NASA Astrophysics Data System (ADS)
Fink, Reinhold F.
2009-02-01
The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.
Construction of CASCI-type wave functions for very large active spaces.
Boguslawski, Katharina; Marti, Konrad H; Reiher, Markus
2011-06-14
We present a procedure to construct a configuration-interaction expansion containing arbitrary excitations from an underlying full-configuration-interaction-type wave function defined for a very large active space. Our procedure is based on the density-matrix renormalization group (DMRG) algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space. Since the dimension of the Hilbert space scales binomially with the size of the active space, a sophisticated Monte Carlo sampling routine is employed. This sampling algorithm can also construct such configuration-interaction-type wave functions from any other type of tensor network states. The configuration-interaction information obtained serves several purposes. It yields a qualitatively correct description of the molecule's electronic structure, it allows us to analyze DMRG wave functions converged for the same molecular system but with different parameter sets (e.g., different numbers of active-system (block) states), and it can be considered a balanced reference for the application of a subsequent standard multi-reference configuration-interaction method.
New schemes for internally contracted multi-reference configuration interaction
NASA Astrophysics Data System (ADS)
Wang, Yubin; Han, Huixian; Lei, Yibo; Suo, Bingbing; Zhu, Haiyan; Song, Qi; Wen, Zhenyi
2014-10-01
In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.
NASA Astrophysics Data System (ADS)
Suo, Bingbing; Lei, Yibo; Han, Huixian; Wang, Yubin
2018-04-01
This mini-review introduces our works on the Xi'an-CI (configuration interaction) package using graphical unitary group approach (GUGA). Taking advantage of the hole-particle symmetry in GUGA, the Galfand states used to span the CI space are classified into CI subspaces according to the number of holes and particles, and the coupling coefficients used to calculate Hamiltonian matrix elements could be factorised into the segment factors in the hole, active and external spaces. An efficient multi-reference CI with single and double excitations (MRCISD) algorithm is thus developed that reduces the storage requirement and increases the number of correlated electrons significantly. The hole-particle symmetry also gives rise to a doubly contracted MRCISD approach. Moreover, the internally contracted Gelfand states are defined within the CI subspace arising from the hole-particle symmetry, which makes the implementation of internally contracted MRCISD in the framework of GUGA possible. In addition to MRCISD, the development of multi-reference second-order perturbation theory (MRPT2) also benefits from the hole-particle symmetry. A configuration-based MRPT2 algorithm is proposed and extended to the multi-state n-electron valence-state second-order perturbation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yost, Shane R.; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
2016-08-07
In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the numbermore » of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.« less
Oyeyemi, Victor B; Pavone, Michele; Carter, Emily A
2011-12-09
Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: 1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; 2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and 3) DFT-B3LYP calculations of minimum-energy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of CC and CH bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Sebastian; Marquetand, Philipp; González, Leticia
2014-08-21
An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbitmore » coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.« less
Studies of excited states of HeH by the multi-reference configuration-interaction method
NASA Astrophysics Data System (ADS)
Lee, Chun-Woo; Gim, Yeongrok
2013-11-01
The excited states of a HeH molecule for an n of up to 4 are studied using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. The advantages of using two different ways of locating Rydberg orbitals, either on the atomic nucleus or at the charge centre of molecules, are exploited by limiting their application to different ranges of R. Using this method, the difference between the experimental binding energies of the lower Rydberg states obtained by Ketterle and the ab initio results obtained by van Hemert and Peyerimhoff is reduced from a few hundreds of wave numbers to a few tens of wave numbers. A substantial improvement in the accuracy allows us to obtain quantum defect curves characterized by the correct behaviour. We obtain several Rydberg series that have more than one member, such as the ns series (n = 2, 3 and 4), npσ series (n = 3 and 4), npπ (n = 2, 3, 4) series and ndπ (n = 3, 4) series. These quantum defect curves are compared to the quantum defect curves obtained by the R-matrix or the multichannel quantum defect theory methods.
Accurate double many-body expansion potential energy surface for the 2(1)A' state of N2O.
Li, Jing; Varandas, António J C
2014-08-28
An accurate double many-body expansion potential energy surface is reported for the 2(1)A' state of N2O. The new double many-body expansion (DMBE) form has been fitted to a wealth of ab initio points that have been calculated at the multi-reference configuration interaction level using the full-valence-complete-active-space wave function as reference and the cc-pVQZ basis set, and subsequently corrected semiempirically via double many-body expansion-scaled external correlation method to extrapolate the calculated energies to the limit of a complete basis set and, most importantly, the limit of an infinite configuration interaction expansion. The topographical features of the novel potential energy surface are then examined in detail and compared with corresponding attributes of other potential functions available in the literature. Exploratory trajectories have also been run on this DMBE form with the quasiclassical trajectory method, with the thermal rate constant so determined at room temperature significantly enhancing agreement with experimental data.
A comparative study of linear and nonlinear MIMO feedback configurations
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Lin, C. A.
1984-01-01
In this paper, a comparison is conducted of several feedback configurations which have appeared in the literature (e.g. unity-feedback, model-reference, etc.). The linear time-invariant multi-input multi-output case is considered. For each configuration, the stability conditions are specified, the relation between achievable I/O maps and the achievable disturbance-to-output maps is examined, and the effect of various subsystem perturbations on the system performance is studied. In terms of these considerations, it is demonstrated that one of the configurations considered is better than all the others. The results are then extended to the nonlinear multi-input multi-output case.
Configuration of management accounting information system for multi-stage manufacturing
NASA Astrophysics Data System (ADS)
Mkrtychev, S. V.; Ochepovsky, A. V.; Enik, O. A.
2018-05-01
The article presents an approach to configuration of a management accounting information system (MAIS) that provides automated calculations and the registration of normative production losses in multi-stage manufacturing. The use of MAIS with the proposed configuration at the enterprises of textile and woodworking industries made it possible to increase the accuracy of calculations for normative production losses and to organize accounting thereof with the reference to individual stages of the technological process. Thus, high efficiency of multi-stage manufacturing control is achieved.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Granovsky, Alexander A
2011-06-07
The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less
Improving the distinguishable cluster results: spin-component scaling
NASA Astrophysics Data System (ADS)
Kats, Daniel
2018-06-01
The spin-component scaling is employed in the energy evaluation to improve the distinguishable cluster approach. SCS-DCSD reaction energies reproduce reference values with a root-mean-squared deviation well below 1 kcal/mol, the interaction energies are three to five times more accurate than DCSD, and molecular systems with a large amount of static electron correlation are still described reasonably well. SCS-DCSD represents a pragmatic approach to achieve chemical accuracy with a simple method without triples, which can also be applied to multi-configurational molecular systems.
The calculated rovibronic spectrum of scandium hydride, ScH
NASA Astrophysics Data System (ADS)
Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan
2015-07-01
The electronic structure of six low-lying electronic states of scandium hydride, X 1Σ+, a 3Δ, b 3Π, A 1Δ, c 3Σ+ and B 1Π, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular rovibronic transitions for 45ScH.
NASA Astrophysics Data System (ADS)
Li, Yumin; Iwata, Suehiro
1997-07-01
For astronomically interesting molecules, HCCS and NCS, the equilibrium geometries and potential energy curves of three states (X 2Π, A 2Π and B 2Σ+) as well as vertical excitation energies are studied using complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI) and coupled cluster (CCSD(T)) methods with cc-pVTZ basis sets. The difference and similarity in the three states of HCCS and NCS are illustrated. The results obtained are in good agreement with available experimental data.
Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; ...
2015-12-09
In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D 4h-symmetric, 1,2,3,4-cyclobutanetetraone (C 4O 4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π( 1A 1g) state, the singlet 10π( 1A 1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π( 1A 1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π( 1B 2u) and 9π( 3B 2u), respectively, originating from single occupancy of the HOMO and LUMO.more » Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneracies in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π( 3B 2u) < 8π( 1A 1g) < 9π( 1B 2u) < 10π( 1A 1g) and that the 8π( 1A 1g) - 9π( 3B 2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.« less
An Interactive Visual Analytics Framework for Multi-Field Data in a Geo-Spatial Context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyuan; Tong, Xiaonan; McDonnell, Kevin T.
2013-04-01
Climate research produces a wealth of multivariate data. These data often have a geospatial reference and so it is of interest to show them within their geospatial context. One can consider this configuration as a multi field visualization problem, where the geospace provides the expanse of the field. However, there is a limit on the amount of multivariate information that can be fit within a certain spatial location, and the use of linked multivari ate information displays has previously been devised to bridge this gap. In this paper we focus on the interactions in the geographical display, present an implementationmore » that uses Google Earth, and demonstrate it within a tightly linked parallel coordinates display. Several other visual representations, such as pie and bar charts are integrated into the Google Earth display and can be interactively manipulated. Further, we also demonstrate new brushing and visualization techniques for parallel coordinates, such as fixedwindow brushing and correlationenhanced display. We conceived our system with a team of climate researchers, who already made a few important discov eries using it. This demonstrates our system’s great potential to enable scientific discoveries, possibly also in oth er domains where data have a geospatial reference.« less
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
Kleinschmidt, Martin; van Wüllen, Christoph; Marian, Christel M
2015-03-07
We have employed combined density functional theory and multi-reference configuration interaction methods including spin-orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy)3). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin-orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin-orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy)3 is C3 symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy)3. For the S1↝T1 non-radiative transition, we compute a rate constant of kISC = 6.9 × 10(12) s(-1) which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T1 state, the T1 → S0 transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence decay times of 264 μs, 13 μs, and 0.9 μs, respectively, for the T1,I, T1,II, and T1,III fine-structure levels in dichloromethane (DCM) solution. In addition to reproducing the correct orders of magnitude for the individual phosphorescence emission probabilities, our theoretical study gives insight into the underlying mechanisms. In terms of intensity borrowing from spin-allowed transitions, the low emission probability of the T1,I substate is caused by the mutual cancellation of contributions from several singlet states to the total transition dipole moment. Their contributions do not cancel but add up in case of the much faster T1,III → S0 emission while the T1,II → S0 emission is dominated by intensity borrowing from a single spin-allowed process, i.e., the S2 → S0 transition.
First principles electron-correlated calculations of optical absorption in magnesium clusters★
NASA Astrophysics Data System (ADS)
Shinde, Ravindra; Shukla, Alok
2017-11-01
In this paper, we report large-scale configuration interaction (CI) calculations of linear optical absorption spectra of various isomers of magnesium clusters Mgn (n = 2-5), corresponding to valence transitions. Geometry optimization of several low-lying isomers of each cluster was carried out using coupled-cluster singles doubles (CCSD) approach, and these geometries were subsequently employed to perform ground and excited state calculations using either the full-CI (FCI) or the multi-reference singles-doubles configuration interaction (MRSDCI) approach, within the frozen-core approximation. Our calculated photoabsorption spectrum of magnesium dimer (Mg2) is in excellent agreement with the experiments both for peak positions, and intensities. Owing to the sufficiently inclusive electron-correlation effects, these results can serve as benchmarks against which future experiments, as well as calculations performed using other theoretical approaches, can be tested. Supplementary material in the form of one pdf fille available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80356-6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de
2015-07-14
The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.
Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster
NASA Astrophysics Data System (ADS)
Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony
2017-04-01
A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.
NASA Astrophysics Data System (ADS)
Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn
2016-12-01
To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.
NASA Astrophysics Data System (ADS)
Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua
2016-05-01
We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de; Wüllen, Christoph van
2015-03-07
We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the timemore » correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence decay times of 264 μs, 13 μs, and 0.9 μs, respectively, for the T{sub 1,I}, T{sub 1,II}, and T{sub 1,III} fine-structure levels in dichloromethane (DCM) solution. In addition to reproducing the correct orders of magnitude for the individual phosphorescence emission probabilities, our theoretical study gives insight into the underlying mechanisms. In terms of intensity borrowing from spin-allowed transitions, the low emission probability of the T{sub 1,I} substate is caused by the mutual cancellation of contributions from several singlet states to the total transition dipole moment. Their contributions do not cancel but add up in case of the much faster T{sub 1,III} → S{sub 0} emission while the T{sub 1,II} → S{sub 0} emission is dominated by intensity borrowing from a single spin-allowed process, i.e., the S{sub 2} → S{sub 0} transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamasha, Safeia, E-mail: safeia@hu.edu.jo
2013-11-15
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less
An interactive multi-block grid generation system
NASA Technical Reports Server (NTRS)
Kao, T. J.; Su, T. Y.; Appleby, Ruth
1992-01-01
A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.
Prehension synergies and control with referent hand configurations.
Latash, Mark L; Friedman, Jason; Kim, Sun Wook; Feldman, Anatol G; Zatsiorsky, Vladimir M
2010-04-01
We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger (VF) level (VF is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-VF level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-VF level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels.
NASA Astrophysics Data System (ADS)
Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Bussery-Honvault, Béatrice
2011-10-01
The N( 2D) + CH 4 reaction appears to be a key reaction for the chemistry of Titan's atmosphere, opening the door to nitrile formation as recently observed by the Cassini-Huygens mission. Faced to the controversy concerning the existence or not of a potential barrier for this reaction, we have carried out accurate ab initio calculations by means of multi-state multi-reference configuration interaction (MS-MR-SDCI) method. These calculations have been partially corrected for the size-consistency errors (SCE) by Davidson, Pople or AQCC corrections. We suggest a barrier height of 3.86 ± 0.84 kJ/mol, including ZPE, for the entrance transition state, in good agreement with the experimental value. Its implication in Titan's atmopsheric chemistry is discussed.
Stages in Learning Motor Synergies: A View Based on the Equilibrium-Point Hypothesis
Latash, Mark L.
2009-01-01
This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s), and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable (“good variability”). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the “good variability”. Experimental support for the suggested scheme is reviewed. PMID:20060610
Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.
Latash, Mark L
2010-10-01
This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s) and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable ("good variability"). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the "good variability". Experimental support for the suggested scheme is reviewed. Copyright © 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Strodel, Paul; Tavan, Paul
2002-09-01
We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.
Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Colboc, F.; Schneider, I. F.; Chakrabarti, K.; Talbi, D.
2017-04-01
We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+, i.e. e- +SH+ -> S + H . SH+ is found in the interstellar medium (ISM), and little is known concerning its chemistry. Understanding the role of DR of electrons with SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain ground and excited 2 Π state potential energy curves (PECs) for several values of SH separation. Core-excited Rydberg states have proven to be of huge importance. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. Currently we are performing dynamics calculations using Multichannel Quantum Defect Theory (MQDT) to obtain DR rates. The status of the work will be presented at the conference. Work supported by the French CNRS, the NSF, the XSEDE, and USMA.
Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2011-11-14
We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics
Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Colboc, F.; Schneider, I. F.; Chakrabarti, K.; Talbi, D.
2016-05-01
We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+, i.e. e- +SH+ --> S + H . SH+ is found in the interstellar medium (ISM), and little is known concerning its chemistry. Understanding the role of DR of electrons with SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain ground and excited 2 Π state potential energy curves (PECs) for several values of SH separation. Core-excited Rydberg states have proven to be of huge importance. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. Currently we are performing dynamics calculations using Multichannel Quantum Defect Theory (MQDT) to obtain DR rates. The status of the work will be presented at the conference. work supported by the French CNRS, the NSF, the XSEDE, and USMA.
A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum. PMID:23112656
A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors
NASA Astrophysics Data System (ADS)
Emerson, Benjamin; Lieuwen, Tim
2016-11-01
Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.
Solving multi-objective optimization problems in conservation with the reference point method
Dujardin, Yann; Chadès, Iadine
2018-01-01
Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650
Feldman, Anatol G; Krasovsky, Tal; Baniña, Melanie C; Lamontagne, Anouk; Levin, Mindy F
2011-04-01
Locomotion is presumably guided by feed-forward shifts in the referent body location in the desired direction in the environment. We propose that the difference between the actual and the referent body locations is transmitted to neurons that virtually diminish this difference by appropriately changing the referent body configuration, i.e. the body posture at which muscles reach their recruitment thresholds. Muscles are activated depending on the gap between the actual and the referent body configurations resulting in a step being made to minimize this gap. This hypothesis implies that the actual and the referent leg configurations can match each other at certain phases of the gait cycle, resulting in minimization of leg muscle activity. We found several leg configurations at which EMG minima occurred, both during forward and backward gait. It was also found that the set of limb configurations associated with EMG minima can be changed by modifying the pattern of forward and backward gait. Our hypothesis predicts that, in response to perturbations of gait, the rate of shifts in the referent body location can temporarily be changed to avoid falling. The rate influences the phase of rhythmic limb movements during gait. Therefore, following the change in the rate of the referent body location, the whole gait pattern, for all four limbs, will irreversibly be shifted in time (long-lasting and global phase resetting) with only transient changes in the gait speed, swing and stance timing and cycle duration. Aside from transient changes in the duration of the swing and/or stance phase in response to perturbation, few previous studies have documented long-lasting and global phase resetting of human gait in response to perturbation. Such resetting was a robust finding in our study. By confirming the notion that feed-forward changes in the referent body location and configuration underlie human locomotion, this study solves the classical problem in the relationship between stability of posture and gait and advances the understanding of how human locomotion involves the whole body and is accomplished in a spatial frame of reference associated with the environment.
1982-10-01
spent in preparing this document. 00. EXECUTIVE SUMMARY The O’Hare Runway Configuration Management System (CMS) is an interactive multi-user computer ...MITRE Washington’s Computer Center. Currently, CMS is housed in an IBM 4341 computer with VM/SP operating system. CMS employs the IBM’s Display...iV 0O, o 0 .r4L /~ wA 0U 00 00 0 w vi O’Hare, it will operate on a dedicated mini- computer which permits multi-tasking (that is, multiple users
NASA Astrophysics Data System (ADS)
Giner, Emmanuel; Angeli, Celestino; Garniron, Yann; Scemama, Anthony; Malrieu, Jean-Paul
2017-06-01
The present paper introduces a new multi-reference perturbation approach developed at second order, based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation accounts then for the coupling between the static and dynamic correlation effects. With our new definition of zeroth-order energies, these two approaches are strictly size-extensive provided that local orbitals are used, as numerically illustrated here and formally demonstrated in the Appendix. Also, the present formalism allows for the factorization of all double excitation operators, just as in internally contracted approaches, strongly reducing the computational cost of these two approaches with respect to other determinant-based perturbation theories. The accuracy of these methods has been investigated on ground-state potential curves up to full dissociation limits for a set of six molecules involving single, double, and triple bond breaking together with an excited state calculation. The spectroscopic constants obtained with the present methods are found to be in very good agreement with the full configuration interaction results. As the present formalism does not use any parameter or numerically unstable operation, the curves obtained with the two methods are smooth all along the dissociation path.
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter
2013-10-07
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada
2011-06-01
The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.
Numerical solutions of 2-D multi-stage rotor/stator unsteady flow interactions
NASA Astrophysics Data System (ADS)
Yang, R.-J.; Lin, S.-J.
1991-01-01
The Rai method of single-stage rotor/stator flow interaction is extended to handle multistage configurations. In this study, a two-dimensional Navier-Stokes multi-zone approach was used to investigate unsteady flow interactions within two multistage axial turbines. The governing equations are solved by an iterative, factored, implicit finite-difference, upwind algorithm. Numerical accuracy is checked by investigating the effect of time step size, the effect of subiteration in the Newton-Raphson technique, and the effect of full viscous versus thin-layer approximation. Computer results compared well with experimental data. Unsteady flow interactions, wake cutting, and the associated evolution of vortical entities are discussed.
Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic
2014-03-14
We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Yarkony, D. R.
1980-01-01
A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.
Statistical complexity without explicit reference to underlying probabilities
NASA Astrophysics Data System (ADS)
Pennini, F.; Plastino, A.
2018-06-01
We show that extremely simple systems of a not too large number of particles can be simultaneously thermally stable and complex. To such an end, we extend the statistical complexity's notion to simple configurations of non-interacting particles, without appeal to probabilities, and discuss configurational properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cave, Robert J., E-mail: Robert-Cave@hmc.edu; Stanton, John F., E-mail: JFStanton@gmail.com
We present a simple quasi-diabatization scheme applicable to spectroscopic studies that can be applied using any wavefunction for which one-electron properties and transition properties can be calculated. The method is based on rotation of a pair (or set) of adiabatic states to minimize the difference between the given transition property at a reference geometry of high symmetry (where the quasi-diabatic states and adiabatic states coincide) and points of lower symmetry where quasi-diabatic quantities are desired. Compared to other quasi-diabatization techniques, the method requires no special coding, facilitates direct comparison between quasi-diabatic quantities calculated using different types of wavefunctions, and ismore » free of any selection of configurations in the definition of the quasi-diabatic states. On the other hand, the method appears to be sensitive to multi-state issues, unlike recent methods we have developed that use a configurational definition of quasi-diabatic states. Results are presented and compared with two other recently developed quasi-diabatization techniques.« less
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Evaluation of atomic constants for optical radiation, volume 2
NASA Technical Reports Server (NTRS)
Kylstra, C. D.; Schneider, R. J.
1974-01-01
Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
NASA Astrophysics Data System (ADS)
Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.
2016-08-01
Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
Environmental control/life support system for Space Station
NASA Technical Reports Server (NTRS)
Miller, C. W.; Heppner, D. B.; Schubert, F. H.; Dahlhausen, M. J.
1986-01-01
The functional, operational, and design load requirements for the Environmental Control/Life Support System (ECLSS) are described. The ECLSS is divided into two groups: (1) an atmosphere management group and (2) a water and waste management group. The interaction between the ECLSS and the Space Station Habitability System is examined. The cruciform baseline station design, the delta and big T module configuration, and the reference Space Station configuration are evaluated in terms of ECLSS requirements. The distribution of ECLSS equipment in a reference Space Station configuration is studied as a function of initial operating conditions and growth orbit capabilities. The benefits of water electrolysis as a Space Station utility are considered.
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Schneider, I. F.; Talbi, D.
2015-05-01
We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+. (The process is e- +SH+ --> S + H .) SH+ is found in the interstellar medium (ISM), and little is known concerning its interstellar chemistry. The abundance of SH+ in the ISM suggests that destruction processes, like DR, are inefficient. Understanding the role of DR as a destruction pathway for SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed to obtain excited-state potential energy curves (PECs) for several values of SH separation. Excited Rydberg states have proven to be of importance. The block diagonalization method was used to disentangle interacting states, forming a diabatic representation of the PECs. Currently we are performing Multichannel Quantum Defect Theory (MQDT) dynamics calculations to obtain DR rates. The status of the work will be presented at the conference. Work supported by the French CNRS, the NSF, the XSEDE, and USMA.
Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor
2016-01-01
Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058
Energy levels, lifetimes and radiative data of W LV
NASA Astrophysics Data System (ADS)
Ding, Xiao-bin; Sun, Rui; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chen-zhong
2018-01-01
Calculations of energy levels, radiative data and lifetimes are reported for tungsten Ca-like ion (W LV) by using multi-configuration Dirac-Fock (MCDF) method. The GRASP2K package is adopted to carry out a large-scale systematic computation with a restricted active space treatment; the Breit interaction and QED effects are included in subsequent relativistic configuration interaction calculations. The energies and lifetimes of the lowest 119 levels are listed; the main leading configuration of the levels is of the ground state configuration [Ne]3s23p63d2 and the first excited configuration [Ne]3s23p53d3. The wavelengths, radiative rates and oscillator strengths for relatively strong E1, E2, M1, and M2 transitions are listed. Comparisons with earlier experimental and theoretical values are made. The average relative deviations of energy levels from the NIST results and E1 transition wavelengths from the EBIT experimental results have turned to be only 0.20% and 0.13%, respectively. The other present results are in reasonable agreement with available data. These agreements confirm the reliability and accuracy of the current results. The present datasets may help us with the investigation of the electron-electron correlation effects in complex multi-electron highly charged heavy ions and of the diagnosis of tungsten impurity plasmas in fusion science.
A second-order multi-reference perturbation method for molecular vibrations
NASA Astrophysics Data System (ADS)
Mizukami, Wataru; Tew, David P.
2013-11-01
We present a general multi-reference framework for treating strong correlation in vibrational structure theory, which we denote the vibrational active space self-consistent field (VASSCF) approach. Active configurations can be selected according to excitation level or the degrees of freedom involved, or both. We introduce a novel state-specific second-order multi-configurational perturbation correction that accounts for the remaining weak correlation between the vibrational modes. The resulting VASPT2 method is capable of accurately and efficiently treating strong correlation in the form of large anharmonic couplings, at the same time as correctly resolving resonances between states. These methods have been implemented in our new dynamics package DYNAMOL, which can currently treat up to four-body Hamiltonian coupling terms. We present a pilot application of the VASPT2 method to the trans isomer of formic acid. We have constructed a new analytic potential that reproduces frozen core CCSD(T)(F12*)/cc-pVDZ-F12 energies to within 0.25% RMSD over the energy range 0-15 000 cm-1. The computed VASPT2 fundamental transition energies are accurate to within 9 cm-1 RMSD from experimental values, which is close to the accuracy one can expect from a CCSD(T) potential energy surface.
Code of Federal Regulations, 2014 CFR
2014-01-01
... would be purchased for other than their stated use. However, a multi-purpose helmet—one marketed or... § 1203.17(b)(1). (i) Preload ballast is a “bean bag” filled with lead shot that is placed on the helmet...) Reference headform is a headform used as a measuring device and contoured in the same configuration as one...
Code of Federal Regulations, 2012 CFR
2012-01-01
... would be purchased for other than their stated use. However, a multi-purpose helmet—one marketed or... § 1203.17(b)(1). (i) Preload ballast is a “bean bag” filled with lead shot that is placed on the helmet...) Reference headform is a headform used as a measuring device and contoured in the same configuration as one...
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1999-01-01
The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).
Interaction mining and skill-dependent recommendations for multi-objective team composition
Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram
2011-01-01
Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939
Microchannel plate detector and methods for their fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing
A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.
Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2017-06-01
We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.
Westermann, Till; Eisfeld, Wolfgang; Manthe, Uwe
2013-07-07
An approach to construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) which describe all three relevant electronic states in the entrance channels of the X(P) + CH4 →HX + CH3 reactions (with X=F((2)P), Cl((2)P), or O((3)P)) is introduced. The diabatization relies on the permutational symmetry present in the methane molecule and results in diabatic states which transform as the three p orbitals of the X atom. Spin-orbit coupling is easily and accurately included using the atomic spin-orbit coupling matrix of the isolated X atom. The method is applied to the F + CH4 system obtaining an accurate PES for the entrance channel based on ab initio multi-reference configuration interaction (MRCI) calculations. Comparing the resulting PESs with spin-orbit MRCI calculations, excellent agreement is found for the excited electronic states at all relevant geometries. The photodetachment spectrum of CH4·F(-) is investigated via full-dimensional (12D) quantum dynamics calculations on the coupled PESs using the multi-layer multi-configurational time-dependent Hartree approach. Extending previous work [J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012)], which was restricted to the dynamics on a single adiabatic PES, the contributions of the electronically excited states to the photodetachment spectrum are calculated and compared to experiment. Considering different experimental setups, good agreement between experiment and theory is found. Addressing questions raised in the previous work, the present dynamical calculations show that the main contribution to the second peak in the photodetachment spectrum results from electron detachment into the electronically excited states of the CH4F complex.
