A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.
Kumar, P; Kumar, Dinesh; Rai, K N
2015-01-01
The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
High permittivity patch radiator for single and multi-element hyperthermia applicators.
Andreuccetti, D; Bini, M; Ignesti, A; Olmi, R; Priori, S; Vanni, R
1993-07-01
This paper describes a compact, low-profile patch radiator which is the base element for efficient, small-size applicators suitable for superficial hyperthermia. The design criteria and the technological processes involved are presented. The electromagnetic characteristics of the patch element are outlined, and possible application of the radiator are discussed.
Steinberg, Idan; Tamir, Gil; Gannot, Israel
2018-03-16
Solid malignant tumors are one of the leading causes of death worldwide. Many times complete removal is not possible and alternative methods such as focused hyperthermia are used. Precise control of the hyperthermia process is imperative for the successful application of such treatment. To that end, this research presents a fast method that enables the estimation of deep tissue heat distribution by capturing and processing the transient temperature at the boundary based on a bio-heat transfer model. The theoretical model is rigorously developed and thoroughly validated by a series of experiments. A 10-fold improvement is demonstrated in resolution and visibility on tissue mimicking phantoms. The inverse problem is demonstrated as well with a successful application of the model for imaging deep-tissue embedded heat sources. Thereby, allowing the physician then ability to dynamically evaluate the hyperthermia treatment efficiency in real time.
Pichardo, Samuel; Köhler, Max; Lee, Justin; Hynnyen, Kullervo
2014-12-01
In this in vivo study, the feasibility to perform hyperthermia treatments in the head and neck using magnetic resonance image-guided high intensity focused ultrasound (MRgHIFU) was established using a porcine acute model. Porcine specimens with a weight between 17 and 18 kg were treated in the omohyoid muscle in the neck. Hyperthermia was applied with a target temperature of 41 °C for 30 min using a Sonalleve MRgHIFU system. MR-based thermometry was calculated using water-proton resonance frequency shift and multi-baseline look-up tables indexed by peak-to-peak displacement (Dpp) measurements using a pencil-beam navigator. Three hyperthermia experiments were conducted at different Dpp values of 0.2, 1.0 and 3.0 mm. An optimisation study was carried out to establish the optimal parameters controlling the multi-baseline method that ensured a minimisation of spatial-average peak-to-peak temperature (TSA-pp) and temperature direct current bias (TSA-DC). The multi-baseline technique reduced considerably the noise on both TSA-pp and TSA-DC. The reduction of noise was more important when Dpp was higher. For Dpp = 3 mm the average (±standard deviation (SD)) of TSA-pp and TSA-DC was reduced from 4.5 (± 2.5) and 2.5 (±0.6) °C, respectively, to 0.8 (± 0.7) and 0.09 (± 0.2) °C. This in vivo study showed the level of noise in PRFS-based thermometry introduced by respiratory motion in the context of MRgHIFU hyperthermia treatment for head and neck and the feasibility of reducing this noise using a multi-baseline technique.
Kumar, Dinesh; Rai, K N
2016-12-01
Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spiral microstrip hyperthermia applicators: technical design and clinical performance.
Samulski, T V; Fessenden, P; Lee, E R; Kapp, D S; Tanabe, E; McEuen, A
1990-01-01
Spiral microstrip microwave (MW) antennas have been developed and adapted for use as clinical hyperthermia applicators. The design has been configured in a variety of forms including single fixed antenna applicators, multi-element arrays, and mechanically scanned single or paired antennas. The latter three configurations have been used to allow an expansion of the effective heating area. Specific absorption rate (SAR) distributions measured in phantom have been used to estimate the depth and volume of effective heating. The estimates are made using the bioheat equation assuming uniformly perfused tissue. In excess of 500 treatments of patients with advanced or recurrent localized superficial tumors have been performed using this applicator technology. Data from clinical treatments have been analyzed to quantify the heating performance and verify the suitability of these applicators for clinical use. Good microwave coupling efficiency together with the compact applicator size have proved to be valuable clinical assets.
MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications
NASA Astrophysics Data System (ADS)
Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.
2018-04-01
In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.
An overview of interstitial brachytherapy and hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, B.B.; Harney, J.
Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combinationmore » with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.« less
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Tamir, Gil; Gannot, Israel
2017-02-01
Systemic hyperthermia therapy exploits the fact that cancer cells are more sensitive to elevated temperatures than healthy tissue. Systemic application of hyperthermia externally usually leads to low efficiency treatment. Recently, our group and others have proposed an antibody conjugated magnetic nanoparticles (MNPs) approach to overcome the limitation of systemic hyperthermia. MNPs can bind specifically to the tumor sites, thus delivering internal highly effective targeted hyperthermia. However, such internal mechanism requires more complicated controls and monitoring. This current work presents a deep tissue temperature monitoring method to control hyperthermia effectiveness and minimize collateral damage to surrounding tissues. A low-frequency narrowband modulation of the RF field used for MNP heating leads to the generation of diffused thermal waves which propagate to the tissue surface and captured by a thermal camera. A Fourier domain, analytical heat transfer model is used for temperature monitoring algorithm. The ill-posed thermal inverse problem is solved efficiently by iterating over the source power until both the amplitude and phase match the recorded thermal image sequence. The narrow bandwidth thermal stimulation enables acquiring deep signals with high SNR. We show that thermal transverse resolution improves as the stimulation frequency increases even slightly above DC, enabling better heat source transverse separation and margin identification in the case of distributed tumors. These results can be used as a part of an overall image and treat system for efficient detection of tumors, manipulation of MNPs and monitoring MNP based hyperthermia.
NASA Astrophysics Data System (ADS)
Krotov, Eugene V.; Yakovlev, Ivan V.; Zhadobov, Maxim; Reyman, Alexander M.; Zharov, Vladimir P.
2002-06-01
This work present the results of experimental study of applicability of acoustical brightness thermometry (ABT) in monitoring of internal temperature during laser hyperthermia and interstitial therapy. In these experiments the radiation of pulse repetition Nd:YAG laser (1064 nm) and continuous diode laser (800 nm) were used as heating sources. Experiments were performed in vitro by insertion of optical fiber inside the objects - optically transparent gelatin with incorporated light absorbing heterogeneities and samples of biological tissues (e.g. liver). During laser heating, internal temperature in absorbing heterogeneity and at fiber end were monitored by means of multi-channel ABT. The independent temperature control was performed with tiny electronic thermometer incorporated in heated zones. The results of experiments demonstrated reasonable sensitivity and accuracy of ABT for real-time temperature control during different kind of laser thermal therapies. According to preliminary data, ABT allow to measure temperature in depth up to 3-5 cm (depends on tissue properties) with spatial resolution some mm. Obtained data show that ABT is a very promising tool to give quantitative measure for different types of energy deposition (laser, microwave, focused ultrasound etc) at the depth commonly encountered in tumors of vital organs. Besides, ABT could give information about diffusion effects in heated zones or optical absorption. This work was supported by Russian Foundation for Basic Research and 6th competition-expertise of young scientists of Russian Academy of Sciences.
Hyperthermia Using Nanoparticles – Promises and Pitfalls
Kaur, Punit; Aliru, Maureen L.; Chadha, Awalpreet S.; Asea, Alexzander; Krishnan, Sunil
2016-01-01
An ever-increasing body of literature affirms the physical and biological basis for sensitization of tumors to conventional therapies such as chemotherapy and radiation therapy by mild temperature hyperthermia. This knowledge has fueled the efforts to attain, maintain, measure and monitor temperature via technological advances. A relatively new entrant in the field of hyperthermia is nanotechnology which capitalizes on locally injected or systemically administered nanoparticles that are activated by extrinsic energy sources to generate heat. This review describes the kinds of nanoparticles available for hyperthermia generation, their activation sources, their characteristics, and the unique opportunities and challenges with nanoparticle-mediated hyperthermia. PMID:26757879
Hyperthermia using nanoparticles--Promises and pitfalls.
Kaur, Punit; Aliru, Maureen L; Chadha, Awalpreet S; Asea, Alexzander; Krishnan, Sunil
2016-01-01
An ever-increasing body of literature affirms the physical and biological basis for sensitisation of tumours to conventional therapies such as chemotherapy and radiation therapy by mild temperature hyperthermia. This knowledge has fuelled the efforts to attain, maintain, measure and monitor temperature via technological advances. A relatively new entrant in the field of hyperthermia is nanotechnology which capitalises on locally injected or systemically administered nanoparticles that are activated by extrinsic energy sources to generate heat. This review describes the kinds of nanoparticles available for hyperthermia generation, their activation sources, their characteristics, and the unique opportunities and challenges with nanoparticle-mediated hyperthermia.
Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva
2010-03-01
This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.
NASA Astrophysics Data System (ADS)
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian
2015-03-01
Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian
2015-03-07
Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe 2 O 3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.
Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia.
Giordano, Mauricio A; Gutierrez, Gustavo; Rinaldi, Carlos
2010-01-01
Methods of predicting temperature profiles during local hyperthermia treatment are very important to avoid damage to healthy tissue. With this aim, fundamental solutions of Pennes' bioheat equation are derived in rectangular, cylindrical, and spherical coordinates. The medium is idealised as isotropic with effective thermal properties. Temperature distributions due to space- and time-dependent heat sources are obtained by the solution method presented. Applications of the fundamental solutions are addressed with emphasis on a particular problem of Magnetic Fluid Hyperthermia (MFH) consisting of a thin shell of magnetic nanoparticles in the outer surface of a spherical solid tumour. It is observed from the solution of this particular problem that the temperature profiles are strongly dependent on the distribution of the magnetic nanoparticles within the tissue. An almost uniform temperature profile is obtained inside the tumour with little penetration of therapeutic temperatures to the outer region of healthy tissue. The fundamental solutions obtained can be used to develop boundary element methods to predict temperature profiles with more complicated geometries.
NASA Astrophysics Data System (ADS)
Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Butts Pauly, Kim; Rieke, Viola; Sommer, Graham
2006-05-01
Multi-sectored ultrasound heating applicators with dynamic angular and longitudinal control of heating profiles are being investigated for the thermal treatment of tumors in sites such as prostate, uterus, and brain. Multi-sectored tubular ultrasound transducers with independent sector power control were incorporated into interstitial and transurethral applicators and provided dynamic angular control of a heating pattern without requiring device manipulation during treatment. Acoustic beam measurements of each applicator type demonstrated a 35-40° acoustic dead zone between each independent sector, with negligible mechanical or electrical coupling. Despite the acoustic dead zone between sectors, simulations and experiments under MR temperature (MRT) monitoring showed that the variance from the maximum lesion radius (scalloping) with all elements activated on a transducer was minimal and did not affect conformal heating of a target area. A biothermal model with a multi-point controller was used to adjust the applied power and treatment time of individual transducer segments as the tissue temperature changed in simulations of thermal lesions with both interstitial and transurethral applicators. Transurethral ultrasound applicators for benign prostatic hyperplasia (BPH) treatment with either three or four sectors conformed a thermal dose to a simulated target area in the angular and radial dimensions. The simulated treatment was controlled to a maximum temperature of 85°C, and had a maximum duration of 5 min when power was turned off as the 52°C temperature contour reach a predetermined control point for each sector in the tissue. Experiments conducted with multi-sectored applicators under MRT monitoring showed thermal ablation and hyperthermia treatments had little or no border `scalloping', conformed to a pretreatment target area, and correlated very well with the simulated thermal lesions. The radial penetration of the heat treatments in tissue with interstitial (1.5-1.8 mm OD transducer) and transurethral (2.5-4.0 mm OD transducer) applicators was at least 1.5 cm and 2.0 cm, respectively, for a treatment duration of 10 min. Angular control of thermal ablation and hyperthermia therapy often relies upon non-adjustable angular power deposition patterns and/or mechanical manipulation of the heating device. The multi-sectored ultrasound applicators developed in this study provide dynamic control of the angular heating distribution during treatment without device manipulation and maintain previously reported heating penetration and spatial control characteristics of similar ultrasound devices.
Magnetic hyperthermia with hard-magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.
2015-04-01
Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.
Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
Purushotham, S; Chang, P E J; Rumpel, H; Kee, I H C; Ng, R T H; Chow, P K H; Tan, C K; Ramanujan, R V
2009-07-29
Thermoresponsive polymer-coated magnetic nanoparticles loaded with anti-cancer drugs are of considerable interest for novel multi-modal cancer therapies. Such nanoparticles can be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release. Gamma-Fe(2)O(3) iron oxide magnetic nanoparticles (MNP) with average sizes of 14, 19 and 43 nm were synthesized by high temperature decomposition. Composite magnetic nanoparticles (CNP) of 43 nm MNP coated with the thermoresponsive polymer poly-n-isopropylacrylamide (PNIPAM) were prepared by dispersion polymerization of n-isopropylacrylamide monomer in the presence of the MNP. In vitro drug release of doxorubicin-(dox) loaded dehydrated CNP at temperatures below and above the lower critical solution temperature of PNIPAM (34 degrees C) revealed a weak dependence of drug release on swelling behavior. The particles displayed Fickian diffusion release kinetics; the maximum dox release at 42 degrees C after 101 h was 41%. In vitro simultaneous hyperthermia and drug release of therapeutically relevant quantities of dox was achieved, 14.7% of loaded dox was released in 47 min at hyperthermia temperatures. In vivo magnetic targeting of dox-loaded CNP to hepatocellular carcinoma (HCC) in a buffalo rat model was studied by magnetic resonance imaging (MRI) and histology. In summary, the good in vitro and in vivo performance of the doxorubicin-loaded thermoresponsive polymer-coated magnetic nanoparticles suggests considerable promise for applications in multi-modal treatment of cancer.
Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery
Kumar, Challa S. S. R.; Mohammad, Faruq
2011-01-01
Previous attempts to review the literature on magnetic nanomaterials for hyperthermia-based therapy focused primarily on magnetic fluid hyperthermia (MFH) using mono metallic/metal oxide nanoparticles. The term “Hyperthermia” in the literature was also confined only to include use of heat for therapeutic applications. Recently, there have been a number of publications demonstrating magnetic nanoparticle-based hyperthermia to generate local heat resulting in the release of drugs either bound to the magnetic nanoparticle or encapsulated within polymeric matrices. In this review article, we present a case for broadening the meaning of the term “hyperthermia” by including thermotherapy as well as magnetically modulated controlled drug delivery. We provide a classification for controlled drug delivery using hyperthermia: Hyperthermia-based controlled Drug delivery through Bond Breaking (DBB) and Hyperthermia-based controlled Drug delivery through Enhanced Permeability (DEP). The review also covers, for the first time, core-shell type magnetic nanomaterials, especially nanoshells prepared using layer-by-layer self-assembly, for the application of hyperthermia-based therapy and controlled drug delivery. The highlight of the review article is to portray potential opportunities in the combination of hyperthermia-based therapy and controlled drug release paradigms for successful application in personalized medicine. PMID:21447363
Magnetic Nanoparticles for Multi-Imaging and Drug Delivery
Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo
2013-01-01
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479
Stigliano, Robert; Baker, Ian
2015-01-01
Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545
Synthesis and size classification of metal oxide nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Atsumi, Takashi; Jeyadevan, Balachandran; Sato, Yoshinori; Tamura, Kazuchika; Aiba, Setsuya; Tohji, Kazuyuki
2004-12-01
Magnetic nanoparticles are considered for biomedical applications, such as the medium in magnetic resonance imaging, hyperthermia, drug delivery, and for the purification or classification of DNA or virus. The performance of magnetic nanoparticles in biomedical application such as hyperthermia depends very much on the magnetic properties, size and size distribution. We briefly described the basic idea behind their use in drug delivery, magnetic separation and hyperthermia and discussed the prerequisite properties magnetic particles for biomedical applications. Finally reported the synthesis and classification scheme to prepare magnetite (Fe3O4) nanoparticles with narrow size distribution for magnetic fluid hyperthermia.
