4) data on low angle propagation, (5) conclusions about depolarization on satellite paths, and (6) recommendations for the depolarization portion of the CTS experiment.

  5. 94 GHz pulsed coherent radar for high power amplifier evaluation

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Hunter, Robert I.; Gallacher, Thomas F.

    2016-05-01

    We present the design and characterization of a 94 GHz pulsed coherent radar to be used for the evaluation and demonstration of novel wideband, high power vacuum tube amplifier technology. The radar is designed to be fully coherent and exploits a low phase noise architecture to maximize Doppler performance. We selected to use horn-fed Fresnel zone plate lens antennas (FZPs) with 4-level phase quantization as a low cost method of realizing large aperture (0.5 m) antennas. The measured performance of these FZPs agrees closely with the design predictions and exceeds that obtainable with a Cassegrain of an equivalent size.

  6. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  7. The 492 GHz emission of Sgr A* constrained by ALMA

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Wright, Melvyn C. H.; Zhao, Jun-Hui; Mills, Elisabeth A. C.; Requena-Torres, Miguel A.; Matsushita, Satoki; Martín, Sergio; Ott, Jürgen; Morris, Mark R.; Longmore, Steven N.; Brinkerink, Christiaan D.; Falcke, Heino

    2016-09-01

    Aims: Our aim is to characterize the polarized continuum emission properties including intensity, polarization position angle, and polarization percentage of Sgr A* at ~492 GHz. This frequency, well into the submillimeter bump where the emission is supposed to become optically thin, allows us to see down to the event horizon. Hence the reported observations contain potentially vital information on black hole properties. We have compared our measurements with previous, lower frequency observations, which provides information in the time domain. Methods: We report continuum emission properties of Sgr A* at ~492 GHz, based on Atacama Large Millimeter Array (ALMA) observations. We measured flux densities of Sgr A* from the central fields of our ALMA mosaic observations. We used calibration observations of the likely unpolarized continuum emission of Titan and the observations of Ci line emission, to gauge the degree of spurious polarization. Results: The flux density of 3.6 ± 0.72 Jy which we measured during our run is consistent with extrapolations from previous, lower frequency observations. We found that the continuum emission of Sgr A* at ~492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle can be explained by a constant polarization position angle of ~158°± 3°. The fitted polarization percentage of Sgr A* during our observational period is 14% ± 1.2%. The calibrator quasar J1744-3116 we observed on the same night can be fitted to Stokes I = 252 mJy, with 7.9% ± 0.9% polarization at position angle PA = 14°± 4.2°. Conclusions: The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz expected from the previously fitted 167°± 7° intrinsic

  8. A 0.5-GHz CMOS digital RF memory chip

    NASA Astrophysics Data System (ADS)

    Schnaitter, W. M.; Lewis, E. T.; Gordon, B. E.

    1986-10-01

    Digital RF memories (DRFM's) are key elements for modern radar jamming. An RF signal is sampled, stored in random access memory (RAM), and later recreated from the stored data. Here the first CMOS DRFM chip, integrating static RAM, control circuitry, and two channels of shift registers, on a single chip is described. The sample rate achieved was 0.5 GHz, VLSI density was made possible by the low-power dissipation of quiescent CMOS circuits. An 8K RAM prototype chip has been built and tested.

  9. Scattering by single ice needles and plates at 30 GHz

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Woo, R.; Armstrong, J.; Ishimaru, A.

    1982-01-01

    Because of the small loss tangent of ice at 30-50 GHz, significant depolarization of satellite-to-ground communication signals could occur due to the presence of cirrus clouds in their paths. It is known that cirrus clouds basically consist of ice needles and plates. Extensive calculations have been performed for the problem of scattering by a family of ice needles and plates for various length-to-width ratios ranging from 1 to 10. Scattering results with special attention to induced cross-polarized fields will be presented.

  10. A 100 GHz Josephson mixer using resistively-shunted Nb tunnel junctions

    NASA Technical Reports Server (NTRS)

    Schoelkopf, R. J.; Phillips, T. G.; Zmuidzinas, J.

    1993-01-01

    The authors describe preliminary mixer results using resistively shunted Nb/AlO(x)/Nb tunnel junctions in a 100-GHz waveguide mixer mount. The mixer utilizes robust, lithographically defined devices which have nonhysteretic I-V curves. A receiver temperature of 390 K (DSB) has been obtained with a conversion loss of -6.5 dB. The receiver's behavior agrees qualitatively with the behavior predicted by the resistively shunted junction model. Substantial improvements in performance are expected with the use of better-optimized shunted junctions, and numerical simulations suggest that, if devices with higher ICRN (critical current-normal state resistance) products can be obtained, Josephson effect mixers could be competitive with SIS mixers at high frequencies.

  11. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Pallecchi, Emiliano; Haque, Samiul; Borini, Stefano; Avramovic, Vanessa; Centeno, Alba; Amaia, Zurutuza; Happy, Henri

    2016-07-01

    Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To demonstrate the reliability of our devices, we performed a fatigue stress test for RF-GFETs which were dynamically bend tested 1000 times at 1 Hz. The devices are mechanically robust, and performances are stable with typical variations of 15%. Finally we investigate thermal dissipation, which is a critical parameter for flexible electronics. We show that at the optimum polarization the normalized power dissipated by the GFETs is about 0.35 mW μm-2 and that the substrate temperature is around 200 degree centigrade. At a higher power, irreversible degradations of the performances are observed. Our study on state of the art flexible GFETs demonstrates mechanical robustness and stability upon heating, two important elements to assess the potential of GFETs for flexible electronics.Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To

  12. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1976-01-01

    Studies at 11 locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques using the Applications Technology Satellite-6(ATS-6). In addition to direct measurements on the 20- and 30-GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment were presented. The first section describes the experiment objectives, flight hardware, and modes of operation. The remaining six sections present papers prepared by the major participating organizations in the experiment. The papers present a comprehensive summary of the significant results of the initial 11 months of ATS-6 experiment measurements and related radiometric, radar, and radio-meteorology studies.

  13. 3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks

    SciTech Connect

    Artieda, Alvaro; Muralt, Paul

    2011-06-27

    Triple layer SiO{sub 2}/AlN/SiO{sub 2} composite thin film bulk acoustic wave resonators (TFBARs) were studied for applications in atomic clocks. The TFBAR's were tuned to 3.4 GHz, corresponding to half the hyperfine splitting of the ground state of rubidium {sup 87}Rb atoms. The quality factor (Q) was equal to 2300 and the temperature coefficient of the resonance frequency f{sub r} amounted to 1.5 ppm/K. A figure of merit Qf{sub r} of {approx} 0.8 x 10{sup 13} Hz and a thickness mode coupling factor of 1% were reached. Such figures are ideal for frequency sources in an oscillator circuit that tracks the optical signal in atomic clocks.

  14. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions.

    PubMed

    Fisk, P H; Sellars, M J; Lawn, M A; Coles, G

    1997-01-01

    We have measured the frequency of the (171)Yb(+) 12.6 GHz M(F)=0-->0 ground state hyperfine "clock" transition in buffer gas-cooled ion clouds confined in two similar, but not identical, linear Paul traps. After correction for the known differences between the two ion traps, including significantly different second-order Doppler shifts, the frequencies agree within an uncertainty of less than 2 parts in 10(13). Our best value, based on an analytic model for the second-order Doppler shift, for the frequency of the clock transition of an isolated ion at zero temperature, velocity, electric field and magnetic field, is 12642812118.466+0.002 Hz.

  15. Electromagnetic bias of 36-GHz radar altimeter measurements of MSL. [Mean Sea Level

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Kenney, J. E.

    1984-01-01

    The data reduction techniques used to determine the magnitude of electromagnetic (EM) bias in radar altimeter measurements of mean sea level (MSL) area described. Particular attention is given to the bias reduction scheme developed specifically for the Surface Contour Radar (SCR) instrument of the Ocean Topography Experiment (TOPEX). The SCR makes it possible to determine the amount of the backscattered power due to EM reflectance per unit area by measuring both the return power and elevation. Variations of backscattered power for different sea states are determined as a function of displacement of the MSL. On the basis of the recent SCR observations from aircraft, a standard error due to EM bias is predicted for MSL measurements performed with a satellite altimeter radar operating at a frequency of 36 GHz. The obtained standard error was 1 percent for regions with waves 1.9-5.5 meters in height.

  16. The Complete, Temperature Resolved Spectrum of Methyl Cyanide Between 200 and 277 GHZ

    NASA Astrophysics Data System (ADS)

    McMillan, James P.; Neese, Christopher F.; De Lucia, Frank C.

    2016-06-01

    We have studied methyl cyanide, one of the so-called 'astronomical weeds', in the 200--277 GHz band. We have experimentally gathered a set of intensity calibrated, complete, and temperature resolved spectra from across the temperature range of 231--351 K. Using our previously reported method of analysis, the point by point method, we are capable of generating the complete spectrum at astronomically significant temperatures. Lines, of nontrivial intensity, which were previously not included in the available astrophysical catalogs have been found. Lower state energies and line strengths have been found for a number of lines which are not currently present in the catalogs. The extent to which this may be useful in making assignments will be discussed. J. McMillan, S. Fortman, C. Neese, F. DeLucia, ApJ. 795, 56 (2014)

  17. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  18. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    SciTech Connect

    Perley, R. A.; Butler, B. J. E-mail: BButler@nrao.edu

    2013-02-15

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  19. 137-GHz gyrotron diagnostic for instability studies in Tara

    SciTech Connect

    Machuzak, J.S.; Woskoboinikow, P.; Mulligan, W.J.; Cohn, D.R.; Gerver, M.; Guss, W.; Mauel, M.; Post, R.S.; Temkin, R.J.

    1986-08-01

    A narrow linewidth (<100 kHz), 1-kW, 137-GHz gyrotron and an efficient TE/sub 03/ to TE/sub 11/ cylindrical waveguide mode converter set (>97% TE/sub 11/ mode output) have been built for collective Thomson scattering diagnostics. The main goal will be to study instability driven ion density fluctuations in the Tara plug such as the drift cyclotron loss cone (DCLC), the axial loss cone (ALC), harmonics of the DCLC and ALC, and the ion two-stream instability. The heterodyne receiver and signal optics have been installed on Tara. Background electron cyclotron emission (ECE) at 139 +- 1.5 GHz after electron cyclotron resonance heating (ECRH) in the Tara plug corresponded to equivalent blackbody temperatures of 453 and 70 eV for extraordinary and ordinary emission, respectively. The well-collimated receiver field of view completely through the Tara plug has allowed for excellent polarization discrimination of the ECE. The high-power capability of this gyrotron will allow weak fluctuation levels (n-italic-tilde/n-italic<10/sup -6/) to be detected above this background during ECRH in the plugs.

  20. Observations of M87 and Hydra A at 90 GHz

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S.; Korngut, P.; Devlin, M. J.; Aquirre, J.; Benford, D.; Moseley, H.; Staguhn, J.; Irwin, K.; Ade, P.