16 CFR § 1203.4 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... would be purchased for other than their stated use. However, a multi-purpose helmet—one marketed or... § 1203.17(b)(1). (i) Preload ballast is a “bean bag” filled with lead shot that is placed on the helmet...) Reference headform is a headform used as a measuring device and contoured in the same configuration as one...
Relativistic-electron-beam/target interaction in plasma channels
NASA Astrophysics Data System (ADS)
Halbleib, J. A., Sr.; Wright, T. P.
1980-08-01
A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.
Molecular Line Lists for Scandium and Titanium Hydride Using the DUO Program
NASA Astrophysics Data System (ADS)
Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan
2015-06-01
Transition-metal-containing (TMC) molecules often have very complex electronic spectra because of their large number of low-lying, interacting electronic states, of the large multi-reference character of the electronic states and of the large magnitude of spin-orbit and relativistic effects. As a result, fully ab initio calculations of line positions and intensities of TMC molecules have an accuracy which is considerably worse than the one usually achievable for molecules made up by main-group atoms only. In this presentation we report on new theoretical line lists for scandium hydride ScH and titanium hydride TiH. Scandium and titanium are the lightest transition metal atoms and by virtue of their small number of valence electrons are amenable to high-level electronic-structure treatments and serve as ideal benchmark systems. We report for both systems energy curves, dipole curves and various coupling curves (including spin-orbit) characterising their electronic spectra up to about 20 000 cm-1. Curves were obtained using Internally-Contracted Multi Reference Configuration Interaction (IC-MRCI) as implemented in the quantum chemistry package MOLPRO. The curves where used for the solution of the coupled-surface ro-vibronic problem using the in-house program DUO. DUO is a newly-developed, general program for the spectroscopy of diatomic molecules and its main functionality will be described. The resulting line lists for ScH and TiH are made available as part of the Exomol project. L. Lodi, S. N. Yurchenko and J. Tennyson, Mol. Phys. (Handy special issue) in press. S. N. Yurchenko, L. Lodi, J. Tennyson and A. V. Stolyarov, Computer Phys. Comms., to be submitted.
Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Dom; Lieuwen, Tim
Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescencemore » flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.« less
Migration-induced architectures of planetary systems.
Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta
2012-06-01
The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.
NASA Astrophysics Data System (ADS)
van Meer, R.; Gritsenko, O. V.; Baerends, E. J.
2018-03-01
Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ram, R. S.; Bernath, Peter F.; Parsons, C. G.; Galehouse, D.; Arnold, James O. (Technical Monitor)
2001-01-01
The spectrum of CrH has been reinvestigated in the 9000-15000/cm region using the Fourier transform spectrometer of the National Solar Observatory. The 1-0 and 1-1 bands of the A6Sigma+ - X6Sigma+ transition have been measured and improved spectroscopic constants have been determined. A value for the 2-0 band origin has been obtained from the band head using estimated spectroscopic constants. These data provide a set of much improved equilibrium vibrational and rotational constants for the A6Sigma+ state. An accurate description of the A-X transition has been obtained using a multi-reference configuration interaction approach. The inclusion of both scalar relativity and Cr 3s3p correlation are required to obtain a good description of both states. The ab initio computed Einstein coefficients and radiative lifetimes are reported.
Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel
2013-10-07
The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.
Design Technology of Advanced Composites.
1982-11-01
Communications A.146 Figure 2.-- Conceptual Structure of the Fundamental Protocol Building Block A.147 Figure 3.--External Interactions Associated with a...compatibility between 1544 and 2048 kbit/s system. Annex 5 contains a description of the proposed framwork for distribution to other Study Groups. Some of...are conceptual configurations useful in identifying various possible arrangements to an ISDN. Two concepts are used in defining reference configurations
Shock/vortex interaction and vortex-breakdown modes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, H. A.; Liu, C. H.
1992-01-01
Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, Emmanuel; Scemama, Anthony; Caffarel, Michel
2015-01-28
The potential energy curve of the F{sub 2} molecule is calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wavefunctions. To keep the number of determinants reasonable and thus make FN-DMC calculations feasible in practice, the CI expansion is restricted to those determinants that contribute the most to the total energy. The selection of the determinants is made using the CIPSI approach (Configuration Interaction using a Perturbative Selection made Iteratively). The trial wavefunction used in FN-DMC is directly issued from the deterministic CI program; no Jastrow factor is used and no preliminary multi-parameter stochastic optimization of themore » trial wavefunction is performed. The nodes of CIPSI wavefunctions are found to reduce significantly the fixed-node error and to be systematically improved upon increasing the number of selected determinants. To reduce the non-parallelism error of the potential energy curve, a scheme based on the use of a R-dependent number of determinants is introduced. Using Dunning’s cc-pVDZ basis set, the FN-DMC energy curve of F{sub 2} is found to be of a quality similar to that obtained with full configuration interaction/cc-pVQZ.« less
Tori sequences as remnants of multiple accreting periods of Kerr SMBHs
NASA Astrophysics Data System (ADS)
Pugliese, D.; Stuchlík, Z.
2018-03-01
Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.
Ion Beam Characterization of a NEXT Multi-Thruster Array Plume
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.
2006-01-01
Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.
Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions
NASA Astrophysics Data System (ADS)
Chen, Jacqueline
2017-11-01
Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE Office of Basic Energy Sciences and computing resources provided by the Oakridge Leadership Computing Facility through the DOE INCITE Program.
A Multi-Finger Interface with MR Actuators for Haptic Applications.
Qin, Huanhuan; Song, Aiguo; Gao, Zhan; Liu, Yuqing; Jiang, Guohua
2018-01-01
Haptic devices with multi-finger input are highly desirable in providing realistic and natural feelings when interacting with the remote or virtual environment. Compared with the conventional actuators, MR (Magneto-rheological) actuators are preferable options in haptics because of larger passive torque and torque-volume ratios. Among the existing haptic MR actuators, most of them are still bulky and heavy. If they were smaller and lighter, they would become more suitable for haptics. In this paper, a small-scale yet powerful MR actuator was designed to build a multi-finger interface for the 6 DOF haptic device. The compact structure was achieved by adopting the multi-disc configuration. Based on this configuration, the MR actuator can generate the maximum torque of 480 N.mm with dimensions of only 36 mm diameter and 18 mm height. Performance evaluation showed that it can exhibit a relatively high dynamic range and good response characteristics when compared with some other haptic MR actuators. The multi-finger interface is equipped with three MR actuators and can provide up to 8 N passive force to the thumb, index and middle fingers, respectively. An application example was used to demonstrate the effectiveness and potential of this new MR actuator based interface.
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D; Cox, Kenneth R; Chapman, Walter G
2017-04-28
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
NASA Astrophysics Data System (ADS)
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.
2017-04-01
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
Xu, Enhua; Li, Shuhua
2013-11-07
The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.
Dynamically re-configurable CMOS imagers for an active vision system
NASA Technical Reports Server (NTRS)
Yang, Guang (Inventor); Pain, Bedabrata (Inventor)
2005-01-01
A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.
Neural networks within multi-core optic fibers
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-01-01
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911
Neural networks within multi-core optic fibers.
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-07
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Heidmann, James D. (Technical Monitor); Rigby, David L.
2004-01-01
A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.
Panepinto, D; Zanetti, M C
2018-03-01
This study proposes a multi-step approach to evaluating the environmental and economic aspects of a thermal treatment plant with an energy-recovery configuration. In order to validate the proposed approach, the Turin incineration plant was analyzed, and the potential of the incinerator and several different possible connections to the district heating network were then considered. Both local and global environmental balances were defined. The global-scale results provided information on carbon dioxide emissions, while the local-scale results were used as reference values for the implementation of a Gaussian model that could evaluate the actual concentrations of pollutants released into the atmosphere. The economic aspects were then analyzed, and a correspondence between the environmental and economic advantages defined. The results showed a high energy efficiency for the combined production of heat and electricity, and the opportunity to minimize environmental impacts by including cogeneration in a district heating scheme. This scheme showed an environmental advantage, whereas the electricity-only configuration showed an economic advantage. A change in the thermal energy price (specifically, to 40 €/MWh), however, would make it possible to obtain both environmental and economic advantages. Copyright © 2017 Elsevier Ltd. All rights reserved.
YASS: A System Simulator for Operating System and Computer Architecture Teaching and Learning
ERIC Educational Resources Information Center
Mustafa, Besim
2013-01-01
A highly interactive, integrated and multi-level simulator has been developed specifically to support both the teachers and the learners of modern computer technologies at undergraduate level. The simulator provides a highly visual and user configurable environment with many pedagogical features aimed at facilitating deep understanding of concepts…
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
NASA Astrophysics Data System (ADS)
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.
2018-01-01
We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.
Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.
Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu
2017-11-15
The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.
NASA Technical Reports Server (NTRS)
Hulka, James R.; Jones, G. W.
2010-01-01
Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented programs with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations on these programs. This paper summarizes these analyses. Test and analysis results of impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Several cases with gaseous methane are included for reference. Several different thrust chamber configurations have been modeled, including thrust chambers with multi-element like-on-like and swirl coax element injectors tested at NASA MSFC, and a unielement chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinkusch, Stefan; Tremblay, Jean Christophe
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan
2013-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony
2012-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
The configuration of residential area in urban structure of the palace in Siak Sri Indrapura - Riau
NASA Astrophysics Data System (ADS)
Rijal, Muhammad
2018-05-01
This article is part of major research in describing the configuration of waterfront residential area in urban space structure of the palace and related to the Malay Kingdom in the waterside of the Strait of Malacca. This research aimed to identify the configuration of riverfront residential area in Siak Sri Indrapura City based on physical and non-physical aspects. The method used in this research was qualitative rationalistic referring to the components of urban design theory. The results of the research showed that the spatial configuration in Siak Sri Indrapura City is linear and related to the past events and socio-cultural and socio-economic interaction of the society.
NASA Technical Reports Server (NTRS)
Case, Jonathan L; White, Kristopher D.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.
Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie
2015-01-01
Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels.
2015-01-01
Rationale Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. Methods In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure (“which interval is different?”). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2–4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Conclusions Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels. PMID:26431043
Gauged baby Skyrme model with a Chern-Simons term
NASA Astrophysics Data System (ADS)
Samoilenka, A.; Shnir, Ya.
2017-02-01
The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.
NASA Astrophysics Data System (ADS)
Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John
2012-11-01
Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Open-access and multi-directional electroosmotic flow chip for positioning heterotypic cells.
Terao, Kyohei; Kitazawa, Yuko; Yokokawa, Ryuji; Okonogi, Atsuhito; Kotera, Hidetoshi
2011-04-21
We propose a novel method of cell positioning using electroosmotic flow (EOF) to analyze cell-cell interactions. The EOF chip has an open-to-air configuration, is equipped with four electrodes to induce multi-directional EOF, and allows access of tools for liquid handling and of physical probes for cell measurements. Evaluation of the flow within this chip indicated that it controlled hydrodynamic transport of cells, in terms of both speed and direction. We also evaluated cell viability after EOF application and determined appropriate conditions for cell positioning. Two cells were successively positioned in pocket-like microstructures, one in each micropocket, by controlling the EOF direction. As an experimental demonstration, we observed contact interactions between two individual cells through gap junction channels. The EOF chip should provide ways to elucidate various cell-cell interactions between heterotypic cells.
NASA Astrophysics Data System (ADS)
Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.
2018-03-01
A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.
Bimanual Interaction with Interscopic Multi-Touch Surfaces
NASA Astrophysics Data System (ADS)
Schöning, Johannes; Steinicke, Frank; Krüger, Antonio; Hinrichs, Klaus; Valkov, Dimitar
Multi-touch interaction has received considerable attention in the last few years, in particular for natural two-dimensional (2D) interaction. However, many application areas deal with three-dimensional (3D) data and require intuitive 3D interaction techniques therefore. Indeed, virtual reality (VR) systems provide sophisticated 3D user interface, but then lack efficient 2D interaction, and are therefore rarely adopted by ordinary users or even by experts. Since multi-touch interfaces represent a good trade-off between intuitive, constrained interaction on a touch surface providing tangible feedback, and unrestricted natural interaction without any instrumentation, they have the potential to form the foundation of the next generation user interface for 2D as well as 3D interaction. In particular, stereoscopic display of 3D data provides an additional depth cue, but until now the challenges and limitations for multi-touch interaction in this context have not been considered. In this paper we present new multi-touch paradigms and interactions that combine both traditional 2D interaction and novel 3D interaction on a touch surface to form a new class of multi-touch systems, which we refer to as interscopic multi-touch surfaces (iMUTS). We discuss iMUTS-based user interfaces that support interaction with 2D content displayed in monoscopic mode and 3D content usually displayed stereoscopically. In order to underline the potential of the proposed iMUTS setup, we have developed and evaluated two example interaction metaphors for different domains. First, we present intuitive navigation techniques for virtual 3D city models, and then we describe a natural metaphor for deforming volumetric datasets in a medical context.
Simulation of the single-vibronic-level emission spectrum of HPS.
Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M
2014-05-21
We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.
Photodissociation of CS from Excited Rovibrational Levels
NASA Astrophysics Data System (ADS)
Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.
2018-05-01
Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.
Dissociative recombination of HCl+
NASA Astrophysics Data System (ADS)
Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann
2017-08-01
The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.
Dissociative recombination of HCl.
Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann
2017-08-28
The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng
2015-01-21
In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Åmore » and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; van Dam, Hubertus JJ; Pittner, Jiri
2012-03-28
The recently proposed Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate Multi-Reference Coupled Cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential Ansatz. In this letter we report on the performance of a simple USS correction to the Brillouin-Wigner MRCC (BW-MRCC) formalism employing single and double excitations (BW-MRCCSD). It is shown that the resulting formalism (USS-BW-MRCCSD), which uses the manifold of single and double excitations to construct the correction, can be related to a posteriorimore » corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the results of the USS-BW-MRCCSD method with results of the BW-MRCCSD approach employing a posteriori corrections and with results obtained with the Full Configuration Interaction (FCI) method.« less
Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation
Li, Suyi; Wang, K. W.
2015-01-01
Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid ‘snap-through’ type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. PMID:26400197
Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.
Li, Suyi; Wang, K W
2015-10-06
Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).
Computational Aerodynamic Modeling of Small Quadcopter Vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.
2017-01-01
High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.
Accurate wavelengths for X-ray spectroscopy and the NIST hydrogen-like ion database
NASA Astrophysics Data System (ADS)
Kotochigova, S. A.; Kirby, K. P.; Brickhouse, N. S.; Mohr, P. J.; Tupitsyn, I. I.
2005-06-01
We have developed an ab initio multi-configuration Dirac-Fock-Sturm method for the precise calculation of X-ray emission spectra, including energies, transition wavelengths and transition probabilities. The calculations are based on non-orthogonal basis sets, generated by solving the Dirac-Fock and Dirac-Fock-Sturm equations. Inclusion of Sturm functions into the basis set provides an efficient description of correlation effects in highly charged ions and fast convergence of the configuration interaction procedure. A second part of our study is devoted to developing a theoretical procedure and creating an interactive database to generate energies and transition frequencies for hydrogen-like ions. This procedure is highly accurate and based on current knowledge of the relevant theory, which includes relativistic, quantum electrodynamic, recoil, and nuclear size effects.
NASA Astrophysics Data System (ADS)
Nilsson, Karl-Fredrik; Jakšić, Nikola; Vokál, Vratko
2010-01-01
This paper describes a finite element based fracture mechanics model to assess how hydrides affect the integrity of zircaloy cladding tubes. The hydrides are assumed to fracture at a low load whereas the propagation of the fractured hydrides in the matrix material and failure of the tube is controlled by non-linear fracture mechanics and plastic collapse of the ligaments between the hydrides. The paper quantifies the relative importance of hydride geometrical parameters such as size, orientation and location of individual hydrides and interaction between adjacent hydrides. The paper also presents analyses for some different and representative multi-hydride configurations. The model is adaptable to general and complex crack configurations and can therefore be used to assess realistic hydride configurations. The mechanism of cladding failure is by plastic collapse of ligaments between interacting fractured hydrides. The results show that the integrity can be drastically reduced when several radial hydrides form continuous patterns.
The Use of a UNIX-Based Workstation in the Information Systems Laboratory
1989-03-01
system. The conclusions of the research and the resulting recommendations are presented in Chapter III. These recommendations include how to manage...required to run the program on a new system, these should not be significant changes. 2. Processing Environment The UNIX processing environment is...interactive with multi-tasking and multi-user capabilities. Multi-tasking refers to the fact that many programs can be run concurrently. This capability
Measuring multi-configurational character by orbital entanglement
NASA Astrophysics Data System (ADS)
Stein, Christopher J.; Reiher, Markus
2017-09-01
One of the most critical tasks at the very beginning of a quantum chemical investigation is the choice of either a multi- or single-configurational method. Naturally, many proposals exist to define a suitable diagnostic of the multi-configurational character for various types of wave functions in order to assist this crucial decision. Here, we present a new orbital-entanglement-based multi-configurational diagnostic termed Zs(1). The correspondence of orbital entanglement and static (or non-dynamic) electron correlation permits the definition of such a diagnostic. We chose our diagnostic to meet important requirements such as well-defined limits for pure single-configurational and multi-configurational wave functions. The Zs(1) diagnostic can be evaluated from a partially converged, but qualitatively correct, and therefore inexpensive density matrix renormalisation group wave function as in our recently presented automated active orbital selection protocol. Its robustness and the fact that it can be evaluated at low cost make this diagnostic a practical tool for routine applications.
NASA Astrophysics Data System (ADS)
Konieczka, M.; Kortelainen, M.; Satuła, W.
2018-03-01
Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.
Coordinated turn-and-reach movements. II. Planning in an external frame of reference
NASA Technical Reports Server (NTRS)
Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.
2003-01-01
The preceding study demonstrated that normal subjects compensate for the additional interaction torques generated when a reaching movement is made during voluntary trunk rotation. The present paper assesses the influence of trunk rotation on finger trajectories and on interjoint coordination and determines whether simultaneous turn-and-reach movements are most simply described relative to a trunk-based or an external reference frame. Subjects reached to targets requiring different extents of arm joint and trunk rotation at a natural pace and quickly in normal lighting and in total darkness. We first examined whether the larger interaction torques generated during rapid turn-and-reach movements perturb finger trajectories and interjoint coordination and whether visual feedback plays a role in compensating for these torques. These issues were addressed using generalized Procrustes analysis (GPA), which attempts to overlap a group of configurations (e.g., joint trajectories) through translations and rotations in multi-dimensional space. We first used GPA to identify the mean intrinsic patterns of finger and joint trajectories (i.e., their average shape irrespective of location and orientation variability in the external and joint workspaces) from turn-and-reach movements performed in each experimental condition and then calculated their curvatures. We then quantified the discrepancy between each finger or joint trajectory and the intrinsic pattern both after GPA was applied individually to trajectories from a pair of experimental conditions and after GPA was applied to the same trajectories pooled together. For several subjects, joint trajectories but not finger trajectories were more curved in fast than slow movements. The curvature of both joint and finger trajectories of turn-and-reach movements was relatively unaffected by the vision conditions. Pooling across speed conditions significantly increased the discrepancy between joint but not finger trajectories for most subjects, indicating that subjects used different patterns of interjoint coordination in slow and fast movements while nevertheless preserving the shape of their finger trajectory. Higher movement speeds did not disrupt the arm joint rotations despite the larger interaction torques generated. Rather, subjects used the redundant degrees of freedom of the arm/trunk system to achieve similar finger trajectories with differing joint configurations. We examined finger movement patterns and velocity profiles to determine the frame of reference in which turn-and-reach movements could be most simply described. Finger trajectories of turn-and-reach movements had much larger curvatures and their velocity profiles were less smooth and less bell-like in trunk-based coordinates than in external coordinates. Taken together, these results support the conclusion that turn-and-reach movements are controlled in an external frame of reference.
Characteristics of Behavior of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Sato, Shigehiko; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. It is able to adapt to various circumstances and has a flexibility for variation of tasks. However it has still problems to control each robot, though methods for control multi robots system have been studied. Recently, the robots have been coming into real scene. And emotion and sensitivity of the robots have been widely studied. In this study, human emotion model based on psychological interaction was adapt to multi robots system to achieve methods for organization of multi robots. The characteristics of behavior of multi robots system achieved through computer simulation were analyzed. As a result, very complexed and interesting behavior was emerged even though it has rather simple configuration. And it has flexiblity in various circumstances. Additional experiment with actual robots will be conducted based on the emotion model.
NASA Astrophysics Data System (ADS)
Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-06-01
We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Lee, J; Sterpin, E
2014-06-15
Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; ...
2017-09-14
In this paper, we describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. Themore » use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. Finally, we also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao
In this paper, we describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. Themore » use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. Finally, we also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.« less
Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.
Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo
2015-01-01
The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. © 2014, National Ground Water Association.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1994-01-01
This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.
NASA Astrophysics Data System (ADS)
Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.
2018-03-01
Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.
Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver
NASA Astrophysics Data System (ADS)
Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra
2018-05-01
We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.
Generalized information fusion and visualization using spatial voting and data modeling
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.
2013-05-01
We present a novel and innovative information fusion and visualization framework for multi-source intelligence (multiINT) data using Spatial Voting (SV) and Data Modeling. We describe how different sources of information can be converted into numerical form for further processing downstream, followed by a short description of how this information can be fused using the SV grid. As an illustrative example, we show the modeling of cyberspace as cyber layers for the purpose of tracking cyber personas. Finally we describe a path ahead for creating interactive agile networks through defender customized Cyber-cubes for network configuration and attack visualization.
Fast electron microscopy via compressive sensing
Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W
2014-12-09
Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.
do Nascimento, Keyla Cristiane; Backes, Dirce Stein; Koerich, Magda Santos; Erdmann, Alacoque Lorenzini
2008-12-01
This study is the result of an extended project, named: The systematization of nursing care in the perspective of complex thinking. The objective of this qualitative study is to better comprehend the meaning of the systematization of nursing care among healthcare professionals. The Data-Based Theory was used as a methodological reference. Data were collected by interviewing three sample groups, in a total of fifteen healthcare professionals. Data codification and analysis led us to the central theme: Viewing the Systematization of Nursing Care (SNC) as an Interactive and Complex Phenomenon. This theme is complemented by two phenomena. In this article, we discuss the phenomenon: Verifying the necessity of on interactive, complementary, and multi-professional process. The Systematization of Nursing Care is part of a process that has been developing over time by nurses committed to improve the care given to the patient, since they view the necessity for interactive, complementary, and multi-professional care.
Optical microscope using an interferometric source of two-color, two-beam entangled photons
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-07-13
Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.
Local Multi-Grouped Binary Descriptor With Ring-Based Pooling Configuration and Optimization.
Gao, Yongqiang; Huang, Weilin; Qiao, Yu
2015-12-01
Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as ring-based multi-grouped descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are twofold. First, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales, and distances. This leads to a more meaningful description than the existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for an efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Second, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse support vector machine learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of the RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.
Effects of checklist interface on non-verbal crew communications
NASA Technical Reports Server (NTRS)
Segal, Leon D.
1994-01-01
The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.
A survey of various enhancement techniques for square rings antennas
NASA Astrophysics Data System (ADS)
Mumin, Abdul Rashid O.; Alias, Rozlan; Abdullah, Jiwa; Abdulhasan, Raed Abdulkareem; Ali, Jawad; Dahlan, Samsul Haimi; Awaleh, Abdisamad A.
2017-09-01
The square ring shape becomes a famous reconfiguration on antenna design. The researchers have been developed the square ring by different configurations. It has high efficiency and simple calculation method. The performance enhancement for an antenna is the main reason to use this setting. Furthermore, the multi-objectives for the antenna also are considered. In this paper, different studies of square ring shape are discussed. This shape is developed in five different techniques, which are the gain enhancement, dual band antenna, reconfigurable antenna, CSRR, and circularly polarization. Moreover, the validation between these configurations also demonstrates for square ring shapes. In particular, the square ring slot improved the gain by 4.3 dB, provide dual band resonance at 1.4 and 2.6 GHz while circular polarization at 1.54 GHz, and multi-mode antenna. However, square ring strip achieved an excellent band rejection on UWB antenna at 5.5 GHz. The square ring slot length is the most influential factor on the antenna performance, which refers to the free space wavelength. Finally, comparisons between these techniques are presented.
Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David
2018-06-11
Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.
On the extension of the MCSCF/CI method
NASA Technical Reports Server (NTRS)
Bauschlicher, C., Jr.; Nelin, C. J.; Komornicki, A.
1984-01-01
Research conducted during this period was focused on two main areas: (1) bonding in transition metal oxides; and (2) adsorption of CO on Al and Ni. In both of these theoretical studies a major interest was to obtain a better understanding of the nature of the bonding in transition metal containing systems. The studies used self consistent field (SCF), multi-configuration self cosistent field (MCSCF) and configuration interaction (CI) methods in the treatment of the transition metal oxides and only the SCF method in the adsorption studies. The reports of three principle investigators who contributed to this work during the tenure of the project are presented along with associated published papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vignati, F.; Guardone, A., E-mail: alberto.guardone@polimi.it
Cylindrical converging shock waves interacting with an array of aerodynamic obstacles are investigated numerically for diverse shock strengths and for different obstacle configurations in air in standard conditions. The considered number of obstacles N is 4, 6, 8, 16, and 24. Obstacles are lenticular airfoils with thickness-to-chord ratios t/c of 0.07, 0.14, and 0.21. The distances of the airfoil leading edge from the shock focus point (r{sub LE})/(r{sub LE}{sup ref}) are 1, 2, and 2.5, where r{sub LE}{sup ref}=7 is the dimensionless reference distance from the origin. Considered impinging shock Mach numbers M{sub s} are 2.2, 2.7, and 3.2 atmore » the reference distance from the origin. The reference experimental configuration (N=8,t/c =0.14,r{sub LE}=7,M{sub s}=2.7) was proposed by Kjellander et al. [“Thermal radiation from a converging shock implosion,” Phys. Fluids 22, 046102 (2010)]. Numerical results compare fairly well to available one-dimensional models for shock propagation and to available experimental results in the reference configuration. Local reflection types are in good agreement with the classical criteria for planar shock waves. The main shock reshaping patterns are identified and their dependence on the shock strength and obstacle configuration is exposed. In particular, different shock patterns are observed after the leading edge reflection, which results in polygonal shock wave with N, 2N, 3N, and 4N sides. The largest temperature peak at the origin is obtained for the 8- and the 16-obstacle configurations and for the smallest thickness to length ratio, 0.07, located at distance from the origin of 2r{sub LE}{sup ref}. In terms of compression efficiency at the origin, the 16-obstacle configuration is found to perform slightly better than the reference 8-obstacle configuration—with an efficiency increase of about 2%-3%, which is well within the model accuracy—thus confirming the goodness of the obstacle arrangement proposed by Kjellander and collaborators.« less
Effects of relativity of RTEX in collisions of U sup q+ with light targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mau Hsiung.