NASA Astrophysics Data System (ADS)
Zhao, Lingyun; Xu, Xiaoyu; Wang, Xiaowen; Zhang, Xiaodong; Gao, Fuping; Tang, Jintian
2009-07-01
Cancer comprehensive treatment has been fully acknowledged as it can provide an effective multimodality approach for fighting cancers. In this study, various innovative technologies for cancer treatment including cancer nanotechnology, chemotherapy by sustainable release, as well as magnetic induction hyperthermia (MIH) have been integrated for the purpose of cancer comprehensive treatment. Briefly, such kind of treatment can be realized by applying of the tailored magnetic nanoparticles (MNPs) composite polymeric film. Fe3O4 MNPs acting as the agent for MIH, and anti-cancer drug docetaxel as chemotherapeutic agent were incorporated within the biodegradable polymeric film. Physiochemical characterizations on MNPs and the film have been systematically carried out by various instrumental analyses. Our results demonstrated that the film has been successfully fabricated by the solvent cast method. Hyperthermia could be induced by stimulating the nanocomposite film under an alternative magnetic field (AMF). The incorporation of MNPs, as well as hyperthermia would facilitate the drug release from the polymeric film. The in-vitro cytotoxicity results indicated the bi-modal cancer treatment approach for combined MIH and chemotherapy is more effective than the mono-modal treatment by docetaxel treatment. The magnetic nanocomposite film can realize cancer comprehensive treatment thus has great potential in clinical application.
Guisasola, Eduardo; Asín, Laura; Beola, Lilianne; de la Fuente, Jesús M; Baeza, Alejandro; Vallet-Regí, María
2018-04-18
In this study, we present an innovation in the tumor treatment in vivo mediated by magnetic mesoporous silica nanoparticles. This device was built with iron oxide magnetic nanoparticles embedded in a mesoporous silica matrix and coated with an engineered thermoresponsive polymer. The magnetic nanoparticles act as internal heating sources under an alternating magnetic field (AMF) that increase the temperature of the surroundings, provoking the polymer transition and consequently the release of a drug trapped inside the silica pores. By a synergic effect between the intracellular hyperthermia and chemotherapy triggered by AMF application, significant tumor growth inhibition was achieved in 48 h after treatment. Furthermore, the small magnetic loading used in the experiments indicates that the treatment is carried out without a global temperature rise of the tissue, which avoids the problem of the necessity to employ large amounts of magnetic cores, as is common in current magnetic hyperthermia.
Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang
2016-01-01
Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.
2015-04-01
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon application. Here, Fe3O4 nanoparticles are shown to provide excellent conjugation bases for entrapment of therapeutic molecules, fluorescent agents, and targeting ligands; enhancement of solid tumor treatment is achieved through co-application of local hyperthermia with chemotherapeutic agents.
NASA Astrophysics Data System (ADS)
Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.
2009-02-01
A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended to model thermal ablation, including the addition of temperature dependent attenuation, perfusion, and tissue damage. Pilot point control at the target boundaries was implemented to control power delivery to each transducer section, simulating an approach feasible for MR guided procedures. The computer model of thermal ablation was evaluated on representative patient anatomies to demonstrate the feasibility of using catheter-based ultrasound thermal ablation for treatment of benign prostate hyperplasia (BPH) and prostate cancer, and to assist in designing applicators and treatment delivery strategies.
Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R; Maccarini, Paolo; Joines, William T; Dewhirst, Mark W; Das, Shiva K
2009-04-07
In large multi-antenna systems, adaptive controllers can aid in steering the heat focus toward the tumor. However, the large number of sources can greatly increase the steering time. Additionally, controller performance can be degraded due to changes in tissue perfusion which vary non-linearly with temperature, as well as with time and spatial position. The current work investigates whether a reduced-order controller with the assumption of piecewise constant perfusion is robust to temperature-dependent perfusion and achieves steering in a shorter time than required by a full-order controller. The reduced-order controller assumes that the optimal heating setting lies in a subspace spanned by the best heating vectors (virtual sources) of an initial, approximate, patient model. An initial, approximate, reduced-order model is iteratively updated by the controller, using feedback thermal images, until convergence of the heat focus to the tumor. Numerical tests were conducted in a patient model with a right lower leg sarcoma, heated in a 10-antenna cylindrical mini-annual phased array applicator operating at 150 MHz. A half-Gaussian model was used to simulate temperature-dependent perfusion. Simulated magnetic resonance temperature images were used as feedback at each iteration step. Robustness was validated for the controller, starting from four approximate initial models: (1) a 'standard' constant perfusion lower leg model ('standard' implies a model that exactly models the patient with the exception that perfusion is considered constant, i.e., not temperature dependent), (2) a model with electrical and thermal tissue properties varied from 50% higher to 50% lower than the standard model, (3) a simplified constant perfusion pure-muscle lower leg model with +/-50% deviated properties and (4) a standard model with the tumor position in the leg shifted by 1.5 cm. Convergence to the desired focus of heating in the tumor was achieved for all four simulated models. The controller accomplished satisfactory therapeutic outcomes: approximately 80% of the tumor was heated to temperatures 43 degrees C and approximately 93% was maintained at temperatures <41 degrees C. Compared to the controller without model reduction, a approximately 9-25 fold reduction in convergence time was accomplished using approximately 2-3 orthonormal virtual sources. In the situations tested, the controller was robust to the presence of temperature-dependent perfusion. The results of this work can help to lay the foundation for real-time thermal control of multi-antenna hyperthermia systems in clinical situations where perfusion can change rapidly with temperature.
NASA Astrophysics Data System (ADS)
Paulides, M. M.; Mestrom, R. M. C.; Salim, G.; Adela, B. B.; Numan, W. C. M.; Drizdal, T.; Yeo, D. T. B.; Smolders, A. B.
2017-03-01
Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S 11 < -15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S 21 < -23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE = 0.51 °C and R 2 = 0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.
Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE
Cuplov, Vesna; Pain, Frédéric; Jan, Sébastien
2017-01-01
Application of nanotechnology for biomedicine in cancer therapy allows for direct delivery of anticancer agents to tumors. An example of such therapies is the nanoparticle-mediated near-infrared hyperthermia treatment. In order to investigate the influence of nanoparticle properties on the spatial distribution of heat in the tumor and healthy tissues, accurate simulations are required. The Geant4 Application for Emission Tomography (GATE) open-source simulation platform, based on the Geant4 toolkit, is widely used by the research community involved in molecular imaging, radiotherapy and optical imaging. We present an extension of GATE that can model nanoparticle-mediated hyperthermal therapy as well as simple heat diffusion in biological tissues. This new feature of GATE combined with optical imaging allows for the simulation of a theranostic scenario in which the patient is injected with theranostic nanosystems that can simultaneously deliver therapeutic (i.e. hyperthermia therapy) and imaging agents (i.e. fluorescence imaging). PMID:28663855
Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?
NASA Astrophysics Data System (ADS)
Espinosa, Ana; Bugnet, Mathieu; Radtke, Guillaume; Neveu, Sophie; Botton, Gianluigi A.; Wilhelm, Claire; Abou-Hassan, Ali
2015-11-01
Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives.Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06168g
NASA Astrophysics Data System (ADS)
Salgaonkar, Vasant A.; Wootton, Jeff; Prakash, Punit; Scott, Serena; Hsu, I. C.; Diederich, Chris J.
2017-03-01
This study presents thermal dosimetry analysis from clinical treatments where ultrasound hyperthermia (HT) was administered following high-dose rate (HDR) brachytherapy treatment for locally advanced prostate cancer as part of a clinical pilot study. HT was administered using ultrasound applicators from within multiple 13-g brachytherapy catheters implanted along the posterior periphery of the prostate. The heating applicators were linear arrays of sectored tubular transducers (˜7 MHz), with independently powered array elements enabling energy deposition with 3D spatial control. Typical heat treatments employed time-averaged peak acoustic intensities of 1 - 3 W/cm2 and lasted for 60 - 70 minutes. Throughout the treatments, temperatures at multiple points were monitored using multi-junction thermocouples, placed within available brachytherapy catheters throughout mid-gland prostate and identified as the hyperthermia target volume (HTV). Clinical constraints allowed placement of 8 - 12 thermocouple sensors in the HTV and patient-specific 3D thermal modeling based on finite element methods (FEM) was used to supplement limited thermometry. Patient anatomy, heating device positions, orientations, and thermometry junction locations were obtained from patient CT scans and HDR and hyperthermia planning software. The numerical models utilized the applied power levels recorded during the treatments. Tissue properties such as perfusion and acoustic absorption were varied within physiological ranges such that squared-errors between measured and simulated temperatures were minimized. This data-fitting was utilized for 6 HT treatments to estimate volumetric temperature distributions achieved in the HTV and surrounding anatomy devoid of thermocouples. For these treatments, the measured and simulated T50 values in the hyperthermia target volume (HTV) were between 40.1 - 43.9 °C and 40.3 - 44.9 °C, respectively. Maximum temperatures between 46.8 - 49.8 °C were measured during these treatments and the corresponding range obtained from simulation was 47.3 - 51.1 °C. Based on the simulations, the maximum temperatures in the bladder and the rectum were below 41.7 °C and 41.1 °C, respectively.
NASA Astrophysics Data System (ADS)
Abraham, Edward H.; Woo, Van H.; Harlin-Jones, Cheryl; Heselich, Anja; Frohns, Florian
2014-02-01
Benefit of concomitant infrared hyperthermia and low level laser therapy and ionizing radiation is evaluated in this study. The purpose/objectives: presentation with locally advanced bulky superficial tumors is clinically challenging. To enhance the efficacy of chemotherapy and IMRT (intensity-modulated radiation therapy) and/or electron beam therapy we have developed an inexpensive and clinically effective infrared hyperthermia approach that combines black-body infrared radiation with halogen spectrum radiation and discrete wave length infrared clinical lasers LLLT. The goal is to produce a composite spectrum extending from the far infrared to near infrared and portions of the visible spectrum with discrete penetrating wavelengths generated by the clinical infrared lasers with frequencies of 810 nm and/or 830 nm. The composite spectrum from these sources is applied before and after radiation therapy. We monitor the surface and in some cases deeper temperatures with thermal probes, but use an array of surface probes as the limiting safe thermal constraint in patient treatment while at the same time maximizing infrared entry to deeper tissue layers. Fever-grade infrared hyperthermia is produced in the first centimeters while non-thermal infrared effects act at deeper tissue layers. The combination of these effects with ionizing radiation leads to improved tumor control in many cancers.
Micro-Nanomaterials for Tumor Microwave Hyperthermia: Design, Preparation, and Application.
Chen, Xue; Tan, Longfei; Liu, Tianlong; Meng, Xianwei
2017-01-01
Cancer hyperthermia is attracting much attention in basic science and clinics. Among the hyperthermia techniques, microwave (MW) heating is most commonly used for cancer treatment. It offers highly competitive advantages: faster heat generation from microwave radiation, less susceptibility to heat up local tissues, maneuverability, and depth of penetration in tissues and capability of killing tumor cells. Although the encouraging clinical results are being collected, MW hyperthermia has its own challenges, such as inaccurate targeting and low selectivity, which lead to damage to the surrounding vital organs and tissues. To address these issues, this review aims to introduce micronanomaterials as promising agents for receiving the electromagnetic wave, which should be beneficial for improving the efficacy of MW hyperthermia. We have searched many peer-reviewed papers in medical and chemical material databases about micro-nanomaterials for tumor microwave hyperthermia. Distinguishing features and important progresses are introduced in this review. One hundred and forty papers were chosen and included in this review. Four parts were described, including hyperthermia techniques and the application of micro-nanomaterials, microwave thermal therapy and treatment principle, microwave absorbing micro-nanomaterials, the preparation and application of micro-nanomaterials in microwave thermal therapy. We review the most recent literatures on micro-nanomaterials-based MW heating strategies for cancer treatment, with the aim to give the reader an overview of the state-of-the-art of MW hyperthermia therapy. The future of MW responsive materials will also be discussed, including combination of imaging probes and targeting moieties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Huang, Pin-Chieh; Pande, Paritosh; Ahmad, Adeel; Marjanovic, Marina; Spillman, Darold R.; Odintsov, Boris; Boppart, Stephen A.
2016-01-01
Magnetic nanoparticles (MNPs) have been used in many diagnostic and therapeutic biomedical applications over the past few decades to enhance imaging contrast, steer drugs to targets, and treat tumors via hyperthermia. Optical coherence tomography (OCT) is an optical biomedical imaging modality that relies on the detection of backscattered light to generate high-resolution cross-sectional images of biological tissue. MNPs have been utilized as imaging contrast and perturbative mechanical agents in OCT in techniques called magnetomotive OCT (MM-OCT) and magnetomotive elastography (MM-OCE), respectively. MNPs have also been independently used for magnetic hyperthermia treatments, enabling therapeutic functions such as killing tumor cells. It is well known that the localized tissue heating during hyperthermia treatments result in a change in the biomechanical properties of the tissue. Therefore, we propose a novel dosimetric technique for hyperthermia treatment based on the viscoelasticity change detected by MM-OCE, further enabling the theranostic function of MNPs. In this paper, we first review the basic principles and applications of MM-OCT, MM-OCE, and magnetic hyperthermia, and present new preliminary results supporting the concept of MM-OCE-based hyperthermia dosimetry. PMID:28163565
The Kadota Fund International Forum 2004-Clinical group consensus*
van der Zee, J.; Vujaskovic, Z.; Kondo, M.; Sugahara, T.
2009-01-01
The results from experimental studies indicate that hyperthermia is both an effective complementary treatment to, and a strong sensitiser of, radiotherapy and many cytotoxic drugs. Since the first international hyperthermia conference in 1975, Washington DC, techniques to increase tumour temperature have been developed and tested clinically. Hyperthermia can be applied by several methods: local hyperthermia by external or internal energy sources, perfusion hyperthermia of organs, limbs, or body cavities, and whole body hyperthermia. The clinical value of hyperthermia in combination with other treatment modalities has been shown by randomised trials. Significant improvement in clinical outcome has been demonstrated for tumours of the head and neck, breast, brain, bladder, cervix, rectum, lung, oesophagus, for melanoma and sarcoma. The addition of hyperthermia resulted in remarkably higher (complete) response rates, accompanied by improved local tumour control rates, better palliative effects, and/or better overall survival rates. Toxicity from hyperthermia cannot always be avoided, but is usually of limited clinical relevance. In spite of these good clinical results, hyperthermia has received little attention. Problems with acceptance concern the limited availability of equipment, the lack of awareness concerning clinical results, and the lack of financial resources. In this paper the most relevant literature describing the clinical effects of hyperthermia is reviewed and discussed, and means to overcome the lack of awareness and use of this modality is described. PMID:18283588
Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene.
Sun, Mingrui; Kiourti, Asimina; Wang, Hai; Zhao, Shuting; Zhao, Gang; Lu, Xiongbin; Volakis, John L; He, Xiaoming
2016-07-05
Hyperthermia generated with various energy sources including microwave has been widely studied for cancer treatment. However, the potential damage due to nontargeted heating of normal tissue is a major hurdle to its widespread application. Fullerene is a potential agent for improving cancer therapy with microwave hyperthermia but is limited by its poor solubility in water for biomedical applications. Here we report a combination therapy for enhanced cancer cell destruction by combining microwave heating with C60-PCNPs consisting of fullerene (C60) encapsulated in Pluronic F127-chitosan nanoparticles (PCNPs) with high water solubility. A cell culture dish integrated with an antenna was fabricated to generate microwave (2.7 GHz) for heating PC-3 human prostate cancer cells either with or without the C60-PCNPs. The cell viability data show that the C60-PCNPs alone have minimal cytotoxicity. The combination of microwave heating and C60-PCNPs is significantly more effective than the microwave heating alone in killing the cancer cells (7.5 versus 42.2% cell survival). Moreover, the combination of microwave heating and C60-PCNPs is significantly more destructive to the cancer cells than the combination of simple water-bath heating (with a similar thermal history to microwave heating) and C60-PCNPs (7.5 versus 32.5% survival) because the C60 in the many nanoparticles taken up by the cells can absorb the microwave energy and convert it into heat to enhance heating inside the cells under microwave irradiation. These data suggest the great potential of targeted heating via fullerene for enhanced cancer treatment by microwave hyperthermia.
Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications.