    2009-01-01

    This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losesto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),

  1. Biasable Subharmonic Membrane Mixer for 520 to 600 GHz

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich; Siegel, Peter; Mehdi, Imran; Gill, John; Velebir, James; Peralta, Alejandro; Tsang, Raymond; Oswald, John; Dengler, Robert

    2009-01-01

    The figure shows a biasable subharmonic mixer designed to operate in the frequency range from 520 to 600 GHz. This mixer is a prototype of low-power mixers needed for development of wideband, high-resolution spectrometers for measuring spectra of molecules in the atmospheres of Earth, other planets, and comets in the frequency range of 400 to 700 GHz. Three considerations dictated the main features of the design: It is highly desirable to operate the spectrometers at or slightly below room temperature. This consideration is addressed by choosing Schottky diodes as the frequency-mixing circuit elements because of all mixer diodes, Schottky diodes are the best candidates for affording sufficient sensitivity at or slightly below room-temperature range. The short wavelengths in the intended operating-frequency range translate to stringent requirements for precision of fabrication and assembly of the circuits; these requirements are even more stringent for wide-bandwidth circuits. This consideration is addressed in two ways: (1) As much as possible of the mixer circuitry is fabricated in the form of a monolithic integrated circuit on a GaAs membrane, employing a modified version of a process used previously to fabricate a non-subharmonic mixer for a frequency of 2.5 THz and frequency multipliers for frequencies up to 2 THz. (2) The remainder of the circuitry is precision machined into a waveguide block that holds the GaAs integrated circuit.

  2. Radio Point Sources Toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Carlstrom, J. E.; Bonamente, M.; Dawson, K.; Holzapfel, W.; Joy, M.; LaRoque, S.; Reese, E. D.

    2006-01-01

    Extra-galactic point sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio point sources toward galaxy clusters at 28.5 GHz. We compute counts of mJy point source fluxes from 90 fields centered on known massive galaxy clusters and 8 non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We also compute counts towards clusters as a function of luminosity in three redshift bins out to z = 1.0 and see no clear evidence for evolution with redshift. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz. The distribution is skewed, with a median spectral index of 0.76 and 25th and 75th percentiles of 0.55 and 0.95, respectively. This is steeper than the spectral indices of brighter field point sources measured by other surveys.

  3. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  4. Dynamic Nuclear Polarization at 700 MHz/460 GHz

    PubMed Central

    Barnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer; Mena, Elijah L.; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2014-01-01

    We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at H/e frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >400 liters per day to <100 liters per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=−40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix. PMID:23000974

  5. A 30/20 GHz FSS feasibility study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The near term feasibility of direct-to-subscriber services were determined using the 30/20 GHz Fixed Satellite Service (FSS) frequency bands. Those technologies which need to be further developed before such a system can be implemented, were identified. To determine this feasibility, dozens of potential applications were examined for their near-term viability, and the subscriber base of three promising applications were estimated. The system requirements, terminal design, and satellite architecture were all investigated to determine whether a 30/20 GHz FSS system is technically and economically feasible by mid-1990s. It was concluded that such a system is feasible, although maturation of some technologies is needed. This system would likely consist of one or two multibeam satellites serving hub/spoke networks of simple user terminals and more complex, mutli-channel terminals of the service providers. Rain compensation would be accomplished non-adaptively through the use of coding, nonuniform satellite TWT power that is a function of a beam's anticipated downlink fading, and signal regeneration of traffic to the wettest climate regions. It was estimated that a potential market of almost two million users could exist in in the mid-1990s time frame for home banking and financial services via Ka-band satellites.

  6. Extending the ICRF to Higher Radio Frequencies: 24 and 43 GHz Astrometry

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Charlot, Patrick; Fomalont, Ed B.; Gordon, David; Lanyi, Gabor E.; Ma, Chopo; Naudet, Charles J.; Sovers, Ojars J.; Zhang, Li-Wei D.

    2004-01-01

    We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-band) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.

  7. 110 GHz ECH on DIII-D: System overview and initial operation

    SciTech Connect

    Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moeller, C.P.; Nerem, A.; Prater, R.; Remsen, D.

    1991-11-01

    A new high power electron cyclotron heating (ECH) system has been introduced on D3-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons, (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on D3-D when used in conjunction with the existing 60 GHz ECH (1.6 MW), and the 30--60 MHz ICH (2 MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz. The present system design philosophy was based on experience gained from the existing 60 GHz ECH system. The consequences of these design decisions will be addressed as will the actual performance of various 110 GHz components.

  8. Continuum observation of Sagittarius B2 at 23 and 43 GHz

    NASA Astrophysics Data System (ADS)

    Akabane, Kenji; Sofue, Yoshiaki; Hirabayashi, Hisashi; Morimoto, Masaki; Inoue, Makoto

    The source Sgr B2 has been mapped with a single-dish resolution of ≡40arcsec at frequencies of 23 GHz and 43 GHz. An extended thermal component was found, and has been compared with that in lower frequency observations. The core region of Sgr B2 (containing the compact sources MD4 and MD5) was resolved at both 23 GHz and 43 GHz. The compact components MD4 and MD5 have complex thermal spectra which may indicate inhomogeneities within each compact core. A new source, G0.64-0.06, was found in the southern area of the extended thermal component. The 43-GHz map made with the Nobeyama 45-m telescope was compared with a 10.7-GHz map made with the Effelsberg 100-m telescope. This comparison suggests that there may be some nonthermal emission in the southern area of Sgr B2.

  9. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  10. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  11. Experimental construction of a W superposition state and its equivalence to the Greenberger-Horne-Zeilinger state under local filtration

    NASA Astrophysics Data System (ADS)

    Das, Debmalya; Dogra, Shruti; Dorai, Kavita; Arvind

    2015-08-01

    We experimentally construct a three-qubit entangled W superposition (W W ¯ ) state on an NMR quantum information processor. We give a measurement-based filtration protocol for the invertible local operation (ILO) that converts the W W ¯ state to the Greenberger-Horne-Zeilinger (GHZ) state, using a register of three ancilla qubits. Further we implement an experimental protocol to reconstruct full information about the three-party W W ¯ state using only two-party reduced density matrices. An intriguing fact unearthed recently is that the W W ¯ state, which is equivalent to the GHZ state under an ILO, is in fact reconstructible from its two-party reduced density matrices, unlike the GHZ state. We hence demonstrate that, although the W W ¯ state is interconvertible with the GHZ state, it stores entanglement very differently.

  12. The first identifications of objects found in the 2. 695 GHz galactic plane survey

    NASA Astrophysics Data System (ADS)

    Fürst, E.; Reich, W.; Riech, P.; Sofue, Y.; Handa, T.

    1985-03-01

    Nous avons trouvé des sources nombreuses dans le "survey" radioélectrique du plan galactique à la fréquence de 2.695 GHz. L'observation supplémentaire à 1.42 GHz, 4.75 GHz et 10 GHz permet de déterminer la nature des 10 sources par le spectre et la polarisation: 3 restes de supernovae, 5 régions-H II, un reste de supernovae couvert par la région-H II RCW 164, et une radiogalaxie.

  13. Spacecraft multibeam antenna system for 30/20 GHz

    NASA Technical Reports Server (NTRS)

    Roberts, T. E.; Scott, W. F.

    1984-01-01

    The major technical tasks that led to the definitions of operational and demonstration multiple beam antenna (MBA) flight systems and a proof of concept model (POC) are described. Features of the POC Model and its measured performance are presented in detail. Similar MBA's are proposed for transmitting and receiving with the POC Model representing the 20 GHz transmitting antenna. This POC MBA is a dual shaped-surface reflector system utilizing a movable free array to simulate complete CONUS coverage. The beam forming network utilizes ferrite components for switching from one beam to another. Measured results for components, subsystems and the complete MBA confirm the feasibility of the approach and also show excellent correlation with calculated values.

  14. NASA 60 GHz intersatellite links definition study. Final Review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Viewgraphs are presented which outline the overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS). The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. Two methods of data relay on-board the planned TDAS (Tracking and Data Acquisition) satellites are described. One is an all-baseband system with a bi-directional 2 Gbps data stream; the other is a channelized crosslink system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. The general system and technology design drivers are outlined along with the acquisition architecture design. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical hardware are presented.

  15. High Speed sub-GHz Spectrometer for Brillouin Scattering Analysis

    PubMed Central

    Berghaus, Kim; Yun, Seok H.; Scarcelli, Giuliano

    2016-01-01

    Brillouin spectroscopy allows non-contact, direct readout of viscoelastic properties of a material and has been a useful tool in material characterization1, structural monitoring2 and environmental sensing3,4. In the past, Brillouin spectroscopy has usually employed scanning Fabry-Perot etalons to perform spectral analysis which require high illumination power and long acquisition times, which prevents using this technique in biomedical applications. Our newly developed spectrometer overcomes this challenge by employing two virtually imaged phased arrays (VIPAs) in a cross-axis configuration, which enables us to do sub-GHz resolution spectral analysis with sub-seconds acquisition time and illumination power within the safety limits of biological tissue application5. This improvement allows for multiple applications of Brillouin spectroscopy, which are now being broadly explored in biological research and clinical application6. PMID:26779654

  16. Antennas for 20/30 GHz and beyond

    NASA Technical Reports Server (NTRS)

    Chen, C. Harry; Wong, William C.; Hamada, S. Jim

    1989-01-01

    Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications.

  17. Start current analysis of a 140 GHz CPI gyrotron

    NASA Astrophysics Data System (ADS)

    Yeddulla, M.; Nusinovich, G. S.; Antonsen, T. M.

    2003-12-01

    In a gyrotron, it is difficult to accurately predict in advance where the resonant interaction between the electrons and outgoing radiation stops. For accurately calculating the start currents for the interacting modes, the exit coordinate has to be fixed where the resonant interaction stops. This paper discusses the difficulty in fixing the exit coordinates for studying start currents in an overmoded gyrotron. Start currents are studied for the operating and the most dangerous parasitic mode of a 140 GHz gyrotron being developed by Communication and Power Industries (CPI). Calculations show that the start currents vary over considerably large values with varying exit coordinates that can cause difficulties in predicting which mode dominates the mode competition.

  18. A 10-GHz film-thickness-mode cavity optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Han, Xu; Fong, King Y.; Tang, Hong X.

    2015-04-01

    We report on the advance of chip-scale cavity optomechanical resonators to beyond 10 GHz by exploiting the fundamental acoustic thickness mode of an aluminum nitride micro-disk. By engineering the mechanical anchor to minimize the acoustic loss, a quality factor of 1830 and hence a frequency-quality factor product of 1.9 × 1013 Hz are achieved in ambient air at room temperature. Actuated by strong piezo-electric force, the micro-disk resonator shows an excellent electro-optomechanical transduction efficiency. Our detailed analysis of the electro-optomechanical coupling allows identification and full quantification of various acoustic modes spanning from super-high to X-band microwave frequencies measured in the thin film resonator.

  19. Development of 2.8-GHz Solar Flux Receivers

    NASA Astrophysics Data System (ADS)

    Yun, Youngjoo; Park, Yong-Sun; Kim, Chang-Hee; Lee, Bangwon; Kim, Jung-Hoon; Yoo, Saeho; Lee, Chul-Hwan; Han, Jinwook; Kim, Young Yun

    2014-12-01

    We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100° C. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

  20. Offset dual reflector antenna for 20/30 GHz

    NASA Astrophysics Data System (ADS)

    Henderson, R. I.

    The design and testing results of the TDS-6 high performance dual reflector antenna, intended for communications experiments with the ESA Olympus satellite in the 20/30 GHz band, are discussed. The offset Gregorian antenna has an aperture of 2.47 m, and it exhibits high gain while maintaining 90 percent of the sidelobes below 29-25 log theta dBi. The reflector shapes are optimized using the method of diffraction profile synthesis. A wide-band corrugated horn feed with a ring-loaded throat section has been incorporated in the antenna. The results show the achievement of an accuracy of 140-145 microns rms for the main reflectors.