1990-11-07
We have calculated the resonant transfer and excitation cross sections in collisions of U{sup q+} (q = 82, 89, 90) ion with H{sub 2}, He and C in impulse approximation using the multi-configuration Dirac-Fock method. The calculations were carried out in intermediate coupling with configuration interaction. The quantum electrodynamic and finite nuclear size corrections were included in the calculations of transition energies. The Auger rates were calculated including the contributions from Coulomb as well as the transverse Breit interactions. For U{sup 89+} and U{sup 90+}, effects of relatively not only shift the peak positions but also change the peak structure.more » The total dielectronic recombination strength has been found to increase by 50% due to the effects of relativity. The present theoretical RTEX cross sections for U{sup 90+} in hydrogen agree well with experiment. For U{sup 82+}, Breit interaction had been found to have little effect on the RTEX cross sections involving L-shell excitation. However, the spin-orbit interaction can still make significant change in the peak structure. 24 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Gao, M.; Li, J.
2018-04-01
Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, Knut
2010-05-15
We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.
An ab initio study of the C3(+) cation using multireference methods
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Martin, J. M. L.; Francois, J. P.; Gijbels, R.
1991-01-01
The energy difference between the linear 2 sigma(sup +, sub u) and cyclic 2B(sub 2) structures of C3(+) has been investigated using large (5s3p2d1f) basis sets and multireference electron correlation treatments, including complete active space self consistent fields (CASSCF), multireference configuration interaction (MRCI), and averaged coupled-pair functional (ACPF) methods, as well as the single-reference quadratic configuration interaction (QCISD(T)) method. Our best estimate, including a correction for basis set incompleteness, is that the linear form lies above the cyclic from by 5.2(+1.5 to -1.0) kcal/mol. The 2 sigma(sup +, sub u) state is probably not a transition state, but a local minimum. Reliable computation of the cyclic/linear energy difference in C3(+) is extremely demanding of the electron correlation treatment used: of the single-reference methods previously considered, CCSD(T) and QCISD(T) perform best. The MRCI + Q(0.01)/(4s2p1d) energy separation of 1.68 kcal/mol should provide a comparison standard for other electron correlation methods applied to this system.
Lee, Inhan; Williams, Christopher R.; Athey, Brian D.; Baker, James R.
2010-01-01
Molecular dynamics simulations of nano-therapeutics as a final product and of all intermediates in the process of generating a multi-functional nano-therapeutic based on a poly(amidoamine) (PAMAM) dendrimer were performed along with chemical analyses of each of them. The actual structures of the dendrimers were predicted, based on potentiometric titration, gel permeation chromatography, and NMR. The chemical analyses determined the numbers of functional molecules, based on the actual structure of the dendrimer. Molecular dynamics simulations calculated the configurations of the intermediates and the radial distributions of functional molecules, based on their numbers. This interactive process between the simulation results and the chemical analyses provided a further strategy to design the next reaction steps and to gain insight into the products at each chemical reaction step. PMID:20700476
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Tubman, Norm M.; Whaley, K. Birgitta; Head-Gordon, Martin
2017-10-01
Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.
[Application of network biology on study of traditional Chinese medicine].
Tian, Sai-Sai; Yang, Jian; Zhao, Jing; Zhang, Wei-Dong
2018-01-01
With the completion of the human genome project, people have gradually recognized that the functions of the biological system are fulfilled through network-type interaction between genes, proteins and small molecules, while complex diseases are caused by the imbalance of biological processes due to a number of gene expression disorders. These have contributed to the rise of the concept of the "multi-target" drug discovery. Treatment and diagnosis of traditional Chinese medicine are based on holism and syndrome differentiation. At the molecular level, traditional Chinese medicine is characterized by multi-component and multi-target prescriptions, which is expected to provide a reference for the development of multi-target drugs. This paper reviews the application of network biology in traditional Chinese medicine in six aspects, in expectation to provide a reference to the modernized study of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
Granovsky, Alexander A
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
Multi-Skyrmions on AdS2 × S2, rational maps and popcorn transitions
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio; Tallarita, Gianni
2017-08-01
By combining two different techniques to construct multi-soliton solutions of the (3 + 1)-dimensional Skyrme model, the generalized hedgehog and the rational map ansatz, we find multi-Skyrmion configurations in AdS2 ×S2. We construct Skyrmionic multi-layered configurations such that the total Baryon charge is the product of the number of kinks along the radial AdS2 direction and the degree of the rational map. We show that, for fixed total Baryon charge, as one increases the charge density on ∂ (AdS2 ×S2) , it becomes increasingly convenient energetically to have configurations with more peaks in the radial AdS2 direction but a lower degree of the rational map. This has a direct relation with the so-called holographic popcorn transitions in which, when the charge density is high, multi-layered configurations with low charge on each layer are favored over configurations with few layers but with higher charge on each layer. The case in which the geometry is M2 ×S2 can also be analyzed.
Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R
2009-09-18
The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.
Systematics of Rydberg Series of Diatomic Molecules and Correlation Diagrams
NASA Astrophysics Data System (ADS)
Lee, Chun-Woo
2015-06-01
Rydberg states are studied for H2, Li2, HeH, LiH and BeH using the multi-reference configuration interaction (MRCI) method. The systematics and regularities of the physical properties such as potential energies curves (PECs), quantum defect curves, permanent dipole moment and transition dipole moment curves of the Rydberg series are studied. They are explained using united atom perturbation theory by Bingel and Byers-Brown, Fermi model, Stark theory, and Mulliken's theory. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, indicating that the members of the l-mixed Rydberg series have dipole moments with opposite directions, which are related to the reversal of the polarity of a dipole moment at the avoided crossing points. The assignment of highly excited states is difficult because of the usual absence of the knowledge on the behaviors of potential energy curves at small internuclear separation whereby the correlation between the united atom limit and separated atoms limit cannot be given. All electron MRCI calculations of PECs are performed to obtain the correlation diagrams between Rydberg orbitals at the united-atom and separated atoms limits.
Titan's Ionic Species: Theoretical Treatment of N2H+ and Related Ions
NASA Astrophysics Data System (ADS)
Brites, V.; Hochlaf, M.
2009-06-01
We use different ab initio methods to compute the three-dimensional potential energy surface (3D-PES) of the ground state of N2H+. This includes the standard coupled cluster, the complete active space self-consistent field, the internally contacted multi reference configuration interaction, and the newly developed CCSD(T)-F12 methods. For the description of H and N atoms, several basis sets are tested. Then, we incorporate the 3D-PES analytical representations into variational calculations of the rovibrational spectrum of N2H+(X˜1Σ+) up to 7200 cm-1 above the zero point vibrational energy. Our data show that the CCSD(T)-F12/aug-cc-pVTZ approach represents a compromise for good description of the PES and computation cost. This technique is recommended for full dimensional PES generation of atmospheric and astrophysical relevant polyatomic systems. We applied this method to derive the rovibrational spectra of N2H+(X˜1Σ+) and of N2H++(X˜2Σ+). Finally, we discuss the existence of the N2H++(X˜2Σ+) in Titan's atmosphere.
NASA Astrophysics Data System (ADS)
Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe
2017-12-01
The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.
Configuration maintaining control of three-body ring tethered system based on thrust compensation
NASA Astrophysics Data System (ADS)
Huang, Panfeng; Liu, Binbin; Zhang, Fan
2016-06-01
Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
NASA Astrophysics Data System (ADS)
Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2016-05-01
A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.
Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2016-05-28
A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.
A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less
A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)
NASA Technical Reports Server (NTRS)
Kelly, J. J.; Abu-Khajeel, H.
1997-01-01
This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.
NASA Astrophysics Data System (ADS)
Bacskay, George B.
2015-07-01
The equilibrium energies of the iodocarbenes CXI (X = Br, Cl, F) in their ?, ? and ? states and their atomisation and dissociation energies in the complete basis limit were determined by extrapolating valence correlated (R/U)CCSD(T) and Davidson corrected multi-reference configuration interaction (MRCI) energies calculated with the aug-cc-pVxZ (x = T,Q,5) basis sets and the ECP28MDF pseudopotential of iodine plus corrections for core and core-valence correlation, scalar relativity, spin-orbit coupling and zero-point energies. Spin-orbit energies were computed in a large basis of configurations chosen so as to accurately describe dissociation to the 3P and 2P states of C and of the halogens X and I, respectively. The computed singlet-triplet splittings are 13.6, 14.4 and 27.3 kcal mol-1 for X = Br, Cl and F, respectively. The enthalpies of formation at 0 K are predicted to be 97.4, 82.6 and 38.1 kcal mol-1 with estimated errors of ±1.0 kcal mol-1. The ? excitation energies (T00) in CBrI and CClI are calculated to be 41.1 and 41.7 kcal mol-1, respectively. The Renner-Teller intersections in both molecules are predicted to be substantially higher than the dissociation barriers on the ? surfaces. By contrast, in CFI the ? state is found to be unbound with respect to dissociation.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; White, Kristopher D.
2014-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorpening, Benjamin T.; Kamler, Jonathan
The Raman Gas Analyzer (RGA) has been demonstrated to have an extremely fast response (<1 second), pressurized, multi-gas analysis capability. All but the noble gases are Raman active, although the Raman interaction is weak. The RGA uses a reflectively lined capillary as the optical cell, providing both a small sample volume for fast gas exchange, and a much greater Raman signal collection than traditional instrument configurations.
Actor-network Procedures: Modeling Multi-factor Authentication, Device Pairing, Social Interactions
2011-08-29
unmodifiable properties of your body; or the capabilities that you cannot convey to others, such as your handwriting . An identity can thus be determined by...network, two principals with the same set of secrets but, say , different computational powers, can be distinguished by timing their responses. Or they... says that configurations are finite sets. Partially ordered multisets, or pomsets were introduced and extensively studied by Vaughan Pratt and his
Photoconductivity of few-layered p-WSe2 phototransistors via multi-terminal measurements
NASA Astrophysics Data System (ADS)
Pradhan, Nihar R.; Garcia, Carlos; Holleman, Joshua; Rhodes, Daniel; Parker, Chason; Talapatra, Saikat; Terrones, Mauricio; Balicas, Luis; McGill, Stephen A.
2016-12-01
Recently, two-dimensional materials and in particular transition metal dichalcogenides (TMDs) have been extensively studied because of their strong light-matter interaction and the remarkable optoelectronic response of their field-effect transistors (FETs). Here, we report a photoconductivity study from FETs built from few-layers of p-WSe2 measured in a multi-terminal configuration under illumination by a 532 nm laser source. The photogenerated current was measured as a function of the incident optical power, of the drain-to-source bias and of the gate voltage. We observe a considerably larger photoconductivity when the phototransistors were measured via a four-terminal configuration when compared to a two-terminal one. For an incident laser power of 248 nW, we extract 18 A W-1 and ˜4000% for the two-terminal responsivity (R) and the concomitant external quantum efficiency (EQE) respectively, when a bias voltage V ds = 1 V and a gate voltage V bg = 10 V are applied to the sample. R and EQE are observed to increase by 370% to ˜85 A W-1 and ˜20 000% respectively, when using a four-terminal configuration. Thus, we conclude that previous reports have severely underestimated the optoelectronic response of transition metal dichalcogenides, which in fact reveals a remarkable potential for photosensing applications.
The image-interpretation-workstation of the future: lessons learned
NASA Astrophysics Data System (ADS)
Maier, S.; van de Camp, F.; Hafermann, J.; Wagner, B.; Peinsipp-Byma, E.; Beyerer, J.
2017-05-01
In recent years, professionally used workstations got increasingly complex and multi-monitor systems are more and more common. Novel interaction techniques like gesture recognition were developed but used mostly for entertainment and gaming purposes. These human computer interfaces are not yet widely used in professional environments where they could greatly improve the user experience. To approach this problem, we combined existing tools in our imageinterpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a special task in the image interpreting process: a geo-information system to geo-reference the images and provide a spatial reference for the user, an interactive recognition support tool, an annotation tool and a reporting tool. To further support the complex task of image interpreting, self-developed interaction systems for head-pose estimation and hand tracking were used in addition to more common technologies like touchscreens, face identification and speech recognition. A set of experiments were conducted to evaluate the usability of the different interaction systems. Two typical extensive tasks of image interpreting were devised and approved by military personal. They were then tested with a current setup of an image interpreting workstation using only keyboard and mouse against our image-interpretationworkstation of the future. To get a more detailed look at the usefulness of the interaction techniques in a multi-monitorsetup, the hand tracking, head pose estimation and the face recognition were further evaluated using tests inspired by everyday tasks. The results of the evaluation and the discussion are presented in this paper.
NASA Astrophysics Data System (ADS)
Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong
2017-03-01
The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3s23p63d2 and first excited states [Ne]3s23p53d3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Multi-reactor power system configurations for multimegawatt nuclear electric propulsion
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
1991-01-01
A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.
NASA Astrophysics Data System (ADS)
Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.
2018-05-01
Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.
NASA Astrophysics Data System (ADS)
Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.
2018-05-01
Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.
ERIC Educational Resources Information Center
Lotfipour-Saedi, Kazem
2015-01-01
This paper represents some suggestions towards discourse-analytic approaches for ESL/EFL education, with the focus on identifying the textual forms which can contribute to the textual difficulty. Textual difficulty/comprehensibility, rather than being purely text-based or reader-dependent, is certainly a matter of interaction between text and…
A fast ultrasonic simulation tool based on massively parallel implementations
NASA Astrophysics Data System (ADS)
Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain
2014-02-01
This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.
NASA Astrophysics Data System (ADS)
Scolari, Vittore F.; Cosentino Lagomarsino, Marco
Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly-spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interaction compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in presence of uniform attraction, as long as the uniform collapse is above its theta point.
Normal order and extended Wick theorem for a multiconfiguration reference wave function
NASA Astrophysics Data System (ADS)
Kutzelnigg, Werner; Mukherjee, Debashis
1997-07-01
A generalization of normal ordering and of Wick's theorem with respect to an arbitrary reference function Φ as some generalized "physical vacuum" is formulated in a different (but essentially equivalent) way than that suggested previously by one of the present authors. Guiding principles are that normal order operators with respect to any reference state must be expressible as linear combinations of those with respect to the genuine vacuum, that the vacuum expectation value of a normal order operator must vanish (with respect to the vacuum to which it is in normal order), and that the well-known formalism for a single Slater determinant as physical vacuum must be contained as a special case. The derivation is largely based on the concepts of "Quantum Chemistry in Fock space," which means that particle-number-conserving operators (excitation operators) play a central role. Nevertheless, the contraction rules in the frame of a generalized Wick theorem are derived, that hold for non-particle-number-conserving operators as well. The contraction rules are formulated and illustrated in terms of diagrams. The contractions involve the "residual n-particle density matrices" λ, which are the irreducible (non-factorizable) parts of the conventional n-particle density matrices γ, in the sense of a cumulant expansion for the density. A spinfree formulation is presented as well. The expression of the Hamiltonian in normal order with respect to a multiconfiguration reference function leads to a natural definition of a generalized Fock operator. MC-SCF-theory is easily worked out in this context. The paper concludes with a discussion of the excited configurations and the first-order interacting space, that underlies a perturbative coupled cluster type correction to the MCSCF function for an arbitrary reference function, and with general implications of the new formalism, that is related to "internally contracted multireference configuration interaction." The present generalization of normal ordering is not only valid for arbitrary reference functions, but also if the reference state is an ensemble state.
Possibility of Cooper-pair formation controlled by multi-terminal spin injection
NASA Astrophysics Data System (ADS)
Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.
2018-03-01
A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.
Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar
2014-08-01
Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.
Development of a Multi-Disciplinary Computing Environment (MDICE)
NASA Technical Reports Server (NTRS)
Kingsley, Gerry; Siegel, John M., Jr.; Harrand, Vincent J.; Lawrence, Charles; Luker, Joel J.
1999-01-01
The growing need for and importance of multi-component and multi-disciplinary engineering analysis has been understood for many years. For many applications, loose (or semi-implicit) coupling is optimal, and allows the use of various legacy codes without requiring major modifications. For this purpose, CFDRC and NASA LeRC have developed a computational environment to enable coupling between various flow analysis codes at several levels of fidelity. This has been referred to as the Visual Computing Environment (VCE), and is being successfully applied to the analysis of several aircraft engine components. Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and scope of VCE to enable complex multi-disciplinary simulations. The chosen initial focus is on aeroelastic aircraft applications. The developed software is referred to as MDICE-AE, an extensible system suitable for integration of several engineering analysis disciplines. This paper describes the methodology, basic architecture, chosen software technologies, salient library modules, and the current status of and plans for MDICE. A fluid-structure interaction application is described in a separate companion paper.
Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; ...
2014-11-26
In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso
2014-12-17
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
Hoss, Frauke; London, Alex John
2016-12-01
This paper presents a proof of concept for a graphical models approach to assessing the moral coherence and moral robustness of systems of social interactions. "Moral coherence" refers to the degree to which the rights and duties of agents within a system are effectively respected when agents in the system comply with the rights and duties that are recognized as in force for the relevant context of interaction. "Moral robustness" refers to the degree to which a system of social interaction is configured to ensure that the interests of agents are effectively respected even in the face of noncompliance. Using the case of conscientious objection of pharmacists to filling prescriptions for emergency contraception as an example, we illustrate how a graphical models approach can help stakeholders identify structural weaknesses in systems of social interaction and evaluate the relative merits of alternate organizational structures. By illustrating the merits of a graphical models approach we hope to spur further developments in this area.
Configurable product design considering the transition of multi-hierarchical models
NASA Astrophysics Data System (ADS)
Ren, Bin; Qiu, Lemiao; Zhang, Shuyou; Tan, Jianrong; Cheng, Jin
2013-03-01
The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increasing, the interdependencies between customer demands and product structures grow up as well. The result is that existing product structures fails to satisfy the individual customer requirements and hence product variants are needed. This paper is aimed to build a bridge between customer demands and product structures in order to make demand-driven fast response design feasible. First of all, multi-hierarchical models of configurable product design are established with customer demand model, technical requirement model and product structure model. Then, the transition of multi-hierarchical models among customer demand model, technical requirement model and product structure model is solved with fuzzy analytic hierarchy process (FAHP) and the algorithm of multi-level matching. Finally, optimal structure according to the customer demands is obtained with the calculation of Euclidean distance and similarity of some cases. In practice, the configuration design of a clamping unit of injection molding machine successfully performs an optimal search strategy for the product variants with reasonable satisfaction to individual customer demands. The proposed method can automatically generate a configuration design with better alternatives for each product structures, and shorten the time of finding the configuration of a product.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
National Systems of Innovation and Technological Differentiation:. a Multi-Country Model
NASA Astrophysics Data System (ADS)
Ribeiro, Leonardo C.; Ruiz, Ricardo M.; Albuquerque, Eduardo M.; Bernardes, Américo T.
Science and technology have a fundamental role in the economic development. Although this statement is generally well accepted, the internal mechanisms which are responsible for these interactions are not clear. In the last decade, dealing with this problem, many models have been proposed. In this paper, we introduce a model that creates an artificial world economy that is a network of countries. Each country has its own national system of innovation and the interactions between countries are given by functions that connect the competitiveness of their prices and their technological capabilities. Starting from different configurations, the artificial world economy self-organizes itself and creates a hierarchies of countries.
Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; ...
2016-03-10
The metastable ring structure of the ozone 1 1A 1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A 1 states. In the present work, valence correlated energies of the 1 1A 1 state and the 2 1A 1 state were calculated at the 1 1A 1 open minimum, the 1 1A 1 ring minimum, themore » transition state between these two minima, the minimum of the 2 1A 1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of CorrelationEnergy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ~45–50 mh and (transition state—open minimum) ~85–90 mh. For the (2 1A 1– 1A 1) excitation energy, the estimate of ~130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (2 1A 1– 1A 1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 2 1A 1 surface nearly coincide. More accurate predictions of the energydifferences also require CI expansions to at least sextuple excitations with respect to the valence space. Furthermore, for every wave function considered, the omission of the correlations of the 2s oxygen orbitals, which is a widely used approximation, was found to cause errors of about ±10 mh with respect to the energy differences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.
The metastable ring structure of the ozone 1 1A 1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A 1 states. In the present work, valence correlated energies of the 1 1A 1 state and the 2 1A 1 state were calculated at the 1 1A 1 open minimum, the 1 1A 1 ring minimum, themore » transition state between these two minima, the minimum of the 2 1A 1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of CorrelationEnergy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ~45–50 mh and (transition state—open minimum) ~85–90 mh. For the (2 1A 1– 1A 1) excitation energy, the estimate of ~130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (2 1A 1– 1A 1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 2 1A 1 surface nearly coincide. More accurate predictions of the energydifferences also require CI expansions to at least sextuple excitations with respect to the valence space. Furthermore, for every wave function considered, the omission of the correlations of the 2s oxygen orbitals, which is a widely used approximation, was found to cause errors of about ±10 mh with respect to the energy differences.« less
Multi-scale structural community organisation of the human genome.
Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin
2017-04-11
Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.
Apparatus configured for identification of a material and method of identifying a material
Slater, John M.; Crawford, Thomas M.; Frickey, Dean A.
2001-01-01
The present invention relates to an apparatus configured for identification of a material and method of identifying a material. One embodiment of the present invention provides an apparatus configured for identification of a material including a first region configured to receive a first sample and output a first spectrum responsive to exposure of the first sample to radiation; a signal generator configured to provide a reference signal having a reference frequency and a modulation signal having a modulation frequency; a modulator configured to selectively modulate the first spectrum using the modulation signal according to the reference frequency; a second region configured to receive a second sample and output a second spectrum responsive to exposure of the second sample to the first spectrum; and a detector configured to detect the second spectrum.
Electrospray performance of interacting multi-capillary emitters in a linear array
NASA Astrophysics Data System (ADS)
Kumar, V.; Srivastava, A.; Shanbhogue, K. M.; Ingersol, S.; Sen, A. K.
2018-03-01
Here, we report electrospray performance of multiple emitters (of internal diameter 200 µm) arranged in a linear (inline) array. For a fixed flow rate Q , at higher voltages {{V}a} , multi-jet mode is observed, which leads to a rapid increase in the spray current (I∼ {{V}a} ) as compared to the single cone-jet case (I∼ Va0.8 ). A theoretical model is presented that predicts (within 10% of experimental data) the divergence of sprays g(x) issued from a pair of interacting emitters due to the mutual Columbic interaction of space charges. The variation of onset voltage {{V}o} and spray current I with spacing between the emitters p is studied and it is found that {{V}o}∼ {{p}-0.2} and I∼ {{p}0.8} . The effect of the flow rate Q , voltage V and number of emitters ~n~ on the spray current I is investigated and it is found that I∼ {{Q}0.5} , I∼ Va0.8 and I∼ \\sqrt{n} . The present work provides insight regarding the behavior of interacting sprays in an inline configuration and could be significant in the design of multiple emitter systems for electrospray applications.
Strong correlation in incremental full configuration interaction
NASA Astrophysics Data System (ADS)
Zimmerman, Paul M.
2017-06-01
Incremental Full Configuration Interaction (iFCI) reaches high accuracy electronic energies via a many-body expansion of the correlation energy. In this work, the Perfect Pairing (PP) ansatz replaces the Hartree-Fock reference of the original iFCI method. This substitution captures a large amount of correlation at zero-order, which allows iFCI to recover the remaining correlation energy with low-order increments. The resulting approach, PP-iFCI, is size consistent, size extensive, and systematically improvable with increasing order of incremental expansion. Tests on multiple single bond, multiple double bond, and triple bond dissociations of main group polyatomics using double and triple zeta basis sets demonstrate the power of the method for handling strong correlation. The smooth dissociation profiles that result from PP-iFCI show that FCI-quality ground state computations are now within reach for systems with up to about 10 heavy atoms.
Corrosion protected, multi-layer fuel cell interface
Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.
1986-01-01
An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.
NASA Astrophysics Data System (ADS)
Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan
2017-06-01
We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130
Insights into the deactivation of 5-bromouracil after ultraviolet excitation
NASA Astrophysics Data System (ADS)
Peccati, Francesca; Mai, Sebastian; González, Leticia
2017-03-01
5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C-Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Charge transfer between O6+ and atomic hydrogen
NASA Astrophysics Data System (ADS)
Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.
2011-05-01
The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.
Insights into the deactivation of 5-bromouracil after ultraviolet excitation
2017-01-01
5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C–Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320905
You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi
2016-01-15
The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.
Architecture for Survivable System Processing (ASSP)
NASA Astrophysics Data System (ADS)
Wood, Richard J.
1991-11-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tohme, Samir N.; Korek, Mahmoud, E-mail: mahmoud.korek@bau.edu.lb, E-mail: fkorek@yahoo.com; Awad, Ramadan
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, themore » rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.« less
Architecture for Survivable System Processing (ASSP)
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1991-01-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Laser cooling of MgCl and MgBr in theoretical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Mingjie; Shao, Juxiang; Huang, Duohui
Ab initio calculations for three low-lying electronic states (X{sup 2}Σ{sup +}, A{sup 2}Π, and 2{sup 2}Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas–Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f{sub 00} for A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) states for rapid lasermore » cooling are also obtained. The proposed laser drives A{sup 2}Π{sub 3/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transition by using three wavelengths (main pump laser λ{sub 00}; two repumping lasers λ{sub 10} and λ{sub 21}). These results indicate the probability of laser cooling MgCl and MgBr molecules.« less
NASA Astrophysics Data System (ADS)
Brauer, U.
2007-08-01
The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").
Multi-electron double quantum dot spin qubits
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Kestner, Jason; Barnes, Edwin; Das Sarma, Sankar
2013-03-01
Double quantum dot (DQD) spin quits in a solid state environment typically consist of two electron spins confined to a DQD potential. We analyze the viability and potential advantages of DQD qubits which use greater then two electrons, and present results for six-electron qubits using full configuration interaction methods. The principal results of this work are that such six electron DQDs can retain an isolated low-energy qubit space that is more robust to charge noise due to screening. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Development of an unmanned maritime system reference architecture
NASA Astrophysics Data System (ADS)
Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.
2014-06-01
The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.
Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.
2013-01-01
The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487
Decentralised consensus-based formation tracking of multiple differential drive robots
NASA Astrophysics Data System (ADS)
Chu, Xing; Peng, Zhaoxia; Wen, Guoguang; Rahmani, Ahmed
2017-11-01
This article investigates the control problem for formation tracking of multiple nonholonomic robots under distributed manner which means each robot only needs local information exchange. A class of general state and input transform is introduced to convert the formation-tracking issue of multi-robot systems into the consensus-like problem with time-varying reference. The distributed observer-based protocol with nonlinear dynamics is developed for each robot to achieve the consensus tracking of the new system, which namely means a group of nonholonomic mobile robots can form the desired formation configuration with its centroid moving along the predefined reference trajectory. The finite-time stability of observer and control law is analysed rigorously by using the Lyapunov direct method, algebraic graph theory and matrix analysis. Numerical examples are finally provided to illustrate the effectiveness of the theory results proposed in this paper.