Beik, Jaber; Abed, Ziaeddin; Ghoreishi, Fatemeh S; Hosseini-Nami, Samira; Mehrzadi, Saeed; Shakeri-Zadeh, Ali; Kamrava, S Kamran
2016-08-10
In this work, we present an in-depth review of recent breakthroughs in nanotechnology for hyperthermia cancer therapy. Conventional hyperthermia methods do not thermally discriminate between the target and the surrounding normal tissues, and this non-selective tissue heating can lead to serious side effects. Nanotechnology is expected to have great potential to revolutionize current hyperthermia methods. To find an appropriate place in cancer treatment, all nanotechnology-based hyperthermia methods and their risks/benefits must be thoroughly understood. In this review paper, we extensively examine and compare four modern nanotechnology-based hyperthermia methods. For each method, the possible physical mechanisms of heat generation and enhancement due to the presence of nanoparticles are explained, and recent in vitro and in vivo studies are reviewed and discussed. Nano-Photo-Thermal Therapy (NPTT) and Nano-Magnetic Hyperthermia (NMH) are reviewed as the two first exciting approaches for targeted hyperthermia. The third novel hyperthermia method, Nano-Radio-Frequency Ablation (NaRFA) is discussed together with the thermal effects of novel nanoparticles in the presence of radiofrequency waves. Finally, Nano-Ultrasound Hyperthermia (NUH) is described as the fourth modern method for cancer hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer
NASA Astrophysics Data System (ADS)
Hervault, Aziliz; Thanh, Nguyêl; N. Thé, Kim
2014-09-01
Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.
Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.
Hervault, Aziliz; Thanh, Nguyen Th Kim
2014-10-21
Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.
FDTD analysis of a noninvasive hyperthermia system for brain tumors.
Yacoob, Sulafa M; Hassan, Noha S
2012-08-14
Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.
Andreu, Irene; Natividad, Eva
2013-12-01
In magnetic hyperthermia, characterising the specific functionality of magnetic nanoparticle arrangements is essential to plan the therapies by simulating maximum achievable temperatures. This functionality, i.e. the heat power released upon application of an alternating magnetic field, is quantified by means of the specific absorption rate (SAR), also referred to as specific loss power (SLP). Many research groups are currently involved in the SAR/SLP determination of newly synthesised materials by several methods, either magnetic or calorimetric, some of which are affected by important and unquantifiable uncertainties that may turn measurements into rough estimates. This paper reviews all these methods, discussing in particular sources of uncertainties, as well as their possible minimisation. In general, magnetic methods, although accurate, do not operate in the conditions of magnetic hyperthermia. Calorimetric methods do, but the easiest to implement, the initial-slope method in isoperibol conditions, derives inaccuracies coming from the lack of matching between thermal models, experimental set-ups and measuring conditions, while the most accurate, the pulse-heating method in adiabatic conditions, requires more complex set-ups.
Efficient Array Design for Sonotherapy
Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine
2008-01-01
New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for high time-averaged power output suitable for mild hyperthermia applications. The “thermal therapy” design produces more than 4 Watts of acoustic power from the low frequency arrays with only a 10.5 °C internal rise in temperature after 100 seconds of continuous use with an unmodified conventional imaging system, or substantially longer operation at lower acoustic power. The low frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to tissue load. Laboratory verification was successfully performed for the KLM derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating respectively. PMID:18591737
Heyll, Uwe
2012-06-01
The method of electro-hyperthermia is based on the production of alternating currents from capacitive coupled electrodes. Because of the associated heating of body tissues, the electro-hyperthermia is promoted as an alternative to the more sophisticated methods of scientific hyperthermia, which find use in oncologic diseases. The analysis of technical data, however, reveals that the electro-hyperthermia is not qualified for a focused, effective and therapeutically useful heating of circumscribed target areas. Data from clinical studies demonstrating efficacy for defined indications are not available. The application of electro-hyperthermia is excluded form the German system of public health insurance. As proof of medical necessity cannot be provided, there is also no claim for reimbursement from private health insurance. According to legal regulations in Germany, an invoice as hyperthermia treatment is usually not possible. Rather, an item from the electrotherapy section of the official provision of medical fees (GOA) has to be chosen.
NASA Astrophysics Data System (ADS)
Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan
2018-03-01
The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.
Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?
Espinosa, Ana; Bugnet, Mathieu; Radtke, Guillaume; Neveu, Sophie; Botton, Gianluigi A; Wilhelm, Claire; Abou-Hassan, Ali
2015-12-07
Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives.
Cancer hyperthermia using magnetic nanoparticles.
Kobayashi, Takeshi
2011-11-01
Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increased to above 43°C, which causes necrosis of cancer cells, but does not damage surrounding normal tissue. Among magnetic nanoparticles available, magnetite has been extensively studied. Recent years have seen remarkable advances in magnetite-nanoparticle-mediated hyperthermia; both functional magnetite nanoparticles and alternating-magnetic-field generators have been developed. In addition to the expected tumor cell death, hyperthermia treatment has also induced unexpected biological responses, such as tumor-specific immune responses as a result of heat-shock protein expression. These results suggest that hyperthermia is able to kill not only local tumors exposed to heat treatment, but also tumors at distant sites, including metastatic cancer cells. Currently, several research centers have begun clinical trials with promising results, suggesting that the time may have come for clinical applications. This review describes recent advances in magnetite nanoparticle-mediated hyperthermia. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation techniques in hyperthermia treatment planning
Paulides, MM; Stauffer, PR; Neufeld, E; Maccarini, P; Kyriakou, A; Canters, RAM; Diederich, C; Bakker, JF; Van Rhoon, GC
2013-01-01
Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44°C, significantly enhance radiotherapy and chemotherapy effectiveness (1). Driven by the developments in computational techniques and computing power, personalized hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimizing treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical setups are now being performed to achieve patient-specific treatment optimization. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from “model” to “clinic”. In addition, we illustrate the major techniques employed for validation and optimization. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer. PMID:23672453
Babincová, M; Kontrisova, K; Durdík, S; Bergemann, C; Sourivong, P
2014-02-01
The effect of trimodality treatment consisting of hyperthermia, cisplatin and radiation was investigated in two non-small lung carcinoma cell lines with different sensitivities to cisplatin. Hyperthermia treatment was performed using heat released via Neél and Brown relaxation of magnetic nanoparticles in an alternating magnetic field. Radiation with dose 1.5 Gy was performed after 15 min electromagnetic hyperthermia and cisplatin treatment. Electromagnetic hyperthermia enhanced cisplatin-induced radiosensitization in both the cisplatin-sensitive H460 (viability 11.2 +/- 1.8 %) and cisplatin-resistant A549 (viability 14.5 +/- 2.3 %) lung carcinoma cell line. Proposed nanotechnology based trimodality cancer treatment may have therefore important clinical applications.
FDTD analysis of a noninvasive hyperthermia system for brain tumors
2012-01-01
Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953
Numerical modeling for an electric-field hyperthermia applicator
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.
1993-01-01
Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.
Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
Sanz, Beatriz; Calatayud, M Pilar; Torres, Teobaldo E; Fanarraga, Mónica L; Ibarra, M Ricardo; Goya, Gerardo F
2017-01-01
Magnetic hyperthermia is a new type of cancer treatment designed for overcoming resistance to chemotherapy during the treatment of solid, inaccessible human tumors. The main challenge of this technology is increasing the local tumoral temperature with minimal side effects on the surrounding healthy tissue. This work consists of an in vitro study that compared the effect of hyperthermia in response to the application of exogenous heating (EHT) sources with the corresponding effect produced by magnetic hyperthermia (MHT) at the same target temperatures. Human neuroblastoma SH-SY5Y cells were loaded with magnetic nanoparticles (MNPs) and packed into dense pellets to generate an environment that is crudely similar to that expected in solid micro-tumors, and the above-mentioned protocols were applied to these cells. These experiments showed that for the same target temperatures, MHT induces a decrease in cell viability that is larger than the corresponding EHT, up to a maximum difference of approximately 45% at T = 46 °C. An analysis of the data in terms of temperature efficiency demonstrated that MHT requires an average temperature that is 6 °C lower than that required with EHT to produce a similar cytotoxic effect. An analysis of electron microscopy images of the cells after the EHT and MHT treatments indicated that the enhanced effectiveness observed with MHT is associated with local cell destruction triggered by the magnetic nano-heaters. The present study is an essential step toward the development of innovative adjuvant anti-cancer therapies based on local hyperthermia treatments using magnetic particles as nano-heaters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microstrip-antenna design for hyperthermia treatment of superficial tumors.
Montecchia, F
1992-06-01
Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative conditions: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicate that: i) the operating frequency is either single or multiple according to the applicator-mode, "resonant" or "traveling-wave," and can be chosen in the useful frequency range for hyperthermia (200-1000 MHz) according to the tumor cross-section and depth; ii) the heating pattern flexibility increases going from the simple geometry disk to the annular-slot and spiral applicators; iii) a distilled-water bolus is required; iv) the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance.
Mathematical modelling of the destruction degree of cancer under the influence of a RF hyperthermia
NASA Astrophysics Data System (ADS)
Paruch, Marek; Turchan, Łukasz
2018-01-01
The article presents the mathematical modeling of the phenomenon of artificial hyperthermia which is caused by the interaction of an electric field. The electric field is induced by the applicator positioned within the biological tissue with cancer. In addition, in order to estimate the degree of tumor destruction under the influence of high temperature an Arrhenius integral has been used. The distribution of electric potential in the domain considered is described by the Laplace system of equations, while the temperature field is described by the Pennes system of equations. These problems are coupled by source function being the additional component in the Pennes equation and resulting from the electric field action. The boundary element method is applied to solve the coupled problem connected with the heating of biological tissues.
Sabale, Sandip; Jadhav, Vidhya; Khot, Vishwajeet; Zhu, Xiaoli; Xin, Meiling; Chen, Hongxia
2015-03-01
Superparamagnetic nanoferrites are prepared by simple and one step refluxing in polyol synthesis. The ferrite nanoparticles prepared by this method exhibit particle sizes below 10 nm and high degree of crystallinity. These ferrite nanoparticles are compared by means of their magnetic properties, induction heating and cell viability studies for its application in magnetic fluid hyperthermia. Out of all studied nanoparticles in present work, only ZnFe2O4 and CoFe2O4 MNPs are able to produce threshold hyperthermia temperature. This rise in temperature is discussed in detail in view of their magneto-structural properties. Therefore ZnFe2O4 and CoFe2O4 MNPs with improved stability, magnetic induction heating and cell viability are suitable candidates for magnetic hyperthermia.
Makridis, A; Chatzitheodorou, I; Topouridou, K; Yavropoulou, M P; Angelakeris, M; Dendrinou-Samara, C
2016-06-01
The application of ferrite magnetic nanoparticles (MNPs) in medicine finds its rapidly developing emphasis on heating mediators for magnetic hyperthermia, the ever-promising "fourth leg" of cancer treatment. Usage of MNPs depends largely on the preparation processes to select optimal conditions and effective routes to finely tailor MNPs. Microwave heating, instead of conventional heating offers nanocrystals at significantly enhanced rate and yield. In this work, a facile mass-production microwave hydrothermal synthetic approach was used to synthesize stable ferromagnetic manganese and cobalt ferrite nanoparticles with sizes smaller than 14 nm from metal acetylacetonates in the presence of octadecylamine. Prolonging the reaction time from 15 to 60 min, led to ferrites with improved crystallinity while the sizes are slight increased. The high crystallinity magnetic nanoparticles showed exceptional magnetic heating parameters. In vitro application was performed using the human osteosarcoma cell line Saos-2 incubated with manganese ferrite nanoparticles. Hyperthermia applied in a two cycle process, while AC magnetic field remained on until the upper limit of 45 °C was achieved. The comparative results of the AC hyperthermia efficiency of ferrite nanoparticles in combination with the in vitro study coincide with the magnetic features and their tunability may be further exploited for AC magnetic hyperthermia driven applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Hyperthermia phased arrays pre-treatment evaluation.
Bardati, Fernando; Tognolatti, Piero
2016-12-01
In the hyperthermia treatment of deep-seated tumours by a phased array of radiofrequency (RF) antennas, heatability will be investigated in terms of power-to-tumour and other figures-of-merit of hyperthermia treatments to be optimised. The assumption is that each source is individually constrained to not exceed a maximal nominal power. The nominal power may differ from a source to another as a physical limit or an operative modality. Under such constraint, new procedures for the maximisation of (i) power-to-tumour, (ii) heating efficiency and, in general, (iii) power ratios as tumour-heating selectivity are proposed. (iv) The problem whether a tumour is equally heatable after turning off some antennas is addressed as array thinning. An array of eight dipoles arranged on two lines around a head/neck is introduced to perform a numerical analysis. The achievable power-to-tumour according to the new optimizations and other performance indices adopted from the literature is tested against values of power that can be found to be sufficient for heating tumours to clinical temperatures. New solutions to data rendering in hyperthermia heating are proposed.
THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS
Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...
Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2016-01-01
Purpose To investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumors using 3D acoustic and biothermal finite element models. Materials and Methods Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1–5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumor models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (>240 EM43°C) and moderate hyperthermia (40–45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70–80 °C for ablation and 45 °C for hyperthermia in target regions. Results Parametric studies indicated that 1–3 MHz planar transducers are most suitable for volumetric ablation, producing 5–8 cm3 lesion volumes for a stationary 5 minute sonication. Curvilinear-focused geometries produce more localized ablation to 20–45 mm depth from the GI tract and enhance thermal sparing (Tmax<42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1–92.9% of head/body tumor volumes (4.3–37.2 cm3) with dose <15 EM43°C in the luminal wall for 18–48 min treatment durations, using 1–3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm3 and 15 cm3 of tissue, respectively, between 40–45 °C for a single applicator placement. Conclusions Modeling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumor tissue. PMID:27097663
Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J
2013-01-01
Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIPL), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIPL in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIPL protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIPL was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIPL. These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIPL ubiquitination and proteolysis, as mutant c-FLIPL lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIPL by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases. PMID:23559011
Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J
2013-04-04
Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.
NASA Astrophysics Data System (ADS)
Foxley, Sean; Fan, Xiaobing; River, Jonathan; Zamora, Marta; Markiewicz, Erica; Sokka, Shunmugavelu; Karczmar, Gregory S.
2012-05-01
This pilot study investigated the feasibility of using MRI based on BOLD (blood-oxygen-level-dependent) contrast to detect physiological effects of locally induced hyperthermia in a rodent tumor model. Nude mice bearing AT6.1 rodent prostate tumors inoculated in the hind leg were imaged using a 9.4 T scanner using a multi-gradient echo pulse sequence to acquire high spectral and spatial resolution (HiSS) data. Temperature increases of approximately 6 °C were produced in tumor tissue using fiber-optic-guided light from a 250 W halogen lamp. HiSS data were acquired over three slices through the tumor and leg both prior to and during heating. Water spectra were produced from these datasets for each voxel at each time point. Time-dependent changes in water resonance peak width were measured during 15 min of localized tumor heating. The results demonstrated that hyperthermia produced both significant increases and decreases in water resonance peak width. Average decreases in peak width were significantly larger in the tumor rim than in normal muscle (p = 0.04). The effect of hyperthermia in tumor was spatially heterogeneous, i.e. the standard deviation of the change in peak width was significantly larger in the tumor rim than in normal muscle (p = 0.005). Therefore, mild hyperthermia produces spatially heterogeneous changes in water peak width in both tumor and muscle. This may reflect heterogeneous effects of hyperthermia on local oxygenation. The peak width changes in tumor and muscle were significantly different, perhaps due to abnormal tumor vasculature and metabolism. Response to hyperthermia measured by MRI may be useful for identifying and/or characterizing suspicious lesions as well as guiding the development of new hyperthermia protocols.