  1. Design of tunable GHz-frequency optomechanical crystal resonators.

    PubMed

    Pfeifer, Hannes; Paraïso, Taofiq; Zang, Leyun; Painter, Oskar

    2016-05-30

    We present a silicon optomechanical nanobeam design with a dynamically tunable acoustic mode at 10.2 GHz. The resonance frequency can be shifted by 90 kHz/V2 with an on-chip capacitor that was optimized to exert forces up to 1 µN at 10 V operation voltage. Optical resonance frequencies around 190 THz with Q-factors up to 2.2 × 106 place the structure in the well-resolved sideband regime with vacuum optomechanical coupling rates up to g0/2π = 353 kHz. Tuning can be used, for instance, to overcome variation in the device-to-device acoustic resonance frequency due to fabrication errors, paving the way for optomechanical circuits consisting of arrays of optomechanical cavities.

  2. A 20 GHz, 75 watt helix TWT for space communications

    NASA Technical Reports Server (NTRS)

    Heney, J. F.; Tamashiro, R. N.

    1982-01-01

    A space-qualified, helix-type traveling wave tube is being developed for satellite communication systems in the frequency band of 17.7 to 21.2 GHz. The design approach stresses very high efficiency operation, but with very low distortion. The tube provides multi-mode operation, permitting CW saturated power output levels of 75 watts, 40 watt and 7.5 watts. Operation is also anticipated at 5 dB below these saturation levels to achieve the required low distortion levels. Advanced construction features include a 5 stage depressed collector, a diamond supported helix slow-wave circuit, and a type M dispenser cathode. High reliability and long life (10 years) are objectives of the tube design. The status of the development and recent experimental results are presented.

  3. A 30 MW, 10 GHz gyroklystron with linear collider application

    SciTech Connect

    Lawson, W.; Latham, P.E.; Calame, J.; Skopec, M.; Welsh, D.; Hogan, B.; Naiman, M.; Striffler, C.D.; Reiser, M.; Granatstein, V.L. ); Read, M.E. )

    1989-01-01

    In this paper, the final preparations for bringing the University of Maryland's 10 GHz, 30 MW gyroklystron experiment on-line are discussed. We describe the initial operation of the modulator and the acceptance tests performed on the electron gun. We explain the enhanced circuit modelling and present a two-cavity design which predicts an efficiency of 33% and a gain of 27 dB. The realization of the design is also discussed. In addition, we briefly discuss the output waveguide and the diagnostics for beam and rf characterization. Finally, a four-cavity circuit design is presented with its predicted operating parameters that can achieve the necessary gain and efficiency required for accelerator application. 14 refs., 11 figs., 5 tabs.

  4. 1.4GHz Survey of Fossil Groups

    NASA Astrophysics Data System (ADS)

    Hartwick, Victoria; Wilcots, E.; Hess, K. M.

    2010-01-01

    Fossil groups, luminous, isolated elliptical galaxies with extended x-ray halos, represent the remnants of galactic cannibalism within galaxy groups. Current research has concentrated primarily on visible and x-ray observations. Here, we report the results of a preliminary survey of 34 fossil groups observed at 1.4Ghz using the VLA. We detect radio sources in many of the groups. Using radio emission as a tracer for nuclear activity, we estimate the frequency of past and current AGN activity in fossil groups and extract information about the age and evolutionary history of the fossil groups. Further observations at multiple radio frequencies may then provide information about the role of minor mergers and AGN as sources of heat in the IGM and as remedies to the cooling flow problem.

  5. Ferromagnetic resonance in Terfenol-D at 17 GHz

    NASA Astrophysics Data System (ADS)

    Dewar, G.; Pagel, Samuel; Sourivong, P.

    2000-03-01

    Ferromagnetic resonance (FMR) measurements were performed on several samples of Terfenol-D (Dy_0.73Tb_0.27Fe_1.95) at 16.95 GHz and over the temperature range 293 to 305 K. We find that the first magnetocrystalline constant is K1 = (-2.0 ± 0.2) × 10^6 erg/cm^3 at 294 K and dK1 \\over dT = (+2.4 ± 0.5) × 10^4 erg/K-cm^3. The samples exhibited hysteresis: the FMR absorption peak shifted by 4.0 kOe between measurements made with the magnetic field increasing and those made with the field decreasing. The absorption linewidths were broadened by inhomogeneous internal fields which changed as the samples were cycled in magnetic field and temperature.

  6. Attenuation of 7 GHz surface acoustic waves on silicon

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Cahill, David G.

    2016-09-01

    We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from the grating for SAW detection by ≈150 μ m . The amplitude of SAWs is attenuated by coupling to bulk waves created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by Akhiezer damping at this frequency is ˜3 ×1013 Hz.

  7. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  8. Quasi-Optical 34-GHz Rf Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L

    2007-06-19

    Designs have been carried out on non-high-vacuum, low-power versions of three- and four-mirror quasi-optical passive and active Ka-band pulse compressors, and prototypes built and tested based on these designs. The active element is a quasi-optical grating employing gas discharge tubes in the gratings. Power gains of about 3:1 were observed experimentally for the passive designs, and about 7:1 with the active designs. High-power, high-vacuum versions of the three-and four-mirror quasi-optical pulse compressors were built and tested at low power. These now await installation and testing using multi-MW power from the 34-GHz magnicon.

  9. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  10. Scattering of Pruppacher-Pitter raindrops at 30 GHz

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Woo, R.; Ishimaru, A.; Armstrong, J. W.

    1981-01-01

    Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated.

  11. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  12. Radio Sources Toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Bonamente, M.; Carlstrom, J. E.; Dawson, K.; Hasler, N.; Holzapfel, W.; Joy, M.; LaRoque, S.; Marrone, D. P.; Reese, E. D.

    2007-01-01

    Extra-galactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zeldovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of mJy source fluxes from 89 fields centered on known massive galaxy clusters and 8 non-cluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5 arcmin of the cluster center) are a factor of 8.9 (+4.2 to -3.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5 arcmin). Counts in the outer regions of the cluster fields are in turn a factor of 3.3 (+4.1 -1.8) greater than those in the noncluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of al[ja = 0.66 with an rms dispersion of 0.36, where flux S varies as upsilon(sup -alpha). The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.

  13. A 4 GHz digital receiver using the Uniboard platform

    NASA Astrophysics Data System (ADS)

    Comoretto, Giovanni; Russo, Antonietta; Quertier, Benjamin; Cais, Philippe; Camino, Pascal

    2012-09-01

    The Uniboard is a general purpose board, developed as a part of the Radionet FP7 program, that hosts 8 Altera StratixIV FPGAs interconnected by high speed links. It can be used standalone or as a part of a more complex system. The Digital receiver application uses a single Uniboard to implement a flexible packetization of a wideband signal in the frequency domain. It accepts a 4 GHz (8 GS/s) input bandwidth and provides up to 64 output bands. The bandwidth and position of each output band can be independently adjusted. The input signal is first analyzed by a polyphase filterbank, that splits the input band into 32 sub-bands with a bandwidth of 190 MHz and a spacing of 128 MHz. The overlap among adjacent bands allows the positioning of the output bands without dead regions. This filterbank is followed by an array of digitally defined downconverters, each one composed of a mixer/LO and a variable decimation filter. The filter band can be adjusted in binary steps from 1 to 128 MHz. Using tap recirculation, the filter shape remains constant over this whole range, with about 60 dB of stopband rejection and 90% usable passband. The output bands are packetized according to the VDIF VLBI standard, over eight 10G Ethernet links. Further processing can be done either on board, or in a cluster of conventional PCs. In addition, high speed ADC are in-house developed (ASIC 65nm CMOS STmicroelectronics) to feed the Uniboard card with 8GS/s, 4GHz BW, 3bits samples.

  14. The local radio-galaxy population at 20 GHz

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Ekers, Ronald D.; Mahony, Elizabeth K.; Mauch, Tom; Murphy, Tara

    2014-02-01

    We have made the first detailed study of the high-frequency radio-source population in the local Universe, using a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G-6dFGS galaxies have a median redshift of z = 0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20 GHz. Our sample includes some classical Fanaroff-Riley type I (FR I) and FR II radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR 0) radio active galactic nuclei which appear to lack extended radio emission even at lower frequencies. Most of these FR 0 sources show no evidence for relativistic beaming, and the FR 0 class appears to be a mixed population which includes young compact steep-spectrum and gigahertz peaked-spectrum radio galaxies. We see a strong dichotomy in the Wide-field Infrared Survey Explorer (WISE) mid-infrared colours of the host galaxies of FR I and FR II radio sources, with the FR I systems found almost exclusively in WISE `early-type' galaxies and the FR II radio sources in WISE `late-type' galaxies. The host galaxies of the flat- and steep-spectrum radio sources have a similar distribution in both K-band luminosity and WISE colours, though galaxies with flat-spectrum sources are more likely to show weak emission lines in their optical spectra. We conclude that these flat-spectrum and steep-spectrum radio sources mainly represent different stages in radio-galaxy evolution, rather than beamed and unbeamed radio-source populations.

  15. Radio Sources toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Bonamente, M.; Carlstrom, J. E.; Dawson, K.; Hasler, N.; Holzapfel, W.; Joy, M.; LaRoque, S.; Marrone, D. P.; Reese, E. D.

    2007-01-01

    Extragalactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of millijansky source fluxes from 89 fields centered on known massive galaxy clusters and 8 noncluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5' of the cluster center) are a factor of 8.9 (sup +4.3)(sub -2.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5'). Counts in the outer regions of the cluster fields are, in turn, a factor of 3.3 (sup +4.1) (sub -1.8) greater than those in the noncluster fields. Counts in the noncluster fields are consistent with extrapolations from the results of other surveys. We compute the spectral indices of millijansky sources in the cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of alpha = 0.66 with an rms dispersion of 0.36, where flux S proportional to nu(sup -alpha). The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.

  16. Radiometric measurements over bare and vegetated fields at 1.4 GHz and 5 GHz frequencies. [Beltsville Agricultural Research Center, Maryland

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Mcmurtrey, J. E., III; Engman, E. T.; Jackson, T. J.; Schmugge, T. J.; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)

    1981-01-01

    Microwave emission from bare and vegetated fields was measured with dual polarized radiometers at 1.4 GHz and 5 GHz frequencies. The measured brightness temperatures over bare fields are shown to compare favorably with those calculated from radiative transfer theory with two constant parameters characterizing surface roughness effect. The presence of vegetation cover is found to reduce the sensitivity to soil moisture variation. This sensitivity reduction is generally pronounced the denser, the vegetation cover and the higher the frequency of observation. The effect of vegetation cover is also examined with respect to the measured polarization factor at both frequencies. With the exception of dry corn fields, the measured polarization factor over vegetated fields is found appreciably reduced compared to that over bare fields. A much larger reduction in this factor is found at 5GHz than at 1.4GHz frequency.

  17. Design study of a 17.3 GHz electron cyclotron resonance (ECR) ion source at Louvain-la-Neuve

    SciTech Connect

    Standaert, L. Davin, F.; Loiselet, M.