The dynamics of the multi-planet system orbiting Kepler-56
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gongjie; Naoz, Smadar; Johnson, John Asher
2014-10-20
Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity ofmore » Kepler 56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ∼129 Myr. Furthermore we put an upper limit of ∼155 Myr for the engulfment of the second planet. This corresponds to ∼3% of the current age of the star.« less
Electronic structure of multi-walled carbon fullerenes
NASA Astrophysics Data System (ADS)
Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.
2017-02-01
Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
Multi-Quasiparticle Gamma-Band Structure in Neutron-Deficient Ce and Nd Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Javid; Bhat, G. H.; Palit, R.
2009-01-01
The newly developed multi-quasiparticle triaxial projected shell-model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce and Nd isotopes. It is observed that gamma bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma oscillation in deformed nuclei based on the ground state to gamma bands built on multi-quasiparticle configurations. This new feature providesmore » an alternative explanation on the observation of two I=10 aligning states in ^{134}Ce and both exhibiting a neutron character.« less
Non-null annular subaperture stitching interferometry for aspheric test
NASA Astrophysics Data System (ADS)
Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.
NASA Technical Reports Server (NTRS)
Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.
1999-01-01
Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.
Vector-borne diseases models with residence times - A Lagrangian perspective.
Bichara, Derdei; Castillo-Chavez, Carlos
2016-11-01
A multi-patch and multi-group modeling framework describing the dynamics of a class of diseases driven by the interactions between vectors and hosts structured by groups is formulated. Hosts' dispersal is modeled in terms of patch-residence times with the nonlinear dynamics taking into account the effective patch-host size. The residence times basic reproduction number R 0 is computed and shown to depend on the relative environmental risk of infection. The model is robust, that is, the disease free equilibrium is globally asymptotically stable (GAS) if R 0 ≤1 and a unique interior endemic equilibrium is shown to exist that is GAS whenever R 0 >1 whenever the configuration of host-vector interactions is irreducible. The effects of patchiness and groupness, a measure of host-vector heterogeneous structure, on the basic reproduction number R 0 , are explored. Numerical simulations are carried out to highlight the effects of residence times on disease prevalence. Copyright © 2016 Elsevier Inc. All rights reserved.
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
Tags, wireless communication systems, tag communication methods, and wireless communications methods
Scott,; Jeff W. , Pratt; Richard, M [Richland, WA
2006-09-12
Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.
1990-01-01
The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.
Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.
Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik
2009-01-01
Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.
Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks
Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik
2009-01-01
Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Yinan; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu; Hohenstein, Edward G.
2015-01-14
Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCFmore » in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.« less
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations
NASA Astrophysics Data System (ADS)
Krimmer, J.; Chevallier, M.; Constanzo, J.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Henriquet, P.; La Tessa, C.; Létang, J. M.; Pleskač, R.; Pinto, M.; Ray, C.; Reithinger, V.; Richard, M. H.; Rinaldi, I.; Roellinghoff, F.; Schuy, C.; Testa, E.; Testa, M.
2015-01-01
Longitudinal prompt-gamma ray profiles have been measured with a multi-slit multi-detector configuration at a 75 MeV/u 13C beam and with a PMMA target. Selections in time-of-flight and energy have been applied in order to discriminate prompt-gamma rays produced in the target from background events. The ion ranges which have been extracted from each individual detector module agree amongst each other and are consistent with theoretical expectations. In a separate dedicated experiment with 200 MeV/u 12C ions the fraction of inter-detector scattering has been determined to be on the 10%-level via a combination of experimental results and simulations. At the same experiment different collimator configurations have been tested and the shielding properties of tungsten and lead for prompt-gamma rays have been measured.
Defect interactions in GaAs single crystals
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1984-01-01
The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
NASA Astrophysics Data System (ADS)
Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin
2018-04-01
Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.
NASA Astrophysics Data System (ADS)
Obara, Shin'ya
Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.
Space Station reference configuration description
NASA Technical Reports Server (NTRS)
1984-01-01
The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).
Cronin, Thomas M.
2016-01-01
Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.
NASA Astrophysics Data System (ADS)
Yamaguchi, Yukio; Schaefer, Henry F., III
1997-12-01
Four electronically lowest-lying ( X˜ 3B 1, ã 1A 1, b˜ 1B 1, and c˜ 1A 1) states of CH 2 have been investigated systematically using ab initio electronic structure theory. Complete active space (CAS) self-consistent-field (SCF) second-order configuration interaction (SOCI) and state-averaged (SA) CASSCF-SOCI levels of theory have been employed. The CASSCF reference wave function was constructed by minimizing the total energy of a specified state, while the SACASSCF reference wave function was obtained by minimizing the equally weighted total energy of the four ( X˜ 3B 1, ã 1A 1, b˜ 1B 1, and c˜ 1A 1) states. The third excited state ( c˜ 1A 1 or 2 1A 1) is of particular theoretical interest because it is represented by the second root of CASSCF and SOCI Hamiltonian matrices. Theoretical treatments of states not the lowest of their symmetry require special attention due to their tendency of variational collapse to the lower-lying state(s). For these four lowest-lying states total energies and physical properties including dipole moments, harmonic vibrational frequencies, and associated infrared (IR) intensities were determined and compared with the results from the configuration interaction with single and double excitations (CISD) method and available experimental values. The CASSCF-SOCI method should provide the most reliable energetics and physical properties in the present study owing to its fully variational nature in the molecular orbital (MO) and CI spaces for a given state. It is demonstrated that the SACASSCF-SOCI wave functions produce results which are quite consistent with those from the CASSCF-SOCI method. Thus significantly increased application of the SACASSCF-SOCI method to the excited states of a wide variety of molecular systems is expected.
NASA Astrophysics Data System (ADS)
Tan, Xihe; Mester, Achim; von Hebel, Christian; van der Kruk, Jan; Zimmermann, Egon; Vereecken, Harry; van Waasen, Stefan
2017-04-01
Electromagnetic induction (EMI) systems offer a great potential to obtain highly resolved layered electrical conductivity models of the shallow subsurface. State-of-the-art inversion procedures require quantitative calibration of EMI data, especially for short-offset EMI systems where significant data shifts are often observed. These shifts are caused by external influences such as the presence of the operator, zero-leveling procedures, the field setup used to move the EMI system and/or cables close by. Calibrations can be performed by using collocated electrical resistivity measurements or taking soil samples, however, these two methods take a lot of time in the field. To improve the calibration in a fast and concise way, we introduce a novel on-site calibration method using a series of apparent electrical conductivity (ECa) values acquired at multiple elevations for a multi-configuration EMI system. No additional instrument or pre-knowledge of the subsurface is needed to acquire quantitative ECa data. By using this calibration method, we correct each coil configuration, i.e., transmitter and receiver coil separation and the horizontal or vertical coplanar (HCP or VCP) coil orientation with a unique set of calibration parameters. A multi-layer soil structure at the corresponding measurement location is inverted together with the calibration parameters using full-solution Maxwell equations for the forward modelling within the shuffled complex evolution (SCE) algorithm to find the optimum solution under a user-defined parameter space. Synthetic data verified the feasibility for calibrating HCP and VCP measurements of a custom made six-coil EMI system with coil offsets between 0.35 m and 1.8 m for quantitative data inversions. As a next step, we applied the calibration approach on acquired experimental data from a bare soil test field (Selhausen, Germany) for the considered EMI system. The obtained calibration parameters were applied to measurements over a 30 m transect line that covers a range of conductivities between 5 and 40 mS/m. Inverted calibrated EMI data of the transect line showed very similar electrical conductivity distributions and layer interfaces of the subsurface compared to reference data obtained from vertical electrical sounding (VES) measurements. These results show that a combined calibration and inversion of multi-configuration EMI data is possible when including measurements at different elevations, which will speed up the measurement process to obtain quantitative EMI data since the labor intensive electrical resistivity measurement or soil coring is not necessary anymore.
Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J
2015-01-23
Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts. Copyright © 2014 Elsevier B.V. All rights reserved.
Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto
2008-11-01
An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).
Cooperativity and modularity in protein folding
Sasai, Masaki; Chikenji, George; Terada, Tomoki P.
2016-01-01
A simple statistical mechanical model proposed by Wako and Saitô has explained the aspects of protein folding surprisingly well. This model was systematically applied to multiple proteins by Muñoz and Eaton and has since been referred to as the Wako-Saitô-Muñoz-Eaton (WSME) model. The success of the WSME model in explaining the folding of many proteins has verified the hypothesis that the folding is dominated by native interactions, which makes the energy landscape globally biased toward native conformation. Using the WSME and other related models, Saitô emphasized the importance of the hierarchical pathway in protein folding; folding starts with the creation of contiguous segments having a native-like configuration and proceeds as growth and coalescence of these segments. The Φ-values calculated for barnase with the WSME model suggested that segments contributing to the folding nucleus are similar to the structural modules defined by the pattern of native atomic contacts. The WSME model was extended to explain folding of multi-domain proteins having a complex topology, which opened the way to comprehensively understanding the folding process of multi-domain proteins. The WSME model was also extended to describe allosteric transitions, indicating that the allosteric structural movement does not occur as a deterministic sequential change between two conformations but as a stochastic diffusive motion over the dynamically changing energy landscape. Statistical mechanical viewpoint on folding, as highlighted by the WSME model, has been renovated in the context of modern methods and ideas, and will continue to provide insights on equilibrium and dynamical features of proteins. PMID:28409080
NASA Astrophysics Data System (ADS)
Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei
2017-07-01
This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.
Self-adaptive tensor network states with multi-site correlators
NASA Astrophysics Data System (ADS)
Kovyrshin, Arseny; Reiher, Markus
2017-12-01
We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.
Theoretical Studies of Chemical Reactions following Electronic Excitation
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2003-01-01
The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.
Multi-Excitonic Quantum Dot Molecules
NASA Astrophysics Data System (ADS)
Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.
Scalable large format 3D displays
NASA Astrophysics Data System (ADS)
Chang, Nelson L.; Damera-Venkata, Niranjan
2010-02-01
We present a general framework for the modeling and optimization of scalable large format 3-D displays using multiple projectors. Based on this framework, we derive algorithms that can robustly optimize the visual quality of an arbitrary combination of projectors (e.g. tiled, superimposed, combinations of the two) without manual adjustment. The framework creates for the first time a new unified paradigm that is agnostic to a particular configuration of projectors yet robustly optimizes for the brightness, contrast, and resolution of that configuration. In addition, we demonstrate that our algorithms support high resolution stereoscopic video at real-time interactive frame rates achieved on commodity graphics hardware. Through complementary polarization, the framework creates high quality multi-projector 3-D displays at low hardware and operational cost for a variety of applications including digital cinema, visualization, and command-and-control walls.
NASA Astrophysics Data System (ADS)
Ilisie, V.; Giménez-Alventosa, V.; Moliner, L.; Sánchez, F.; González, A. J.; Rodríguez-Álvarez, M. J.; Benlloch, J. M.
2018-07-01
Current PET detectors have a very low sensitivity, of the order of a few percent. One of the reasons is the fact that Compton interactions are rejected. If an event involves multiple Compton scattering and the total deposited energy lays within the photoelectric peak, then an energy-weighted centroid is the given output for the coordinates of the reconstructed interaction point. This introduces distortion in the final reconstructed image. The aim of our work is to prove that Compton events are a very rich source of additional information as one can improve the resolution of the detector and implicitly the final reconstructed image. This could be a real breakthrough for PET detector technology as one should be able to obtain better results with less patient radiation. Using a PET as a double Compton camera, by means of Compton cone matching i.e., Compton cones coming from the same event should be compatible, is applied to discard randoms, patient scattered events and also, to perform a correct matching among events with multiple coincidences. In order to fully benefit experimentally from Compton events using monolithic scintillators a multi-layer configuration is needed and a good time-of-flight resolution.
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2013-07-28
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
NASA Astrophysics Data System (ADS)
Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori
2017-05-01
We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin John G.
2008-01-01
Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
NASA Astrophysics Data System (ADS)
Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A.; Neese, Frank
2016-08-01
Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO+, OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ˜0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu [NH 3 ] 4 2 + model complex. The benchmark is supplemented with the investigation of typical potential energy surfaces (i.e., N2, HF, LiF, BeH2, ethane C-C bond stretching, and the ethylene double bond torsion). Our results indicate that the SC-scheme, which is successful in the context of second- and third-order perturbation theory, does not offer computational advantages and at the same time leads to much larger errors than the PC and FIC schemes. We discuss the advantages and disadvantages of the PC and FIC schemes, which are of comparable accuracy and, for the systems tested, also of comparable efficiency.
Smartphone applications: A contemporary resource for dermatopathology
Hanna, Matthew G.; Parwani, Anil V.; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Introduction: Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. “MyDermPath” is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. Materials and Methods: “MyDermPath” was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. Results: The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Conclusions: Smartphone applications have tremendous potential for advancing pathology education. “MyDermPath” represents an interactive reference tool for dermatology and dermatopathologists. PMID:26284155
Smartphone applications: A contemporary resource for dermatopathology.
Hanna, Matthew G; Parwani, Anil V; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. "MyDermPath" is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. "MyDermPath" was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Smartphone applications have tremendous potential for advancing pathology education. "MyDermPath" represents an interactive reference tool for dermatology and dermatopathologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theis, Daniel; Windus, Theresa L.; Ruedenberg, Klaus
The metastable ring structure of the ozone 1{sup 1}A{sub 1} ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two {sup 1}A{sub 1} states. In the present work, valence correlated energies of the 1{sup 1}A{sub 1} state and the 2{sup 1}A{sub 1} state were calculated at the 1{sup 1}A{sub 1} open minimum, the 1{sup 1}A{sub 1} ring minimum,more » the transition state between these two minima, the minimum of the 2{sup 1}A{sub 1} state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1{sup 1}A{sub 1} state, the present calculations yield the estimates of (ring minimum—open minimum) ∼45–50 mh and (transition state—open minimum) ∼85–90 mh. For the (2{sup 1}A{sub 1}–{sup 1}A{sub 1}) excitation energy, the estimate of ∼130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (2{sup 1}A{sub 1}–{sup 1}A{sub 1}) is found to be between 1 and 10 mh. The geometry of the transition state on the 1{sup 1}A{sub 1} surface and that of the minimum on the 2{sup 1}A{sub 1} surface nearly coincide. More accurate predictions of the energy differences also require CI expansions to at least sextuple excitations with respect to the valence space. For every wave function considered, the omission of the correlations of the 2s oxygen orbitals, which is a widely used approximation, was found to cause errors of about ±10 mh with respect to the energy differences.« less
NASA Technical Reports Server (NTRS)
Mueller, Robert P. (Inventor); Lewis, Mark E. (Inventor); Bastin, Gary L. (Inventor); Branch, Matthew C. (Inventor); Carlson, Jeffrey W. (Inventor); Dokos, Adam G. (Inventor); Murtland, Kevin A. (Inventor); Nugent, Matthew W. (Inventor); Tamasy, Gabor J. (Inventor); Townsend, III, Ivan I. (Inventor)
2016-01-01
Methods and systems may provide for debris exclusion and removal apparatuses for connectors which have inverting end caps with a multi-axis lever configuration, inverting end caps with enlarged handle and/or side rail configurations, rotating end cap configurations, poppet valve configurations, O-ring configurations, filament barrier configurations, retractable cover configurations, clamshell end cap configurations, or any combination thereof. Apparatuses may also provide for an intelligent electrical connector system capable of detecting damage to or faults within a plurality of conductors and then rerouting the energy through a non-damaged spare conductor.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan Balasubramanian
2009-07-18
This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus ourmore » studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high-level nuclear wastes. In collaboration with experimental colleague Prof Hieno Nitsche (Berkeley) and Dr. Pat Allen (Livermore, EXAFS) we have studied the uranyl complexes with silicates and carbonates. It should be stressed that although our computed ionization potential of uranium oxide was in conflict with the existing experimental data at the time, a subsequent gas-phase experimental work by Prof Mike Haven and coworkers published as communication in JACS confirmed our computed result to within 0.1 eV. This provides considerable confidence that the computed results in large basis sets with highly-correlated wave functions have excellent accuracies and they have the capabilities to predict the excited states also with great accuracy. Computations of actinide complexes (Uranyl and plutonyl complexes) are critical to management of high-level nuclear wastes.« less
NASA Astrophysics Data System (ADS)
Albreht, Alen; Vovk, Irena; Mavri, Janez; Marco-Contelles, Jose; Ramsay, Rona R.
2018-05-01
Successful propargylamine drugs such as deprenyl inactivate monoamine oxidase (MAO), a target in multi-faceted approaches to prevent neurodegeneration in the aging population, but the chemical structure and mechanism of the irreversible inhibition are still debated. We characterized the covalent cyanine structure linking the multi-target propargylamine inhibitor ASS234 and the flavin adenine dinucleotide in MAO-A using a combination of ultra-high performance liquid chromatography, spectroscopy, mass spectrometry, and computational methods. The partial double bond character of the cyanine chain gives rise to 4 interconverting geometric isomers of the adduct which were chromatographically separated at low temperatures. The configuration of the cyanine linker governs adduct stability with segments of much higher flexibility and rigidity than previously hypothesized. The findings indicate the importance of intramolecular electrostatic interactions in the MAO binding site and provide key information relevant to incorporation of the propargyl moiety into novel multi-target drugs. Based on the structure, we propose a mechanism of MAO inactivation applicable to all propargylamine inhibitors.
Ionization based multi-directional flow sensor
Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV
2009-04-28
A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.
Ohmic resistance affects microbial community and ...
Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MXC to better comprehend anode fundamentals. Microbial community analysis using 16S rRNA illumine sequencing showed that Geobactor genus, one of the most kinetically efficient anode-respiring bacteria (ARB), was abundant (87%) only on the biofilm anode closest to a reference electrode in which current density was the highest among four anodes. In comparison, Geobacter populations were less than 11% for other three anodes more distant from the reference electrode, generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest anode, while EKA was as high as -0.134 V for the farthest anode. Our study clearly proves that ohmic resistance changes anode potential which mainly causes different biofilm communities on individual anodes and consequently influences anode kinetics. This study explored the use of multiple anodes in microelectrochemical cells and the microbial community on these anodes, as a function of the efficiency in producing hydrogen peroxide.
Martin, J.R.; Budgeon, M.K.; Zatsiorsky, V.M.; Latash, M.L.
2010-01-01
When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n =10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results show that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360
NASA Astrophysics Data System (ADS)
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
Li, Wentao; Yuan, Jiuchuang; Yuan, Meiling; Zhang, Yong; Yao, Minghai; Sun, Zhigang
2018-01-03
A new global potential energy surface (PES) of the O + + H 2 system was constructed with the permutation invariant polynomial neural network method, using about 63 000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets. For improving the accuracy of the PES, the basis set was extrapolated to the complete basis set limit by the two-point extrapolation method. The root mean square error of fitting was only 5.28 × 10 -3 eV. The spectroscopic constants of the diatomic molecules were calculated and compared with previous theoretical and experimental results, which suggests that the present results agree well with the experiment. On the newly constructed PES, reaction dynamics studies were performed using the time-dependent wave packet method. The calculated integral cross sections (ICSs) were compared with the available theoretical and experimental results, where a good agreement with the experimental data was seen. Significant forward and backward scatterings were observed in the whole collision energy region studied. At the same time, the differential cross sections biased the forward scattering, especially at higher collision energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Keith; McLaughlin, Brendan M.; Lane, Ian C., E-mail: i.lane@qub.ac.uk
BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio {sup 2}Σ{sup +} potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46more » electron effective core-potential and even-tempered augmented polarized core-valence basis sets (aug-pCVnZ-PP, n = 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy D{sub e} for the X{sup 2}Σ{sup +} state (extrapolated to the CBS limit) is 16 895.12 cm{sup −1} (2.094 eV), which agrees within 0.1% of a revised experimental value of <16 910.6 cm{sup −1}, while the calculated r{sub e} is within 0.03 pm of the experimental result.« less
Electronic structure of the BaO molecule with dipole moments and ro-vibrational calculations
NASA Astrophysics Data System (ADS)
Khatib, Mohamed; Korek, Mahmoud
2018-03-01
The twenty-three low-lying electronic states (singlet and triplet) of the BaO molecule have been studied by using an ab initio method. These electronic states have been investigated by using the Complete Active Apace Self-Consistent Field (CASSCF) followed by multi-reference configuration interaction (MRCI + Q) with Davidson correction. The potential energy curves, the internuclear distance Re, the harmonic frequency ωe, the rotational constant Be, the electronic energy with respect to the ground state Te and the static and transition dipole moment have been investigated. The Einstein spontaneous and induced emission coefficients A21 and B21ω as well as the spontaneous radiative lifetime τspon, emission wavelength λ21 and oscillator strength f21 have been calculated by using the transition dipole moment between some doublet electronic states. The calculation of the eigenvalues Ev, the rotational constant Bv, the centrifugal distortion constant Dv, and the abscissas of the turning points Rmin and Rmax have been done by using the canonical functions approach. A very good agreement is shown by comparing the values of our work to those found in the literature for many electronic states. Eighteen new electronic states have been studied here for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Zhang, Jun; Valiev, Marat
2017-01-01
Pinonic acid, a C10-monocarboxylic acid with a hydrophilic –CO 2H group and a hydrophobic hydrocarbon backbone, is a key intermediate oxidation product of α-pinene – an important monoterpene compound in biogenic emission processes that influences the atmosphere. Molecular interaction between cis-pinonic acid and water is essential for understanding its role in the formation and growth of pinene-derived secondary organic aerosols. In this work, we studied the structures, energetics, and optical properties of hydrated clusters of cis-pinonate anion (cPA–), the deprotonated form of cis-pinonic acid, by negative ion photoelectron spectroscopy and ab initio theoretical calculations. Our results show that cPA– canmore » adopt two different structural configurations – open and folded. In the absence of waters, the open configuration has the lowest energy and provides the best agreement with the experiment. The addition waters, which mainly interact with the negatively charged -CO 2– group, gradually stabilize the folded configuration and lower its energy difference relative to the most stable open-configured structure. Thermochemical and equilibrium hydrate distribution analysis suggests that the mono- and di- hydrates are likely to exist in humid atmospheric environment with high populations. The detailed molecular description of cPA– hydrated clusters unraveled in this study provides a valuable reference for understanding the initial nucleation process and aerosol formation involving organics containing both hydrophilic and hydrophobic groups, as well as for analyzing the optical properties of those organic aerosols.« less
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
Referent control and motor equivalence of reaching from standing
Tomita, Yosuke; Feldman, Anatol G.
2016-01-01
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. PMID:27784802
Sienko, K H; Balkwill, M D; Oddsson, L I E; Wall, C
2008-01-01
Single-axis vibrotactile feedback of trunk tilt provided in real-time has previously been shown to significantly reduce the root-mean-square (RMS) trunk sway in subjects with vestibular loss during single-axis perturbation. This research examines the effect of multi-directional vibrotactile feedback on postural sway during continuous multi-directional surface perturbations when the subjects' eyes are closed. Eight subjects with vestibular loss donned a multi-axis feedback device that mapped body tilt estimates onto their torsos with a 3-row by 16-column array of tactile actuators (tactors). Tactor row indicated tilt magnitude and tactor column indicated tilt direction. Root-mean-square trunk tilt, elliptical fits to trunk sway trajectory areas, percentage of time spent outside a no vibrotactile feedback zone, RMS center of pressure, and anchoring index parameters indicating intersegmental coordination were used to assess the efficacy of the multi-directional vibrotactile balance aid. Four tactor display configurations in addition to the tactors off configuration were evaluated. Subjects had significantly reduced RMS trunk sway, significantly smaller elliptical fits of the trajectory area, and spent significantly less time outside of the no feedback zone in the tactors on versus the tactors off configuration. Among the displays evaluated in this study, there was not an optimal tactor column configuration for standing tasks involving continuous surface perturbations. Furthermore, subjects performed worse when erroneous information was displayed. Therefore, a spatial resolution of 90 degrees (4 columns) seems to be as effective as a spatial resolution of 22.5 degrees (16 columns) for control of standing.
NASA Astrophysics Data System (ADS)
Spangenberger, H.; Beck, F.; Richter, A.
The usual continuum shell model is extended so as to include a statistical treatment of multi-doorway processes. The total configuration space of the nuclear reaction problem is subdivided into the primary doorway states which are coupled by the initial excitation to the nuclear ground state and the secondary doorway states which represent the complicated nature of multi-step reactions. The latter are evaluated within the exciton model which gives the coupling widths between the various finestructure subspaces. This coupling is determined by a statistical factor related to the exciton model and a dynamical factor given by the interaction matrix elements of the interacting excitons. The whole structure defines the multi-doorway continuum shell model. In this work it is applied to the highly fragmented magnetic dipole strength in 58Ni observed in high resolution electron scattering.Translated AbstractAnwendung des Multi-Doorway-Kontinuum-Schalenmodells auf die Verteilung der magnetischen Dipolstärke von 58NiDas Kontinuum-Schalenmodell wurde so erweitert, daß auch statistische Multi-Doorway-Prozesse berücksichtigt werden können. Hierzu wird der Konfigurationsraum unterteilt in den Raum der primären Doorway-Zustände, die direkt aus dem Grundzustand angeregt werden, und den der sekundären Doorway-Zustände, die die komplizierte Struktur der Multi-Step-Reaktionen repräsentieren. Während die primären Doorway-Zustände inclusive ihrer Anregungen mittels üblicher Schalenmodellmethoden beschrieben werden können, werden die sekundären Doorway-Zustände sowie ihre verschiedenen Kopplungen im Rahmen des Exciton-Modells behandelt. Diese Kopplungen sind durch einen aus dem Exciton-Modell resultierenden Faktor sowie durch einen dynamischen Faktor bestimmt, der sich aus dem Matrixelement der wechselwirkenden Excitonen berechnet. Die Struktur der Kopplungen definiert das Multi-Doorway-Kontinuum-Schalenmodell, das hier auf die Beschreibung der stark fragmentierten magnetischen Dipolstärke in 58Ni angewendet wird.
Fox, Olivia M.; Harel, Assaf; Bennett, Kevin B.