Romeyke, Tobias; Scheuer, Hans Christoph; Stummer, Harald
2015-01-01
Fibromyalgia syndrome (FMS) is a multi-factorial disease involving physiological as well as psychological factors. The aim of the study was to investigate a multidisciplinary inpatient treatment with emphasis on hyperthermia therapy by patients with widespread pain. The study involved 104 patients suffering from severely progressive FMS. A convenience sample and a prospective cohort design were used. The patients were treated in an acute hospital focusing on rheumatologic pain therapy and multidisciplinary complementary medicine. One patient group was treated with inclusion of hyperthermia therapy and the other group without. The therapy density (number of performed therapies per patient) was determined for every patient. Functional capacity measured by the Hannover functional status questionnaire (Funktionsfragebogen Hannover) and symptoms (von Zerssen complaint list) were analyzed for both groups on admission and on discharge. On admission, no significant difference could be established between control group (CG; multimodal without hyperthermia) and hyperthermia group (HG; multimodal with hyperthermia) (functional capacity, P=0.936). Functional capacity improved for the CG and the HG. On discharge, there was a significant difference between the two groups (functional capacity, P=0.039). There were no significant differences in fibromyalgia symptoms between CG (mean 41.8) and HG (mean 41.8) on their admission to hospital (P=0.988). On discharge, there was a significant difference (P=0.024) between the two groups (HG, mean 30.6; CG, mean 36.6). The inpatient therapy of patients with severely progressive fibromyalgia is characterized by a high frequency of therapy input. FMS, especially with severe progression and a high degree of chronification, demands a multidisciplinary approach. In addition to the use of complementary medical procedures, integration of hyperthermia in the treatment process is a useful option.
In Hyperthermia Increased ERK and WNT Signaling Suppress Colorectal Cancer Cell Growth
Bordonaro, Michael; Shirasawa, Senji; Lazarova, Darina L.
2016-01-01
Although neoplastic cells exhibit relatively higher sensitivity to hyperthermia than normal cells, hyperthermia has had variable success as an anti-cancer therapy. This variable outcome might be due to the fact that cancer cells themselves have differential degrees of sensitivity to high temperature. We hypothesized that the varying sensitivity of colorectal cancer (CRC) cells to hyperthermia depends upon the differential induction of survival pathways. Screening of such pathways revealed that Extracellular Signal-Regulated Kinase (ERK) signaling is augmented by hyperthermia, and the extent of this modulation correlates with the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Through clonal growth assays, apoptotic analyses and transcription reporter assays of CRC cells that differ only in KRAS mutation status we established that mutant KRAS cells are more sensitive to hyperthermia, as they exhibit sustained ERK signaling hyperactivation and increased Wingless/Integrated (WNT)/beta-catenin signaling. We propose that whereas increased levels of WNT and ERK signaling and a positive feedback between the two pathways is a major obstacle in anti-cancer therapy today, under hyperthermia the hyperinduction of the pathways and their positive crosstalk contribute to CRC cell death. Ascertaining the causative association between types of mutations and hyperthermia sensitivity may allow for a mutation profile-guided application of hyperthermia as an anti-cancer therapy. Since KRAS and WNT signaling mutations are prevalent in CRC, our results suggest that hyperthermia-based therapy might benefit a significant number, but not all, CRC patients. PMID:27187477
Ultrasonic phased array controller for hyperthermia applications.
Benkeser, P J; Pao, T L; Yoon, Y J
1991-01-01
Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.
Hyperthermia in low aspect-ratio magnetic nanotubes for biomedical applications
NASA Astrophysics Data System (ADS)
Gutierrez-Guzman, D. F.; Lizardi, L. I.; Otálora, J. A.; Landeros, P.
2017-03-01
A simple model for the magnetization reversal process of low aspect-ratio ferromagnetic nanotubes (MNTs) is presented. Because of advantages over other geometries, these structures are interesting for biomedical applications, such as magnetic hyperthermia cancer therapy, where the heat released during magnetic reversal is used to destroy tumors. For example, the tubular geometry provides two independent functional surfaces that may be selectively manipulated and also gives a storage cavity. Owing to their large surface to weight ratio and low mass density, MNTs are not decanted by gravity. We calculated magnetic phase diagrams, energy barriers, nucleation fields, and the amount of dissipated heat and specific absorption rate for magnetite nanotubes. The geometrical parameters were varied, and simple formulae were used to optimize the tube response under alternating excitation, as required for magnetic hyperthermia applications.
Crezee, J; van der Koijk, J F; Kaatee, R S; Lagendijk, J J
1997-04-01
The 27 MHz Multi Electrode Current Source (MECS) interstitial hyperthermia system uses segmented electrodes, 10-20 mm long, to steer the 3D power deposition. This power control at a scale of 1-2 cm requires detailed and accurate temperature feedback data. To this end seven-point thermocouples are integrated into the probes. The aim of this work was to evaluate the feasibility and reliability of integrated thermometry in the 27 MHz MECS system, with special attention to the interference between electrode and thermometry and its effect on system performance. We investigated the impact of a seven-sensor thermocouple probe (outer diameter 150 microns) on the apparent impedance and power output of a 20 mm dual electrode (O.D. 1.5 mm) in a polyethylene catheter in a muscle equivalent medium (sigma 1 = 0.6 S m-1). The cross coupling between electrode and thermocouple was found to be small (1-2 pF) and to cause no problems in the dual-electrode mode, and only minimal problems in the single-electrode mode. Power loss into the thermometry system can be prevented using simple filters. The temperature readings are reliable and representative of the actual tissue temperature around the electrode. Self-heating effects, occurring in some catheter materials, are eliminated by sampling the temperature after a short power-off interval. We conclude that integrated thermocouple thermometry is compatible with 27 MHz capacitively coupled interstitial hyperthermia. The performance of the system is not affected and the temperatures measured are a reliable indication of the maximum tissue temperatures.
Dan, Mo; Bae, Younsoo; Pittman, Thomas A; Yokel, Robert A
2015-05-01
Superparamagnetic iron oxide nanoparticles (IONPs) are being investigated for brain cancer therapy because alternating magnetic field (AMF) activates them to produce hyperthermia. For central nervous system applications, brain entry of diagnostic and therapeutic agents is usually essential. We hypothesized that AMF-induced hyperthermia significantly increases IONP blood-brain barrier (BBB) association/uptake and flux. Cross-linked nanoassemblies loaded with IONPs (CNA-IONPs) and conventional citrate-coated IONPs (citrate-IONPs) were synthesized and characterized in house. CNA-IONP and citrate-IONP BBB cell association/uptake and flux were studied using two BBB Transwell(®) models (bEnd.3 and MDCKII cells) after conventional and AMF-induced hyperthermia exposure. AMF-induced hyperthermia for 0.5 h did not alter CNA-IONP size but accelerated citrate-IONP agglomeration. AMF-induced hyperthermia for 0.5 h enhanced CNA-IONP and citrate-IONP BBB cell association/uptake. It also enhanced the flux of CNA-IONPs across the two in vitro BBB models compared to conventional hyperthermia and normothermia, in the absence of cell death. Citrate-IONP flux was not observed under these conditions. AMF-induced hyperthermia also significantly enhanced paracellular pathway flux. The mechanism appears to involve more than the increased temperature surrounding the CNA-IONPs. Hyperthermia induced by AMF activation of CNA-IONPs has potential to increase the BBB permeability of therapeutics for the diagnosis and therapy of various brain diseases.
Fatehi, D; van der Zee, J; van der Wal, E; Van Wieringen, W N; Van Rhoon, G C
2006-06-01
The growing interest and participation in multi-institutional trials involving deep hyperthermia treatment is an important step towards the further consolidation of hyperthermia as an oncological treatment modality. However, the differences in the clinical procedures of hyperthermia application also raises questions as how to compare the reported temperatures data obtained by the different institutes. In this study our recent developed approach, RHyThM (Rotterdam Hyperthermia Thermal Modulator), has been used for thermal data analysis to investigate the temperature dynamics behaviour of a series of deep hyperthermia treatments. All 22 patients (104 hyperthermia treatments) with locally advanced cervical carcinoma who participated in a feasibility study for treatment with a three-modality therapy were selected. The patients received mega-voltage external beam radiotherapy to the pelvis in daily fractions of 2 Gy five times a week to a total dose of 46 Gy and additional brachytherapy, at least four courses of weekly cisplatin (40 mg m-2) and five sessions of weekly loco regional deep hyperthermia treatments with the BSD2000-3D with the Sigma 60 or the Sigma-eye applicators at frequencies 70-120 MHz. Using RHyThM tissue type was defined along the insertion length, based on the CT scan information in radiotherapy position, for each single treatment. A step change in the slope of the profile of the first temperature map was identified to verify the insertion length of the thermometry catheter and precise location of the transition between in- and outside the body. Data analysis was performed based on the temperature readout provided by RHyThM. The temperature and RF-power data of 97 treatments could be analysed. The intra-vaginal temperature indices were slightly lower than those for bladder and rectum. The average T50 (median temperature) in all lumens, i.e. bladder, vagina and rectum, was 40.4 +/- 0.6 degrees Celsius. The average vagina all lumen T50 was 40.0 +/- 0.8 degrees Celsius. The average bladder and rectum all lumen T50 was 40.6 +/- 0.7 degrees Celsius and 40.5 +/- 0.6, respectively. When the analysis was restricted to the deepest 5 cm of the vagina lumen, the average T50 was 39.8 +/- 0.9 degrees Celsius. Good correlation exists between the various temperature indices like T20, T50 and T90, for all lumen measurements in bladder, vagina and rectum. No correlation was found between temperature indices and treatment number. For the complete patient population, no relationship was found between T50 and net integrated RF-power applied. In an explorative analysis on individual patients a positive correlation coefficient or trend was found in 14 patients between normalized net integrated RF-power and vagina T50. Average all lumen T50 for bladder, vagina and rectum differ less than 1 degrees Celsius, indicating that a large volume was heated relatively homogeneously. The vagina T50 value depends on how many measurement points are included for the analysis. In this group of patients the vagina T50 of the first treatment is not a good measure to discriminate between patients with 'heatable' and 'non-heatable' tumours. In order to compare temperature data reported by different institutes dealing with the same group of patients, one needs a strict and clear agreement on which temperature measurements or reference point(s) that should be included in the analysis.
Clinical applications of magnetic nanoparticles for hyperthermia.
Thiesen, Burghard; Jordan, Andreas
2008-09-01
Magnetic fluids are increasingly used for clinical applications such as drug delivery, magnetic resonance imaging and magnetic fluid hyperthermia. The latter technique that has been developed as a cancer treatment for several decades comprises the injection of magnetic nanoparticles into tumors and their subsequent heating in an alternating magnetic field. Depending on the applied temperature and the duration of heating this treatment either results in direct tumor cell killing or makes the cells more susceptible to concomitant radio- or chemotherapy. Numerous groups are working in this field worldwide, but only one approach has been tested in clinical trials so far. Here, we summarize the clinical data gained in these studies on magnetic fluid induced hyperthermia.
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad
2017-11-01
Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.
Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia
NASA Astrophysics Data System (ADS)
Józefczak, A.; Kaczmarek, K.; Hornowski, T.; Kubovčíková, M.; Rozynek, Z.; Timko, M.; Skumiel, A.
2016-06-01
Ultrasonic hyperthermia is a method of cancer treatment in which tumors are exposed to an elevated cytotoxic temperature using ultrasound (US). In conventional ultrasonic hyperthermia, the ultrasound-induced heating in the tumor is achieved through the absorption of wave energy. However, to obtain appropriate temperature in reasonable time, high US intensities, which can have a negative impact on healthy tissues, are required. The effectiveness of US for medical purposes can be significantly improved by using the so-called sonosensitizers, which can enhance the thermal effect of US on the tissue by increasing US absorption. One possible candidate for such sonosensitizers is magnetic nanoparticles with mean sizes of 10-300 nm, which can be efficiently heated because of additional attenuation and scattering of US. Additionally, magnetic nanoparticles are able to produce heat in the alternating magnetic field (magnetic hyperthermia). The synergetic application of ultrasonic and magnetic hyperthermia can lead to a promising treatment modality.
Current Status and Perspectives of Hyperthermia in Cancer Therapy
NASA Astrophysics Data System (ADS)
Hiraoka, Masahiro; Nagata, Yasushi; Mitsumori, Michihide; Sakamoto, Masashi; Masunaga, Shin-ichiro
2004-08-01
Clinical trials of hyperthermia in combination with radiation therapy or chemotherapy undertaken over the past decades in Japan have been reviewed. Originally developed heating devices were mostly used for these trials, which include RF (radiofrequency) capacitive heating devices, a microwave heating device with a lens applicator, an RF intracavitary heating device, an RF current interstitial heating device, and ferromagnetic implant heating device. Non-randomized trials for various cancers, demonstrated higher response rate in thermoradiotherapy than in radiotherapy alone. Randomized trials undertaken for esophageal cancers also demonstrated improved local response with the combined use of hyperthermia. Furthermore, the complications associated with treatment were not generally serious. These clinical results indicate the benefit of combined treatment of hyperthermia and radiotherapy for various malignancies. On the other hand, the presently available heating devices are not satisfactory from the clinical viewpoints. With the advancement of heating and thermometry technologies, hyperthermia will be more widely and safely used in the treatment of cancers.
Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.
Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai
2016-06-01
Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.
Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy
Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.
2010-01-01
We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595
Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy.
Yallapu, Murali M; Othman, Shadi F; Curtis, Evan T; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C
2011-03-01
We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.
Intracavitary ultrasound phased arrays for thermal therapies
NASA Astrophysics Data System (ADS)
Hutchinson, Erin
Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.
Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng
2015-07-01
Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.
Barium titanate core--gold shell nanoparticles for hyperthermia treatments.
FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio
2013-01-01
The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core-gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0-100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core-gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice.
Barium titanate core – gold shell nanoparticles for hyperthermia treatments
FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio
2013-01-01
The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice. PMID:23847415
Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy.
Shah, Saqlain A; Aslam Khan, M U; Arshad, M; Awan, S U; Hashmi, M U; Ahmad, N
2016-12-01
Multifunctional magnetic nanosystems have attracted an enormous attention of researchers for their potential applications in cancer diagnostics and therapy. The localized nanotherapies triggered by the external stimuli, like magnetic fields and visible light, are significant in clinical applications. We report a liposomal system that aims to treat cancer by magnetic hyperthermia, photodynamic therapy and chemotherapy simultaneously. The liposomes enclose clinically used photosensitizer m-THPC (Foscan) and anti-cancer drug doxorubicin, in its hydrophobic lipid bilayers, and contains magnetite nanoparticles in hydrophilic core. Three different sizes of magnetic nanoparticles (10, 22 and 30nm) and liposomes (40, 70 and 110nm) were used in this study. Magnetite single domain nanoparticles forming the magnetic core were superparamagnetic but liposomes expressed slight coercivity and hysteresis due to the clustering of nanoparticles in the core. This enhanced the heating efficiency (specific power loss) of the liposomes under an AC field (375kHz, 170Oe). Cell viability and toxicity were studied on HeLa cells using MTT assay and proteomic analysis. Confocal and fluorescence microscopy were used to study the photosensitizer's profile and cells response to combined therapy. It revealed that combined therapy almost completely eliminated the cancer cells as opposed to the separate treatments. Magnetic hyperthermia and photodynamic therapies were almost equally effective whereas chemotherapy showed the least effect. Copyright © 2016. Published by Elsevier B.V.
Alvarez-Berríos, Merlis P; Castillo, Amalchi; Rinaldi, Carlos; Torres-Lugo, Madeline
2014-01-01
The proteasome inhibitor bortezomib (BZ) has shown promising results in some types of cancer, but in others it has had minimal activity. Recent studies have reported enhanced efficacy of BZ when combined with hyperthermia. However, the use of magnetic nanoparticles to induce hyperthermia in combination with BZ has not been reported. This novel hyperthermia modality has shown better potentiation of chemotherapeutics over other types of hyperthermia. We hypothesized that inducing hyperthermia via magnetic nanoparticles (MFH) would enhance the cytotoxicity of BZ in BZ-sensitive and BZ-resistant cancer cells more effectively than hyperthermia using a hot water bath (HWH). Studies were conducted using BZ in combination with MFH in two BZ-sensitive cell lines (MDA-MB-468, Caco-2), and one BZ-resistant cell line (A2780) at two different conditions, ie, 43°C for 30 minutes and 45°C for 30 minutes. These experiments were compared with combined application of HWH and BZ. The results indicate enhanced potentiation between hyperthermic treatment and BZ. MFH combined with BZ induced cytotoxicity in sensitive and resistant cell lines to a greater extent than HWH under the same treatment conditions. The observation that MFH sensitizes BZ-resistant cell lines makes this approach a potentially effective anticancer therapy platform.