    2014-02-15

    The Cyclotron Resources Center of the Louvain-la-Neuve University is developing a new electron cyclotron resonance ion source to increase the energy of the accelerated beam by injection of higher charge state ions into the cyclotron. The design of the source is based on a 17.3 GHz frequency and classical coils to produce the axial field. The field reaches 2 T at the injection side and 1.2 T at extraction. The total power consumption for the coils is limited to 80 kW. The design features of the source are presented.

  18. Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion.

    PubMed

    Rolland, A; Brunel, M; Loas, G; Frein, L; Vallet, M; Alouini, M

    2011-02-28

    Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10-60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5×10⁻¹¹. The principle is applicable to beat notes in the millimeter-wave range.

  19. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  20. Low cost upgrade of 6.4 GHz ECRIS and recent results with 14 GHz ECRIS at JYFL

    NASA Astrophysics Data System (ADS)

    Koivisto, H.; Heikkinen, P.; Liukkonen, E.; ńrje, J.; Vondrasek, R.

    2002-02-01

    The old JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS) at the University of Jyväskylä, Department of Physics (JYFL), is in the process of being upgraded. The calculations have shown that the magnetic field configuration of the SC-ECRIS at the NSCL/MSU can be closely achieved using present coils, power supplies, plasma chamber, and permanent magnets. The hexapole magnetic field will be upgraded later using an iron cylinder around the plasma chamber. Calculations have shown that the improvement of around 30% can be obtained to the strength of the hexapole field. A new AECR-U-type ion source was completed in spring 2000 for the program of the nuclear physics in the laboratory. The MIVOC method and the internal oven for the production of several metal ion beams with the new source have been tested.

  1. THE COMPLETE, TEMPERATURE-RESOLVED EXPERIMENTAL SPECTRUM OF VINYL CYANIDE (H{sub 2}CCHCN) BETWEEN 210 AND 270 GHz

    SciTech Connect

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.; Medvedev, Ivan R.

    2011-08-10

    The results of an experimental approach to the identification and characterization of the astrophysical weed vinyl cyanide in the 210-270 GHz region are reported. This approach is based on spectrally complete, intensity-calibrated spectra taken at more than 400 different temperatures in the 210-270 GHz region and is used to produce catalogs in the usual astrophysical format: line frequency, line strength, and lower state energy. As in our earlier study of ethyl cyanide, we also include the results of a frequency point-by-point analysis, which is especially well suited for characterizing weak lines and blended lines in crowded spectra. This study shows substantial incompleteness in the quantum-mechanical (QM) models used to calculate astrophysical catalogs, primarily due to their omission of many low-lying vibrational states of vinyl cyanide, but also due to the exclusion of perturbed rotational transitions. Unlike ethyl cyanide, the QM catalogs for vinyl cyanide include analyses of perturbed excited vibrational states, whose modeling is more challenging. Accordingly, we include an empirical study of the frequency accuracy of these QM models. We observe modest frequency differences for some vibrationally excited lines.

  2. 47 CFR 101.537 - 24 GHz band subject to competitive bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz band subject to competitive bidding. 101.537 Section 101.537 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service §...

  3. 47 CFR 101.537 - 24 GHz band subject to competitive bidding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 24 GHz band subject to competitive bidding. 101.537 Section 101.537 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service §...

  4. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Construction requirements for 24 GHz operations. 101.527 Section 101.527 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message...

  5. 47 CFR 101.529 - Renewal expectancy criteria for 24 GHz licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Renewal expectancy criteria for 24 GHz licenses. 101.529 Section 101.529 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message...

  6. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Construction requirements for 24 GHz operations. 101.527 Section 101.527 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message...

  7. 47 CFR 101.529 - Renewal expectancy criteria for 24 GHz licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Renewal expectancy criteria for 24 GHz licenses. 101.529 Section 101.529 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message...

  8. 75 FR 17349 - Operations of Wireless Communications Services in the 2.3 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... December 2007, the Commission released a Notice of Proposed Rulemaking, 73 FR 2437 (January 15, 2008) (NPRM... COMMISSION 47 CFR Part 27 Operations of Wireless Communications Services in the 2.3 GHz Band AGENCY: Federal...) seeks comment on revising the performance requirements for the 2.3 GHz Wireless Communications...

  9. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  10. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  11. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  12. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  13. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  14. Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.

  15. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-11-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 +- 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is alpha = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  16. 60 GHz gyrotron development program. Quarterly report No. 6, October-December 1980

    SciTech Connect

    Shively, J.F.; Cheng, M.K.; Evans, S.E.; Grant, T.J.; Stone, D.S.

    1981-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, procurement and construction phases of this program are discussed. Progress on gyrotron behavior studies being performed at 28 GHz are also discussed.

  17. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  18. 37 GHz METHANOL MASERS : HORSEMEN OF THE APOCALYPSE FOR THE CLASS II METHANOL MASER PHASE?

    SciTech Connect

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  19. 37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  20. New space research frequency band proposals in the 20- to 40.5-GHz range

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1991-01-01

    Future space research communications systems may require spectra above 20 GHz. Frequency bands above 20 GHz are identified that are suitable for space research. The selection of the proper bands depends on consideration of interference with other radio services, adequate bandwidths, link performance, and technical requirements for practical implementation.

  1. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  2. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  3. The 60 GHz antenna system analyses for intersatellite links, phase B

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The purpose of this study is first to investigate, classify, and compare applicable antenna systems capable of establishing and maintaining intersatellite links at 60 GHz and secondly to select the most applicable system for a detailed conceptual design. The results are to be applicable to the development of intersatellite links at 60 GHz for future programs. Design goals are listed.

  4. Cross-impact study of foreign satellite communications on NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive traffic demand forecast and a scenario for the transition process from current satellite systems to more advanced systems of the 1990's are presented. Systems configurations with and without the use of 30/20 GHz are described and these two alternatives are compared. It is concluded that: (1) the use of 30/20 GHz will result in increased satellite capacity, which will be needed to satisfy demand; (2) the use of 30/20 GHz will decrease the transmission cost, especially for broadband communications; (3) in some areas, particularly Europe and Japan but also the U.S., 30/20 GHz is the only available frequency band for customer premise Earth stations because of the dense terrestrial microwave networks; and (4) the development of 30/20 GHz technology will improve U.S. markets for equipment and satellites in many world regions.

  5. 0.6 GHz mapping of extended radio galaxies. II - Edge-darkened double sources

    NASA Astrophysics Data System (ADS)

    Jaegers, W. J.

    1987-10-01

    Radio observations made with the Westerbork telescope at 0.6 GHz are presented for 8 edge-darkened double sources: NGC 315, NGC 326, 3C 31, 3C 130, B 0915+320, HB 13, NGC 6251 and 3C 449. Previously observed Westerbork data at 1.4 GHz are convolved for comparison with the 0.6 GHz observational data. Besides maps of the total intensity and linear polarization structure, the distributions of the spectral index, the depolarization and the rotation of the polarization position angle between 0.6 GHz and 1.4 GHz have been derived. Integrated values for the total intensity and the polarization are also given.

  6. A 20 GHz bright sample for δ > 72° - II. Multifrequency follow-up

    NASA Astrophysics Data System (ADS)

    Ricci, R.; Righini, S.; Verma, R.; Prandoni, I.; Carretti, E.; Mack, K.-H.; Massardi, M.; Procopio, P.; Zanichelli, A.; Gregorini, L.; Mantovani, F.; Gawroński, M. P.; Peel, M. W.

    2013-11-01

    We present follow-up observations at 5, 8 and 30 GHz of the K-band Northern Wide Survey (KNoWS) 20 GHz Bright Sample, performed with the 32-m Medicina radio telescope and the 32-m Toruń radio telescope. The KNoWS sources were selected in the Northern Polar Cap (δ > 72°) and have a flux density limit S20 GHz = 115 mJy. We include NRAO-VLA Sky Survey 1.4 GHz measurements to derive the source radio spectra between 1.4 and 30 GHz. Based on optical identifications, 68 per cent of the sources are quasars and 27 per cent are radio galaxies. A redshift measurement is available for 58 per cent of the sources. The radio spectral properties of the different source populations are found to be in agreement with those of other high-frequency-selected samples.

  7. The Complete, Temperature Resolved Experimental Spectrum of Methanol (CH3OH) between 214.6 and 265.4 GHz

    NASA Astrophysics Data System (ADS)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-11-01

    The spectrum of methanol (CH3OH) has been characterized between 214.6 and 265.4 GHz for astrophysically significant temperatures. Four hundred and eighty-six spectra with absolute intensity calibration recorded between 240 and 389 K provided a means for the calculation of the complete experimental spectrum (CES) of methanol as a function of temperature. The CES includes contributions from vt = 3 and other higher states that are difficult to model quantum mechanically (QM). It also includes the spectrum of the 13C isotopologue in terrestrial abundance. In general the QM models provide frequencies that are within 1 MHz of their experimental values, but there are several outliers that differ by tens of MHz. As in our recent work on methanol in the 560-654 GHz region, significant intensity differences between our experimental intensities and cataloged values were found. In this work these differences are explored in the context of several QM analyses. The experimental results presented here are analyzed to provide a frequency point-by-point catalog that is well suited for the simulation of crowded and overlapped spectra. Additionally, a catalog in the usual line frequency, line strength, and lower state energy format is provided.

  8. Molecular bremsstrahlung radiation at GHz frequencies in air

    NASA Astrophysics Data System (ADS)

    Al Samarai, Imen; Bérat, Corinne; Deligny, Olivier; Letessier-Selvon, Antoine; Montanet, François; Settimo, Mariangela; Stassi, Patrick

    2016-03-01

    A detection technique for ultra-high-energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons and neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be 2 ×1 0-21 W cm-2 GHz-1 at 10 km from the shower core for a vertical shower induced by a proton of 1 017.5 eV . In addition, a recent measurement of bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.

  9. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  10. The DIII-D 3 MW, 110 GHz ECH system

    NASA Astrophysics Data System (ADS)

    Callis, R. W.; Lohr, J.; Ponce, D.; O'Neill, R. C.; Prater, R.; Luce, T. C.

    1999-09-01

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2 s at 0.5 MW and 10 s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HE11 mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW.

  11. Solar microwave millisecond spike at 2.84 GHz

    NASA Technical Reports Server (NTRS)

    Fu, Qi-Jun; Jin, Sheng-Zhen; Zhao, Ren-Yang; Zheng, Le-Ping; Liu, Yu-Ying; Li, Xiao-Cong; Wang, Shu-Lan; Chen, Zhi-Jun; Hu, Chu-Min

    1986-01-01

    Using the high time resolution of 1 ms, the data of solar microwave millisecond spike (MMS) event was recorded more than two hundred times at the frequency of 2.84 GHz at Beijing (Peking) Observatory since May 1981. A preliminary analysis was made. It can be seen from the data that the MMS-events have a variety of the fast activities such as the dispersed and isolated spikes, the clusters of the crowded spikes, the weak spikes superimposed on the noise background, and the phenomena of absorption. The marked differences from that observed with lower time resolution are presented. Using the data, a valuable statistical analysis was made. There are close correlations between MMS-events and hard X-ray bursts, and fast drifting bursts. The MMS events are highly dependent on the type of active regions and the magnetic field configuration. It seems to be crucial to find out the accurate positions on the active region where the MMS-events happen and to make co-operative observations at different bands during the special period when specific active regions appear on the solar disk.

  12. A 20 GHz, 75 watt, helix TWT for space communications

    NASA Technical Reports Server (NTRS)

    Heney, J. F.; Tamashiro, R. N.