2017-01-01
The perception of a visual stimulus is dependent not only upon local features, but also on the arrangement of those features. When stimulus features are perceptually well organized (e.g., symmetric or parallel), a global configuration with a high degree of salience emerges from the interactions between these features, often referred to as emergent features. Emergent features can be demonstrated in the Configural Superiority Effect (CSE): presenting a stimulus within an organized context relative to its presentation in a disarranged one results in better performance. Prior neuroimaging work on the perception of emergent features regards the CSE as an “all or none” phenomenon, focusing on the contrast between configural and non-configural stimuli. However, it is still not clear how emergent features are processed between these two endpoints. The current study examined the extent to which behavioral and neuroimaging markers of emergent features are responsive to the degree of configurality in visual displays. Subjects were tasked with reporting the anomalous quadrant in a visual search task while being scanned. Degree of configurality was manipulated by incrementally varying the rotational angle of low-level features within the stimulus arrays. Behaviorally, we observed faster response times with increasing levels of configurality. These behavioral changes were accompanied by increases in response magnitude across multiple visual areas in occipito-temporal cortex, primarily early visual cortex and object-selective cortex. Our findings suggest that the neural correlates of emergent features can be observed even in response to stimuli that are not fully configural, and demonstrate that configural information is already present at early stages of the visual hierarchy. PMID:28167924
MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.
Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a codemore » we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.« less
NASA Astrophysics Data System (ADS)
Zhou, Hu; Wan, Decheng
2015-03-01
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.
Fuzzy Multi-Objective Vendor Selection Problem with Modified S-CURVE Membership Function
NASA Astrophysics Data System (ADS)
Díaz-Madroñero, Manuel; Peidro, David; Vasant, Pandian
2010-06-01
In this paper, the S-Curve membership function methodology is used in a vendor selection (VS) problem. An interactive method for solving multi-objective VS problems with fuzzy goals is developed. The proposed method attempts simultaneously to minimize the total order costs, the number of rejected items and the number of late delivered items with reference to several constraints such as meeting buyers' demand, vendors' capacity, vendors' quota flexibility, vendors' allocated budget, etc. We compare in an industrial case the performance of S-curve membership functions, representing uncertainty goals and constraints in VS problems, with linear membership functions.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Deleeuw, Bradley J.; Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Siegbahn, Per
1989-01-01
The requirements for very accurate ab initio quantum chemical prediction of dissociation energies are examined using a detailed investigation of the nitrogen molecule. Although agreement with experiment to within 1 kcal/mol is not achieved even with the most elaborate multireference CI (configuration interaction) wave functions and largest basis sets currently feasible, it is possible to obtain agreement to within about 2 kcal/mol, or 1 percent of the dissociation energy. At this level it is necessary to account for core-valence correlation effects and to include up to h-type functions in the basis. The effect of i-type functions, the use of different reference configuration spaces, and basis set superposition error were also investigated. After discussing these results, the remaining sources of error in our best calculations are examined.
Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage
NASA Astrophysics Data System (ADS)
Hou, Jun
Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.
Mousavi, S Jamaleddin; Avril, Stéphane
2017-10-01
It is now a rather common approach to perform patient-specific stress analyses of arterial walls using finite-element models reconstructed from gated medical images. However, this requires to compute for every Gauss point the deformation gradient between the current configuration and a stress-free reference configuration. It is technically difficult to define such a reference configuration, and there is actually no guarantee that a stress-free configuration is physically attainable due to the presence of internal stresses in unloaded soft tissues. An alternative framework was proposed by Bellini et al. (Ann Biomed Eng 42(3):488-502, 2014). It consists of computing the deformation gradients between the current configuration and a prestressed reference configuration. We present here the first finite-element results based on this concept using the Abaqus software. The reference configuration is set arbitrarily to the in vivo average geometry of the artery, which is obtained from gated medical images and is assumed to be mechanobiologically homeostatic. For every Gauss point, the stress is split additively into the contributions of each individual load-bearing constituent of the tissue, namely elastin, collagen, smooth muscle cells. Each constituent is assigned an independent prestretch in the reference configuration, named the deposition stretch. The outstanding advantage of the present approach is that it simultaneously computes the in situ stresses existing in the reference configuration and predicts the residual stresses that occur after removing the different loadings applied onto the artery (pressure and axial load). As a proof of concept, we applied it on an ideal thick-wall cylinder and showed that the obtained results were consistent with corresponding experimental and analytical results of the well-known literature. In addition, we developed a patient-specific model of a human ascending thoracic aneurysmal aorta and demonstrated the utility in predicting the wall stress distribution in vivo under the effects of physiological pressure. Finally, we simulated the whole process preceding traditional in vitro uniaxial tensile testing of arteries, including excision from the body, radial cutting, flattening and subsequent tensile loading, showing how this process may impact the final mechanical properties derived from these in vitro tests.
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling.
Grell, Gilbert; Bokarev, Sergey I; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver
2015-08-21
X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6](2+) complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.
Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.
Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A
2005-07-11
An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Minoshima, Kaoru; Onae, Atsushi; Yasuda, Masami; Kohno, Takuya; Kawato, Sakae; Kobayashi, Takao; Katsuyama, Toshio; Hong, Feng-Lei
2010-01-18
We demonstrate that fiber-based frequency combs with multi-branch configurations can transfer both linewidth and frequency stability to another wavelength at the millihertz level. An intra-cavity electro-optic modulator is employed to obtain a broad servo bandwidth for repetition rate control. We investigate the relative linewidths between two combs using a stable continuous-wave laser as a common reference to stabilize the repetition rate frequencies in both combs. The achieved energy concentration to the carrier of the out-of-loop beat between the two combs was 99% and 30% at a bandwidth of 1 kHz and 7.6 mHz, respectively. The frequency instability of the comb was 3.7x10(-16) for a 1 s averaging time, improving to 5-8x10(-19) for 10000 s. We show that the frequency noise in the out-of-loop beat originates mainly from phase noise in branched optical fibers.
L-3 Com AVISYS civil aviation self-protection system
NASA Astrophysics Data System (ADS)
Carey, Jim
2006-05-01
In early 2004, L-3 Com AVISYS Corporation (hereinafter referred to as L-3 AVISYS or AVISYS) completed a contract for the integration and deployment of an advanced Infrared Countermeasures self-protection suite for a Head of State Airbus A340 aircraft. This initial L-3 AVISYS IRCM Suite was named WIPPS (Widebody Integrated Platform Protection System). The A340 WIPPS installation provisions were FAA certified with the initial deployment of the modified aircraft. WIPPS is unique in that it utilizes a dual integrated missile warning subsystem to produce a robust, multi-spectral, ultra-low false alarm rate threat warning capability. WIPPS utilizes the Thales MWS-20 Pulsed Doppler Radar Active MWS and the EADS AN/AAR-60 Ultraviolet Passive MWS. These MWS subsystems are integrated through an L-3 AVISYS Electronic Warfare Control Set (EWCS). The EWCS also integrates the WIPPS MWS threat warning information with the A340 flight computer data to optimize ALE-47 Countermeasure Dispensing System IR decoy dispensing commands, program selection and timing. WIPPS utilizes standard and advanced IR Decoys produced by ARMTEC Defense and Alloy Surfaces. WIPPS demonstrated that when IR decoy dispensing is controlled by threat range and time-to-go information provided by an Active MWS, unsurpassed self protection levels are achievable. Recognizing the need for high volume civil aviation protection, L-3 AVISYS configured a variant of WIPPS optimized for commercial airline reliability requirements, safety requirements, supportability and most importantly, affordability. L-3 AVISYS refers to this IRCM suite as CAPS (Commercial Airliner Protection System). CAPS has been configured for applications to all civil aircraft ranging from the small Regional Jets to the largest Wide-bodies. This presentation and paper will provide an overview of the initial WIPPS IRCM Suite and the important factors that were considered in defining the CAPS configuration.
Numerical simulation of an elastic structure behavior under transient fluid flow excitation
NASA Astrophysics Data System (ADS)
Afanasyeva, Irina N.; Lantsova, Irina Yu.
2017-01-01
This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-04-01
We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.
RAMTaB: Robust Alignment of Multi-Tag Bioimages
Raza, Shan-e-Ahmed; Humayun, Ahmad; Abouna, Sylvie; Nattkemper, Tim W.; Epstein, David B. A.; Khan, Michael; Rajpoot, Nasir M.
2012-01-01
Background In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can interact only when they are located close to each other. We present a novel approach to align images in a multi-tag fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall overlap between the images. Methodology/Principal Findings We employ a block-based method for registration, which yields a confidence measure to indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The registration results are also shown to significantly improve any follow-up protein co-localization studies. Conclusions For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence image data for normal and diseased tissue specimens to analyze molecular co-expression patterns and functional protein networks. PMID:22363510
Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin
Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan
2015-01-01
Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970
Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo
2009-04-21
Electronic structures and molecular constants of the ground (7)Sigma(+) and low-lying A (7)Pi and a (5)Sigma(+) electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C(infinity v) symmetry using Slater-type basis sets. To correctly describe the (7)Sigma(+) electronic ground state, X (7)Sigma(+), at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B (7)Sigma(+) excited state. The A (7)Pi and a (5)Sigma(+) states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X (7)Sigma(+), A (7)Pi, and a (5)Sigma(+) states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., r(e) and omega(e) of these states and excitation energy from the X (7)Sigma(+) state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.
NASA Astrophysics Data System (ADS)
Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo
2009-04-01
Electronic structures and molecular constants of the ground ∑7+ and low-lying A 7Π and a ∑5+ electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C∞v symmetry using Slater-type basis sets. To correctly describe the ∑7+ electronic ground state, X ∑7+, at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B ∑7+ excited state. The A 7Π and a ∑5+ states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X ∑7+, A 7Π, and a ∑5+ states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., re and ωe of these states and excitation energy from the X ∑7+ state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.
Integrated Autonomous Network Management (IANM) Multi-Topology Route Manager and Analyzer
2008-02-01
zebra tmg mtrcli xinetd (tftp) mysql configuration file (mtrrm.conf) configuration file (mtrrmAggregator.properties) tftp files /tftpboot NetFlow PDUs...configuration upload/download snmp, telnet OSPFv2 user interface tmg Figure 6-2. Internal software organization Figure 6-2 illustrates the main
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Research on Multi - Person Parallel Modeling Method Based on Integrated Model Persistent Storage
NASA Astrophysics Data System (ADS)
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying
2018-03-01
This paper mainly studies the multi-person parallel modeling method based on the integrated model persistence storage. The integrated model refers to a set of MDDT modeling graphics system, which can carry out multi-angle, multi-level and multi-stage description of aerospace general embedded software. Persistent storage refers to converting the data model in memory into a storage model and converting the storage model into a data model in memory, where the data model refers to the object model and the storage model is a binary stream. And multi-person parallel modeling refers to the need for multi-person collaboration, the role of separation, and even real-time remote synchronization modeling.
NASA Astrophysics Data System (ADS)
Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.
2017-01-01
Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.
Relaxation and coarsening of weakly-interacting breathers in a simplified DNLS chain
NASA Astrophysics Data System (ADS)
Iubini, Stefano; Politi, Antonio; Politi, Paolo
2017-07-01
The discrete nonlinear Schrödinger (DNLS) equation displays a parameter region characterized by the presence of localized excitations (breathers). While their formation is well understood and it is expected that the asymptotic configuration comprises a single breather on top of a background, it is not clear why the dynamics of a multi-breather configuration is essentially frozen. In order to investigate this question, we introduce simple stochastic models, characterized by suitable conservation laws. We focus on the role of the coupling strength between localized excitations and background. In the DNLS model, higher breathers interact more weakly, as a result of their faster rotation. In our stochastic models, the strength of the coupling is controlled directly by an amplitude-dependent parameter. In the case of a power-law decrease, the associated coarsening process undergoes a slowing down if the decay rate is larger than a critical value. In the case of an exponential decrease, a freezing effect is observed that is reminiscent of the scenario observed in the DNLS. This last regime arises spontaneously when direct energy diffusion between breathers and background is blocked below a certain threshold.
Decay Properties of K-Vacancy States in Fe X-Fe XVII
NASA Technical Reports Server (NTRS)
Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Palmeri, P.
2003-01-01
We report extensive calculations of the decay properties of fine-structure K-vacancy levels in Fe X-Fe XVII. A large set of level energies, wavelengths, radiative and Auger rates, and fluorescence yields has been computed using three different standard atomic codes, namely Cowan's HFR, AUTOSTRUCTURE and the Breit-Pauli R-matrix package. This multi-code approach is used to the study the effects of core relaxation, configuration interaction and the Breit interaction, and enables the estimate of statistical accuracy ratings. The Ksigma and KLL Auger widths have been found to be nearly independent of both the outer-electron configuration and electron occupancy keeping a constant ratio of 1.53 +/- 0.06. By comparing with previous theoretical and measured wavelengths, the accuracy of the present set is determined to be within 2 m Angstrom. Also, the good agreement found between the different radiative and Auger data sets that have been computed allow us to propose with confidence an accuracy rating of 20% for the line fluorescence yields greater than 0.01. Emission and absorption spectral features are predicted finding good correlation with measurements in both laboratory and astrophysical plasmas.
Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G
2016-08-01
This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
Benefits from synergies and advanced technologies for an advanced-technology space station
NASA Technical Reports Server (NTRS)
Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.
1991-01-01
A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.
High power lasers for gamma source
NASA Astrophysics Data System (ADS)
Durand, Magali; Sangla, Damien; Trophème, Benoit; Sevillano, Pierre; Casanova, Alexis; Caillon, Laurianne; Courjaud, Antoine
2017-02-01
A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 3.5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750x500x150 cm), which allows a pulse-pulse stability of 0.1% rms, and a long-term stability of 1,9% over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 3.5 ps.
NASA Astrophysics Data System (ADS)
Mayasari, Ruth; Mawengkang, Herman; Gomar Purba, Ronal
2018-02-01
Land revitalization refers to comprehensive renovation of farmland, waterways, roads, forest or villages to improve the quality of plantation, raise the productivity of the plantation area and improve agricultural production conditions and the environment. The objective of sustainable land revitalization planning is to facilitate environmentally, socially, and economically viable land use. Therefore it is reasonable to use participatory approach to fullfil the plan. This paper addresses a multicriteria decision aid to model such planning problem, then we develop an interactive approach for solving the problem.
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.
Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.
NASA Astrophysics Data System (ADS)
Faraji, S.; Köppel, H.
2009-06-01
Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light on the spectroscopy and fluorescence dynamics of these species. W. Domcke, D. R. Yarkony, and H. Köppel, Advanced Series in Physical Chemistry, World Scientific, Singapore (2004). M. H. Beck and A. Jäckle and G. A. Worth and H. -D. Meyer, Phys. Rep. 324, 1 (2000). S. Faraji, H. Köppel, (Part I) ; S. Faraji, H. Köppel, H.-D. Meyer, (Part II) J. Chem. Phys. 129, 074310 (2008).
Semiempirical UNO-CAS and UNO-CI: method and applications in nanoelectronics.
Dral, Pavlo O; Clark, Timothy
2011-10-20
Unrestricted Natural Orbital-Complete Active Space Configuration Interaction, abbreviated as UNO-CAS, has been implemented for NDDO-based semiempirical molecular-orbital (MO) theory. A computationally more economic technique, UNO-CIS, in which we use a configuration interaction (CI) calculation with only single excitations (CIS) to calculate excited states, has also been implemented and tested. The class of techniques in which unrestricted natural orbitals (UNOs) are used as the reference for CI calculations is denoted UNO-CI. Semiempirical UNO-CI gives good results for the optical band gaps of organic semiconductors such as polyynes and polyacenes, which are promising materials for nanoelectronics. The results of these semiempirical UNO-CI techniques are generally in better agreement with experiment than those obtained with the corresponding conventional semiempirical CI methods and comparable to or better than those obtained with far more computationally expensive methods such as time-dependent density-functional theory. We also show that symmetry breaking in semiempirical UHF calculations is very useful for predicting the diradical character of organic compounds in the singlet spin state.
NASA Astrophysics Data System (ADS)
Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis
2012-01-01
We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially any type open-shell configuration-state functions (CSF) within the CAS. The formalisms presented here will be applied extensively in a companion paper to assess their efficacy.
A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenlan; Köhn, Andreas; InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg
2015-08-28
We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the targetmore » system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.« less
NASA Astrophysics Data System (ADS)
Yuan, Xuebo; Wang, Youshan
2018-02-01
Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attri, Pankaj, E-mail: chem.pankaj@gmail.com; Bhatia, Rohit; Arora, Bharti
2014-10-15
Highlights: • We report interactions between multi-walled carbon nanotubes and ionic liquids. • Triethylammonium hydrogen phosphate ionic liquids are studied. • Raman spectroscopy is used to study interactions. • Morphological studies were carried out using scanning electron microscopy. • Bucky gel was used as catalyst for Michael reactions. - Abstract: A new catalytic method has been developed for the synthesis of aza/thia-Michael addition reactions of amines/thiols, which provide higher product yields. This catalyst is a combination of multi-walled carbon nanotubes (MWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL), commonly referred to as bucky gel. In order to gain insightmore » into the interactions involved between IL and MWCNT, we utilised Raman spectroscopy for our analysis. The interactions between MWCNT with TEAP were clearly evidenced by the increasing intensity ratios and spectral shift in the wavelength for the Raman D and G bands of MWCNT. The morphological studies of the resulting composite materials of TEAP and MWCNT (bucky gel) were carried out using scanning electron microscopy (SEM). The key advantage of using bucky gel as a catalyst is that higher product yield is obtained in reduced reaction time for Michael reactions.« less
Generic functional requirements for a NASA general-purpose data base management system
NASA Technical Reports Server (NTRS)
Lohman, G. M.
1981-01-01
Generic functional requirements for a general-purpose, multi-mission data base management system (DBMS) for application to remotely sensed scientific data bases are detailed. The motivation for utilizing DBMS technology in this environment is explained. The major requirements include: (1) a DBMS for scientific observational data; (2) a multi-mission capability; (3) user-friendly; (4) extensive and integrated information about data; (5) robust languages for defining data structures and formats; (6) scientific data types and structures; (7) flexible physical access mechanisms; (8) ways of representing spatial relationships; (9) a high level nonprocedural interactive query and data manipulation language; (10) data base maintenance utilities; (11) high rate input/output and large data volume storage; and adaptability to a distributed data base and/or data base machine configuration. Detailed functions are specified in a top-down hierarchic fashion. Implementation, performance, and support requirements are also given.
Estimation of Soil Moisture with L-band Multi-polarization Radar
NASA Technical Reports Server (NTRS)
Shi, J.; Chen, K. S.; Kim, Chung-Li Y.; Van Zyl, J. J.; Njoku, E.; Sun, G.; O'Neill, P.; Jackson, T.; Entekhabi, D.
2004-01-01
Through analyses of the model simulated data-base, we developed a technique to estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations and 40deg incidence) configuration. This technique includes two steps. First, it decomposes the total backscattering signals into two components - the surface scattering components (the bare surface backscattering signals attenuated by the overlaying vegetation layer) and the sum of the direct volume scattering components and surface-volume interaction components at different polarizations. From the model simulated data-base, our decomposition technique works quit well in estimation of the surface scattering components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, respectively. Then, we use the decomposed surface backscattering signals to estimate the soil moisture and the combined surface roughness and vegetation attenuation correction factors with all three polarizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less
Decay of ultralight axion condensates
Eby, Joshua; Ma, Michael; Suranyi, Peter; ...
2018-01-15
Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less
Decay of ultralight axion condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eby, Joshua; Ma, Michael; Suranyi, Peter
Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less
Serving the Cause: Duty Concepts and Combat Effectiveness in War
2010-06-01
War II.10 Like moral factors, the notion of military effectiveness is complex and multi-faceted. Murray and Millet argue that military...The insights derived from this synthesis will provide the common reference point for analysis of the historical examples. Alan Millet and...1988). 4 Allan Millet and Williamson Murray, Military Effectiveness, Vol I, 2. 9 This dynamic interaction is particularly pronounced at the
Lukens, W. W.; Speldrich, M.; Yang, P.; ...
2016-01-01
The electronic structures of 4f 3/5f 3Cp" 3M and Cp"sub>3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions.
NASA Astrophysics Data System (ADS)
Lian See, Tan; Zulazlan Shah Zulkifli, Ahmad; Mook Tzeng, Lim
2018-04-01
Ozone is a reactant which can be applied for various environmental treatment processes. It can be generated via atmospheric air non-thermal plasmas when sufficient voltages are applied through a combination of electrodes and dielectric materials. In this study, the concentration of ozone generated via two different configurations of multi-cylinder dielectric barrier discharge (DBD) reactor (3 x 40 mm and 10 x 10 mm) was investigated. The influence of the voltage and the duty cycle to the concentration of ozone generated by each configuration was analysed using response surface methodology. Voltage was identified as significant factor to the ozone production process. However, the regressed model was biased towards one of the configuration, leaving the predicted results of another configuration to be out of range.
Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
Zanuy, David; Poater, Jordi; Solà, Miquel; Hamley, Ian W; Alemán, Carlos
2016-01-14
We describe the 3D supramolecular structure of Fmoc-RGDS fibrils, where Fmoc and RGDS refer to the hydrophobic N-(fluorenyl-9-methoxycarbonyl) group and the hydrophilic Arg-Gly-Asp-Ser peptide sequence, respectively. For this purpose, we performed atomistic all-atom molecular dynamics simulations of a wide variety of packing modes derived from both parallel and antiparallel β-sheet configurations. The proposed model, which closely resembles the cross-β core structure of amyloids, is stabilized by π-π stacking interactions between hydrophobic Fmoc groups. More specifically, in this organization, the Fmoc-groups of β-strands belonging to the same β-sheet form columns of π-stacked aromatic rings arranged in a parallel fashion. Eight of such columns pack laterally forming a compact and dense hydrophobic core, in which two central columns are surrounded by three adjacent columns on each side. In addition to such Fmoc···Fmoc interactions, the hierarchical assembly of the constituent β-strands involves a rich variety of intra- and inter-strand interactions. Accordingly, hydrogen bonding, salt bridges and π-π stacking interactions coexist in the highly ordered packing network proposed for the Fmoc-RGDS amphiphile. Quantum mechanical calculations, which have been performed to quantify the above referred interactions, confirm the decisive role played by the π-π stacking interactions between the rings of the Fmoc groups, even though both inter-strand and intra-strand hydrogen bonds and salt bridges also play a non-negligible role. Overall, these results provide a solid reference to complement the available experimental data, which are not precise enough to determine the fibril structure, and reconcile previous independent observations.
A case for multi-model and multi-approach based event attribution: The 2015 European drought
NASA Astrophysics Data System (ADS)
Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Seneviratne, Sonia Isabelle
2017-04-01
Science on the role of anthropogenic influence on extreme weather events such as heat waves or droughts has evolved rapidly over the past years. The approach of "event attribution" compares the occurrence probability of an event in the present, factual world with the probability of the same event in a hypothetical, counterfactual world without human-induced climate change. Every such analysis necessarily faces multiple methodological choices including, but not limited to: the event definition, climate model configuration, and the design of the counterfactual world. Here, we explore the role of such choices for an attribution analysis of the 2015 European summer drought (Hauser et al., in preparation). While some GCMs suggest that anthropogenic forcing made the 2015 drought more likely, others suggest no impact, or even a decrease in the event probability. These results additionally differ for single GCMs, depending on the reference used for the counterfactual world. Observational results do not suggest a historical tendency towards more drying, but the record may be too short to provide robust assessments because of the large interannual variability of drought occurrence. These results highlight the need for a multi-model and multi-approach framework in event attribution research. This is especially important for events with low signal to noise ratio and high model dependency such as regional droughts. Hauser, M., L. Gudmundsson, R. Orth, A. Jézéquel, K. Haustein, S.I. Seneviratne, in preparation. A case for multi-model and multi-approach based event attribution: The 2015 European drought.
Method of recertifying a loaded bearing member
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor)
1992-01-01
A method is described of recertifying a loaded bearing member using ultrasound testing to compensate for different equipment configurations and temperature conditions. The standard frequency F1 of a reference block is determined via an ultrasonic tone burst generated by a first pulsed phased locked loop (P2L2) equipment configuration. Once a lock point number S is determined for F1, the reference frequency F1a of the reference block is determined at this lock point number via a second P2L2 equipment configuration to permit an equipment offset compensation factor Fo1=((F1-F1a)/F1)(1000000) to be determined. Next, a reference frequency F2 of the unloaded bearing member is determined using a second P2L2 equipment configuration and is then compensated for equipment offset errors via the relationship F2+F2(Fo1)/1000000. A lock point number b is also determined for F2. A resonant frequency F3 is determined for the reference block using a third P2L2 equipment configuration to determine a second offset compensation factor F02=((F1-F3)/F1) 1000000. Next the resonant frequency F4 of the loaded bearing member is measured at lock point number b via the third P2L2 equipment configuration and the bolt load determined by the relationship (-1000000)CI(((F2-F4)/F2)-Fo2), wherein CI is a factor correlating measured frequency shift to the applied load. Temperature compensation is also performed at each point in the process.
Fuzzy Multi-Objective Transportation Planning with Modified S-Curve Membership Function
NASA Astrophysics Data System (ADS)
Peidro, D.; Vasant, P.
2009-08-01
In this paper, the S-Curve membership function methodology is used in a transportation planning decision (TPD) problem. An interactive method for solving multi-objective TPD problems with fuzzy goals, available supply and forecast demand is developed. The proposed method attempts simultaneously to minimize the total production and transportation costs and the total delivery time with reference to budget constraints and available supply, machine capacities at each source, as well as forecast demand and warehouse space constraints at each destination. We compare in an industrial case the performance of S-curve membership functions, representing uncertainty goals and constraints in TPD problems, with linear membership functions.
Advancing land surface model development with satellite-based Earth observations
NASA Astrophysics Data System (ADS)
Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo
2017-04-01
The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628
NASA Technical Reports Server (NTRS)
1972-01-01
A reference handbook of configuration data and design information is presented. It treats the overall system definition, operations and control, and telecommunication service system including link budgets. A brief description of the user transceiver and ground station is presented. A final section includes a summary description of the TDR spacecraft and all the subsystems. The data presented are largely in tabular form for easy reference.
NASA Technical Reports Server (NTRS)
Thau, F. E.; Montgomery, R. C.
1980-01-01
Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.
Membrane Specifications for Multi-Configuration Membrane Distillation Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Daniel; Vanneste, Johan; Cath, Tzahi
The data includes the membrane properties and specifications used for multi-configuration membrane distillation desalination. In this study, membranes from CLARCOR, 3M, and Aquastill are tested in counter-current, co-current and air-gap configurations at Colorado School of Mines (CSM), Advanced Water technology Center ( Aqwatech) laboratories. In the data sheets: The "theoretical" worksheet, contains steady-state values of the experimental runs and also provides several calculated values. The "Specifications" worksheet contains the inputs to the experiment. The "Data" spreadsheet contains the entire set of data and the rest of the sheets "20-40", "20-45", ...etc., contain individual portions of the data with variation ofmore » feed temperatures.« less
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun
2014-07-14
The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.
Polarization effects in the interaction between multi-level atoms and two optical fields
NASA Astrophysics Data System (ADS)
Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.
2015-06-01
Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.
Radiation effects in accelerator components
NASA Astrophysics Data System (ADS)
Borden, M. J.