Romeyke, Tobias; Scheuer, Hans Christoph; Stummer, Harald
2015-01-01
Introduction Fibromyalgia syndrome (FMS) is a multi-factorial disease involving physiological as well as psychological factors. The aim of the study was to investigate a multidisciplinary inpatient treatment with emphasis on hyperthermia therapy by patients with widespread pain. Materials and methods The study involved 104 patients suffering from severely progressive FMS. A convenience sample and a prospective cohort design were used. The patients were treated in an acute hospital focusing on rheumatologic pain therapy and multidisciplinary complementary medicine. One patient group was treated with inclusion of hyperthermia therapy and the other group without. The therapy density (number of performed therapies per patient) was determined for every patient. Functional capacity measured by the Hannover functional status questionnaire (Funktionsfragebogen Hannover) and symptoms (von Zerssen complaint list) were analyzed for both groups on admission and on discharge. Results On admission, no significant difference could be established between control group (CG; multimodal without hyperthermia) and hyperthermia group (HG; multimodal with hyperthermia) (functional capacity, P=0.936). Functional capacity improved for the CG and the HG. On discharge, there was a significant difference between the two groups (functional capacity, P=0.039). There were no significant differences in fibromyalgia symptoms between CG (mean 41.8) and HG (mean 41.8) on their admission to hospital (P=0.988). On discharge, there was a significant difference (P=0.024) between the two groups (HG, mean 30.6; CG, mean 36.6). The inpatient therapy of patients with severely progressive fibromyalgia is characterized by a high frequency of therapy input. Conclusion FMS, especially with severe progression and a high degree of chronification, demands a multidisciplinary approach. In addition to the use of complementary medical procedures, integration of hyperthermia in the treatment process is a useful option. PMID:25565789
Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.
El-Sherbiny, Ibrahim M; Elbaz, Nancy M; Sedki, Mohammed; Elgammal, Abdulaziz; Yacoub, Magdi H
2017-02-01
Magnetic nanoparticles (MNPs) have gained much attention due to their unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. Due to these inherent properties, MNPs have been widely used in various biomedical applications including targeted drug delivery and hyperthermia-based therapy. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. Additionally, due to their large loading capacity and controlled release ability, several MNP-based drug delivery systems have been emerged for treatment of cystic fibrosis and lung cancer. This review provides an overview on the unique properties of MNPs and magnetic-mediated hyperthermia with emphasis on the recent biomedical applications of MNPs in treatment of both lung cancer and cystic fibrosis.
NASA Astrophysics Data System (ADS)
Alnasir, M. Hisham; Awan, M. S.; Manzoor, Sadia
2018-03-01
We report on magnetic and magnetothermal properties of undoped and doped gadolinium silicide (Gd5Si4) nanoparticles with the objective of simultaneously attaining high specific absorption rate (SAR) and low Curie temperature (TC) suitable for self-controlled hyperthermia applications for which TC ∼ 315-320 K. Pellets of doped gadolinium silicide Gd5(Si1-xGex)4 and (Gd1-xRx)5Si4 with R = Ho, Nd and Er and 0 ≤ x ≤ 0.35 were made by arc melting and reduced to nanoparticulate form by surfactant assisted ball milling. Structural and morphological studies were done using X-ray diffraction and scanning electron microscopy respectively. All samples show soft magnetic properties. At low fields there is a ferromagnetic to paramagnetic transition that reduces remanance and coercivity to zero making these materials very attractive for biomedical applications. Zero-field-cooled thermal demagnetization measurements showed that TC of these nanoparticles can be lowered to lie within the limits required for self-controlled hyperthermia by varying the dopant concentration. Specific absorption rates (SAR's) were obtained from magnetothermia measurements made in an ac magnetic field of amplitude 10 Oe and frequency 300 kHz. We have identified samples that have SAR values larger or comparable to those of magnetite and several ferrite nanoparticles, while having Curie temperatures that are low enough for self controlled hyperthermia applications.
Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Cao, Yanqin; Wu, Haibo; Nogami, Masayuki
2014-01-01
In this review, we have presented the controlled synthesis of Fe-based metal and oxide nanoparticles with large size by chemical methods. The issues of the size, shape and morphology of Fe nanoparticles are discussed in the certain ranges of practical applications in biology and medicine. The homogeneous nanosystems of Fe-based metal and oxide nanoparticles with various sizes and shapes from the nano-to-micro ranges can be used in order to meet the demands of the treatments of dangerous tumors and cancers through magnetic hyperthermia and magnetic resonance imaging (MRI). In this context, the polyhedral Fe-based metal and oxide nanoparticles having large size in the ranges from 1000 nm to 5000 nm can be potentially used in magnetic hyperthermia and MRI in the innovative drug delivery, diagnosis, treatment, and therapy of tumor and cancer diseases because of their very high bio-adaptability. We have suggested that high stability and durability of Fe-based metal and oxide nanoparticles are very crucial to recent magnetic hyperthermia and MRI technology. The roles of various Fe-based nanostructures are focused in biomedical applications of tumors and cancers diagnostics, targeted drug delivery, and magnetic hyperthermia. Finally, Fe-based, α-, β- and γ-Fe2O3, and Fe3O4-based nanoparticles are shortly discussed in various potential applications in catalysis, biology, and medicine.
Togni, P; Rijnen, Z; Numan, W C M; Verhaart, R F; Bakker, J F; van Rhoon, G C; Paulides, M M
2013-09-07
Accumulating evidence shows that hyperthermia improves head-and-neck cancer treatment. Over the last decade, we introduced a radiofrequency applicator, named HYPERcollar, which enables local heating also of deep locations in this region. Based on clinical experience, we redesigned the HYPERcollar for improved comfort, reproducibility and operator handling. In the current study, we analyze the redesign from an electromagnetic point of view. We show that a higher number of antennas and their repositioning allow for a substantially improved treatment quality. Combined with the much better reproducibility of the water bolus, this will substantially minimize the risk of underexposure. All improvements combined enable a reduction of hot-spot prominence (hot-spot to target SAR quotient) by 32% at an average of 981 W, which drastically reduces the probability for system power to become a treatment limiting source. Moreover, the power deposited in the target selectively can be increased by more than twofold. Hence, we expect that the HYPERcollar redesign currently under construction allows us to double the clinically applied power to the target while reducing the hot-spots, resulting in higher temperatures and, consequently, better clinical outcome.
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack
2016-11-01
Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
Intracellular hyperthermia: Nanobubbles and their biomedical applications.
Wen, Dongsheng
2009-11-01
Functionalised nanoparticles have been proposed as potential agents for non-invasive therapies where an external source such as a laser or an electro-magnetic wave is used to heat targeted particles for either drug release or malignant cell damage. It is desirable to have intracellular reactions to minimise the damage to health cells. However, it is still debatable from the thermal response point of view, whether intracellular hyperthermia is better than extracellular delivery due to conventional ideas of localisation of heat by nanoparticles. This work conducts an analytical study on the heating of a single nanoparticle by a pulsed laser and reveals the potential role of the formation of nanobubbles around heated particles. The rapid formation and contraction of bubbles around heated nanoparticles, associated with the propagation of pressure waves, could bring thermal-mechanical damage to surrounding cells at a dimension much larger than that of a nanoparticle. The challenges of the study of nanobubbles are highlighted and their potential healthcare implications are discussed.
NASA Astrophysics Data System (ADS)
Diederich, Chris J.; Wootton, Jeff; Prakash, Punit; Salgaonkar, Vasant; Juang, Titania; Scott, Serena; Chen, Xin; Cunha, Adam; Pouliot, Jean; Hsu, I. C.
2011-03-01
A clinical treatment delivery platform has been developed and is being evaluated in a clinical pilot study for providing 3D controlled hyperthermia with catheter-based ultrasound applicators in conjunction with high dose rate (HDR) brachytherapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within HDR brachytherapy implants during radiation therapy in the treatment of cervix and prostate. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length × 180 deg and 3-4 cm × 360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers × dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and six prostate implants. 100 % of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target volume (HTV) and clinical target volume (CTV) are reported. Catheter-based ultrasound hyperthermia with HDR appears feasible with therapeutic temperature coverage of the target volume within the prostate or cervix while sparing surrounding more sensitive regions.
A novel medical image data-based multi-physics simulation platform for computational life sciences.
Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels
2013-04-06
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.
LIU, JIAYI; LI, NING; LI, LI; LI, DANYE; LIU, KAI; ZHAO, LINGYUN; TANG, JINTIAN; LI, LIYA
2013-01-01
Magnetic-mediated hyperthermia (MMH) is a promising local thermotherapy approach for cancer treatment. The present study investigated the feasibility and effectiveness of MMH in esophageal cancer using a rabbit tumor model. The therapeutic effect of two hyperthermia approaches, magnetic stent hyperthermia (MSH), in which heat is induced by the clinical stent that is placed inside the esophagus, and magnetic fluid hyperthermia (MFH), where magnetic nanoparticles are applied as the agent, was systematically evaluated. A rabbit esophageal tumor model was established by injecting VX2 carcinoma cells into the esophageal submucosa. The esophageal stent was deployed perorally into the tumor segment of the esophagus. For the MFH, magnetic nanoparticles (MNPs) were administered to the rabbits by intratumoral injection. The rabbits were exposed under a benchtop applicator using an alternative magnetic field (AMF) with 300 kHz frequency for the hyperthermia treatment. The results demonstrated that esophageal stents and MNPs had ideal inductive heating properties upon exposure under an AMF of 300 kHz. MSH, using a thermal dose of 46°C with a 10-min treatment time, demonstrated antitumor effects on the rabbit esophageal cancer. However, the rabbit esophageal wall is not heat-resistant. Therefore, a higher temperature or longer treatment time may lead to necrosis of the rabbit esophagus. MFH has a significant antitumor effect by confining the heat within the tumor site without damaging the adjacent normal tissues. The present study indicates that the two hyperthermia procedures have therapeutic effects on esophageal cancer, and that MFH may be more specific than MSH in terms of temperature control during the treatment. PMID:24260045
Bakker, Akke; Holman, Rebecca; Rodrigues, Dario B; Dobšíček Trefná, Hana; Stauffer, Paul R; van Tienhoven, Geertjan; Rasch, Coen R N; Crezee, Hans
2018-04-27
Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients. Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm 2 ). Reduced temperature monitoring schemes involved randomly selected subsets of stationary skin sensors, and another subset simulating continuous thermal mapping of the skin. Temperature differences (ΔT) between subsets and complete sets of sensors were evaluated in terms of overall minimum (T min ) and maximum (T max ) temperature, as well as T90 and T10. Eighty patients were included yielding a total of 400 hyperthermia sessions. Median ΔT was <0.01 °C for T90, its 95% confidence interval (95%CI) decreased to ≤0.5 °C when >50 sensors were used. Subsets of <10 sensors result in underestimation of T max up to -2.1 °C (ΔT 95%CI), which decreased to -0.5 °C when >50 sensors were used. Thermal profiles (8-21 probes) yielded a median ΔT < 0.01 °C for T90 and T max , with a 95%CI of -0.2 °C and 0.4 °C, respectively. The detection rate of T max ≥43 °C is ≥85% while using >50 stationary sensors or thermal profiles. Adequate coverage of the skin temperature distribution during superficial hyperthermia treatment requires the use of >50 stationary sensors per 400 cm 2 applicator. Thermal mapping is a valid alternative.
Thermal properties of capacitively coupled electrodes in interstitial hyperthermia.
van der Koijk, J F; Crezee, J; Lagendijk, J J
1998-01-01
The multi-electrode current source (MECS) interstitial hyperthermia system which is used for treatment of cancer, employs segmented electrodes inserted in plastic tubes implanted in the treatment volume. The mean power deposition of the individual electrodes is controlled by varying the duty cycle of the RF signal applied to the electrodes, using thermocouples inside the electrodes for thermometry. A non-zero loss angle results in self-heating of the catheter. The thermal influence of self-heating was investigated and an analysis of the measurement of temperatures inside the catheter during and after heating is presented. Analytical models and a high-resolution numerical model were used for the calculation of steady state and transient distributions, respectively. The model results are compared with experimental data obtained in a muscle equivalent phantom. Results indicate that there is no difference between temperature inside and outside the catheter when using lossless catheter materials (e.g. PE and PTFE). Self-heating in the catheter wall has an adverse effect on the uniformity of the stationary temperature distribution and the reliability of temperature measurement with internal thermometry. These problems remain within acceptable limits for mildly lossy materials; the difference between the temperature inside and outside is only 6% when using low-loss Nylon. Analysis of the thermal decay after power-off shows that low-loss materials allow more time to obtain an accurate estimate of the tissue temperature at the catheter wall during power-on. This effect is enhanced by the presence of minute air layers in the applicator. Distortion of temperature gradients along the catheter was also investigated. Key factors are the thermal conduction across the catheter wall, and especially the presence of minute layers of air between consecutive layers of the probe. The distortion extends less than two millimetres, which is acceptable. The simulation results are compatible with measurements in phantoms and show that, if the proper choice of materials is made, the MECS applicator answers our expectations and that the temperature measurement inside the catheter can be used for direct feedback treatment control.
NASA Astrophysics Data System (ADS)
Goswami, Madhuri Mandal; Dey, Chaitali; Bandyopadhyay, Ayan; Sarkar, Debasish; Ahir, Manisha
2016-11-01
Here we have discussed about designing the magnetic particles for hyperthermia therapy and done some studies in this direction. We have used oleylamine micelles as template to synthesize hollow-nanospheres (HNS) of magnetite by solvo-thermal technique. We have shown that oleylamine plays an important role to generate hollow particles. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM was performed to confirm the shape and size of hollow sphere particles. The detail magnetic measurements give an idea about the application of these HNS for magnetic heating in hyperthermia therapy. In vitro cytotoxicity studies reveal that tolerable dose rate for these particles can be significantly high and particles are non-toxic in nature. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, drug release, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.
NASA Astrophysics Data System (ADS)
Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng
2014-08-01
Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Martino, Luca; Kane, Shashank N; Raghuvanshi, Saroj; Vinai, Franco; Tiberto, Paola
2017-06-01
Magnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR). The SAR of Fe 3 O 4 nanoparticles with two different mean sizes, and Ni 1-x Zn x Fe 2 O 4 ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69kHz and ≈ 100kHz respectively) and rf magnetic field peak values (up to 100mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents. Dynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples. A means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods. This work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2016 Elsevier B.V. All rights reserved.
Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M
2014-04-01
Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Johannsen, M; Gneveckow, U; Eckelt, L; Feussner, A; Waldöfner, N; Scholz, R; Deger, S; Wust, P; Loening, S A; Jordan, A
2005-11-01
The aim of this pilot study was to evaluate whether the technique of magnetic fluid hyperthermia can be used for minimally invasive treatment of prostate cancer. This paper presents the first clinical application of interstitial hyperthermia using magnetic nanoparticles in locally recurrent prostate cancer. Treatment planning was carried out using computerized tomography (CT) of the prostate. Based on the individual anatomy of the prostate and the estimated specific absorption rate (SAR) of magnetic fluids in prostatic tissue, the number and position of magnetic fluid depots required for sufficient heat deposition was calculated while rectum and urethra were spared. Nanoparticle suspensions were injected transperineally into the prostate under transrectal ultrasound and flouroscopy guidance. Treatments were delivered in the first magnetic field applicator for use in humans, using an alternating current magnetic field with a frequency of 100 kHz and variable field strength (0-18 kA m(-1)). Invasive thermometry of the prostate was carried out in the first and last of six weekly hyperthermia sessions of 60 min duration. CT-scans of the prostate were repeated following the first and last hyperthermia treatment to document magnetic nanoparticle distribution and the position of the thermometry probes in the prostate. Nanoparticles were retained in the prostate during the treatment interval of 6 weeks. Using appropriate software (AMIRA), a non-invasive estimation of temperature values in the prostate, based on intra-tumoural distribution of magnetic nanoparticles, can be performed and correlated with invasively measured intra-prostatic temperatures. Using a specially designed cooling device, treatment was well tolerated without anaesthesia. In the first patient treated, maximum and minimum intra-prostatic temperatures measured at a field strength of 4.0-5.0 kA m(-1) were 48.5 degrees C and 40.0 degrees C during the 1st treatment and 42.5 degrees C and 39.4 degrees C during the 6th treatment, respectively. These first clinical experiences prompted us to initiate a phase I study to evaluate feasibility, toxicity and quality of life during hyperthermia using magnetic nanoparticles in patients with biopsy-proven local recurrence of prostate cancer following radiotherapy with curative intent. To the authors' knowledge, this is the first report on clinical application of interstitial hyperthermia using magnetic nanoparticles in the treatment of human cancer.
Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos
2015-02-01
A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Farzin, Ali; Fathi, Mohammadhossein; Emadi, Rahmatollah
2017-01-01
Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for killing cancer cells. The development of bioactive materials such as Hardystonite (HT) with magnetic and drug delivery properties can potentially meet this target. This new class of magnetic bioceramic can replace the widely used magnetic iron oxide nanoparticles, whose long-term biocompatibility is not clear. Magnetic HT can be potentially employed to develop new ceramic scaffolds for bone surgery and anticancer therapies. With this in mind, a synthesis procedure was developed to prepare multifunctional bioactive scaffold for tissue engineering, hyperthermia and drug delivery applications. To this end, iron (Fe 3+ )-containing HT scaffolds were prepared. The effect of Fe on biological, magnetic and drug delivery properties of HT scaffolds were investigated. The results showed that obtained Fe-HT is bioactive and magnetic with no magnetite or maghemite as secondary phases. The Fe-HT scaffolds obtained also possessed high specific surface areas and demonstrated sustained drug delivery. These results potentially open new aspects for biomaterials aimed at regeneration of large-bone defects caused by malignant bone tumors through a combination of hyperthermia, local drug delivery and osteoconductivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Ishikawa, Takaki; Yoshida, Chiemi; Michiue, Tomomi; Perdekamp, Markus Grosse; Pollak, Stefan; Maeda, Hitoshi
2010-05-01
Catecholamines are involved in various stress responses. Previous studies have suggested applicability of the postmortem blood levels to investigations of physical stress responses or toxic/hyperthermic neuronal dysfunction during death process. The present study investigated cellular immunopositivity for adrenaline (Adr), noradrenaline (Nad) and dopamine (DA) in the hypothalamus, adenohypophysis and adrenal medulla with special regard to fatal hypothermia (cold exposure) and hyperthermia (heat stroke) to examine forensic pathological significance. Medicolegal autopsy cases (n=290, within 3 days postmortem) were examined. The proportions of catecholamine (Adr, Nad and DA)-positive cells (% positivity) in each tissue were quantitatively estimated using immunostaining. Hyperthermia cases (n=12) showed a lower neuronal DA-immunopositivity in the hypothalamus than hypothermia cases (n=20), while Nad- and DA-immunopositivities in the adrenal medulla were higher for hyperthermia than for hypothermia. Rates of Nad-immunopositivity in the adrenal medulla were very low for hypothermia. No such difference between hypothermia and hyperthermia was seen in the adenohypophysis. In hypothermia cases, cellular Nad-immunopositivity in the adrenal medulla correlated with the Nad level in cerebrospinal fluid (r=0.591, p<0.01). These observations suggest a characteristic immunohistochemical pattern of systemic stress response to fatal hypothermia and hyperthermia, involving the hypothalamus and adrenal medulla. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Ross, Michael P.
1996-01-01
A coaxial hyperthermia applicator for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator.
Ross, M.P.
1996-08-27
A coaxial hyperthermia applicator is disclosed for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator. 11 figs.
NASA Astrophysics Data System (ADS)
Jasso-Terán, Rosario Argentina; Cortés-Hernández, Dora Alicia; Sánchez-Fuentes, Héctor Javier; Reyes-Rodríguez, Pamela Yajaira; de-León-Prado, Laura Elena; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel
2017-04-01
The synthesis of Zn(1-x)CaxFe2O4 nanoparticles, x=0, 0.25, 0.50, 0.75 and 1.0, was performed by sol-gel method followed by a heat treatment at 400 °C for 30 min. These ferrites showed nanometric sizes and nearly superparamagnetic behavior. The Zn0.50Ca0.50Fe2O4 and CaFe2O4 ferrites presented a size within the range of 12-14 nm and appropriate heating ability for hyperthermia applications. Hemolysis testing demonstrated that Zn0.50Ca0.50Fe2O4 ferrite was not cytotoxic when using 10 mg of ferrite/mL of solution. According to the results obtained, Zn0.50Ca0.50Fe2O4 is a potential material for cancer treatment by magnetic hyperthermia therapy.
Magnetic Microspheres for Therapeutical Applications
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Hyperthermia is a well known cancer therapy and consists of heating a tumor region to the elevated temperatures in the range of 40-45 C for an extended period of time (2-8 hours). This leads to thermal inactivation of cell regulatory and growth processes with resulting widespread necrosis, carbonization and coagulation. Moreover, heat boosts the tumor response to other treatments such as radiation, chemotherapy or immunotherapy. Of particular importance is careful control of generated heat in the treated region and keeping it localized. Higher heating, to about 56 C can lead to tissue thermo-ablation. With accurate temperature control, hyperthermia has the advantage of having minimal side effects. Several heating techniques are utilized for this purpose, such as whole body hyperthermia, radio-frequency (RF) hyperthermia, ultrasound technique, inductive microwave antenna hyperthermia, inductive needles (thermoseeds), and magnetic fluid hyperthermia (MFH).MFH offers many advantages as targeting capability by applying magnets. However, this technology still suffers significant inefficiencies due to lack of thermal control. This paper will provide a review of the topic and outline the ongoing work in this area. The main emphasis is in devising ways to overcome the technical difficulty in hyperthermia therapy of achieving a uniform therapeutic temperature over the required region of the body and holding it steady. The basic obstacle of the present heating methods are non-uniform thermal properties of the tissue. Our approach is to develop a novel class of magnetic fluids which have inherent thermoregulating properties. We have identified a few magnetic alloys which can serve as a suitable nano-particle material. The objective is to synthesize, characterize and evaluate the efficacy of TRMF for hyperthermia therapy.
Petryk, Alicia A; Giustini, Andrew J; Gottesman, Rachel E; Trembly, B Stuart; Hoopes, P Jack
2013-12-01
The purpose of this study was to compare the efficacy of iron oxide/magnetic nanoparticle hyperthermia (mNPH) and 915 MHz microwave hyperthermia at the same thermal dose in a mouse mammary adenocarcinoma model. A thermal dose equivalent to 60 min at 43 °C (CEM60) was delivered to a syngeneic mouse mammary adenocarcinoma flank tumour (MTGB) via mNPH or locally delivered 915 MHz microwaves. mNPH was generated with ferromagnetic, hydroxyethyl starch-coated magnetic nanoparticles. Following mNP delivery, the mouse/tumour was exposed to an alternating magnetic field (AMF). The microwave hyperthermia treatment was delivered by a 915 MHz microwave surface applicator. Time required for the tumour to reach three times the treatment volume was used as the primary study endpoint. Acute pathological effects of the treatments were determined using conventional histopathological techniques. Locally delivered mNPH resulted in a modest improvement in treatment efficacy as compared to microwave hyperthermia (p = 0.09) when prescribed to the same thermal dose. Tumours treated with mNPH also demonstrated reduced peritumoral normal tissue damage. Our results demonstrate similar tumour treatment efficacy when tumour heating is delivered by locally delivered mNPs and 915 MHz microwaves at the same measured thermal dose. However, mNPH treatments did not result in the same type or level of peritumoral damage seen with the microwave hyperthermia treatments. These data suggest that mNP hyperthermia is capable of improving the therapeutic ratio for locally delivered tumour hyperthermia. These results further indicate that this improvement is due to improved heat localisation in the tumour.
NASA Astrophysics Data System (ADS)
Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.
2011-03-01
Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.
Developing Antitumor Magnetic Hyperthermia: Principles, Materials and Devices.
Tishin, Alexander M; Shtil, Alexander A; Pyatakov, Alexander P; Zverev, Vladimir I
2016-01-01
Methods of local or loco-regional anticancer treatment are of the utmost importance because the therapeutic 'power' is applied directly to the disease site. Consequently, general toxicity is minimized. Hyperthermia, that is, a sustained increase of intratumoral temperature up to 45oC, has been investigated as a perspective treatment modality alone and/or in combination with ionizing radiation or chemotherapy. Still, the surrounding tissues can be damaged by the external heat. Development of new materials and devices gave rise to methods of inducing hyperthermia by a high frequency magnetic or electromagnetic field applied to the tumor with exogenous nanosized particles captured within it. The idea of this approach is the release of local heat in the vicinity of the magnetic nanoparticle in a time-varying magnetic field due to transfer of external magnetic field energy into the heat. Therefore, tumor cells are heated whereas the peritumoral non-malignant tissues are spared. This review analyzes recent advances in understanding physical principles that underlie magnetic hyperthermia as well as novel approaches to obtain nanoparticles with optimized physico-chemical, toxicological and tumoricidal properties. Special focus is made on the construction of devices for therapeutic purposes. The review covers recent patents and general literature sources regarding magnetic hyperthermia, the developing approach to treat otherwise intractable malignancies. </p><p>.
Van Rhoon, G C; Van Der Heuvel, D J; Ameziane, A; Rietveld, P J M; Volenec, K; Van Der Zee, J
2003-01-01
Characterization of the performance of an hyperthermia applicator by phantom experiments is an essential aspect of quality assurance in hyperthermia. The objective of this study was to quantitatively characterize the energy distribution of the Sigma-60 applicator of the BSD2000 phased array system operated within the normal frequency range of 70-120 MHz. Additionally, the accuracy of the flexible Schottky diode sheet to measure E-field distributions was assessed. The flexible Schottky diode sheet (SDS) consists of 64 diodes mounted on a flexible 125 microm thick polyester foil. The diodes are connected through high resistive wires to the electronic readout system. With the SDS E-field distributions were measured with a resolution of 2.5 x 2.5 cm in a cylindrical phantom, diameter of 26 cm and filled with saline water (2 g/l). The phantom was positioned symmetrically in the Sigma-60 applicator. RF-power was applied to the 4-channel applicator with increasing steps from 25W to a total output of 400 W. The complete system to measure the E-field distribution worked fine and reliably within the Sigma-60 applicator. The E-field distributions measured showed that the longitudinal length of the E-field distribution is more or less constant, e.g. 21-19 cm, over the frequency range of 70-120 MHz, respectively. As expected, the radial E-field distributions show a better focusing towards the centre of the phantom for higher frequencies, e.g. from 15.3-8.7 cm diameter for 70-120 MHz, respectively. The focusing target could be moved accurately from the left to the right side of the phantom. Further it was found that the sensitivity variation of nine diodes located at the centre of the phantom was very small, e.g. < 3% over the whole frequency range. The SAR distributions of the Sigma-60 applicator are in good agreement with theoretically expected values. The flexible Schottky diode sheet proves to be an excellent tool to make accurate, quantitative measurements of E-field distributions at low (25 W) and medium (400 W) power levels. An important feature of the SDS is that it enables one to significantly improve quantitative quality assurance procedures and to start quantitative comparisons of the performance of the different deep hyperthermia systems used by the various hyperthermia groups.
Design of an ultrasonic physiotherapy system with pulse wave feedback control.
Peng, Ran; Luo, Yang; Li, Zhangyong; Wang, Wei; Pang, Yu
2017-07-20
Due to different physical and biological mechanisms behind ultrasound hyperthermia and phonophoresis, the requirement for ultrasound power, frequency and control modes varies. This paper introduces an adaptive ultrasonic physiotherapy system based on real-time surveillance over physiological characteristics of the patients, which in turn assists the individual treatment and dose limitation in auxiliary rehabilitation. The method essentially takes advantage of distinctive characteristics of two different phases (systole and diastole) of the human cardiac cycle as a medium for modulation. The abundance of blood flow during systole enables energy exchange for hyperthermia while blood flow insufficiency caused by diastole assists in drug penetration. Said method could improve the adjuvant therapy as it provides partial drug penetration and therapeutic dosage control. By adjusting time window and intensity of multi-frequency ultrasound, it is possible to reduce the irradiation dosage to around 22% of that during continuous irradiation at 1 MHz. The method shows high potential in clinical practice. Frequency-tuning ultrasound therapy would be more efficient regarding drug penetration and improve the therapeutic efficacy of hyperthermia.
Hassanpour, Saeid; Saboonchi, Ahmad
2016-12-01
This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ding, Qi; Liu, Dongfang; Guo, Dawei; Yang, Fang; Pang, Xingyun; Che, Renchao; Zhou, Naizhen; Xie, Jun; Sun, Jianfei; Huang, Zhihai; Gu, Ning
2017-04-01
Superparamagnetic Fe 3 O 4 nanoparticles (NPs)-based hyperthermia is a promising non-invasive approach for cancer therapy. However, the heat transfer efficiency of Fe 3 O 4 NPs is relative low, which hinders their practical clinical applications. Therefore, it is promising to improve the magnetic hyperthermia efficiency by exploring the higher performance magnetic NPs-based hybrid nanostructures. In the current study, it presents a straightforward in situ reduction method for the shape-controlled preparation of magnetite (Fe 3 O 4 ) silver (Ag) hybrid NPs designed as magnetic hyperthermia heat mediators. The magnetite silver hybrid NPs with core-shell (Fe 3 O 4 @Ag) or heteromer (Fe 3 O 4 -Ag) structures exhibited a higher biocompatibility with SMMC-7721 cells and L02 cells than the individual Ag NPs. Importantly, in the magnetic hyperthermia, with the exposure to alternating current magnetic field, the Fe 3 O 4 @Ag and Fe 3 O 4 -Ag hybrid NPs indicated much better tumor suppression effect against SMMC-7721 cells than the individual Fe 3 O 4 NPs in vitro and in vivo. These results demonstrate that the hybridisation of Fe 3 O 4 and Ag NPs could greatly enhance the magnetic hyperthermia efficiency of Fe 3 O 4 NPs. Therefore, the Fe 3 O 4 @Ag and Fe 3 O 4 -Ag hybrid NPs can be used to be as high performance magnetic hyperthermia mediators based on a simple and effective preparation approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ultra-miniature wireless temperature sensor for thermal medicine applications.
Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed
2011-01-01
This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.
Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature.
Kong, G; Braun, R D; Dewhirst, M W
2001-04-01
The efficacy of novel cancer therapeutics can be hampered by inefficient delivery of agents to the tumor at effective concentrations. Liposomes have been used as a method to overcome some delivery issues and, in combination with hyperthermia, have been shown to increase drug delivery to tumors. This study investigates the effects of a range of temperatures (34-42 degrees C) and hyperthermia treatment scheduling (time between hyperthermia and drug administration as well as between consecutive hyperthermia treatments) on the extravasation of nanoparticles (100-nm liposomes) from tumor microvasculature in a human tumor (SKOV-3 ovarian carcinoma) xenograft grown in athymic nude mouse window chambers. Under normothermic conditions (34 degrees C) and at 39 degrees C, nanoparticles were unable to extravasate into the tumor interstitium. From 40 to 42 degrees C, nanoparticle extravasation increased with temperature, reaching maximal extravasation at 42 degrees C. Temperatures higher than 42 degrees C led to hemorrhage and stasis in tumor vessels. Enhanced nanoparticle extravasation was observed several hours after heating, decaying back to baseline at 6 h postheating. Reheating (42 degrees C for 1 h) 8 h after an initial heating (42 degrees C for 1 h) did not result in any increased nanoparticle extravasation, indicating development of vascular thermotolerance. The results of this study have implications for the application and scheduling of hyperthermia combined with other therapeutics (e.g., liposomes, antibodies, and viral vectors) for the treatment of cancer.
NASA Astrophysics Data System (ADS)
Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.
2005-04-01
Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.
Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David
2015-11-07
An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.