    1983-01-01

    A space-qualified, helix-type traveling wave tube is being developed for satellite communication systems in the frequency band of 17.7 to 21.2 GHz. The design approach stresses very high efficiency operation, but with very low distortion. The tube provides multi-mode operation, permitting CW saturated power output levels of 75, 40, and 7.5 W. Operation is also anticipated at 5 dB below these saturation levels to achieve the required low distortion levels. Advanced construction features include a five-stage depressed collector, a diamond supported helix slow-wave circuit, and a type M dispenser cathode. High reliability and long life (10 yr) are objectives of the tube design. Preliminary test results on early developmental models of this tube are very encouraging. An output power of 75 to 90 W has been achieved over the full bandwidth with about 40 dB of saturated gain. More importantly, the basic electronic efficiency of the interaction process has been increased from about 7.5-11 percent by the use of the diamond helix support compared to earlier tubes using BeO support rods. This effort is supported by NASA Lewis Research Center and is aimed toward application in the NASA Advanced Communications Satellite Technology Program.

  13. Resolving distance ambiguities towards 6.7 GHz methanol masers

    NASA Astrophysics Data System (ADS)

    Pandian, J. D.; Momjian, E.; Goldsmith, P. F.

    2008-07-01

    Context: Distances to most star forming regions are determined using kinematics, through the assumption that the observed radial velocity arises from the motion of the source with respect to the Sun resulting from the differential rotation of Galaxy. The primary challenge associated with the application of this technique in the inner Galaxy is the kinematic distance ambiguity. Aims: In this work, we aim to resolve the kinematic distance ambiguity towards a sample of 6.7 GHz methanol masers, which are signposts of the early stages of massive star formation. Methods: We measured 21 cm H I absorption spectra using the Very Large Array in C and CnB configurations. A comparison of the maximum velocity of H I absorption with the source velocity and tangent point velocity was used to resolve the kinematic distance ambiguity. Results: We resolved the distance ambiguity towards 41 sources. Distance determinations that are in conflict with previous measurements are discussed. The NE2001 spiral arm model is broadly consistent with the locations of the star forming complexes. We find that the use of vertical scale height arguments to resolve the distance ambiguity can lead to erroneous classifications for a significant fraction of sources.

  14. Development of a 50 MW 30 GHz Gyroklystron Amplifier

    SciTech Connect

    Michael Read; Wesely Lawson, Lawrence Ives, Jeff Neilson

    2009-05-20

    DOE requires sources for testing of high gradient accelerator structures. A power of 50 MW is required at K and Ka band. The pulse length must be ~ 1 microsecond and the pulse repetition frequency at least 100 Hz. At least some applications may require phase stability not offered by a free running oscillator. CCR proposed to build a 50 MW 30 GHz gyrklystron amplifier. This approach would give the required phase stability. The frequency was at the second harmonic of the cycltron frequency and used the TE02 mode. This makes it possible to design a device without an inner conductor, and with a conventional (non-inverted) MIG. This minimizes cost and the risk due to mechanical alignment issues. A detailed design of the gyroklystron was produced. The design was based on simulations of the cavity(ies), electron gun, output coupler and output window. Two designs were produced. One was at the fundamental of the cyclotron frequency. Simulations predicted an output power of 72 MW with an efficiency of 48%. The other was at the second harmonic, producing 37 MW with an efficiency of 37%.

  15. Ferromagnetic Resonance in Terfenol-D at 17 GHz

    NASA Astrophysics Data System (ADS)

    Dewar, G.; Pagel, S.; Sourivong, P.

    Ferromagnetic resonance measurements have been performed on several samples of Terfenol-D (Dy0.73Tb0.27Fe1.95) at 16.95 GHz and over the temperature range 293 to 305 K. We find that the first magnetocrystalline anisotropy constant, obtained from one sample under nearly zero stress, is K1 = (-1.4±1.0)× l06 erg/cm3 at 294 K. Our measurement is distinct from quasistatic torque measurements in that the lattice does not deform during the measurement and, hence, the anisotropy contribution due to magnetoelastic strain does not enter. The bare anisotropy constant, unmodified by static elastic strain, is K01=(+4.4±1.0)× 106 erg/cm3 and (dK01)/(dT)=(-5.2±1.0)× 104 erg/K-cm3. The samples exhibited hysteresis; the position of FMR shifted by 4.0 kOe between measurements made with the magnetic field increasing and those made with the field decreasing.

  16. All-printed diode operating at 1.6 GHz.

    PubMed

    Sani, Negar; Robertsson, Mats; Cooper, Philip; Wang, Xin; Svensson, Magnus; Andersson Ersman, Peter; Norberg, Petronella; Nilsson, Marie; Nilsson, David; Liu, Xianjie; Hesselbom, Hjalmar; Akesso, Laurent; Fahlman, Mats; Crispin, Xavier; Engquist, Isak; Berggren, Magnus; Gustafsson, Göran

    2014-08-19

    Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.

  17. The milliarcsecond structure of 3C 273 at 22 GHz

    SciTech Connect

    Zensus, J.A.; Biretta, J.A.; Unwin, S.C.; Cohen, M.H. Owens Valley Radio Observatory, Pasadena, CA )

    1990-12-01

    The first VLBI images at 22 GHz of the jet in the quasar 3C 273 are presented. In addition to the compact core region, two emission regions can be identified with features seen at lower frequencies; they separate from the core with constant speeds of 0.65 + or - 0.09 and 0.92 + or - 0.11 mas/yr, corresponding to apparent superluminal motion of 4.3 + or - 0.3c and 6.1 + or - 0.3c (for Ho = 100 km/s Mpc, qo = 0.5). The core region brightened at about the estimated epoch of zero separation for the latest superluminal component, suggesting a causal relationship. The curved ridge line of the jet smoothly extends inward towards the core, although no pronounced bends in the range of core distance 0.5-2.5 mas are seen. No significant evidence is found against a common path of subsequent superluminal features. An apparent frequency dependence in the position of one superluminal feature tentatively suggests that opacity effects across the jet direction are present. The results are consistent with an interpretation of the superluminal features as shocks in an underlying relativistic flow, although alternative explanations cannot be ruled out. 43 refs.

  18. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  19. A 220 GHz reflection-type phased array concept study

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2011-05-01

    The goal of this project is to enable light-weight, durable, and portable systems capable of performing standoff detection of person-borne improvised explosive devices (PB-IEDs) through the development of millimeter-wave reflection-type phased arrays. Electronic beam steering eliminates the need for complex mechanical scanners that are commonly implemented with millimeter-wave imaging systems and would reduce overall system size and weight. We present a concept study of a 220 GHz reflection-type phased array for the purpose of performing beam scanning of a confocal reflector system. Requirements for effective imaging of the desired target region are established, including spatial resolution, total scan angle, and number of image pixels achievable. We examine the effects of array architecture on beam characteristics as it is scanned off broadside, including Gaussicity and encircled energy. Benchmark requirements are determined and compared with the capabilities of several potential phase shifter technologies, including MEMS-based variable capacitor phase shifters, switches, and varactor diode-based phase shifters.

  20. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2008-01-01

    Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was −2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge. PMID:19081779

  1. Progress toward a MEMS fabricated 100 GHz oscillator.

    SciTech Connect

    Loubriel, Guillermo Manuel; Lemp, Thomas; Weyn, Mark L.; Coleman, Phillip Dale; Rowley, James E.

    2006-02-01

    This report summarizes an LDRD effort which looked at the feasibility of building a MEMS (Micro-Electro-Mechanical Systems) fabricated 100 GHz micro vacuum tube. PIC Simulations proved to be a very useful tool in investigating various device designs. Scaling parameters were identified. This in turn allowed predictions of oscillator growth based on beam parameters, cavity geometry, and cavity loading. The electron beam source was identified as a critical element of the design. FEA's (Field Emission Arrays) were purchased to be built into the micro device. Laboratory testing of the FEA's was also performed which pointed out care and handling issues along with maximum current capabilities. Progress was made toward MEMS fabrication of the device. Techniques were developed and successfully employed to build up several of the subassemblies of the device. However, the lower wall fabrication proved to be difficult and a successful build was not completed. Alternative approaches to building this structure have been identified. Although these alternatives look like good solutions for building the device, it was not possible to complete a redesign and build during the timeframe of this effort.

  2. All-printed diode operating at 1.6 GHz

    PubMed Central

    Sani, Negar; Robertsson, Mats; Cooper, Philip; Wang, Xin; Svensson, Magnus; Andersson Ersman, Peter; Norberg, Petronella; Nilsson, Marie; Nilsson, David; Liu, Xianjie; Hesselbom, Hjalmar; Akesso, Laurent; Fahlman, Mats; Crispin, Xavier; Engquist, Isak; Berggren, Magnus; Gustafsson, Göran

    2014-01-01

    Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications. PMID:25002504

  3. Fabrication Studies for a Cylindrical DDS Structure at 90 GHz

    SciTech Connect

    Bowden, G.B.; Chou, P.J.; Kirby, R.E.; Menegat, A.; Siemann, R.H.; Spencer, J.E.; Wang, J.W.; /SLAC

    2011-08-26

    A natural extension of work on the next generation of high power RF sources and accelerating cavities for Linear Colliders implies cylindrical, damped, detuned structures for millimeter wavelengths. Commercial availability of WR-10 waveguides and other components in the 75-110 GHz range provides a practical goal. Fabrication methods are surveyed, compared and, in some cases, tested to determine whether they can provide the imposed tolerances. Different techniques and tolerances are compared to previous methods at longer wavelengths. The higher gradients and corresponding surface fields indicate that a better understanding of the surface physics is required as well as how the different fabrication steps influence those surface characteristics that impact the final operation. We consider existing systems at SLAC and elsewhere as a function of frequency to determine what is desirable to measure and control for all phases of the fabrication, testing, conditioning and use of these systems. For example, the importance of crystal structure to the different steps is discussed. The preferred method allows a variety of design alternatives to be pursued simultaneously and extends to shorter wavelengths as well as provides possibilities for embedded test and control elements.

  4. Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states

    SciTech Connect

    Sen, Aditi; Sen, Ujjwal; Zukowski, Marek; Wiesniak, Marcin; Kaszlikowski, Dagomir

    2003-12-01

    The N-qubit states of the W class, for N>10, lead to more robust (against noise admixture) violations of local realism, than the Greenberger-Horne-Zeilinger (GHZ) states. These violations are most pronounced for correlations for a pair of qubits, conditioned on specific measurement results for the remaining N-2 qubits. The considerations provide us with a qualitative difference between the W state and GHZ state in the situation when they are separately sent via depolarizing channels. For sufficiently high amount of noise in the depolarizing channel, the GHZ states cannot produce a distillable state between two qubits, whereas the W states can still produce a distillable state in a similar situation.