1995-05-01
A review of basic radiation effects is presented. The fundamental definitions of radioactivity are given for alpha, beta, positron decay, gamma-ray emission and electron capture. The interaction of neutrons with material is covered including: absorption through radiative capture, neutron-proton interaction, alpha particle emission, neutron-multi-neutron reactions and fission. Basic equations defining inelastic and elastic scattering are presented with examples of neutron energy loss per collision for several elements. Photon interactions are considered for gamma-rays and x-rays. Photoelectric collisions, the Compton effect and pair production are reviewed. Electron-proton interactions are discussed with emphasis placed on defect production. Basic displacement damage mechanisms for photon and particle interaction are presented. Several examples of radiation effects to plastics, electronics and ceramics are presented. Extended references are given for each example.
Three-Dimensional Imaging by Self-Reference Single-Channel Digital Incoherent Holography
Rosen, Joseph; Kelner, Roy
2016-01-01
Digital holography offers a reliable and fast method to image a three-dimensional scene from a single perspective. This article reviews recent developments of self-reference single-channel incoherent hologram recorders. Hologram recorders in which both interfering beams, commonly referred to as the signal and the reference beams, originate from the same observed objects are considered as self-reference systems. Moreover, the hologram recorders reviewed herein are configured in a setup of a single channel interferometer. This unique configuration is achieved through the use of one or more spatial light modulators. PMID:28757811
A New Gimmick for Assigning Absolute Configuration.
ERIC Educational Resources Information Center
Ayorinde, F. O.
1983-01-01
A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)
NASA Astrophysics Data System (ADS)
Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai
2016-09-01
Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Multi-scale genetic dynamic modelling I : an algorithm to compute generators.
Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca
2011-09-01
We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).
Printed Circuit Board Assembly for Use in Space Missions
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor); Vo, Luan (Inventor); Albaijes, Dennis (Inventor)
2017-01-01
An electronic assembly for use in space missions that includes a PCB and one or more multi-pin CGA devices coupled to the PCB. The PCB has one or more via-in-pad features and each via-in-pad feature comprises a land pad configured to couple a pin of the one or more multi-pin CGA devices to the via. The PCB also includes a plurality of layers arranged symmetrically in a two-halves configuration above and below a central plane of the PCB.
Zavaglia, Melissa; Hilgetag, Claus C
2016-06-01
Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.
Integrated Design and Production Reference Integration with ArchGenXML V1.00
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barter, R H
2004-07-20
ArchGenXML is a tool that allows easy creation of Zope products through the use of Archetypes. The Integrated Design and Production Reference (IDPR) should be highly configurable in order to meet the needs of a diverse engineering community. Ease of configuration is key to the success of IDPR. The purpose of this paper is to describe a method of using a UML diagram editor to configure IDPR through ArchGenXML and Archetypes.
A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2010-01-01
We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.
NASA Astrophysics Data System (ADS)
Foley, Jonathan J.; Mazziotti, David A.
2010-10-01
An efficient method for geometry optimization based on solving the anti-Hermitian contracted Schrödinger equation (ACSE) is presented. We formulate a reduced version of the Hellmann-Feynman theorem (HFT) in terms of the two-electron reduced Hamiltonian operator and the two-electron reduced density matrix (2-RDM). The HFT offers a considerable reduction in computational cost over methods which rely on numerical derivatives. While previous geometry optimizations with numerical gradients required 2M evaluations of the ACSE where M is the number of nuclear degrees of freedom, the HFT requires only a single ACSE calculation of the 2-RDM per gradient. Synthesizing geometry optimization techniques with recent extensions of the ACSE theory to arbitrary electronic and spin states provides an important suite of tools for accurately determining equilibrium and transition-state structures of ground- and excited-state molecules in closed- and open-shell configurations. The ability of the ACSE to balance single- and multi-reference correlation is particularly advantageous in the determination of excited-state geometries where the electronic configurations differ greatly from the ground-state reference. Applications are made to closed-shell molecules N2, CO, H2O, the open-shell molecules B2 and CH, and the excited state molecules N2, B2, and BH. We also study the HCN ↔ HNC isomerization and the geometry optimization of hydroxyurea, a molecule which has a significant role in the treatment of sickle-cell anaemia.
Photodissociation of N2O: triplet states and triplet channel.
Schinke, R; Schmidt, J A; Johnson, M S
2011-11-21
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A'' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A'' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].
Adaptive time steps in trajectory surface hopping simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spörkel, Lasse, E-mail: spoerkel@kofo.mpg.de; Thiel, Walter, E-mail: thiel@kofo.mpg.de
2016-05-21
Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energymore » surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.« less
NASA Astrophysics Data System (ADS)
Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per
2016-06-01
We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)
Adaptive time steps in trajectory surface hopping simulations
NASA Astrophysics Data System (ADS)
Spörkel, Lasse; Thiel, Walter
2016-05-01
Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.
NASA Astrophysics Data System (ADS)
Jeanmairet, Guillaume; Sharma, Sandeep; Alavi, Ali
2017-01-01
In this article we report a stochastic evaluation of the recently proposed multireference linearized coupled cluster theory [S. Sharma and A. Alavi, J. Chem. Phys. 143, 102815 (2015)]. In this method, both the zeroth-order and first-order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth-order wavefunction follows a set of stochastic processes identical to the one used in the full configuration interaction quantum Monte Carlo (FCIQMC) method. To sample the first-order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first-order wavefunction from the zeroth-order wavefunction. The second-order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first-order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory. The method is used to study a few benchmark systems including the carbon dimer and aromatic molecules. We have computed the singlet-triplet gaps of benzene and m-xylylene. For m-xylylene, which has proved difficult for standard complete active space self consistent field theory with perturbative correction, we find the singlet-triplet gap to be in good agreement with the experimental values.
NASA Astrophysics Data System (ADS)
Gavrilov, Nemanja; Salzmann, Susanne; Marian, Christel M.
2008-06-01
Minimum nuclear arrangements of the ground and low-lying excited electronic states of furan were obtained by means of (time dependent) Kohn-Sham density functional theory. A combined density functional/multi-reference configuration interaction method (DFT/MRCI) was employed to compute the spectral properties at these points. Multiple minima were found on the first excited singlet (S 1) potential energy hypersurface with electronic structures S1, S2, S3 corresponding to the 1 1A 2 (π → 3s-Ryd), 1 1B 2 (π → π ∗), and 2 1A 1 (π → π ∗) states in the vertical absorption spectrum, respectively. In analogy to recently published studies in thiophene [S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf, C.M. Marian, Phys. Chem. Chem. Phys. 10 (2008) 380] a deactivation mechanism for electronically excited furan was detected that involves the opening of the pentacyclic ring. We found a nearly barrierless relaxation pathway from the Franck-Condon region along a C-O bond-breaking coordinate. Hereby the initially excited 1B 2 (π → π ∗) state undergoes a conical intersection with a 1B 1 (π → σ ∗) state. The system can return to the electronic ground state through a second conical intersection of the 1(π → σ ∗) state before the minimum of that B 1 state is reached.
Spectral Study of A 1Π–X 1Σ+ Transitions of CO Relevant to Interstellar Clouds
NASA Astrophysics Data System (ADS)
Cheng, Junxia; Zhang, Hong; Cheng, Xinlu
2018-05-01
Highly correlated ab initio calculations were performed for an accurate determination of the A 1Π–X 1Σ+ system of the CO molecule. A highly accurate multi-reference configuration interaction approach was used to investigate the potential energy curves (PECs) and the transition dipole moment curve (TDMC). The resultant PECs and TDMC found by using the aug-cc-pV5Z (aV5Z) basis set and 5330 active spaces are in good agreement with the experimental data. Moreover, the Einstein A coefficients, lifetimes, ro-vibrational intensities, absorption oscillator strengths, and integrated cross sections are calculated so that the vibrational bands include v″ = 0–39 \\to v‧ = 0–23. For applications in the atmosphere and interstellar clouds, we studied the transition lineshapes to Gaussian and Lorentzian profiles at different temperatures and pressures. The intensities were calculated at high temperature that was used to satisfy some astrophysical applications, such as in planetary atmospheres. The results are potentially useful for important SAO/NASA Astrophysics Data System and databases such as HITRAN, HITEMP, and the National Institute of Standards and Technology. Because the results from many laboratory techniques and our calculations now agree, analyses of interstellar CO based on absorption from A 1Π–X 1Σ+ are no longer hindered by present spectral parameters.
NASA Astrophysics Data System (ADS)
Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan
2018-04-01
Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.
NASA Astrophysics Data System (ADS)
Vasquez Padilla, Ricardo; Soo Too, Yen Chean; Benito, Regano; McNaughton, Robbie; Stein, Wes
2018-01-01
In this paper, optimisation of the supercritical CO? Brayton cycles integrated with a solar receiver, which provides heat input to the cycle, was performed. Four S-CO? Brayton cycle configurations were analysed and optimum operating conditions were obtained by using a multi-objective thermodynamic optimisation. Four different sets, each including two objective parameters, were considered individually. The individual multi-objective optimisation was performed by using Non-dominated Sorting Genetic Algorithm. The effect of reheating, solar receiver pressure drop and cycle parameters on the overall exergy and cycle thermal efficiency was analysed. The results showed that, for all configurations, the overall exergy efficiency of the solarised systems achieved at maximum value between 700°C and 750°C and the optimum value is adversely affected by the solar receiver pressure drop. In addition, the optimum cycle high pressure was in the range of 24.2-25.9 MPa, depending on the configurations and reheat condition.
Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1
NASA Technical Reports Server (NTRS)
Mraz, M. R.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.
The binary protein-protein interaction landscape of Escherichia coli
Rajagopala, Seesandra V.; Vlasblom, James; Arnold, Roland; Franca-Koh, Jonathan; Pakala, Suman B.; Phanse, Sadhna; Ceol, Arnaud; Häuser, Roman; Siszler, Gabriella; Wuchty, Stefan; Emili, Andrew; Babu, Mohan; Aloy, Patrick; Pieper, Rembert; Uetz, Peter
2014-01-01
Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (~70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, approximately doubling the number of known binary PPIs in E. coli. Integration of binary PPIs and genetic interactions revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that could be mapped within multi-protein complexes were informative regarding internal topology and indicated that interactions within complexes are significantly more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily significant model microbe. PMID:24561554
Improved self-reliance shearing interferometric technique for collimation testing
NASA Astrophysics Data System (ADS)
Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi
1995-06-01
Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.
Control theory analysis of a three-axis VTOL flight director. M.S. Thesis - Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1971-01-01
A control theory analysis of a VTOL flight director and the results of a fixed-based simulator evaluation of the flight-director commands are discussed. The VTOL configuration selected for this study is a helicopter-type VTOL which controls the direction of the thrust vector by means of vehicle-attitude changes and, furthermore, employs high-gain attitude stabilization. This configuration is the same as one which was simulated in actual instrument flight tests with a variable stability helicopter. Stability analyses are made for each of the flight-director commands, assuming a single input-output, multi-loop system model for each control axis. The analyses proceed from the inner-loops to the outer-loops, using an analytical pilot model selected on the basis of the innermost-loop dynamics. The time response of the analytical model of the system is primarily used to adjust system gains, while root locus plots are used to identify dominant modes and mode interactions.
Ignition sensitivity study of an energetic train configuration using experiments and simulation
NASA Astrophysics Data System (ADS)
Kim, Bohoon; Yu, Hyeonju; Yoh, Jack J.
2018-06-01
A full scale hydrodynamic simulation intended for the accurate description of shock-induced detonation transition was conducted as a part of an ignition sensitivity analysis of an energetic component system. The system is composed of an exploding foil initiator (EFI), a donor explosive unit, a stainless steel gap, and an acceptor explosive. A series of velocity interferometer system for any reflector measurements were used to validate the hydrodynamic simulations based on the reactive flow model that describes the initiation of energetic materials arranged in a train configuration. A numerical methodology with ignition and growth mechanisms for tracking multi-material boundary interactions as well as severely transient fluid-structure coupling between high explosive charges and metal gap is described. The free surface velocity measurement is used to evaluate the sensitivity of energetic components that are subjected to strong pressure waves. Then, the full scale hydrodynamic simulation is performed on the flyer impacted initiation of an EFI driven pyrotechnical system.
Brambila, Danilo S; Harvey, Alex G; Houfek, Karel; Mašín, Zdeněk; Smirnova, Olga
2017-08-02
We present the first ab initio multi-channel photoionization calculations for NO 2 in the vicinity of the 2 A 1 / 2 B 2 conical intersection, for a range of nuclear geometries, using our newly developed set of tools based on the ab initio multichannel R-matrix method. Electronic correlation is included in both the neutral and the scattering states of the molecule via configuration interaction. Configuration mixing is especially important around conical intersections and avoided crossings, both pertinent for NO 2 , and manifests itself via significant variations in photoelectron angular distributions. The method allows for a balanced and accurate description of the photoionization/photorecombination for a number of different ionic channels in a wide range of photoelectron energies up to 100 eV. Proper account of electron correlations is crucial for interpreting time-resolved signals in photoelectron spectroscopy and high harmonic generation (HHG) from polyatomic molecules.
Recent progress in density functional theory
NASA Astrophysics Data System (ADS)
Truhlar, Donald
2014-03-01
Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.
Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...
2016-02-25
This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less
NASA Technical Reports Server (NTRS)
Maskew, B.
1979-01-01
The description of the modified code includes details of a doublet subpanel technique in which panels that are close to a velocity calculation point are replaced by a subpanel set. This treatment gives the effect of a higher panel density without increasing the number of unknowns. In particular, the technique removes the close approach problem of the earlier singularity model in which distortions occur in the detailed pressure calculation near panel corners. Removal of this problem allowed a complete wake relaxation and roll-up iterative procedure to be installed in the code. The geometry package developed for the new technique and also for the more general configurations is based on a multiple patch scheme. Each patch has a regular array of panels, but arbitrary relationships are allowed between neighboring panels at the edges of adjacent patches. This provides great versatility for treating general configurations.
Band structures in near spherical 138Ce
NASA Astrophysics Data System (ADS)
Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.
2009-06-01
The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.
NASA Astrophysics Data System (ADS)
Kalantari, Faraz; Sen, Anando; Gifford, Howard C.
2014-03-01
SPECT imaging using In-111 ProstaScint is an FDA-approved method for diagnosing prostate cancer metastases within the pelvis. However, conventional medium-energy parallel-hole (MEPAR) collimators produce poor image quality and we are investigating the use of multipinhole (MPH) imaging as an alternative. This paper presents a method for evaluating MPH designs that makes use of sampling-sensitive (SS) mathematical model observers for tumor detectionlocalization tasks. Key to our approach is the redefinition of a normal (or background) reference image that is used with scanning model observers. We used this approach to compare different MPH configurations for the task of small-tumor detection in the prostate and surrounding lymph nodes. Four configurations used 10, 20, 30, and 60 pinholes evenly spaced over a complete circular orbit. A fixed-count acquisition protocol was assumed. Spherical tumors were placed within a digital anthropomorphic phantom having a realistic Prostascint biodistribution. Imaging data sets were generated with an analytical projector and reconstructed volumes were obtained with the OSEM algorithm. The MPH configurations were compared in a localization ROC (LROC) study with 2D pelvic images and both human and model observers. Regular and SS versions of the scanning channelized nonprewhitening (CNPW) and visual-search (VS) model observers were applied. The SS models demonstrated the highest correlations with the average human-observer results
Scalable Integrated Multi-Mission Support System Simulator Release 3.0
NASA Technical Reports Server (NTRS)
Kim, John; Velamuri, Sarma; Casey, Taylor; Bemann, Travis
2012-01-01
The Scalable Integrated Multi-mission Support System (SIMSS) is a tool that performs a variety of test activities related to spacecraft simulations and ground segment checks. SIMSS is a distributed, component-based, plug-and-play client-server system useful for performing real-time monitoring and communications testing. SIMSS runs on one or more workstations and is designed to be user-configurable or to use predefined configurations for routine operations. SIMSS consists of more than 100 modules that can be configured to create, receive, process, and/or transmit data. The SIMSS/GMSEC innovation is intended to provide missions with a low-cost solution for implementing their ground systems, as well as significantly reducing a mission s integration time and risk.
Automated software configuration in the MONSOON system
NASA Astrophysics Data System (ADS)
Daly, Philip N.; Buchholz, Nick C.; Moore, Peter C.
2004-09-01
MONSOON is the next generation OUV-IR controller project being developed at NOAO. The design is flexible, emphasizing code re-use, maintainability and scalability as key factors. The software needs to support widely divergent detector systems ranging from multi-chip mosaics (for LSST, QUOTA, ODI and NEWFIRM) down to large single or multi-detector laboratory development systems. In order for this flexibility to be effective and safe, the software must be able to configure itself to the requirements of the attached detector system at startup. The basic building block of all MONSOON systems is the PAN-DHE pair which make up a single data acquisition node. In this paper we discuss the software solutions used in the automatic PAN configuration system.
Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind
NASA Astrophysics Data System (ADS)
Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.
2013-01-01
Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.
Power, J F
2009-06-01
Light profile microscopy (LPM) is a direct method for the spectral depth imaging of thin film cross-sections on the micrometer scale. LPM uses a perpendicular viewing configuration that directly images a source beam propagated through a thin film. Images are formed in dark field contrast, which is highly sensitive to subtle interfacial structures that are invisible to reference methods. The independent focusing of illumination and imaging systems allows multiple registered optical sources to be hosted on a single platform. These features make LPM a powerful multi-contrast (MC) imaging technique, demonstrated in this work with six modes of imaging in a single instrument, based on (1) broad-band elastic scatter; (2) laser excited wideband luminescence; (3) coherent elastic scatter; (4) Raman scatter (three channels with RGB illumination); (5) wavelength resolved luminescence; and (6) spectral broadband scatter, resolved in immediate succession. MC-LPM integrates Raman images with a wider optical and morphological picture of the sample than prior art microprobes. Currently, MC-LPM resolves images at an effective spectral resolution better than 9 cm(-1), at a spatial resolution approaching 1 microm, with optics that operate in air at half the maximum numerical aperture of the prior art microprobes.
Effects of Stream Turbine Array Configuration on Current Energy Extraction Near an Island
NASA Astrophysics Data System (ADS)
Chen, Y.; Lin, B.; Lin, J.
2014-12-01
Enhanced tidal currents close to an island appear to present the potential for power extraction. In this research, a three-dimensional numerical model is employed to predict the tidal current energy extraction potential from turbine arrays near an island. One of the significant challenges is to determine an optimal configuration of turbine array. This paper presents a detailed work to investigate the combined influences of topographic features and array configuration on the performance of power generation. Three single row arrays and three multiple-row arrays, with turbines being arranged in a staggered manner, are examined. It has been found that a single row array with a relatively small spacing between two turbines could achieve good efficiency due to the blockage effects, whereas a larger lateral spacing gives a better performance for multi-row arrays. The reason is that the bypass flow in a staggered layout would results in shadowing effect on downstream turbines. Model results also show that the wake influence can be minimized by increasing not only the longitudinal spacing, but also the lateral spacing. The tidal current flows are shown to have been affected by the inclusion of turbines, with less fluctuant wave in a tidal cycle. The extents of the observed impacts are not only within the turbine array field, but also moving around the island and propagating to the far-field. This study can be used to provide the reference information of the commercial-scale farms for tidal energy development. Keywords: Tidal currents; Array configuration; Energy extraction; Hydrodynamic process
NASA Astrophysics Data System (ADS)
Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.
2017-09-01
A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.
Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G
2017-09-07
A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
Supervisory Control System Architecture for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Cole, Daniel L; Fugate, David L
2013-08-01
This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less
NASA Astrophysics Data System (ADS)
Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.
2016-12-01
Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature-driven changes to growth and is attenuated through harvest-driven reductions in predator populations. Additionally, although we observed differences in spawning biomasses at the accepted biological catch (ABC) proxy between harvest scenarios and single- and multi-species models, discrepancies in spawning stock biomass estimates did not translate to large differences in yield. We found that multi-species models produced higher estimates of combined yield for aggregate maximum sustainable yield (MSY) targets than single species models, but were more conservative than single-species models when individual MSY targets were used, with the exception of scenarios where minimum biomass thresholds were imposed. Collectively our results suggest that climate and trophic drivers can interact to affect MBRPs, but for prey species with high predation rates, trophic- and management-driven changes may exceed direct effects of temperature on growth and predation. Additionally, MBRPs are not inherently more conservative than single-species BRPs. This framework provides a basis for the application of MSCAA models for tactical ecosystem-based fisheries management decisions under changing climate conditions.
Laser-plasma interactions for fast ignition
NASA Astrophysics Data System (ADS)
Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.
2014-05-01
In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.
Theoretical investigation of intersystem crossing in the cyanonitrene molecule, 1NCN → 3NCN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifle, Mark; Georgievskii, Yuri; Jasper, Ahren W.
The NCN diradical is an important intermediate of prompt nitric oxide formation in flames. The mechanism of intersystem crossing (ISC) in the NCN molecule formed via pyrolysis or photolysis of NCN 3 is of relevance to the interpretation of experiments that utilize NCN 3 as a precursor for laboratory studies of NCN kinetics. This mechanism has been investigated by means of multi-reference configuration interaction calculations. From the potential energy surfaces for NCN 3 dissociation, it was inferred that both thermal and photo-chemical decomposition initially lead to NCN in its lowest singlet state,more » $$\\tilde{a}^{-1}$$$Δ_g$$, with a possible contribution from the $$\\tilde{b}^{-1}\\Sigma_g^+$$ state at low photolysis wavelengths. Direct formation of the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ is also feasible for the photolytic pathway. Ananalysis of surface crossings between $$\\tilde{a}$$ or $$\\tilde{b}$$ and the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ in the absence and presence of a helium atom revealed an ISC channel 1NCN ($$\\tilde{a}$$) → 3NCN($$\\tilde{X}$$) via a strongly bent structure. However, its barrier of 38 kcal mol -1 relative to the singlet minimum turned out to be much too high to explain the fast ISC observed in experiments. A rigid-bender model including Renner-Teller interactions was used to examine the occurrence of mixed-multiplicity rovibrational states-so-called gateway states-that could enhance collision-induced ISC. The results of this study indicate that a gateway mechanism is probably not operative in the case of the $$\\tilde{a}$$/$$\\tilde{X}$$pair of states in NCN.« less
Theoretical investigation of intersystem crossing in the cyanonitrene molecule, 1NCN → 3NCN
Pfeifle, Mark; Georgievskii, Yuri; Jasper, Ahren W.; ...
2017-08-28
The NCN diradical is an important intermediate of prompt nitric oxide formation in flames. The mechanism of intersystem crossing (ISC) in the NCN molecule formed via pyrolysis or photolysis of NCN 3 is of relevance to the interpretation of experiments that utilize NCN 3 as a precursor for laboratory studies of NCN kinetics. This mechanism has been investigated by means of multi-reference configuration interaction calculations. From the potential energy surfaces for NCN 3 dissociation, it was inferred that both thermal and photo-chemical decomposition initially lead to NCN in its lowest singlet state,more » $$\\tilde{a}^{-1}$$$Δ_g$$, with a possible contribution from the $$\\tilde{b}^{-1}\\Sigma_g^+$$ state at low photolysis wavelengths. Direct formation of the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ is also feasible for the photolytic pathway. Ananalysis of surface crossings between $$\\tilde{a}$$ or $$\\tilde{b}$$ and the triplet ground state $$\\tilde{X}^{-3}\\Sigma_g^-$$ in the absence and presence of a helium atom revealed an ISC channel 1NCN ($$\\tilde{a}$$) → 3NCN($$\\tilde{X}$$) via a strongly bent structure. However, its barrier of 38 kcal mol -1 relative to the singlet minimum turned out to be much too high to explain the fast ISC observed in experiments. A rigid-bender model including Renner-Teller interactions was used to examine the occurrence of mixed-multiplicity rovibrational states-so-called gateway states-that could enhance collision-induced ISC. The results of this study indicate that a gateway mechanism is probably not operative in the case of the $$\\tilde{a}$$/$$\\tilde{X}$$pair of states in NCN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu; Vrønning Hoffmann, Søren, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu
New photoelectron (PE) and ultra violet (UV) and vacuum UV (VUV) spectra have been obtained for chlorobenzene by synchrotron study with higher sensitivity and resolution than previous work and are subjected to detailed analysis. In addition, we report on the mass-resolved (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectra of a jet-cooled sample. Both the VUV and REMPI spectra have enabled identification of a considerable number of Rydberg states for the first time. The use of ab initio calculations, which include both multi-reference multi-root doubles and singles configuration interaction (MRD-CI) and time dependent density functional theoretical (TDDFT) methods, hasmore » led to major advances in interpretation of the vibrational structure of the ionic and electronically excited states. Franck-Condon (FC) analyses of the PE spectra, including both hot and cold bands, indicate much more complex envelopes than previously thought. The sequence of ionic states can be best interpreted by our multi-configuration self-consistent field computations and also by comparison of the calculated vibrational structure of the B and C ionic states with experiment; these conclusions suggest that the leading sequence is the same as that of iodobenzene and bromobenzene, namely: X{sup 2}B{sub 1}(3b{sub 1}{sup −1}) < A{sup 2}A{sub 2}(1a{sub 2}{sup −1}) < B{sup 2}B{sub 2}(6b{sub 2}{sup −1}) < C{sup 2}B{sub 1}(2b{sub 1}{sup −1}). The absorption onset near 4.6 eV has been investigated using MRD-CI and TDDFT calculations; the principal component of this band is {sup 1}B{sub 2} and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. The other low-lying absorption band near 5.8 eV is dominated by a {sup 1}A{sub 1} state, but an underlying weak {sup 1}B{sub 1} state (πσ{sup ∗}) is also found. The strongest band in the VUV spectrum near 6.7 eV is poorly resolved and is analyzed in terms of two ππ{sup ∗} states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The calculated vertical excitation energies of these two states are critically dependent upon the presence of Rydberg functions in the basis set, since both manifolds are strongly perturbed by the Rydberg states in this energy range. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene and bromobenzene.« less
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Wallace, H. W.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo Qiang; Luo, Lingyun; Ogbuji, Chime
The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions. MOCH represents patterns of multitype interaction as small labeled sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology (OWL, RDF and SPARQL) andmore » Virtuoso, we performed exhaustive analyses of three 2-node motifs, resulting in 638 matching FMA configurations; twelve 3-node motifs, resulting in 202,960 configurations. Using the Principal Ideal Explorer (PIE) methodology as an extension of MOCH, we were able to identify 755 root nodes with 4,100 respective descendants with opposing antonyms in their class names for arbitrary-length motifs. With possible disjointness implied by antonyms, we performed manual inspection of a subset of the resulting FMA fragments and tracked down a source of abnormal inferred conclusions (captured by the motifs), coming from a gender-neutral class being modeled as a part of gender-specific class, such as “Urinary system” is a part of “Female human body.” Our results demonstrate that MOCH and PIE provide a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.« less
Ionic scattering factors of atoms that compose biological molecules
Matsuoka, Rei; Yamashita, Yoshiki; Yamane, Tsutomu; Kidera, Akinori; Maki-Yonekura, Saori
2018-01-01
Ionic scattering factors of atoms that compose biological molecules have been computed by the multi-configuration Dirac–Fock method. These ions are chemically unstable and their scattering factors had not been reported except for O−. Yet these factors are required for the estimation of partial charges in protein molecules and nucleic acids. The electron scattering factors of these ions are particularly important as the electron scattering curves vary considerably between neutral and charged atoms in the spatial-resolution range explored in structural biology. The calculated X-ray and electron scattering factors have then been parameterized for the major scattering curve models used in X-ray and electron protein crystallography and single-particle cryo-EM. The X-ray and electron scattering factors and the fitting parameters are presented for future reference. PMID:29755750
Displacement sensing system and method
VunKannon, Jr., Robert S
2006-08-08
A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.