Larsen, Lawrence E.
2000-01-01
A hyperthermia apparatus, suitable for transurethral application, has an energy radiating element comprising a leaky-wave antenna. The leaky wave antenna radiation pattern is characterized by a surface wave which propagates along an aperture formed by openings (small in comparison to a wavelength) in the outer conductor of a transmission line. Appropriate design of the leaky wave antenna produces a uniform, broadside pattern of temperature elevation that uniformly heats all or part of the periurethral tissues.
Wang, Lei; Li, Dong; Hao, Yongwei; Niu, Mengya; Hu, Yujie; Zhao, Hongjuan; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun
2017-01-01
Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF) with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs) suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AuNRs and docetaxel (DTX) (PLGA/AuNR/DTX) NPs were constructed. Finally, manganese dioxide (MnO 2 ) ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO 4 to construct the PLGA/AuNR/DTX@MnO 2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn 2+ to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO 2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO 2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications.
Wang, Lei; Li, Dong; Hao, Yongwei; Niu, Mengya; Hu, Yujie; Zhao, Hongjuan; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun
2017-01-01
Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF) with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs) suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AuNRs and docetaxel (DTX) (PLGA/AuNR/DTX) NPs were constructed. Finally, manganese dioxide (MnO2) ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO4 to construct the PLGA/AuNR/DTX@MnO2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn2+ to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications. PMID:28450782
Stocke, Nathanael A; Sethi, Pallavi; Jyoti, Amar; Chan, Ryan; Arnold, Susanne M; Hilt, J Zach; Upreti, Meenakshi
2017-03-01
Magnetic hyperthermia as a treatment modality is acquiring increased recognition for loco-regional therapy of primary and metastatic lung malignancies by pulmonary delivery of magnetic nanoparticles (MNP). The unique characteristic of magnetic nanoparticles to induce localized hyperthermia in the presence of an alternating magnetic field (AMF) allows for preferential killing of cells at the tumor site. In this study we demonstrate the effect of hyperthermia induced by low and high dose of MNP under the influence of an AMF using 3D tumor tissue analogs (TTA) representing the micrometastatic, perfusion independent stage of triple negative breast cancer (TNBC) that infiltrates the lungs. While application of inhalable magnetic nanocomposite microparticles or magnetic nanocomposites (MnMs) to the micrometastatic TNBC model comprised of TTA generated from cancer and stromal cells, showed no measureable adverse effects in the absence of AMF-exposure, magnetic hyperthermia generated under the influence of an AMF in TTA incubated in a high concentration of MNP (1 mg/mL) caused significant increase in cellular death/damage with mechanical disintegration and release of cell debris indicating the potential of these inhalable composites as a promising approach for thermal treatment of diseased lungs. The novelty and significance of this study lies in the development of methods to evaluate in vitro the application of inhalable composites containing MNPs in thermal therapy using a physiologically relevant metastatic TNBC model representative of the microenvironmental characteristics in secondary lung malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H
2016-09-28
Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.
Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai
2011-10-01
The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.
Mandal, Samir; Chaudhuri, Keya
2016-02-26
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.
A review on hyperthermia via nanoparticle-mediated therapy.
Sohail, Ayesha; Ahmad, Zaki; Bég, O Anwar; Arshad, Sarmad; Sherin, Lubna
2017-05-01
Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is its reaction and modulation by a magnetic force basically responsible for enabling its potential as heating mediators for cancer therapy. In magnetic nanoparticle hyperthermia, a tumour is preferentially loaded with systemically administered nanoparticles with high-absorption cross-section for transduction of an extrinsic energy source to heat. To maximize the energy deposited in the tumour while limiting the exposure to healthy tissues, the heating is achieved by exposing the region of tissue containing magnetic nanoparticles to an alternating magnetic field. The magnetic nanoparticles dissipate heat from relaxation losses thereby heating localized tissue above normal physiological ranges. Besides thermal efficiency, the biocompatibility of magnetite nanoparticles assisted its deployment as efficient drug carrier for targeted therapeutic regimes. In the present article, we provide a state-of-the-art review focused on progress in nanoparticle induced hyperthermia treatments that have several potential advantages over both global and local hyperthermia treatments achieved without nanoparticles. Green bio-nanotechnology has attracted substantial attention and has demonstrable abilities to improve cancer therapy. Furthermore, we have listed the challenges associated with this treatment along with future prospective that could attract the interest of biomedical engineers, biomaterials scientists, medical researchers and pharmacological research groups. Copyright © 2017 Société Française du Cancer. All rights reserved.
Thermal modelling using discrete vasculature for thermal therapy: a review
Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Muthukumaran, T.; Philip, John
2018-04-01
The effects of initial susceptibility and size polydispersity on magnetic hyperthermia efficiency in two water based ferrofluids containing phosphate and TMAOH coated superparamagnetic Fe3O4 nanoparticles were studied. Experiments were performed at a fixed frequency of 126 kHz on four different concentrations of both samples and under different external field amplitudes. It was observed that for field amplitudes beyond 45.0 kAm-1, the maximum temperature rise was in the vicinity of 42°C (hyperthermia limit) which indicated the suitability of the water based ferrofluids for hyperthermia applications. The maximum temperature rise and specific absorption rate were found to vary linearly with square of the applied field amplitudes, in accordance with theoretical predictions. It was further observed that for a fixed sample concentration, specific absorption rate was higher for the phosphate coated samples which was attributed to the higher initial static susceptibility and lower size polydispersity of phosphate coated Fe3O4.
NASA Astrophysics Data System (ADS)
Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam
2018-06-01
Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.
NASA Astrophysics Data System (ADS)
Diederich, Chris J.; Wootton, Jeff; Prakash, Punit; Salgaonkar, Vasant; Juang, Titania; Scott, Serena; Chen, Xin; Cunha, Adam; Pouliot, Jean; Hsu, I. C.
2011-09-01
Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within temporary HDR brachytherapy implants during radiation therapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length×180 deg and 3-4 cm×360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers x dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and four prostate implants. 100% of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target volume (HTV) and clinical target volume (CTV) are reported. Catheter-based ultrasound hyperthermia with HDR appears feasible with therapeutic temperature coverage of the target volume within the prostate or cervix while sparing surrounding more sensitive regions.
Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
Surowiec, A; Bicher, H I
1995-01-01
A deep heating hyperthermia device TRIPAS (a triapplicator system) consisting of three independent, dielectrically loaded horn applicators operating in phase at 300 MHz was investigated. The heating characteristics produced by this hyperthermia system were analyzed by means of thermochromic liquid-crystal cards and a modified CDRH (Center for Devices and Regulatory Health) elliptical phantom. Both homogenous and inhomogeneous phantoms were used, simulating high and low permittivity tissues (muscle and lung). These equivalent tissues were made of polyacrylamide gel. The semiquantitative heating pattern analysis showed a central heating of 1/3 of maximum heating at a depth of 10 cm in both homogenous (muscle) and heterogenous (muscle/fat) phantoms. Also more uniform temperature/SAR distributions were generated in muscle equivalent material than those in lung.
Magnetic Microspheres and Tissue Model Studies for Therapeutical Applications
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Mazuruk, K.
2003-01-01
Hyperthermia is a well known cancer therapy and consists of heating a tumor region to the elevated temperatures in the range of 40-45 C for an extended period of time (2-8 hours). This leads to thermal inactivation of cell regulatory and growth processes with resulting widespread necrosis, carbonization and coagulation. Moreover, heat boosts the tumor response to other treatments such as radiation, chemotherapy or immunotherapy. Of particular importance is careful control of generated heat in the treated region and keeping it localized. Higher heating, to about 56 C can lead to tissue thermo-ablation. With accurate temperature control, hyperthermia has the advantage of having minimal side effects. Several heating techniques are utilized for this purpose, such as whole body hyperthermia, radio-frequency (RF) hyperthermia, ultrasound technique, inductive microwave antenna hyperthermia, inductive needles (thermoseeds), and magnetic fluid hyperthermia (MFH).MFH offers many advantages as targeting capability by applying magnets. However, this technology still suffers significant inefficiencies due to lack of thermal control. This paper will provide a review of the topic and outline the ongoing work in this area. The main emphasis is in devising ways to overcome the technical difficulty in hyperthermia breast therapy of achieving a uniform therapeutic temperature over the required region of the body and holding it steady for an extended period (2-3 hours). The basic shortcomings of the presently utilized heating methods stem from the non-uniform thermal properties of the tissue and the point heating characteristics of the techniques without any thermal control. Our approach is to develop a novel class of magnetic fluids, which have inherent thermoregulating properties. We have identified a few magnetic alloys which can serve as suitable nano to micron-size particle material. The objective is to synthesize, characterize and evaluate the efficacy of Thermo Regulating Magnetic Fluids (TRMF) for hyperthermia therapy. The development of a tissue model and testing the fluid dynamics of particle motion, settling, distribution in the tissue matrix and heat generation will be discussed.
Kato, Shinya; Saitoh, Yasukazu; Miwa, Nobuhiko
2013-01-01
The aim of this study was to evaluate inhibitory effects of L-ascorbic acid-2-O-phosphate-Na(2) (APS), a pro-vitamin C, combined with hyperthermia on adipogenic differentiation of mouse stromal cells, OP9. OP9 preadipocytes were differentiated with serum replacement, administered with APS, and simultaneously treated with hyperthermia using a capacitive-resistive electric transfer (CRet) apparatus, which was conducted repeatedly twice a day. After 2 days, intracellular lipid droplets were stained with Oil Red O, then observed by microscopy and assessed spectrophotometrically. After stimulation by serum replacement for 2 days, lipid droplets were accumulated surrounding nucleus of OP9 cells. When APS of 0.15-0.6 mM was administered without hyperthermia, the amount of lipid droplets was markedly suppressed to 50.5%∼-11.3% versus the undifferentiated control, and diminished huge aggregates of lipid droplets. In OP9 cells treated by hyperthermia at 42°C for 0.5 min, 1 min or 3 min in the absence of APS, adipogenesis was suppressed abruptly in a time-dependent manner to 95.4%, 18.7% or -5.5%, respectively. Whereas, the percentage of adipogenesis was 96.8% in OP9 cells treated by mild hyperthermia alone at 41°C for 1 min. The simultaneous application of APS and hyperthermia at 41°C for 1 min markedly suppressed the accumulation of lipid droplets to 25.7%∼-66.2%. By scanning electron microscopy (SEM) observation, the surface of OP9 cells treated with APS and hyperthermia appeared to have the morphological property of undifferentiated OP9 cells. Combined treatment of APS and mild hyperthermia suppresses adipogenesis in OP9 cells, particularly in lipid droplets accumulation during spontaneous differentiation of OP9 preadipocytes.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells under a Confocal Microscope.
Connord, Vincent; Clerc, Pascal; Hallali, Nicolas; El Hajj Diab, Darine; Fourmy, Daniel; Gigoux, Véronique; Carrey, Julian
2015-05-01
Combining high-frequency alternating magnetic fields (AMF) and magnetic nanoparticles (MNPs) is an efficient way to induce biological responses through several approaches: magnetic hyperthermia, drug release, controls of gene expression and neurons, or activation of chemical reactions. So far, these experiments cannot be analyzed in real-time during the AMF application. A miniaturized electromagnet fitting under a confocal microscope is built, which produces an AMF of frequency and amplitude similar to the ones used in magnetic hyperthermia. AMF application induces massive damages to tumoral cells having incorporated nanoparticles into their lysosomes without affecting the others. Using this setup, real-time analyses of molecular events occurring during AMF application are performed. Lysosome membrane permeabilization and reactive oxygen species production are detected after only 30 min of AMF application, demonstrating they occur at an early stage in the cascade of events leading eventually to cell death. Additionally, lysosomes self-assembling into needle-shaped organization under the influence of AMF is observed in real-time. This experimental approach will permit to get a deeper insight into the physical, molecular, and biological process occurring in several innovative techniques used in nanomedecine based on the combined use of MNPs and high-frequency magnetic fields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A compact microwave patch applicator for hyperthermia treatment of cancer.
Chakaravarthi, Geetha; Arunachalam, Kavitha
2014-01-01
Design and development of a compact microstrip C-type patch applicator for hyperthermia treatment of cancer is presented. The patch antenna is optimized for resonance at 434 MHz, return loss (S11) better than -15dB and co-polarized electric field in tissue. Effect of water bolus thickness on power delivery is studied for improved power coupling. Numerical simulations for antenna design optimization carried out using EM simulation software, Ansys HFSS(®), USA were experimentally verified. The effective field coverage for the optimized patch antenna and experimental results indicate that the compact antenna resonates at ISM frequency 434 MHz with better than -15 dB power coupling.
Shape Effect of Magnetic Nanoparticles on Hyperthermia Applications
NASA Astrophysics Data System (ADS)
Mohapatra, Jeotikanta; Zeng, F.; Elkins, K.; Poudyal, N.; Gandha, K.; Liu, J. Ping
Magnetic Fe3O4 nanoparticles (NPs) are extensively studied for their applications in advanced technologies. Incorporation of different transition metal ions and control of their sizes from nanometre to submicron scale are the keys for the magnetic property manipulation. We have investigated an alternative approach to optimize the magnetic properties by tailoring the shape of the NPs based on the observation that anisotropy of the NPs plays a crucial role in defining the magnetic characteristics. To synthesize monodisperse Fe3O4 NPs we have modified the conventional thermal decomposition to a `solvent-less' synthesis approach where long chain amine/acid acts as reducing and surface functionalizing agent. Various shapes like spheres, rods, octahedrons and cubes are obtained through simple alteration in reaction conditions. Octahedral and cube shaped Fe3O4 NPs exhibit bulk magnetization (92 emu/g) value due to the reduced surface spin disorder. These anisotropic NPs serve better in hyperthermia applications compared to the conventional spherical NPs. The cube and octahedron NPs show significantly higher SAR value, making them a potential candidate for hyperthermia treatment. This work has been supported by the U.S. DoD/ARO under Grant W911NF-11-0507.
Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours
NASA Astrophysics Data System (ADS)
Novák, P.; Moros, E. G.; Parry, J. J.; Rogers, B. E.; Myerson, R. J.; Zeug, A.; Locke, J. E.; Rossin, R.; Straube, W. L.; Singh, A. K.
2005-11-01
An external local ultrasound (US) system was developed to induce controlled hyperthermia of subcutaneously implanted tumours in small animals (e.g., mice and rats). It was designed to be compatible with a small animal positron emission tomography scanner (microPET) to facilitate studies of hyperthermia-induced tumour re-oxygenation using a PET radiopharmaceutical, but it is applicable for any small animal study requiring controlled heating. The system consists of an acrylic applicator bed with up to four independent 5 MHz planar disc US transducers of 1 cm in diameter, a four-channel radiofrequency (RF) generator, a multiple thermocouple thermometry unit, and a personal computer with custom monitoring and controlling software. Although the system presented here was developed to target tumours of up to 1 cm in diameter, the applicator design allows for different piezoelectric transducers to be exchanged and operated within the 3.5-6.5 MHz band to target different tumour sizes. Temperature feedback control software was developed on the basis of a proportional-integral-derivative (PID) approach when the measured temperatures were within a selectable temperature band about the target temperature. Outside this band, an on/off control action was applied. Perfused tissue-mimicking phantom experiments were performed to determine optimum controller gain constants, which were later employed successfully in animal experiments. The performance of the SAHUS (small animal hyperthermia ultrasound system) was tested using several tumour types grown in thighs of female nude (nu/nu) mice. To date, the system has successfully treated 83 tumours to target temperatures in the range of 41-43 °C for periods of 65 min on average.
Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J.