  5. A novel loss compensation technique analysis and design for 60 GHz CMOS SPDT switch

    NASA Astrophysics Data System (ADS)

    Zonghua, Zheng; Lingling, Sun; Jun, Liu; Shengzhou, Zhang

    2016-01-01

    A novel loss compensation technique for a series-shunt single-pole double-throw (SPDT) switch is presented operating in the 60 GHz. The feed-forward compensation network which is composed of an NMOS, a couple capacitance and a shunt inductance can reduce the impact of the feed forward capacitance to reduce the insertion loss and improve the isolation of the SPDT switch. The measured insertion loss and isolation characteristics of the switch somewhat deviating from the 60 GHz are analyzed revealing that the inaccuracy of the MOS model can greatly degrade the performance of the switch. The switch is implemented in TSMC 90-nm CMOS process and exhibits an isolation of above 27 dB at transmitter mode, and the insertion loss of 1.8-3 dB at 30-65 GHz by layout simulation. The measured insertion loss is 2.45 dB at 52 GHz and keeps < 4 dB at 30-64 GHz. The measured isolation is better than 25 dB at 30-64 GHz and the measured return loss is better than 10 dB at 30-65 GHz. A measured input 1 dB gain compression point of the switch is 13 dBm at 52 GHz and 15 dBm at 60 GHz. The simulated switching speed with rise time and fall time are 720 and 520 ps, respectively. The active chip size of the proposed switch is 0.5 × 0.95 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61331006, 61372021).

  6. 47 CFR 101.95 - Sunset provisions for licensees in the 18.30-19.30 GHz band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....30 GHz band. 101.95 Section 101.95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Fixed Service Relocation from the 18.58-19.30 Ghz Band § 101.95 Sunset provisions for licensees in the 18.30-19.30 GHz band. (a) FSS licensees are not required to pay relocation costs after the...

  7. 47 CFR 101.95 - Sunset provisions for licensees in the 18.30-19.30 GHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....30 GHz band. 101.95 Section 101.95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Fixed Service Relocation from the 18.58-19.30 Ghz Band § 101.95 Sunset provisions for licensees in the 18.30-19.30 GHz band. (a) FSS licensees are not required to pay relocation costs after the...

  8. 47 CFR 101.95 - Sunset provisions for licensees in the 18.30-19.30 GHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....30 GHz band. 101.95 Section 101.95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Fixed Service Relocation from the 18.58-19.30 Ghz Band § 101.95 Sunset provisions for licensees in the 18.30-19.30 GHz band. (a) FSS licensees are not required to pay relocation costs after the...

  9. 47 CFR 101.95 - Sunset provisions for licensees in the 18.30-19.30 GHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....30 GHz band. 101.95 Section 101.95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Fixed Service Relocation from the 18.58-19.30 Ghz Band § 101.95 Sunset provisions for licensees in the 18.30-19.30 GHz band. (a) FSS licensees are not required to pay relocation costs after the...

  10. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    PubMed Central

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2012-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron. PMID:23539422

  11. A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    NASA Technical Reports Server (NTRS)

    Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.

    1987-01-01

    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).

  12. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), i.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, i.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  13. A 3 to 6 GHz microwave/photonic transceiver for phased-array interconnects

    NASA Astrophysics Data System (ADS)

    Ackerman, Edward; Wanuga, Stephen; Candela, Karen; Scotti, Ronald E.; MacDonald, V. W.; Gates, John V.

    1992-04-01

    The general design and operation of a microwave/photonic transceiver operating in the range 3-6 GHz are presented. The transceiver consists of drop-in submodules with optical fiber pigtails mounted on a brass carrier measuring less than 1 x 1 x 0.1 inch along with MMIC amplifiers and an alumina motherboard. Minimum 3 to 6 GHz return losses of 6 dB have been measured for both the microwave input and the microwave output of the module; the insertion loss is between 19 and 20 dB at most frequencies in the 3-6 GHz band.

  14. The design and evaluation of a 5.8 ghz laptop-based radar system

    NASA Astrophysics Data System (ADS)

    Teng, Kevin Chi-Ming

    This project involves design and analysis of a 5.8 GHz laptop-based radar system. The radar system measures Doppler, ranging and forming Synthetic Aperture Radar (SAR) images utilizing Matlab software provided from MIT Open Courseware and performs data acquisition and signal processing. The main purpose of this work is to bring new perspective to the existing radar project by increasing the ISM band frequency from 2.4 GHz to 5.8 GHz and to carry out a series of experiments on the implementation of the radar kit. Demonstrating the radar at higher operating frequency is capable of providing accurate data results in Doppler, ranging and SAR images.

  15. A quasioptical resonant-tunneling-diode oscillator operating above 200 GHz

    SciTech Connect

    Brown, E.R.; Parker, C.D.; Calawa, A.R.; Manfra, M.J.; Molvar, K.M. . Lincoln Lab.)

    1993-08-01

    A quasioptical resonant-tunneling-diode oscillator is demonstrated at frequencies above 200 GHz. The oscillator is stabilized by a semiconfocal open cavity. The maximum output power and the linewidth are approximately 50 [mu]W and 20 kHz, respectively, at a fundamental frequency of 210 GHz. By varying the cavity length, the oscillator frequency can be adjusted over a 0.4 GHz range in a repetitive manner. This behavior is explained by analogy with laser oscillators. The quasioptical RTD oscillator is well suited as a local oscillator for low-power radiometric mixers.

  16. The 4.8 GHz LHC Schottky pick-up system

    SciTech Connect

    Caspers, Fritz; Jimenez, Jose Miguel; Jones, Rhodri Owain; Kroyer, Tom; Vuitton, Christophe; Hamerla, Timothy W.; Jansson, Andreas; Misek, Joel; Pasquinelli, Ralph J.; Seifrid, Peter; Sun, Ding; /Fermilab

    2007-06-01

    The LHC Schottky observation system is based on traveling wave type high sensitivity pickup structures operating at 4.8 GHz. The choice of the structure and operating frequency is driven by the demanding LHC impedance requirements, where very low impedance is required below 2 GHz, and good sensitivity at the selected band at 4.8 GHz. A sophisticated filtering and triple down -mixing signal processing chain has been designed and implemented in order to achieve the specified 100 dB instantaneous dynamic range without range switching. Detailed design aspects for the complete systems and test results without beam are presented and discussed.

  17. Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

    NASA Technical Reports Server (NTRS)

    Neece, Robert T.; Britt, Charles L.; White, Joseph H.; Mudukutore, Ashok; Nguyen, Chi; Hooper, Bill

    2005-01-01

    A 35 GHz, pulsed-Doppler radar system has been designed and assembled for wake vortex detection and tracking in low visibility conditions. Aircraft wake vortices continue to be an important factor in determining safe following distances or spacings for aircraft in the terminal area. Currently, under instrument meteorological conditions (IMC), aircraft adhere to conservative, fixed following-distance guidelines based primarily on aircraft weight classifications. When ambient conditions are such that vortices will either drift or dissipate, leaving the flight corridor clear, the prescribed spacings are unnecessarily long and result in decreased airport throughput. There is a potential for significant airport efficiency improvement, if a system can be employed to aid regulators and pilots in setting safe and efficient following distances based on airport conditions. The National Aeronautics and Space Administration (NASA), the Federal Aviation Agency, and Volpe National Transportation Systems Center have promoted and worked to develop systems that would increase airport capacity and provide for safe reductions in aircraft separation. The NASA Aircraft Vortex Spacing System (AVOSS), a wake vortex spacing system that can provide dynamic adjustment of spacings based on real-time airport weather conditions, has demonstrated that Lidar systems can be successfully used to detect and track vortices in clear air conditions. To fill the need for detection capability in low-visibility conditions, a 35 GHz, pulsed-Doppler radar system is being investigated for use as a complimentary, low-visibility sensor for wake vortices. The radar sensor provides spatial and temporal information similar to that provided by Lidar, but under weather conditions that a Lidar cannot penetrate. Currently, we are analyzing the radar design based upon the data and experience gained during the wake vortex Lidar deployment with AVOSS at Dallas/Fort Worth International Airport. As part of this study

  18. A 3 Ghz photoelectron gun for high beam intensity

    SciTech Connect

    Bossart, R.; Braun, H.; Dehler, M.

    1995-12-31

    The CLIC Test Facility (CTF) for new accelerator structures of the proposed Compact Linear Collider (CLIC) is to be equipped with a new RF gun containing a laser driven photocathode. The new 3 GHz gun with photocathode shall produce a bunch train of 48 electron bunches of 25 nC charge each with a bunch length of 8 - 15 ps fwhm. The new RF gun consists of 2{1/2} cells and accelerates the beam to an energy of 7 MeV with a peak field gradient Ez = 100 MV/m. The strong space charge forces at low beam energy caused by the high charge density of the electron bunches must be contained by radial and longitudinal RF focusing in the RF gun. Radial RF focusing is applied by a conical backplane around the photocathode in the first cell where the electrons have a low energy. Longitudinal RF focusing is obtained by varying the length of each of the three cells of the gun. The total electric charge of the bunch train exceeds 1{mu}C and causes strong beam loading to the RF structures so that the stored energy is reduced to half of the unloaded RF energy. The RF gun under construction is being optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating RF structure of 4 cells and an intermediate solenoid magnet correcting the beam divergence of the 2{1/2} cell gun. The scheme with two accelerating RF sections will provide a linear energy increase along the bunch suitable for further compression of the bunch length in a magnetic chicane.

  19. Passive 350 GHz Video Imaging Systems for Security Applications

    NASA Astrophysics Data System (ADS)

    Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C.

    2015-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5-25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

  20. Investigation of the Rotational Spectrum of Pyrimidine from 3 to 337 GHz: Molecular Structure, Nuclear Quadrupole Coupling, and Vibrational Satellites.

    PubMed

    Kisiel; Pszczólkowski; López; Alonso; Maris; Caminati

    1999-06-01

    A comprehensive reinvestigation of the rotational spectrum of pyrimidine was carried out by using several different spectrometers. All singly substituted 13C- and 15N-isotopic species of pyrimidine have been measured in natural abundance with millimeter-wave free jet and waveguide Fourier transform microwave techniques, and complete rs and r0 heavy atom geometries have been determined. The ground state rotational spectrum in the centimeter-wave region was measured at sub-Doppler resolution of the cavity Fourier transform spectrometer and all elements in the inertial and principal nuclear quadrupole-coupling tensors of the nitrogen nuclei in pyrimidine have been determined. The room-temperature spectrum was measured up to 337 GHz and J = 66 with BWO-based spectrometers and sextic level centrifugal distortion constants in the rotational Hamiltonian have been determined for the ground state and three lowest vibrational fundamentals of pyrimidine. Copyright 1999 Academic Press.

  1. Cardiovascular changes in unanesthetized and ketamine-anesthetized Sprague-Dawley rats exposed to 2. 8-GHz radiofrequency radiation

    SciTech Connect

    Jauchem, J.R.; Frei, M.R. )

    1991-01-01

    Sprague-Dawley rats were exposed to 2.8-GHz radiofrequency radiation, first while unanesthetized and then while anesthetized with ketamine (150 mg/kg.I.M.). Irradiation at a power density of 60 mW/cm2 (whole-body average specific absorption rate of approximately 14 W/kg) was conducted for sufficient duration to increase colonic temperature from 38.5 to 39.5 degrees C. The time required for the temperature increase was significantly longer in the anesthetized state. During irradiation, heart rate increased significantly both with and without anesthesia, while mean arterial blood pressure increased only when the rats were unanesthetized. The heart rate increase in the anesthetized state contrasts with a lack of change in a previous study of Fischer rats. This difference between anesthetized Sprague-Dawley and Fischer rats should be considered when comparing cardiovascular data obtained from these two strains of rats.

  2. FANATIC: an SIS radiometer for radio astronomy from 660 to 695 GHz

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Genzel, R.; Plathner, B.; Gundlach, K.-H.