Wavepacket dynamics and the multi-configurational time-dependent Hartree approach
NASA Astrophysics Data System (ADS)
Manthe, Uwe
2017-06-01
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
NASA Technical Reports Server (NTRS)
Houck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
NASA Technical Reports Server (NTRS)
Rhouck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
The choice of product indicators in latent variable interaction models: post hoc analyses.
Foldnes, Njål; Hagtvet, Knut Arne
2014-09-01
The unconstrained product indicator (PI) approach is a simple and popular approach for modeling nonlinear effects among latent variables. This approach leaves the practitioner to choose the PIs to be included in the model, introducing arbitrariness into the modeling. In contrast to previous Monte Carlo studies, we evaluated the PI approach by 3 post hoc analyses applied to a real-world case adopted from a research effort in social psychology. The measurement design applied 3 and 4 indicators for the 2 latent 1st-order variables, leaving the researcher with a choice among more than 4,000 possible PI configurations. Sixty so-called matched-pair configurations that have been recommended in previous literature are of special interest. In the 1st post hoc analysis we estimated the interaction effect for all PI configurations, keeping the real-world sample fixed. The estimated interaction effect was substantially affected by the choice of PIs, also across matched-pair configurations. Subsequently, a post hoc Monte Carlo study was conducted, with varying sample sizes and data distributions. Convergence, bias, Type I error and power of the interaction test were investigated for each matched-pair configuration and the all-pairs configuration. Variation in estimates across matched-pair configurations for a typical sample was substantial. The choice of specific configuration significantly affected convergence and the interaction test's outcome. The all-pairs configuration performed overall better than the matched-pair configurations. A further advantage of the all-pairs over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs configuration for small sample sizes and compares it to the non-PI approach of latent moderated structural equations. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Brownson, J. J.
1979-01-01
Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.
On the Origins and Control of Community Types in the Human Microbiome
Cao, Hong-Tai; Weiss, Scott T.; Liu, Yang-Yu
2016-01-01
Microbiome-based stratification of healthy individuals into compositional categories, referred to as “enterotypes” or “community types”, holds promise for drastically improving personalized medicine. Despite this potential, the existence of community types and the degree of their distinctness have been highly debated. Here we adopted a dynamic systems approach and found that heterogeneity in the interspecific interactions or the presence of strongly interacting species is sufficient to explain community types, independent of the topology of the underlying ecological network. By controlling the presence or absence of these strongly interacting species we can steer the microbial ecosystem to any desired community type. This open-loop control strategy still holds even when the community types are not distinct but appear as dense regions within a continuous gradient. This finding can be used to develop viable therapeutic strategies for shifting the microbial composition to a healthy configuration. PMID:26866806
A-VCI: A flexible method to efficiently compute vibrational spectra
NASA Astrophysics Data System (ADS)
Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2017-06-01
The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm-1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm-1 is the most accurate computation that exists today on such systems.
NASA Astrophysics Data System (ADS)
Rangarajan, Ramsharan; Gao, Huajian
2015-09-01
We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.
A-VCI: A flexible method to efficiently compute vibrational spectra.
Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2017-06-07
The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm -1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm -1 is the most accurate computation that exists today on such systems.
Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui
2018-06-01
A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surveillance and reconnaissance ground system architecture
NASA Astrophysics Data System (ADS)
Devambez, Francois
2001-12-01
Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.
NASA Astrophysics Data System (ADS)
Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.
2017-06-01
In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial-oriented CEDRE code, all developments allow to simulate realistic solid rocket motor configurations featuring the first polydisperse reactive computations with a fully Eulerian method.
Topology Optimization - Engineering Contribution to Architectural Design
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2017-10-01
The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.
Investigating the association between social interactions and personality states dynamics
Finnerty, Ailbhe N.; Staiano, Jacopo; Teso, Stefano; Passerini, Andrea; Pianesi, Fabio; Lepri, Bruno
2017-01-01
The recent personality psychology literature has coined the name of personality states to refer to states having the same behavioural, affective and cognitive content (described by adjectives) as the corresponding trait, but for a shorter duration. The variability in personality states may be the reaction to specific characteristics of situations. The aim of our study is to investigate whether specific situational factors, that is, different configurations of face-to-face interactions, are predictors of variability of personality states in a work environment. The obtained results provide evidence that within-person variability in personality is associated with variation in face-to-face interactions. Interestingly, the effects differ by type and level of the personality states: adaptation effects for Agreeableness and Emotional Stability, whereby the personality states of an individual trigger similar states in other people interacting with them and complementarity effects for Openness to Experience, whereby the personality states of an individual trigger opposite states in other people interacting with them. Overall, these findings encourage further research to characterize face-to-face and social interactions in terms of their relevance to personality states. PMID:28989732
Investigating the association between social interactions and personality states dynamics.
Gundogdu, Didem; Finnerty, Ailbhe N; Staiano, Jacopo; Teso, Stefano; Passerini, Andrea; Pianesi, Fabio; Lepri, Bruno
2017-09-01
The recent personality psychology literature has coined the name of personality states to refer to states having the same behavioural, affective and cognitive content (described by adjectives) as the corresponding trait, but for a shorter duration. The variability in personality states may be the reaction to specific characteristics of situations. The aim of our study is to investigate whether specific situational factors, that is, different configurations of face-to-face interactions, are predictors of variability of personality states in a work environment. The obtained results provide evidence that within-person variability in personality is associated with variation in face-to-face interactions. Interestingly, the effects differ by type and level of the personality states: adaptation effects for Agreeableness and Emotional Stability, whereby the personality states of an individual trigger similar states in other people interacting with them and complementarity effects for Openness to Experience, whereby the personality states of an individual trigger opposite states in other people interacting with them. Overall, these findings encourage further research to characterize face-to-face and social interactions in terms of their relevance to personality states.
Non-Gaussianity in multi-sound-speed disformally coupled inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruck, Carsten van; Longden, Chris; Koivisto, Tomi, E-mail: C.vandeBruck@sheffield.ac.uk, E-mail: tomi.koivisto@nordita.org, E-mail: cjlongden1@sheffield.ac.uk
Most, if not all, scalar-tensor theories are equivalent to General Relativity with a disformally coupled matter sector. In extra-dimensional theories such a coupling can be understood as a result of induction of the metric on a brane that matter is confined to. This article presents a first look at the non-Gaussianities in disformally coupled inflation, a simple two-field model that features a novel kinetic interaction. Cases with both canonical and Dirac-Born-Infeld (DBI) kinetic terms are taken into account, the latter motivated by the possible extra-dimensional origin of the disformality. The computations are carried out for the equilateral configuration in themore » slow-roll regime, wherein it is found that the non-Gaussianity is typically rather small and negative. This is despite the fact that the new kinetic interaction causes the perturbation modes to propagate with different sounds speeds, which may both significantly deviate from unity during inflation.« less
NASA Astrophysics Data System (ADS)
Haase, S.; Matthes, K. B.
2017-12-01
Changes in stratospheric ozone can trigger tropospheric circulation changes. In the Southern hemisphere (SH), the observed shift of the Southern Annular Mode was attributed to the observed trend in lower stratospheric ozone. In the Northern Hemisphere (NH), a recent study showed that extremely low stratospheric ozone conditions during spring produce robust anomalies in the troposphere (zonal wind, temperature and precipitation). This could only be reproduced in a coupled chemistry climate model indicating that chemical-dynamical feedbacks are also important on the NH. To further investigate the importance of interactive chemistry for surface climate, we conducted a set of experiments using NCAR's Community Earth System Model (CESM1) with the Whole Atmosphere Community Climate Model (WACCM) as the atmosphere component. WACCM contains a fully interactive stratospheric chemistry module in its standard configuration. It also allows for an alternative configuration, referred to as SC-WACCM, in which the chemistry (O3, NO, O, O2, CO2 and chemical and shortwave heating rates) is specified as a 2D field in the radiation code. A comparison of the interactive vs. the specified chemistry version enables us to evaluate the relative importance of interactive chemistry by systematically inhibiting the feedbacks between chemistry and dynamics. To diminish the effect of temporal interpolation when prescribing ozone, we use daily resolved zonal mean ozone fields for the specified chemistry run. Here, we investigate the differences in stratosphere-troposphere coupling between the interactive and specified chemistry simulations for the mainly chemically driven SH as well as for the mainly dynamically driven NH. We will especially consider years that are characterized by extremely low stratospheric ozone on the one hand and by large dynamical disturbances, i.e. Sudden Stratospheric Warmings, on the other hand.
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Devereaux, P. A.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.
Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan
2017-03-01
In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.
International Space Station Configuration Analysis and Integration
NASA Technical Reports Server (NTRS)
Anchondo, Rebekah
2016-01-01
Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.
Education Policy and the 'Inter'-Regnum
ERIC Educational Resources Information Center
Hartley, David
2007-01-01
In the UK, the vocabulary of public services is becoming infused with the prefixes "inter"-, "multi-" and "co-". Public-sector agencies are being encouraged to adopt"'multi"- or "inter-agency" configurations; "workforce reform" seeks to dissolve once-impermeable professional boundaries;…
Local and non-local deficits in amblyopia: acuity and spatial interactions.
Bonneh, Yoram S; Sagi, Dov; Polat, Uri
2004-12-01
Amblyopic vision is thought to be limited by abnormal long-range spatial interactions, but their exact mode of action and relationship to the main amblyopic deficit in visual acuity is largely unknown. We studied this relationship in a group (N=59) of anisometropic (N=21) and strabismic (or combined, N=38) subjects, using (1) a single and multi-pattern (crowded) computerized static Tumbling-E test with scaled spacing of two pattern widths (TeVA), in addition to an optotype (ETDRS chart) acuity test (VA) and (2) contrast detection of Gabor patches with lateral flankers (lateral masking) along the horizontal and vertical axes as well as in collinear and parallel configurations. By correlating the different measures of visual acuity and contrast suppression, we found that (1) the VA of the strabismic subjects could be decomposed into two uncorrelated components measured in TeVA: acuity for isolated patterns and acuity reduction due to flanking patterns. The latter comprised over 60% of the VA magnitude, on the average and accounted for over 50% of its variance. In contrast, a slight reduction in acuity was found in the anisometropic subjects, and the acuity for a single pattern could account for 70% of the VA variance. (2) The lateral suppression (contrast threshold elevation) in a parallel configuration along the horizontal axis was correlated with the VA (R2=0.7), as well as with the crowding effect (TeVA elevation, R2=0.5) for the strabismic group. Some correlation with the VA was also found for the collinear configuration in the anisometropic group, but less suppression and no correlation were found for all the vertical configurations in all the groups. The results indicate the existence of a specific non-local component of the strabismic deficit, in addition to the local acuity deficit in all amblyopia types. This deficit might reflect long-range lateral inhibition, or alternatively, an inaccurate and scattered top-down attentional selection mechanism.
Design optimization of the S-frame to improve crashworthiness
NASA Astrophysics Data System (ADS)
Liu, Shu-Tian; Tong, Ze-Qi; Tang, Zhi-Liang; Zhang, Zong-Hua
2014-08-01
In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthiness. Various cross-sections including regular polygon, non-convex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-cell S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S-frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.
Application of Sensor Fusion to Improve Uav Image Classification
NASA Astrophysics Data System (ADS)
Jabari, S.; Fathollahi, F.; Zhang, Y.
2017-08-01
Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.
Evaluation of Aeroservoelastic Effects on Flutter
NASA Technical Reports Server (NTRS)
Nagaraja, K. S.; Felt, Larry R.; Kraft, Raymond
1998-01-01
This report presents work performed by The Boeing Company to satisfy the deliverable "Evaluation of aeroservoelastic Effects on Symmetric Flutter" for Subtask 7 of Reference 1. The objective of this report is to incorporate the improved methods for studying the effects of a closed-loop control system on the aeroservoelastic behavior of the airplane planned under NASA HSR technical Integration Task 20 work. Also, a preliminary evaluation of the existing pitch control laws on symmetric flutter of the TCA configuration was addressed."The goal is to develop an improved modeling methodology and perform design studies that account for the aero-structures-systems interaction effects.
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.
2015-09-01
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Flow interaction of diffuser augmented wind turbines
NASA Astrophysics Data System (ADS)
Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.
2016-09-01
Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.
Scheduling based on a dynamic resource connection
NASA Astrophysics Data System (ADS)
Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.
2017-02-01
The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.
Singlet fission in linear chains of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosio, Francesco, E-mail: F.Ambrosio@warwick.ac.uk, E-mail: A.Troisi@warwick.ac.uk; Troisi, Alessandro, E-mail: F.Ambrosio@warwick.ac.uk, E-mail: A.Troisi@warwick.ac.uk
2014-11-28
We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely smallmore » leading to bandwidths in the order of ∼10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers.« less
Distributed digital signal processors for multi-body flexible structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K. F.
1992-01-01
Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.
Ab initio MCHF structural calculations of Mg-like cerium
NASA Astrophysics Data System (ADS)
Wajid, Abdul; Jabeen, S.; Husain, Abid
2018-05-01
Energy levels and emission line wavelengths of high-Z materials are useful for impurity diagnostics in the next generation fusion devices. For this here we have calculated E1, M2 transitions, oscillator strengths, and transition probabilities for transitions among the terms belonging to the 2p63s2, 2p63s3p, 2p63p2 and 2p63s3d for the Magnesium like cerium (Ce XLVII) using the GRASP2K package based on the fully relativistic multi-configuration Dirac-Fock method. The electron correlation effects, Breit interaction and quantum electrodynamics effects to the atomic state wave functions and the corresponding energies have been taken into account.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.
2015-01-01
NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta-V. It will generate 15,000-lbf of thrust with a single burn of 80's seconds. The lander stage is a bi-propellant, pressure-regulated, pulsing liquid propulsion system to perform all other functions.
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
NASA Astrophysics Data System (ADS)
Sellar, Brian; Harding, Samuel; Richmond, Marshall
2015-08-01
An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.
Device and Method for Gathering Ensemble Data Sets
NASA Technical Reports Server (NTRS)
Racette, Paul E. (Inventor)
2014-01-01
An ensemble detector uses calibrated noise references to produce ensemble sets of data from which properties of non-stationary processes may be extracted. The ensemble detector comprising: a receiver; a switching device coupled to the receiver, the switching device configured to selectively connect each of a plurality of reference noise signals to the receiver; and a gain modulation circuit coupled to the receiver and configured to vary a gain of the receiver based on a forcing signal; whereby the switching device selectively connects each of the plurality of reference noise signals to the receiver to produce an output signal derived from the plurality of reference noise signals and the forcing signal.
Reference PMHS Sled Tests to Assess Submarining.
Uriot, Jérôme; Potier, Pascal; Baudrit, Pascal; Trosseille, Xavier; Petit, Philippe; Richard, Olivier; Compigne, Sabine; Masuda, Mitsutoshi; Douard, Richard
2015-11-01
Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semirigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading. No pelvis fractures and no submarining were observed in the front seat configuration, but two subjects sustained lumbar vertebrae fractures. In the rear seat configuration, all subjects sustained pelvic fractures and demonstrated submarining. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new reference tests to assess the biofidelity of human surrogates in different configurations that either result in submarining or do not. In future, it is intended to analyze further seat and restraint system configurations to be able to define a submarining predictor.
Selection of trilateral continuums of life history strategies under food web interactions.
Fujiwara, Masami
2018-03-14
The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.
He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang
2015-09-01
Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zilz, D. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.
Motor control theories and their applications.
Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor
2010-01-01
We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; Wang, Yuming; Shen, Chenglong
2015-11-10
In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggeringmore » mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.« less
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Myer, Robert R.; Latorella, Kara A.; Comstock, James R., Jr.
2011-01-01
The Multi-Attribute Task Battery (MAT Battery). is a computer-based task designed to evaluate operator performance and workload, has been redeveloped to operate in Windows XP Service Pack 3, Windows Vista and Windows 7 operating systems.MATB-II includes essentially the same tasks as the original MAT Battery, plus new configuration options including a graphical user interface for controlling modes of operation. MATB-II can be executed either in training or testing mode, as defined by the MATB-II configuration file. The configuration file also allows set up of the default timeouts for the tasks, the flow rates of the pumps and tank levels of the Resource Management (RESMAN) task. MATB-II comes with a default event file that an experimenter can modify and adapt
Electrical heating of soils using high efficiency electrode patterns and power phases
Buettner, Harley M.
1999-01-01
Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.
Spectroscopic detection of biological NO with a quantum cascade laser
NASA Technical Reports Server (NTRS)
Menzel, L.; Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.;
2001-01-01
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.
Pseudo Jahn-Teller coupling in trioxides XO3(0,1,-1) with 22 and 23 valence electrons
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2013-05-01
D3h and C2v geometries and energies, vertical excitation energies, as well as minimal energy paths as function of the O1(z)-X-O2 angle α were obtained for XO3(0,1,-1) (X = B, Al, Ga; C, Si, Ge; N, P, As; S, Se) molecules and ions with 22 and 23 valence electrons (VE), using density functional theory (DFT), coupled cluster with single and double substitutions with noniterative triple excitations (CCSD(T)), equation of motion (EOM)-CCSD, time-dependent DFT, and multi-reference configuration interaction methods. It is shown that pseudo Jahn-Teller (PJT) coupling increases as the central atom X becomes heavier, due to decreases in excitation energies. As is well known for CO3, the excited 1E' states of the 22 VE systems SiO3, GeO3; NO_3 ^ +, PO3+, AsO3+; BO3-, AlO3-, GaO3- have strong vibronic coupling with the 1A1' ground state via the e' vibrational modes, leading to a C2v minimum around α = 145°. For first and second row X atoms, there is an additional D3h minimum (α = 120°). Interacting excited states have minima around 135°. In the 23 VE systems CO3-, SiO3-; NO3, PO3; SO3+, coupling of the excited 2E' with the 2A2' ground state via the e' mode does not generate a C2v state. Minima of interacting excited states are close to 120°. However, due to very strong PJT coupling, a double-well potential is predicted for GeO3-, AsO3, and SeO3+, with a saddle point at D3h symmetry. Interaction of the b2 highest occupied molecular orbital with the b2 lowest unoccupied molecular orbital, both oxygen lone pair molecular orbitals, is seen as the reason for the C2v stabilization of 22 VE molecules.
Multi-scale models of grassland passerine abundance in a fragmented system in Wisconsin
Renfrew, R.B.; Ribic, C.A.
2008-01-01
Fragmentation of grasslands has been implicated in grassland bird population declines. Multi-scale models are being increasingly used to assess potential factors that influence grassland bird presence, abundance, and productivity. However, studies rarely assess fragmentation metrics, and seldom evaluate more than two scales or interactions among scales. We evaluated the relative importance of characteristics at multiple scales to patterns in relative abundance of Savannah Sparrow (Passerculus sandwichensis), Grasshopper Sparrow (Ammodramus savannarum), Eastern Meadowlark (Sturnella magna), and Bobolink (Dolichonyx oryzivorus). We surveyed birds in 74 southwestern Wisconsin pastures from 1997 to 1999 and compared models with explanatory variables from multiple scales: within-patch vegetation structure (microhabitat), patch (macrohabitat), and three landscape extents. We also examined interactions between macrohabitat and landscape factors. Core area of pastures was an important predictor of relative abundance, and composition of the landscape was more important than configuration. Relative abundance was frequently higher in pastures with more core area and in landscapes with more grassland and less wooded area. The direction and strength of the effect of core pasture size on relative abundance changed depending on amount of wooded area in the landscape. Relative abundance of grassland birds was associated with landscape variables more frequently at the 1200-m scale than at smaller scales. To develop better predictive models, parameters at multiple scales and their interactive effects should be included, and results should be evaluated in the context of microhabitat variability, landscape composition, and fragmentation in the study area. ?? 2007 Springer Science+Business Media B.V.
Multi-piece wind turbine rotor blades and wind turbines incorporating same
Moroz,; Mieczyslaw, Emilian [San Diego, CA
2008-06-03
A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.
Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays
Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor
2006-01-01
A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.
NASA Astrophysics Data System (ADS)
Rozov, V.; Alekseev, A.
2015-08-01
A necessity to address a wide spectrum of engineering problems in ITER determined the need for efficient tools for modeling of the magnetic environment and force interactions between the main components of the magnet system. The assessment of the operating window for the machine, determined by the electro-magnetic (EM) forces, and the check of feasibility of particular scenarios play an important role for ensuring the safety of exploitation. Such analysis-powered prevention of damages forms an element of the Machine Operations and Investment Protection strategy. The corresponding analysis is a necessary step in preparation of the commissioning, which finalizes the construction phase. It shall be supported by the development of the efficient and robust simulators and multi-physics/multi-system integration of models. The developed numerical model of interactions in the ITER magnetic system, based on the use of pre-computed influence matrices, facilitated immediate and complete assessment and systematic specification of EM loads on magnets in all foreseen operating regimes, their maximum values, envelopes and the most critical scenarios. The common principles of interaction in typical bilateral configurations have been generalized for asymmetry conditions, inspired by the plasma and by the hardware, including asymmetric plasma event and magnetic system fault cases. The specification of loads is supported by the technology of functional approximation of nodal and distributed data by continuous patterns/analytical interpolants. The global model of interactions together with the mesh-independent analytical format of output provides the source of self-consistent and transferable data on the spatial distribution of the system of forces for assessments of structural performance of the components, assemblies and supporting structures. The numerical model used is fully parametrized, which makes it very suitable for multi-variant and sensitivity studies (positioning, off-normal events, asymmetry, etc). The obtained results and matrices form a basis for a relatively simple and robust force processor as a specialized module of a global simulator for diagnostic, operational instrumentation, monitoring and control, as well as a scenario assessment tool. This paper gives an overview of the model, applied technique, assessed problems and obtained qualitative and quantitative results.
Assessing the Effects of Multi-Node Sensor Network Configurations on the Operational Tempo
2014-09-01
receiver, nP is the noise power of the receiver, and iL is the implementation loss of the receiver due to hardware manufacturing. The received...13. ABSTRACT (maximum 200 words) The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations by...INTENTIONALLY LEFT BLANK v ABSTRACT The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations
PIV Logon Configuration Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Glen Alan
This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).
Why Teach the Electron Configuration of the Elements as We Do?
ERIC Educational Resources Information Center
Millikan, Roger C.
1982-01-01
Discusses pros and cons of current methods of teaching electron configurations of elements. Offers alternative instructional strategies, suggesting that although tables of electron configurations are useful and in conjunction with periodic tables may help solve many problems, they should be included as reference material. (Author/JN)
libdrdc: software standards library
NASA Astrophysics Data System (ADS)
Erickson, David; Peng, Tie
2008-04-01
This paper presents the libdrdc software standards library including internal nomenclature, definitions, units of measure, coordinate reference frames, and representations for use in autonomous systems research. This library is a configurable, portable C-function wrapped C++ / Object Oriented C library developed to be independent of software middleware, system architecture, processor, or operating system. It is designed to use the automatically-tuned linear algebra suite (ATLAS) and Basic Linear Algebra Suite (BLAS) and port to firmware and software. The library goal is to unify data collection and representation for various microcontrollers and Central Processing Unit (CPU) cores and to provide a common Application Binary Interface (ABI) for research projects at all scales. The library supports multi-platform development and currently works on Windows, Unix, GNU/Linux, and Real-Time Executive for Multiprocessor Systems (RTEMS). This library is made available under LGPL version 2.1 license.
NASA Astrophysics Data System (ADS)
Yin, Liang; Liu, Weiqiang
2018-04-01
The differences between cold flow and combustion under the same condition were investigated by the numerical simulations, an eddy dissipation concept (EDC) with 16 species and 41 reactions is considered for the CH4/O2 combustion. Three configurations of the splash platelet injector were selected for these simulations. Results show that cold flow and combustion have evident differences. Compared with cold flow, CH4 mole fraction was more evenly distributed in the combustion chamber head, and the mixing of propellants was lagged by the combustion of multi-elements. However, this conclusion is contrary for the single element. The recirculation zones were observable near the injector faceplate at the combustion condition. Moreover, the cold flow simulation cannot reflect the actual combustion but can provide a reference value for experimental research.
Touch HDR: photograph enhancement by user controlled wide dynamic range adaptation
NASA Astrophysics Data System (ADS)
Verrall, Steve; Siddiqui, Hasib; Atanassov, Kalin; Goma, Sergio; Ramachandra, Vikas
2013-03-01
High Dynamic Range (HDR) technology enables photographers to capture a greater range of tonal detail. HDR is typically used to bring out detail in a dark foreground object set against a bright background. HDR technologies include multi-frame HDR and single-frame HDR. Multi-frame HDR requires the combination of a sequence of images taken at different exposures. Single-frame HDR requires histogram equalization post-processing of a single image, a technique referred to as local tone mapping (LTM). Images generated using HDR technology can look less natural than their non- HDR counterparts. Sometimes it is only desired to enhance small regions of an original image. For example, it may be desired to enhance the tonal detail of one subject's face while preserving the original background. The Touch HDR technique described in this paper achieves these goals by enabling selective blending of HDR and non-HDR versions of the same image to create a hybrid image. The HDR version of the image can be generated by either multi-frame or single-frame HDR. Selective blending can be performed as a post-processing step, for example, as a feature of a photo editor application, at any time after the image has been captured. HDR and non-HDR blending is controlled by a weighting surface, which is configured by the user through a sequence of touches on a touchscreen.
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
NASA Astrophysics Data System (ADS)
Samin, Adib J.; Taylor, Christopher D.
2017-11-01
The design of corrosion resistant zircalloys is important for a variety of technological applications ranging from medicine to the nuclear industry. Since corrosion resistance is mainly attributed to the formation of a surface oxide layer, developing a detailed understanding of this process may assist in future corrosion resistance design. In this work, we conduct a systematic multi-scale investigation of the early stages of oxide formation. This was accomplished by first using a database of fully relaxed DFT calculations to build a cluster-expansion description of the potential function. The developed potential was reasonably good at predicting DFT energies as evidenced by the cross-validation score of 4.4 meV/site. The effective cluster expansion parameters were indicative of repulsive adsorbate interactions in the adlayer in agreement with the literature. The potential then allowed for a systematic investigation of the oxygen configurations on the Zr(0001) surface via Monte Carlo simulations. The adsorption energy was recorded as a function of coverage and an increasing trend was observed in agreement with DFT predictions and the repulsive nature of interactions in the adlayer. The convex hull diagram was recorded indicating the most stable configuration to occur around a coverage of 0.6 ML. The adsorption isotherm was also recorded and contrasted for two temperatures relevant for different applications.
Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice
2012-10-30
Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David
1997-01-01
An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.
Casanova, David
2012-08-28
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to show the possibility to use an excitation operator with any number of α-to-β electronic promotions.
NASA Astrophysics Data System (ADS)
Jing, Mingyang; Song, Wei; Liu, Rutao
2016-07-01
Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.
Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok
2013-11-01
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leushin, A. M.
2011-10-01
The level structure of the ground 3d5 configuration of Mn2+, Fe3+, Co4+ and Ni5+ ions was theoretically interpreted by means of a least-squares fit of the energy parameters to the observed values within the framework of the single-configuration approximation. In the Hamiltonian in addition to real electrostatic, spin-orbit, and spin-spin interactions, electrostatic and spin-orbit interactions correlated by configuration mixing were included. It was shown that the correct positions of almost all the energy levels are determined when the Hamiltonian includes the terms of the lineal (two-body operators) and nonlinear (three-body operators) theory of the configuration interaction. The most correct theoretical description of the experimental spectra was obtained by taking into account relativistic interactions and correlation effects of spin-orbit interactions. Adjustable parameters of the interactions included into the Hamiltonian were found.
Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersionmore » of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.« less
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.
2012-01-01
This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.
NASA Astrophysics Data System (ADS)
Wang, K.; Yang, X.; Chen, Z. B.; Si, R.; Chen, C. Y.; Yan, J.; Zhao, X. H.; Dang, W.
2017-09-01
Energy levels, wavelengths, lifetimes, oscillator strengths, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among the 46 fine structure levels belonging to the ([ Ar ] 3d10) 4s2 4p4, ([ Ar ] 3d10) 4s2 4p3 4 d, and ([ Ar ] 3d10) 4 s 4p5 configurations for the selenium isoelectronic sequence Pd XIII-Te XIX, Xe XXI-Nd XXVII, W XLI are reported. These data are determined in the multi-configuration Dirac-Fock (MCDF) approach, in which relativistic effects, main electron correlations within the n = 7 complex, Breit interaction (BI), and quantum electrodynamic (QED) corrections are included. The many-body perturbation theory (MBPT) method is also employed as an independent calculation to confirm the present accuracy, taking W XLI as an example. Comparisons and analysis are made between the present results and available experimental and theoretical ones, and good agreements are obtained. These accurate data are expected to be useful in nuclear fusion research and astrophysical applications.
Theoretical study of the dielectronic recombination process of Li-like Xe51+ ions
NASA Astrophysics Data System (ADS)
Dou, Lijun; Xie, Luyou; Zhang, Denghong; Dong, Chenzhong; Wen, Weiqiang; Huang, Zhongkui; Ma, Xinwen
2017-05-01
The dielectronic recombination of Li-like Xe51+ (2s) ions was studied using the flexible atomic code based on the relativistic configuration interaction method. The resonance energies, radiative and autoionization rates, and resonance strengths were calculated systematically for the doubly excited states (2p1/2nlj)J(n = 18-32) and (2p3/2n'lj)J(n' = 9-27) of Be-like Xe50+ ions. For the higher Rydberg resonance states with n ≥ 33 and n' ≥ 28, the resonance energies and strengths were obtained by extrapolation based on quantum defect theory. The theoretical rate coefficients, covering the center-of-mass energy range 0-505 eV, are in a better agreement with the experimental results measured at the heavy-ion storage ring ESR than the Multi-Configuration Dirac-Fock calculations, especially at the resonance energy range close to the series limits. Contribution to the Topical Issue: "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1996-01-01
This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.
Methods for multi-material stereolithography
Wicker, Ryan [El Paso, TX; Medina, Francisco [El Paso, TX; Elkins, Christopher [Redwood City, CA
2011-06-14
Methods and systems of stereolithography for building cost-efficient and time-saving multi-material, multi-functional and multi-colored prototypes, models and devices configured for intermediate washing and curing/drying is disclosed including: laser(s), liquid and/or platform level sensing system(s), controllable optical system(s), moveable platform(s), elevator platform(s), recoating system(s) and at least one polymer retaining receptacle. Multiple polymer retaining receptacles may be arranged in a moveable apparatus, wherein each receptacle is adapted to actively/passively maintain a uniform, desired level of polymer by including a recoating device and a material fill/remove system. The platform is movably accessible to the polymer retaining receptacle(s), elevator mechanism(s) and washing and curing/drying area(s) which may be housed in a shielded enclosure(s). The elevator mechanism is configured to vertically traverse and rotate the platform, thus providing angled building, washing and curing/drying capabilities. A horizontal traversing mechanism may be included to facilitate manufacturing between components of SL cabinet(s) and/or alternative manufacturing technologies.
NASA Astrophysics Data System (ADS)
Valinataj Omran, A.; Sohbatzadeh, F.; Siadati, S. N.; Hosseinzadeh Colagar, A.; Akishev, Y.; Arefi-Khonsari, F.
2017-08-01
In this article, we developed transporting plasma sources that operate at atmospheric pressure. The effect of electrode configuration on plasma transporting was investigated. In order to increase the transporting plasma cross-section, we converted a plasma stream into four plasma channels by a cylindrical housing. Electron excitation and rotational temperatures were estimated using optical emission spectroscopy. Furthermore, the electrical and temporal characteristics of the plasma, discharge power and charge deposition on the target were investigated. The propagation characteristics of single and multi-channel transporting plasma were compared with the same cross-sectional area. Two configurations for multi-channels were designed for this purpose. Escherichia coli bacteria were exposed to the single and multi-channel transporting discharge for different time durations. After exposure, the results indicated that the inactivation zones were significantly increased by a multi-channel transporting plasma. Finally, E. coli inactivation by those plasma apparatuses was compared with that of several standard antimicrobial test discs such as Gentamicin, Tetracycline, Amoxicillin and Cefixime.
Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets
Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; ...
2017-02-08
The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept bymore » computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors—one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.« less
Overcoming the Challenges of Implementing a Multi-Mission Distributed Workflow System
NASA Technical Reports Server (NTRS)
Sayfi, Elias; Cheng, Cecilia; Lee, Hyun; Patel, Rajesh; Takagi, Atsuya; Yu, Dan
2009-01-01
A multi-mission approach to solving the same problems for various projects is enticing. However, the multi-mission approach leads to the need to develop a configurable, adaptable and distributed system to meet unique project requirements. That, in turn, leads to a set of challenges varying from handling synchronization issues to coming up with a smart design that allows the "unknowns" to be decided later. This paper discusses the challenges that the Multi-mission Automated Task Invocation Subsystem (MATIS) team has come up against while designing the distributed workflow system, as well as elaborates on the solutions that were implemented. The first is to design an easily adaptable system that requires no code changes as a result of configuration changes. The number of formal deliveries is often limited because each delivery costs time and money. Changes such as the sequence of programs being called, a change of a parameter value in the program that is being automated should not result in code changes or redelivery.
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
NASA Astrophysics Data System (ADS)
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
Pair 2-electron reduced density matrix theory using localized orbitals
NASA Astrophysics Data System (ADS)
Head-Marsden, Kade; Mazziotti, David A.
2017-08-01
Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Deloach, Richard
2008-01-01
A collection of statistical and mathematical techniques referred to as response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration using data obtained on small-scale models at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. The simulated Mach 3 staging was dominated by multiple shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. This motivated a partitioning of the overall inference space into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using cuboidal and spherical central composite designs capable of fitting full second-order response functions. The primary goal was to approximate the underlying overall aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle using relatively simple, lower-order polynomial functions that were piecewise-continuous across the full independent variable ranges of interest. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. The potential benefits of augmenting the central composite designs to full third order using computer-generated D-optimality criteria were also evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting low-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.
Design and Principles Enabling the Space Reference FOM
NASA Technical Reports Server (NTRS)
Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton
2017-01-01
A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.
Amiri, Shahram; Wilson, David R; Masri, Bassam A; Sharma, Gulshan; Anglin, Carolyn
2011-06-03
Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optical properties of core-shell and multi-shell nanorods
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb; Shehata, Nader
2018-05-01
We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.
NASA Technical Reports Server (NTRS)
Hughes, Christoper E.; Gazzaniga, John A.
2013-01-01
A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.
NASA Technical Reports Server (NTRS)
Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.
1999-01-01
As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.
Dual chain perturbation theory: A new equation of state for polyatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Bennett D., E-mail: bennett.d.marshall@exxonmobil.com
In the development of equations of state for polyatomic molecules, thermodynamic perturbation theory (TPT) is widely used to calculate the change in free energy due to chain formation. TPT is a simplification of a more general and exact multi-density cluster expansion for associating fluids. In TPT, all contributions to the cluster expansion which contain chain–chain interactions are neglected. That is, all inter-chain interactions are treated at the reference fluid level. This allows for the summation of the cluster theory in terms of reference system correlation functions only. The resulting theory has been shown to be accurate and has been widelymore » employed as the basis of many engineering equations of state. While highly successful, TPT has many handicaps which result from the neglect of chain–chain contributions. The subject of this document is to move beyond the limitations of TPT and include chain–chain contributions to the equation of state.« less
High-Performance Multi-Fuel AMTEC Power System
2000-12-01
AMTEC technology has demonstrated thermal to electric conversion efficiencies and power densities which make it an attractive option for meso-scaic...power generation. This report details development of an integrated, logistics-fueled, 500 W AMTEC power supply. The development targeted 2O% AMTEC ...cylindrical multi-tube/single cell AMTEC configuration with effective management of alkali metal flow; scaling down and integrating a multi-fuel micro-combustor
Transitioning Client Based NALCOMIS to a Multi Function Web Based Application
2016-09-23
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS TRANSITIONING CLIENT- BASED NALCOMIS TO A MULTI-FUNCTION WEB- BASED APPLICATION by Aaron P...TITLE AND SUBTITLE TRANSITIONING CLIENT- BASED NALCOMIS TO A MULTI-FUNCTION WEB- BASED APPLICATION 5. FUNDING NUMBERS 6. AUTHOR(S) Aaron P. Schnetzler 7...NALCOMIS. NALCOMIS has two configurations that are used by organizational and intermediate level maintenance activi- ties, Optimized Organizational
General purpose computer program for interacting supersonic configurations: Programmer's manual
NASA Technical Reports Server (NTRS)
Crill, W.; Dale, B.
1977-01-01
The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?
NASA Technical Reports Server (NTRS)
Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; Bonfils, Celine; LeGrande, Allegra N.; Nazarenko, Larissa; Tsigaridis, Kostas
2015-01-01
Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to di?erent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to di?erences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.
Flavor-singlet spectrum in multi-flavor QCD
NASA Astrophysics Data System (ADS)
Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi
2018-03-01
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.
Do responses to different anthropogenic forcings add linearly in climate models?
Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; ...
2015-10-14
Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However,more » we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Lastly, our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.« less
Flavor-singlet spectrum in multi-flavor QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Yasamichi; Rinaldi, Enrico
2017-06-18
Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixedmore » number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.« less
Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres
NASA Astrophysics Data System (ADS)
Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying
2018-04-01
Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.
Rectangular QPSK for generation of optical eight-ary phase-shift keying.
Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya
2011-09-12
Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.
NASA Astrophysics Data System (ADS)
Brischetto, Salvatore; Ciano, Alessandro; Ferro, Carlo Giovanni
2016-07-01
The present paper shows an innovative multirotor Unmanned Aerial Vehicle (UAV) which is able to easily and quickly change its configuration. In order to satisfy this feature, the principal structure is made of an universal plate, combined with a circular ring, to create a rail guide able to host the arms, in a variable number from 3 to 8, and the legs. The arms are adjustable and contain all the avionic and motor drivers to connect the main structure with each electric motor. The unique arm design, defined as all-in-one, allows classical single rotor configurations, double rotor configurations and amphibious configurations including inflatable elements positioned at the bottom of the arms. The proposed multi-rotor system is inexpensive because of the few universal pieces needed to compose the platform which allows the creation of a kit. This modular kit allows to have a modular drone with different configurations. Such configurations are distinguished among them for the number of arms, number of legs, number of rotors and motors, and landing capability. Another innovation feature is the introduction of the 3D printing technology to produce all the structural elements. In this manner, all the pieces are designed to be produced via the Fused Deposition Modelling (FDM) technology using desktop 3D printers. Therefore, an universal, dynamic and economic multi-rotor UAV has been developed.
Gaia Data Release 1. The archive visualisation service
NASA Astrophysics Data System (ADS)
Moitinho, A.; Krone-Martins, A.; Savietto, H.; Barros, M.; Barata, C.; Falcão, A. J.; Fernandes, T.; Alves, J.; Silva, A. F.; Gomes, M.; Bakker, J.; Brown, A. G. A.; González-Núñez, J.; Gracia-Abril, G.; Gutiérrez-Sánchez, R.; Hernández, J.; Jordan, S.; Luri, X.; Merin, B.; Mignard, F.; Mora, A.; Navarro, V.; O'Mullane, W.; Sagristà Sellés, T.; Salgado, J.; Segovia, J. C.; Utrilla, E.; Arenou, F.; de Bruijne, J. H. J.; Jansen, F.; McCaughrean, M.; O'Flaherty, K. S.; Taylor, M. B.; Vallenari, A.
2017-09-01
Context. The first Gaia data release (DR1) delivered a catalogue of astrometry and photometry for over a billion astronomical sources. Within the panoplyof methods used for data exploration, visualisation is often the starting point and even the guiding reference for scientific thought. However, this is a volume of data that cannot be efficiently explored using traditional tools, techniques, and habits. Aims: We aim to provide a global visual exploration service for the Gaia archive, something that is not possible out of the box for most people. The service has two main goals. The first is to provide a software platform for interactive visual exploration of the archive contents, using common personal computers and mobile devices available to most users. The second aim is to produce intelligible and appealing visual representations of the enormous information content of the archive. Methods: The interactive exploration service follows a client-server design. The server runs close to the data, at the archive, and is responsible for hiding as far as possible the complexity and volume of the Gaia data from the client. This is achieved by serving visual detail on demand. Levels of detail are pre-computed using data aggregation and subsampling techniques. For DR1, the client is a web application that provides an interactive multi-panel visualisation workspace as well as a graphical user interface. Results: The Gaia archive Visualisation Service offers a web-based multi-panel interactive visualisation desktop in a browser tab. It currently provides highly configurable 1D histograms and 2D scatter plots of Gaia DR1 and the Tycho-Gaia Astrometric Solution (TGAS) with linked views. An innovative feature is the creation of ADQL queries from visually defined regions in plots. These visual queries are ready for use in the Gaia Archive Search/data retrieval service. In addition, regions around user-selected objects can be further examined with automatically generated SIMBAD searches. Integration of the Aladin Lite and JS9 applications add support to the visualisation of HiPS and FITS maps. The production of the all-sky source density map that became the iconic image of Gaia DR1 is described in detail. Conclusions: On the day of DR1, over seven thousand users accessed the Gaia Archive visualisation portal. The system, running on a single machine, proved robust and did not fail while enabling thousands of users to visualise and explore the over one billion sources in DR1. There are still several limitations, most noticeably that users may only choose from a list of pre-computed visualisations. Thus, other visualisation applications that can complement the archive service are examined. Finally, development plans for Data Release 2 are presented.
Using Configural Frequency Analysis as a Person-Centered Analytic Approach with Categorical Data
ERIC Educational Resources Information Center
Stemmler, Mark; Heine, Jörg-Henrik
2017-01-01
Configural frequency analysis and log-linear modeling are presented as person-centered analytic approaches for the analysis of categorical or categorized data in multi-way contingency tables. Person-centered developmental psychology, based on the holistic interactionistic perspective of the Stockholm working group around David Magnusson and Lars…
Film bonded fuel cell interface configuration
Kaufman, Arthur; Terry, Peter L.
1985-01-01
An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.
Configurations and decay hindrances of high- K states in Hf 180
Tandel, S. K.; Chowdhury, P.; Kondev, F. G.; ...
2016-12-02
Multi-quasiparticle high-K states, several of which are isomeric, were observed in Hf-180 with the Gammasphere array. We determined the lifetimes in the ns-μs range using centroid-shift and decay measurements within a mu s coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to K π = (18 -) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Furthermore, rotational bands built onmore » three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well.« less
Configurations and decay hindrances of high-K states in 180Hf
NASA Astrophysics Data System (ADS)
Tandel, S. K.; Chowdhury, P.; Kondev, F. G.; Janssens, R. V. F.; Khoo, T. L.; Carpenter, M. P.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Deacon, A.; Freeman, S. J.; Hammond, N. J.; Jones, G. D.; Moore, E. F.; Smith, J. F.
2016-12-01
Multi-quasiparticle high-K states, several of which are isomeric, were observed in 180Hf with the Gammasphere array. Lifetimes in the ns-μ s range were determined using centroid-shift and decay measurements within a μ s coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to Kπ=(18-) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Rotational bands built on three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well.
Zhang, Lanqiang; Guo, Youming; Rao, Changhui
2017-02-20
Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.
Configurations and decay hindrances of high- K states in Hf 180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandel, S. K.; Chowdhury, P.; Kondev, F. G.
Multi-quasiparticle high-K states, several of which are isomeric, were observed in Hf-180 with the Gammasphere array. We determined the lifetimes in the ns-μs range using centroid-shift and decay measurements within a mu s coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to K π = (18 -) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Furthermore, rotational bands built onmore » three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well.« less
NASA Technical Reports Server (NTRS)
Paulson, J. W., Jr.; Thomas, J. L.
1978-01-01
A series of wind-tunnel tests were conducted in a V/STOL tunnel to determine the low-speed longitudinal aerodynamic characteristics of a powered close-coupled wing/canard fighter configuration. The data was obtained for a high angle-of-attack maneuvering configuration and a takeoff and landing configuration. The data presented in tabulated form are intended for reference purposes.
NASA Astrophysics Data System (ADS)
Matsumoto, K.; Hanano, T.; Ito, K.; Ishihara, M.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The current drive by Multi-pulsing Coaxial Helicity Injection (M-CHI) has been performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms regarding a helicity transport from the edge to the core region, we have investigated the characteristics of magnetic field fluctuations observed in M- CHI experiments. We have fitted internal magnetic field data to a ST configuration calculated by the equilibrium code with a hollow pressure profile in order to find the sustained configurations. Fluctuation frequency is identified as about 80 kHz and it has been found to propagate from the open flux column region toward the core region. The toroidal mode n=0 is dominant in the high TF coil current operation. Alfven wave generation has been identified by evaluating its velocity as a function of plasma density or magnetic field strength. We will discuss the relationship between the Alfven wave and helicity propagation.
Two-dimensional straightness measurement based on optical knife-edge sensing
NASA Astrophysics Data System (ADS)
Wang, Chen; Zhong, Fenghe; Ellis, Jonathan D.
2017-09-01
Straightness error is a parasitic translation along a perpendicular direction to the primary displacement axis of a linear stage. The parasitic translations could be coupled into other primary displacement directions of a multi-axis platform. Hence, its measurement and compensation are critical in precision multi-axis metrology, calibration, and manufacturing. This paper presents a two-dimensional (2D) straightness measurement configuration based on 2D optical knife-edge sensing, which is simple, light-weight, compact, and easy to align. It applies a 2D optical knife-edge to manipulate the diffraction pattern sensed by a quadrant photodetector, whose output voltages could derive 2D straightness errors after a calibration process. This paper analyzes the physical model of the configuration and performs simulations and experiments to study the system sensitivity, measurement nonlinearity, and error sources. The results demonstrate that the proposed configuration has higher sensitivity and insensitive to beam's vibration, compared with the conventional configurations without using the knife-edge, and could achieve ±0.25 μ m within a ±40 μ m measurement range along a 40 mm primary axial motion.
Evaluating Approaches to Rendering Braille Text on a High-Density Pin Display.
Morash, Valerie S; Russomanno, Alexander; Gillespie, R Brent; OModhrain, Sile
2017-10-13
Refreshable displays for tactile graphics are typically composed of pins that have smaller diameters and spacing than standard braille dots. We investigated configurations of high-density pins to form braille text on such displays using non-refreshable stimuli produced with a 3D printer. Normal dot braille (diameter 1.5 mm) was compared to high-density dot braille (diameter 0.75 mm) wherein each normal dot was rendered by high-density simulated pins alone or in a cluster of pins configured in a diamond, X, or square; and to "blobs" that could result from covering normal braille and high-density multi-pin configurations with a thin membrane. Twelve blind participants read MNREAD sentences displayed in these conditions. For high-density simulated pins, single pins were as quickly and easily read as normal braille, but diamond, X, and square multi-pin configurations were slower and/or harder to read than normal braille. We therefore conclude that as long as center-to-center dot spacing and dot placement is maintained, the dot diameter may be open to variability for rendering braille on a high density tactile display.
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
NASA Astrophysics Data System (ADS)
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
Inertial Energy Storage for Spacecraft
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.
1984-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.
Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures
NASA Technical Reports Server (NTRS)
Wang, John T.; Johnson, Arthur R.
2003-01-01
Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.
The kW power module evolution study: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
Using the Marshall Space Flight Center 25 kW Power Module (PM) reference design as a point of departure, the study defined evolutionary growth paths to 100 kW and above. A recommended development approach and initial configurations were described. Specific hardware changes from the reference design are recommended for the initial PM configuration to ensure evolutionary growth, improved replicability, and reduced cost. Certain functional changes are also recommended to enhance system capabilities.
Counter-facing plasma guns for efficient extreme ultra-violet plasma light source
NASA Astrophysics Data System (ADS)
Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko
2013-11-01
A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.
Multi-frequency communication system and method
Carrender, Curtis Lee; Gilbert, Ronald W.
2004-06-01
A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.
NASA Astrophysics Data System (ADS)
Chen, Xuedong; Sun, Yi; Huang, Qingjiu; Jia, Wenchuan; Pu, Huayan
This paper focuses on the design of a modular multi-legged walking robot MiniQuad-I, which can be reconfigured into variety configurations, including quadruped and hexapod configurations for different tasks by changing the layout of modules. Critical design considerations when taking the adaptability, maintainability and extensibility in count simultaneously are discussed and then detailed designs of each module are presented. The biomimetic control architecture of MiniQuad-I is proposed, which can improve the capability of agility and independence of the robot. Simulations and experiments on crawling, object picking and obstacle avoiding are performed to verify functions of the MiniQuad-I.
Efficient simulation of incompressible viscous flow over multi-element airfoils
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan
1992-01-01
The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration.
Efficient simulation of incompressible viscous flow over multi-element airfoils
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan
1993-01-01
The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.
2012-03-01
In this paper, a general description for the Hubbard model with nearest-neighbor transfer integral t and on-site repulsion U on a square lattice with Na2≫1 sites is introduced. It refers to three types of elementary objects whose occupancy configurations generate the state representations of the model extended global SO(3)×SO(3)×U(1) symmetry recently found in Ref. [11] (Carmelo and Östlund, 2010). Such objects emerge from a suitable electron-rotated-electron unitary transformation. It is such that rotated-electron single and double occupancy are good quantum numbers for U≠0. The advantage of the description is that it accounts for the new found hidden U(1) symmetry in SO(3)×SO(3)×U(1)=[SU(2)×SU(2)×U(1)]/Z22 beyond the well-known SO(4)=[SU(2)×SU(2)]/Z2 model (partial) global symmetry. Specifically, the hidden U(1) symmetry state representations store full information on the positions of the spins of the rotated-electron singly occupied sites relative to the remaining sites. Profiting from that complementary information, for the whole U/4t>0 interaction range independent spin state representations are naturally generated in terms of spin-1/2 spinon occupancy configurations in a spin effective lattice. For all states, such an effective lattice has as many sites as spinons. This allows the extension to intermediate U/4t values of the usual large-U/4t descriptions of the spin degrees of freedom of the electrons that singly occupy sites, now in terms of the spins of the singly-occupied sites rotated electrons. The operator description introduced in this paper brings about a more suitable scenario for handling the effects of hole doping. Within this, such effects are accounted for in terms of the residual interactions of the elementary objects whose occupancy configurations generate the state representations of the charge hidden U(1) symmetry and spin SU(2) symmetry, respectively. This problem is investigated elsewhere. The most interesting physical information revealed by the description refers to the model on the subspace generated by the application of one- and two-electron operators onto zero-magnetization ground states. (This is the square-lattice quantum liquid further studied in Ref. [5] (Carmelo, 2010).) However, to access such an information, one must start from the general description introduced in this paper, which refers to the model in the full Hilbert space.
Multi-agent robotic systems and applications for satellite missions
NASA Astrophysics Data System (ADS)
Nunes, Miguel A.
A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour revisit time 52 satellites are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.
An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m 3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referredmore » to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.« less
Diode-Pumped Narrow Linewidth Multi-kW Metalized Yb Fiber Amplifier
2016-10-01
multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 µm, 0.2 NA multi-mode fiber. Gold -coated...multi-mode instability, with 90% O-O efficiency 12 GHz Linewidth and M2 < 1.15. OCIS codes: (140.3510) Lasers , fiber; (140.3615) Lasers , ytterbium...060.2430) Fibers, single-mode. 1. INTRODUCTION Yb-doped fiber laser has experienced exponential growth over the past decade. The output power
Space construction system analysis. Part 2: Platform definition
NASA Technical Reports Server (NTRS)
Hart, R. J.; Myers, H. L.; Abramson, R. D.; Dejong, P. N.; Donavan, R. D.; Greenberg, H. S.; Indrikis, J.; Jandrasi, J. S.; Manoff, M.; Mcbaine, C. K.
1980-01-01
The top level system requirements are summarized and the accompanying conceptual design for an engineering and technology verification platform (ETVP) system is presented. An encompassing statement of the system objectives which drive the system requirements is presented and the major mission and subsystem requirements are described with emphasis on the advanced communications technology mission payload. The platform design is defined and used as a reference configuration for an end to space construction analyses. The preferred construction methods and processes, the important interactions between the platform design and the construction system design and operation, and the technology development efforts required to support the design and space construction of the ETVP are outlined.
Design considerations for multielectron double quantum dot qubits in silicon
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Barnes, Edwin; Kestner, Jason
2014-03-01
Solid state double quantum dot (DQD) spin qubits can be created by confining two electrons to a DQD potential. We present results showing the viability and potential advantages of creating a DQD spin qubit with greater than two electrons, and which suggest that silicon devices which could realize these advantages are experimentally possible. Our analysis of a six-electron DQD uses full configuration interaction methods and shows an isolated qubit space in regimes which 3D quantum device simulations indicate are accessible experimentally. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Buckling transition and boundary layer in non-Euclidean plates.
Efrati, Efi; Sharon, Eran; Kupferman, Raz
2009-07-01
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
Is the thumb a fifth finger? A study of digit interaction during force production tasks
Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark L.
2010-01-01
We studied indices of digit interaction in single- and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers. PMID:15322785