    1994-09-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 695 GHz (lambda 455 - 432 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 h nu/k). The heart of the receiver is a two-junction Nb/AlO(x)/Nb SIS array fed by a sandwiched V-antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn approximately 10 Ohm, an area of approximately 2 sq micron, an individual radial stub circuit to resonate the capacitance, and a lambda/4 transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  3. FANATIC: An SIS Radiometer for Radio Astronomy in the 660-690 GHz Band

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Gundlach, K.-H.; Plathner, B.

    1994-05-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 690 GHz (455-435 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 hv/k). The heart of the receiver is a two-junction Nb/AlOx/Nb SIS array fed by a sandwiched V-Antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn~10 ohm, an area of ~2 um^2 , an individual radial stub circuit to resonate the capacitance, and a 1/4-wavelength transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  4. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    NASA Astrophysics Data System (ADS)

    Yu, X.; Jia, S.; Hu, H.; Galili, M.; Morioka, T.; Jepsen, P. U.; Oxenløwe, L. K.

    2016-11-01

    To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz) band (300 GHz-10 THz) provides a much larger bandwidth and thus promises an extremely high capacity. However, the capacity potential of THz wireless systems has by no means been achieved yet. Here, we successfully demonstrate 160 Gbit/s wireless transmission by using a single THz emitter and modulating 25 GHz spaced 8 channels (20 Gbps per channel) in the 300-500 GHz band, which is the highest bitrate in the frequency band above 300 GHz, to the best of our knowledge.

  5. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  6. A 20-GHz ultra-high-speed InP DHBT comparator

    NASA Astrophysics Data System (ADS)

    Zhenxing, Huang; Lei, Zhou; Yongbo, Su; Zhi, Jin

    2012-07-01

    An ultra-high-speed, master-slave voltage comparator circuit is designed and fabricated using InP/GaInAs double heterojunction bipolar transistor technology with a current gain cutoff frequency of 170 GHz. The complete chip die, including bondpads, is 0.75 × 1.04 mm2. It consumes 440 mW from a single -4 V power supply, excluding the clock part. 77 DHBTs have been used in the monolithic comparator. A full Nyquist test has been performed up to 20 GHz, with the input sensitivity varying from 6 mV at 10 GHz to 16 mV at 20 GHz. To our knowledge, this is the first InP based integrated circuit including more than 70 DHBTs, and it achieves the highest sampling rate found on the mainland of China.

  7. A 50 GHz GaAs FET MIC transmitter/receiver using hermetic miniature probe transitions

    NASA Astrophysics Data System (ADS)

    Ogawa, Koichi; Ishizaki, Toshio; Hashimoto, Koji; Sakakura, Makoto; Uwano, Tomoki

    1989-09-01

    A very compact 50-GHz-band transmitter/receiver for a video link is described. The RF assemblies used in the system consist of 25/50-GHz frequency doublers, a 25-GHz dielectric-resonator oscillator, and a 25-GHz FM modulator. The circuits make extensive use of microwave IC technology with all GaAs FETs as active elements. The frequency doublers exhibit a minimum conversion loss of 2.6 dB and a maximum output power of 11 dBm. The modulator is highly frequency stabilized by the dielectric resonator. Recently developed miniature probe microstrip-to-waveguide transitions permit the IC assemblies to be installed compactly in hermetically sealed packages. Design considerations and experimental data for the transition are presented. Using these technologies a transmitting power of 10 dBm and a receiver noise figure of 13 dB have been obtained.

  8. Tick tock the 12.2 GHz methanol masers in G9.62+0.20

    NASA Astrophysics Data System (ADS)

    Gaylard, Michael J.; Goedhart, Sharmila

    2007-03-01

    The bright interstellar methanol masers at 12.2 GHz and 6.7 GHz were discovered in 1987 and 1991 respectively. It was soon established that many were quite variable. Goedhart Gaylard & van der Walt (2003) reported that one source, G9.62+0.20E, exhibited flares at 12.2 and 6.7 GHz that appeared to be periodic, repeating every 246 days. Since then, monitoring of this and other possibly periodic sources has continued with the 26-m Hartebeesthoek telescope. We discuss here the full 12.2 GHz time series data of G9.62+0.20 through 2006. The data quality has been much improved by telescope upgrades. Flares in the main maser peak continue, the repetition rate remains close to that originally determined.

  9. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented.

  10. Gyrotron Performance on the 110 GHZ Installation at the DIII-D Tokamak

    SciTech Connect

    Gorelov, I.; Lohr, J.M.; Ponce, D.; Callis, R.W.; Ikezi, H.; Legg, R.A.; Tsimring, S.E.

    1999-06-01

    The 110 GHz gyrotron system on the DIII-D tokamak comprises three different gyrotrons in the 1 MW class. The individual gyrotron characteristics and the operational experience with the system are described.

  11. The 18/30 GHz fixed communications system service demand assessment. Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is assessed. The services are voice, video, and data services. Traffic demand, by service, is distributed by geographical regions, population density, and distance between serving points. Further distribution of traffic is made among four major end user groups: business, government, institutions and private individuals. A traffic demand analysis is performed on a typical metropolitan city to examine service distribution trends. The projected cost of C and Ku band satellite systems are compared on an individual service basis to projected terrestrial rates. Separation of traffic between transmission systems, including 18/30 GHz systems, is based on cost, user, and technical considerations.

  12. Concepts for 18/30 GHz satellite communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Jorasch, R.; Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    Concepts for 18/30 GHz satellite communication systems are presented. Major terminal trunking as well as direct-to-user configurations were evaluated. Critical technologies in support of millimeter wave satellite communications were determined.

  13. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power. PMID:22380155

  14. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    NASA Astrophysics Data System (ADS)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  15. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    NASA Astrophysics Data System (ADS)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy < S 31 < 4 mJy, N(>S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  16. Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Benoit, A.; Bourrion, O.; Calvo, M.; Coiffard, G.; D'Addabbo, A.; Goupy, J.; Le Sueur, H.; Macías-Pérez, J.; Monfardini, A.

    2016-07-01

    This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (Δν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches. In parallel, we developed an analytical model to rescale the results to what would be observed by such a LEKID array at the second Lagrangian point. We show that LEKID arrays behave adequately in space-like conditions with a measured noise equivalent power close to the cosmic microwave background photon noise and an impact of cosmic rays smaller with respect to those observed with Planck satellite detectors.

  17. LABORATORY CHARACTERIZATION AND ASTROPHYSICAL DETECTION OF VIBRATIONALLY EXCITED STATES OF ETHYL CYANIDE

    SciTech Connect

    Daly, A. M.; Bermudez, C.; Alonso, J. L.; Lopez, A.; Tercero, B.; Cernicharo, J.; Pearson, J. C.; Marcelino, N. E-mail: cbermu@qf.uva.es E-mail: lopezja@cab.inta-csic.es E-mail: jcernicharo@cab.inta-csic.es E-mail: nmarceli@nrao.edu

    2013-05-01

    Ethyl cyanide, CH{sub 3}CH{sub 2}CN, is an important interstellar molecule with a very dense rotational-vibrational spectrum. On the basis of new laboratory data in the range of 17-605 GHz and ab initio calculations, two new vibrational states, {nu}{sub 12} and {nu}{sub 20}, have been detected in molecular clouds of Orion. Laboratory data consist of Stark spectroscopy (17-110 GHz) and frequency-modulated spectrometers (GEM laboratory in Valladolid: 17-170, 270-360 GHz; Toyama: 26-200 GHz; Emory: 200-240 GHz; Ohio State: 258-368 GHz; and JPL: 270-318, 395-605 GHz). More than 700 distinct lines of each species were measured in J up to 71 and in K{sub a} up to 25. The states were fitted with Watson's S-reduction Hamiltonian. The two new states have been identified in the interstellar medium toward the Orion Nebula (Orion KL). The ground state, the isotopologues of CH{sub 3}CH{sub 2}CN, and the vibrationally excited states have been fitted to obtain column densities and to derive vibrational temperatures. All together, ethyl cyanide is responsible for more than 2000 lines in the observed frequency range of 80-280 GHz.

  18. 30/20-GHz earth station components for satellite digital communication service

    NASA Astrophysics Data System (ADS)

    Inoue, Takeo; Yamada, Yoshihide; Kawashima, Fujio

    1987-03-01

    This paper describes the design method, configurations and performance of two recently developed components for satellite digital communications application. The 30-GHz band high-power transmitters featuring a 300-watt output power are of two types: a small-size klystron tube unit and wide-bandwidth traveling wave tube unit. The 30/20-GHz band earth station antennas are a small size, lightweight axisymmetrical Gregorian and an offset Cassegrain having good wide angle directivity.

  19. Design of a 300 GHz Band TWT with a Folded Waveguide Fabricated by Microelectromechanical Systems

    NASA Astrophysics Data System (ADS)

    Tsutaki, Kunio; Neo, Yoichiro; Mimura, Hidenori; Masuda, Norio; Yoshida, Mitsuru

    2016-08-01

    For future broadband wireless links, we have designed a 300 GHz band traveling wave tube (TWT) with a folded waveguide fabricated by microelectromechanical systems (MEMS). The TWT operates at a beam voltage of 12 kV and a beam current of 8.3 mA. The classical large signal simulation code predicts the output power greater than 1 W and gain larger than 20 dB over the bandwidth from 280 to 300 GHz.

  20. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  1. A two-stage monolithic buffer amplifier for 20 GHz satellite communication

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Gupta, A. K.

    1983-01-01

    Design, fabrication, and test results of a two-stage GaAs monolithic buffer amplifier for 20 GHz satellite communication are described in this paper. A gain of 13 + or - 0.75 dB from 17.7 to 20.2 GHz was obtained from the 1.5 x 1.5 millimeter chip, which includes all necessary bias and dc blocking circuitry.

  2. Transit-time devices as local oscillators for frequencies above 100 GHz

    NASA Technical Reports Server (NTRS)

    Eisele, H.; Kidner, C.; Haddad, G. I.

    1992-01-01

    Very promising preliminary experimental results have been obtained from GaAs IMPATT diodes at F-band frequencies (75 mW, 3.5 percent at 111.1 GHz and 20 mW, 1.4 percent at 120.6 GHz) and from GaAs TUNNETT diodes at W-band frequencies (26 mW, 1.6 percent at 87.2 GHz and 32 mW, 2.6 percent at 93.5 GHz). These results indicate that IMPATT, MITATT and TUNNETT diodes have the highest potential of delivering significant amounts of power at Terahertz frequencies. As shown recently, the noise performance of GaAs W-band IMPATT diodes can compete with that of Gunn devices. Since TUNNETT diodes take advantage of the quieter tunnel injection, they are expected to be especially suited for low-noise local oscillators. This paper will focus on the two different design principles for IMPATT and TUNNETT diodes, the material parameters involved in the design and some aspects of the present device technology. Single-drift flat-profile GaAs D-band IMPATT diodes had oscillations up to 129 GHz with 9 mW, 0.9 percent at 128.4 GHz. Single-drift GaAs TUNNETT diodes had oscillations up to 112.5 GHz with 16 mW and output power levels up to 33 mW and efficiencies up to 3.4 percent around 102 GHz. These results are the best reported so far from GaAs IMPATT and TUNNETT diodes.

  3. Parametric amplification and oscillation at 36 GHz using a point-contact Josephson junction

    NASA Technical Reports Server (NTRS)

    Taur, Y.; Richards, P. L.

    1977-01-01

    The paper reports observation of doubly degenerate parametric amplification and oscillation at 36 GHz from a single point-contact Josephson junction. The experimental results agree qualitatively with theoretical calculations based on the resistively shunted junction model. The estimated noise temperature of an amplifier with 11 dB net gain is consistent with zero, but has an upper limit of 50 K. Attempts to observe parametric amplification in the singly degenerate mode with a pump frequency of 72 GHz were not successful.

  4. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  5. Teleportation with Multiple Accelerated Partners

    NASA Astrophysics Data System (ADS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-09-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger-Horne-Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network.

  6. A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1984-01-01

    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  7. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. I - Observations

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Mack, Robert A.; Prasad, N.; Hakkarinen, Ida M.; Yeh, H.-Y. M.

    1990-01-01

    Aircraft passive microwave observations of deep atmospheric convection at frequencies between 18 and 183 GHz are presented in conjunction with visible and infrared satellite and aircraft observations and ground-based radar observations. Deep convective cores are indicated in the microwave data by negative brightness temperature, T/(B) deviations from the land background (270 K) to extreme T(B) values below 100 K at 37, 92, and 183 GHz and below 200 K at 18 GHz. These T(B) minima, due to scattering by ice held aloft by the intense updrafts, are well correlated with areas of high radar reflectivity. For this land background case, T(B) is inversely correlated with rain rate at all frequencies due to T(B)-ice-rain correlations. Mean Delta-T between vertically polarized and horizontally polarized radiance in precipitation areas is approximately 6 K at both 18 GHz and 37 GHz, indicating nonspherical precipitation-size ice particles with a preferred horizontal orientation. Convective cores not observed in the visible and infrared data are clearly defined in the microwave observations, and borders of convective rain areas are well defined using the high-frequency (90 GHz and greater) microwave observations.

  8. A low noise 665 GHz SIS quasi-particle waveguide receiver

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Walker, C. K.; Leduc, H. G.; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    1993-01-01

    Recent results on a 565-690 GHz SIS heterodyne receiver employing a 0.36 micron(sup 2) Nb/AlOx/Nb SIS tunnel junction with high quality circular non-contacting back short and E-plane tuners in a full height wave guide mount are reported. No resonant tuning structures were incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, approximately 680 GHz. Typical receiver noise temperatures from 565-690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15 percent, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF pass band and was successfully installed at the Caltech Submillimeter Observatory in Hawaii.

  9. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than ±0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  10. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  11. Cosmological evolution of compact AGN at 15 GHz

    NASA Astrophysics Data System (ADS)

    Arshakian, T. G.; Ros, E.; Zensus, J. A.

    2006-11-01

    Aims. We study the uniformity of the distribution of compact flat-spectrum active galactic nuclei (AGN) on the sky and the evolution of their relativistic jets with cosmic epoch. Methods: .A complete sample of compact extragalactic radio sources at 2 cm (15 GHz) was recently compiled to conduct the MOJAVE (Monitoring Of Jets in AGN with VLBA Experiments) program (Lister & Homan 2005, AJ, 130, 1389). The MOJAVE sample comprises 133 radio-loud flat-spectrum AGN with compact relativistic outflows detected at parsec scales. We use a two-point angular correlation function to test the isotropy of the distribution of radio sources on the sky. The generalized and banded versions of V/V_max statistic are used to investigate the cosmological evolution of compact AGN. Results: .The survey sources are distributed uniformly on the sky. The source counts of compact AGN shows that the MOJAVE sample represents a flux-limited complete sample. Analysis of the population of flat-spectrum quasars of the sample reveals that the pc-scale jets of quasars have intrinsic luminosities in the range between 1024 W Hz-1 and 1027 {W Hz-1} and Lorentz factors distributed between 3⪉γ ⪉30. We find that the apparent speed (or Lorentz factor) of jets evolves with redshift, increasing from z˜0 to z˜1 and then falling at higher redshifts (z˜2.5) by a factor of 2.5. The evolution of apparent speeds does not affect significantly the evolution of the beamed luminosity function of quasars, which is most likely to be dependent on the evolution of radio luminosity. Furthermore, the beamed radio luminosity function suggests that the intrinsic luminosity function of quasars has a double power-law form: it is flat at low luminosities and steep at high luminosities. There is a positive evolution of quasars at low redshifts (z<0.5) and strong negative evolution at redshifts >1.7 with space density decline up to z˜2.5. This implies that the powerful jets were more populous at redshifts between 0.5 and 1

  12. Plant Response to Microwaves at 2.45 GHz

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.

    2003-01-01

    One method of beaming to Earth energy captured by Space Solar Power (SSP) satellites is by using microwaves. Since microwaves are non-ioniz ing and of low energy they probably will have little or no direct eff ect (either long- or short-term) on terrestrial biota. This contentio n must to be proved however, before the public will accept a continuo us beam of microwaves being sent to the ground near populated areas or onto agricultural lands. To begin to address this question, an exper iment has been done that exposed an important agronomic plant speaes (alfalfa, Medicago sativa L.) to a continuous microwave beam at 2.45 GHz and from between 0.5 to 1.2 milli-watts per square centimeter. Th e hypothesis was that plants exposed to microwaves will be no differe nt from those control plants that were not exposed to microwaves. The microwaves were broadcast over a tray of mature, growing plants in the laboratory. The control plants were subjected to the same environme ntal conditions (light, temperature, soil and nutrients) minus the mi crowave exposure. Both populations of plants were watered as needed. As may be seen, the experiment was designed so that the only variable to which the test plants were subjected was microwave exposure. Prec ise, non-destructive measurements were taken of leaf chlorophyll concentration over the period of the experiment. Also measured were gross plant variables such as stem length, internodal distance, and, at the end of the experiment, above-ground biomass, both fresh and dry weig hts. Soil temperatures on bare soil and under the plant canopy were a lso measured. After seven weeks of exposure to microwaves there was n o sigruficant difference between control and test plant populations. A number of other plant/ microwave exposure studies will be discussed in this presentation. However, this experiment is one of the few publ ished examples of organisms being exposed to continuos microwave illu mination at one of the proposed SSP microwave

  13. 47 CFR 25.264 - Requirements to facilitate reverse-band operation in the 17.3-17.8 GHz band of 17/24 GHz...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Satellite Service space stations. 25.264 Section 25.264 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Direct Broadcast Satellite Service space stations. (a) Each applicant for a space station license in the... to the entire portion of the 17.3-17.8 GHz frequency band over which the space station is designed...

  14. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission...

  15. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission...

  16. Enhanced highly charged ion production using a metal-dielectric liner in the KVI 14 GHz ECR ion source

    NASA Astrophysics Data System (ADS)

    Schachter, L.; Dobrescu, S.; Rodrigues, G.; Drentje, A. G.

    2002-02-01

    Forming on an aluminum surface a dielectric layer of alumina (aluminum oxide) in order to create a metal-dielectric (MD) structure increases the secondary-electron emission properties. The idea of using this material as a MD (Al-Al2O3) cylindrical liner inside an ECR ion source was previously tested in the 14 GHz ECRIS of IKF (Frankfurt/Main, Germany). The purpose of the present experiment was to observe the effect of such a MD liner on the high charge state operation of the KVI 14 GHz ECRIS, in particular in comparison to the technique of gas mixing. Measurements were made both with and without the MD liner, with pure argon and with an argon plus oxygen mixture. In the case of pure argon, the source with the MD liner is running remarkably stable. The high charge state ion beam currents are by far higher than those obtained in the situation where the source was operated with pure argon but without the MD liner. With MD liner, some low intensity oxygen peaks were clearly present in the spectra, implying that oxygen escaping or sputtered from the MD structure could give rise to an effect of "gas mixing." Therefore, the effect of mixing small amounts of oxygen into an argon plasma without the liner was studied in the same conditions of rf power and O3+ peak intensity. The conclusion was that the high charge state beam increase is not due to the oxygen gas mixing effect. The reason for the good performances of the source in the presence of the MD liner can be the increased density of cold electrons, but other effects could occur as well. This is subject of further studies.

  17. Protecting quantum entanglement and nonlocality for tripartite states under decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yin, Yu Hao; Ma, Wen Chao; Ye, Liu

    2016-06-01

    Quantum entanglement and nonlocality will suffer inevitable harm from decoherence environment. Based on GHZ state, we study the harm of the generalized amplitude damping (GAD) operation and the protection by the single local filtering (SLF) operation in this paper. We verify that the SLF functions to depress the loss of entanglement and nonlocality from GAD. This conclusion will guide us to select the best method to protect the GHZ state from GAD decoherence.

  18. A line survey of Orion KL from 325 to 360 GHz.

    PubMed

    Schilke, P; Groesbeck, T D; Blake, G A; Phillips, T G

    1997-01-01

    We present a high-sensitivity spectral line survey of the high-mass star-forming region Orion KL in the 325-360 GHz frequency band. The survey was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. The sensitivity achieved is typically 0.1-0.5 K and is limited mostly by the sideband separation method utilized. We find 717 resolvable features consisting of 1004 lines, among which 60 are unidentified. The identified lines are due to 34 species and various isotopomers. Most of the unidentified lines are weak, and many of them most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2-5 K level. No new species have been identified, but we were able to strengthen evidence for the identification of ethanol in Orion and found the first nitrogen sulfide line in this source. The molecule dominating the integrated line emission is S02, which emits twice the intensity of CO, followed by SO, which is only slightly stronger than CO. In contrast, the largest number of lines is emitted from heavy organic rotors like HCOOCH3, CH3CH2CN, and CH3OCH3, but their contribution to the total flux is unimportant. CH3OH is also very prominent, both in the number of lines and in integrated flux. An interesting detail of this survey is the first detection of vibrationally excited HCN in the v2 = 2 state, 2000 K above ground. Clearly this is a glimpse into the very inner part of the Orion hot core.

  19. A line survey of Orion KL from 325 to 360 GHz.

    PubMed

    Schilke, P; Groesbeck, T D; Blake, G A; Phillips, T G

    1997-01-01

    We present a high-sensitivity spectral line survey of the high-mass star-forming region Orion KL in the 325-360 GHz frequency band. The survey was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. The sensitivity achieved is typically 0.1-0.5 K and is limited mostly by the sideband separation method utilized. We find 717 resolvable features consisting of 1004 lines, among which 60 are unidentified. The identified lines are due to 34 species and various isotopomers. Most of the unidentified lines are weak, and many of them most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2-5 K level. No new species have been identified, but we were able to strengthen evidence for the identification of ethanol in Orion and found the first nitrogen sulfide line in this source. The molecule dominating the integrated line emission is S02, which emits twice the intensity of CO, followed by SO, which is only slightly stronger than CO. In contrast, the largest number of lines is emitted from heavy organic rotors like HCOOCH3, CH3CH2CN, and CH3OCH3, but their contribution to the total flux is unimportant. CH3OH is also very prominent, both in the number of lines and in integrated flux. An interesting detail of this survey is the first detection of vibrationally excited HCN in the v2 = 2 state, 2000 K above ground. Clearly this is a glimpse into the very inner part of the Orion hot core. PMID:11539874

  20. The 12 GHz mixer/local oscillator and parametric amplifier. [considering all solid state circuitry

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1976-01-01

    The results of the initial implementation of the proposed design, the design modifications, and limitations are presented. Also included are data on component parts of the breadboard amplifier and the converter.