2012-01-01
Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately 10-fold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases. PMID:22174016
Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J
2012-05-01
Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately tenfold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization, and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases, and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jordan, Andreas; Scholz, Regina; Wust, Peter; Fähling, Horst; Felix, Roland
1999-07-01
The story of hyperthermia with small particles in AC magnetic fields started in the late 1950s, but most of the studies were unfortunately conducted with inadequate animal systems, inexact thermometry and poor AC magnetic field parameters, so that any clinical implication was far behind the horizon. More than three decades later, it was found, that colloidal dispersions of superparamagnetic (subdomain) iron oxide nanoparticles exhibit an extraordinary specific absorption rate (SAR [ W/ g]), which is much higher at clinically tolerable H 0 f combinations in comparison to hysteresis heating of larger multidomain particles. This was the renaissance of a cancer treatment method, which has gained more and more attention in the last few years. Due to the increasing number of randomized clinical trials preferentially in Europe with conventional E-field hyperthermia systems, the general medical and physical experience in hyperthermia application is also rapidly growing. Taking this increasing clinical experience carefully into account together with the huge amount of new biological data on heat response of cells and tissues, the approach of magnetic fluid hyperthermia (MFH) is nowadays more promising than ever before. The present contribution reviews the current state of the art and some of the future perspectives supported by advanced methods of the so-called nanotechnology.
Iron oxide nanoparticles with controlled morphology for advanced hyperthermia
NASA Astrophysics Data System (ADS)
Nemati Porshokouh, Zohreh; Khurshid, Hafsa; Alonso Messa, Javier; Phan, Manh-Huong; Srikanth, Hariharan
2015-03-01
Magnetic nanoparticles (NPs) are interesting for a wide range of applications. In biomedicine, they have been exploited for use in drug delivery, magnetic resonance imaging, and magnetic hyperthermia. While magnetic hyperthermia, using NPs to convert electromagnetic energy into heat to destroy the cancer cells, represents a novel cancer treatment technique, a poor heating conversion efficiency of the existing NPs restricts its practical use. Different strategies have been proposed to overcome this limitation, mainly by tuning the size, saturation magnetization and effective anisotropy of the NPs. Here we report a magnetic hyperthermia study on Fe3O4 NPs, where the effective anisotropy was tuned by varying particle morphology from the spherical to octopod shape. The Fe3O4 NPs were synthesized using a thermal decomposition method. Transmission electron microscopy (TEM) and high-resolution TEM images show high crystalline monodisperse nanoparticles. X-ray diffraction patterns confirm the presence of Fe3O4 phase. Hyperthermia experiments indicate that the octopods possess a higher SAR as compared to their spherical counterpart. Our findings provide an effective approach to improve the SAR of NPs by manipulating the shape anisotropy of the nanoparticles. Research was supported by USAMRMC through Grant Numbers W81XWH-07-1-0708 and W81XWH1020101/3349.
Kampinga, Harm H
2006-05-01
Hyperthermia results in protein unfolding that, if not properly chaperoned by Heat Shock Proteins (HSP), can lead to irreversible and toxic protein aggregates. Elevating HSP prior to heating makes cells thermotolerant. Hyperthermia also can enhance the sensitivity of cells to radiation and drugs. This sensitization to drugs or radiation is not directly related to altered HSP expression. However, altering HSP expression before heat and radiation or drug treatment will affect the extent of thermal sensitization because the HSP will attenuate the heat-induced protein damage that is responsible for radiation- or drug-sensitization. For thermal radiosensitization, nuclear protein damage is considered to be responsible for hyperthermic effects on DNA repair, in particular base excision repair. Hyperthermic drug sensitization can be seen for a number of anti-cancer drugs, especially of alkylating agents. Synergy between heat and drugs may arise from multiple events such as heat damage to ABC transporters (drug accumulation), intra-cellular drug detoxification pathways and repair of drug-induced DNA adducts. This may be why cells with acquired drug resistance (often multi-factorial) can be made responsive to drugs again by combining the drug treatment with heat.
On-Demand Drug Release from Gold Nanoturf for a Thermo- & Chemo-Therapeutic Esophageal Stent (TES).
Lee, Sori; Hwang, Gyoyeon; Kim, Tae Hee; Kwon, S Joon; Kim, Jong Uk; Koh, Kyongbeom; Park, Byeonghak; Hong, Haeleen; Yu, Ki Jun; Chae, Heeyeop; Jung, Youngmee; Lee, Jiyeon; Kim, Tae-Il
2018-06-07
Stimuli-responsive delivery systems for cancer therapy have been increasingly used to promote the on-demand therapeutic efficacy of anticancer drugs, and in some cases, simultaneously generate heat in response to a stimulus, resulting in hyperthermia. However, their application is still limited due to the systemic drawbacks of intravenous delivery, such as rapid clearance from the bloodstream, and the repeat injections required for sustained safe dosage, which can cause over-dosing. Here, we propose a gold (Au)-coated nanoturf structure as an implantable therapeutic interface for near-infrared (NIR)-mediated on-demand hyperthermia chemotherapy. The Au nanoturf possessed long-lasting doxorubicin (DOX) duration, which helps facilitate drug release in a sustained and prolonged manner. Moreover, the Au-coated nanoturf provides reproducible hyperthermia induced by localized surface plasmon resonances (LSPRs) under NIR irradiation. Simultaneously, the NIR-mediated temperature increase can promote on-demand drug release at desired time points. For in vivo analysis, the Au nanoturf structure was applied on an esophageal stent, which needs sustained anticancer treatment to prevent tumor recurrence on the implanted surface. This thermo- and chemo-esophageal stent induced significant cancer cell death with released drug and hyperthermia. These phenomena were also confirmed by theoretical analysis. The proposed strategy provides a solution to achieve enhanced thermo-/chemotherapy, and has broad applications in sustained cancer treatments.
Irradiation-hyperthermia in canine hemangiopericytomas: large-animal model for therapeutic response.
Richardson, R C; Anderson, V L; Voorhees, W D; Blevins, W E; Inskeep, T K; Janas, W; Shupe, R E; Babbs, C F
1984-11-01
Results of irradiation-hyperthermia treatment in 11 dogs with naturally occurring hemangiopericytoma were reported. Similarities of canine and human hemangiopericytomas were described. Orthovoltage X-irradiation followed by microwave-induced hyperthermia resulted in a 91% objective response rate. A statistical procedure was given to evaluate quantitatively the clinical behavior of locally invasive, nonmetastatic tumors in dogs that were undergoing therapy for control of local disease. The procedure used a small sample size and demonstrated distribution of the data on a scaled response as well as transformation of the data through classical parametric and nonparametric statistical methods. These statistical methods set confidence limits on the population mean and placed tolerance limits on a population percentage. Application of the statistical methods to human and animal clinical trials was apparent.
Microwave applications range from under the soil to the stratosphere
NASA Astrophysics Data System (ADS)
Bierman, Howard
1990-11-01
While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.
Tavano, Lorena; Oliviero Rossi, Cesare; Picci, Nevio; Muzzalupo, Rita
2016-09-25
Inclusion of lipids or polymers with a transition temperature closer to physiological body temperature (40-42°C) is a strategy used in tumor therapy for more than 30 years, because it allows induction of drug release from delivery systems by mild hyperthermia. Unfortunately, most of these thermo-sensitive carriers are removed from circulation before completion of their function. Thus, novel multi-functional niosomes possessing spontaneous stealth and thermo-sensitive properties were developed from L64 Pluronic(®) and L64ox as its derivative, in presence or absence of cholesterol. The use of L64 both as amphiphilic constituent and thermo-sensitive molecule, gave the possibility to bypass the use of additional excipients and increased the system biocompatibility. Niosomes diameter ranged from 400 to 750nm and were long term stable. Calcein and 5-FU possess great affinity to niosomal matrices rich in PEO groups. Negative Z-potential values were attributed to the negative charges onto the niosomes surface and generally change according to the temperature. The in vitro drugs release studies were performed at 25°C, 37°C and 42°C, that are representative of certain conditions (storage, physiological condition and mild hyperthermia, respectively). Results showed that L64-based niosomes possess spontaneous thermo-sensitive properties: drugs releases were found to be more pronounced at 42°C. These early results are a promising first step for the development of multi-functional devices that combine several advantages such as stealth properties and temperature controllability at the desired location and time, for a more specific and efficient pharmacological therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Sun, Tengfei; Ranjan, Ashish
2017-02-01
Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.
Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
Li, Li; ten Hagen, Timo L M; Bolkestein, Michiel; Gasselhuber, Astrid; Yatvin, Jeremy; van Rhoon, Gerard C; Eggermont, Alexander M M; Haemmerich, Dieter; Koning, Gerben A
2013-04-28
Accumulation of nanoparticles in solid tumors depends on their extravasation. However, vascular permeability is very heterogeneous within a tumor and among different tumor types, hampering efficient delivery. Local hyperthermia at a tumor can improve nanoparticle delivery by increasing tumor vasculature permeability, perfusion and interstitial fluid flow. The aim of this study is to investigate hyperthermia conditions required to improve tumor vasculature permeability, subsequent liposome extravasation and interstitial penetration in 4 tumor models. Tumors are implanted in dorsal skin flap window chambers and observed for liposome (~85 nm) accumulation by intravital confocal microscopy. Local hyperthermia at 41°C for 30 min initiates liposome extravasation through permeable tumor vasculature in all 4 tumor models. A further increase in nanoparticle extravasation occurs while continuing heating to 1h, which is a clinically relevant duration. After hyperthermia, the tumor vasculature remains permeable for 8h. We visualize gaps in the endothelial lining of up to 10 μm induced by HT. Liposomes extravasate through these gaps and penetrate into the interstitial space to at least 27.5 μm in radius from the vessel walls. Whole body optical imaging confirms HT induced extravasation while liposome extravasation was absent at normothermia. In conclusion, a thermal dose of 41°C for 1h is effective to induce long-lasting permeable tumor vasculature for liposome extravasation and interstitial penetration. These findings hold promise for improved intratumoral drug delivery upon application of local mild hyperthermia prior to administration of nanoparticle-based drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system.
Curto, Sergio; Prakash, Punit
2015-01-01
Currently available microwave hyperthermia systems for breast cancer treatment do not conform to the intact breast and provide limited control of heating patterns, thereby hindering an effective treatment. A compact patch antenna with a flared groundplane that may be integrated within a wearable hyperthermia system for the treatment of the intact breast disease is proposed. A 3D simulation-based approach was employed to optimise the antenna design with the objective of maximising the hyperthermia treatment volume (41 °C iso-therm) while maintaining good impedance matching. The optimised antenna design was fabricated and experimentally evaluated with ex vivo tissue measurements. The optimised compact antenna yielded a -10 dB bandwidth of 90 MHz centred at 915 MHz, and was capable of creating hyperthermia treatment volumes up to 14.4 cm(3) (31 mm × 28 mm × 32 mm) with an input power of 15 W. Experimentally measured reflection coefficient and transient temperature profiles were in good agreement with simulated profiles. Variations of + 50% in blood perfusion yielded variations in the treatment volume up to 11.5%. When compared to an antenna with a similar patch element employing a conventional rectangular groundplane, the antenna with flared groundplane afforded 22.3% reduction in required power levels to reach the same temperature, and yielded 2.4 times larger treatment volumes. The proposed patch antenna with a flared groundplane may be integrated within a wearable applicator for hyperthermia treatment of intact breast targets and has the potential to improve efficiency, increase patient comfort, and ultimately clinical outcomes.
The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
Hou, Chun-Han; Hou, Sheng-Mou; Hsueh, Yu-Sheng; Lin, Jinn; Wu, Hsi-Chin; Lin, Feng-Huei
2009-08-01
Hyperthermia therapy for cancer has drawn more and more attention these days. In this study, we conducted an in vivo cancer hyperthermia study of the new magnetic hydroxyapatite nanoparticles by a mouse model. The magnetic hydroxyapatite nanoparticles were first made by co-precipitation method with the addition of Fe(2+). Then, magnetic-HAP powder (mHAP) or pure HAP powder (HAP) was mixed with phosphate buffer solution (PBS), respectively. The mixture was injected around the tumor. In order to achieve hyperthermia, the mice were placed into an inductive heater with high frequency and alternating magnetic field. Only the mice which were injected with mHAP and had been treated inside the magnetic field showed dramatic reduction of tumor volume, in the 15-day observation period. No local recurrence was noted. The blood test of mice proved that mHAP powders possessed good biocompatibility and little toxicity when injected subcutaneously. Therefore, our new magnetic hydroxyapatite nanoparticles have demonstrated therapeutic effect in a mouse model with little toxicity. Further study should be done before its application inside the human body.
Role of CTGF in sensitivity to hyperthermia in ovarian and uterine cancers
Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; ...
2016-11-01
Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. Lastly, CTGF silencingmore » aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.« less
NASA Astrophysics Data System (ADS)
Chitra, S.; Bargavi, P.; Durgalakshmi, D.; Balasubramaniam, M.; Rajashree, P.; Balakumar, S.
2018-04-01
Nanostructured Iron oxide nanoparticles are being used for various biomedical applications such as Magnetic Resonance Imaging, Drug Delivery, Hyperthermia, Photo-ablation therapy and Biosensors as it exhibits tremendous biocompatibility. These magnetic materials are abundant, are available in natural resources such as sand, rock and various plants. In the present investigation, magnetic materials were separated from beach sand using external magnet and studied the properties of mineral magnetite, and it exhibits well-known compatibility with erythrocytes. Mineral magnetite derived from natural resources can demonstrate better biocompatibility and in addition, it cuts down the necessity of going towards highly expensive iron sources.
Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes
2017-11-15
Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is reliable and very useful to reduce hot spots without affecting tumor temperatures. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiang, Feng; Bai, Jingfeng; Chen, Yazhu
2005-08-01
Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.
Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C
2013-03-01
Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.
Kosterev, Vladimir V; Kramer-Ageev, Evgeny A; Mazokhin, Vladimir N; van Rhoon, Gerard C; Crezee, Johannes
2015-06-01
This paper describes the development of a new type of electromagnetic hyperthermia applicator delivering dose control within large application fields and increased effectiveness by providing simultaneous action of radiation and heating (SRH) in malignant tumours, and development of a dosimetric feedback method to support SRH. Single and phased arrays of flexible applicators have been developed to allow simultaneous hyperthermia and external beam therapy. A frequency of 434 MHz is used to heat near-surface and moderately deep-seated tumours and 70 MHz for deep-seated tumours. Phase and amplitude control allows focusing of electromagnetic energy (EM) to deep-seated tumours. The specific absorption rate (SAR) dose distribution can be modified to achieve uniform heating of tumours with complex shapes and heterogeneous tissue properties. A lithium fluoride thermoluminescent dosimeter (TLD) in a flexible film cassette has been developed for real-time dose measurement. Four types of 434 MHz applicators were manufactured with 3, 4, 9 or 12 independent applicators. Two types of 70 MHz applicators were made with 4 or 6 independent applicators. Phantom tests demonstrated the ability to control the SAR pattern by phase and amplitude control. Placement of the dosimeter between bolus and phantom increased the phantom surface temperature up to 3 °C and showed that the ratio of absorbed energy in TLD to dose in water approaches (0.83 ± 3%) for photon energies >60 keV. Simultaneous and controlled radiation and local hyperthermia is technically feasible in a preclinical setting, a clinical feasibility test is the next step.
Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.
2009-01-01
Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.
Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. Lastly, CTGF silencingmore » aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.« less
NASA Astrophysics Data System (ADS)
Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack
2015-03-01
The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.
Tang, Qiusha; Chen, Daozhen
2014-01-01
This paper aimed to investigate the treatment efficiency of 188Re labeled folate targeting albumin nanoparticles with cis-Diamminedichloroplatinum Cisplatin (188Re-folate-CDDP/HAS MNP) on human ovarian cancer. SKOV3 cells or tumor-bearing mice were divided into different groups and treated as follow: (A) negative control; (B) chemotherapy; (C) radiotherapy; (D) hyperthermia; (E) chemotherapy and radiotherapy; (F) chemotherapy and hyperthermia; (G) radiotherapy and hyperthermia; (H) chemotherapy, radiotherapy and hyperthermia. Treatment of B to H inhibited proliferation of SKOV3 cells, with the greatest inhibition being observed in group H (P<0.05). Obvious apoptotic hypodiploid peak appeared beside G1 phase in groups of B to H. The apoptotic rates of SKOV3 cells in groups of A to H were 0.08%, 7.56%, 8.64%, 17.14%, 21.64%, 23.77%, 33.94% and 57.16%, respectively. Our findings in vivo study showed that the mass of tumor in each group of B to H was significantly lower than that in the negative control (p <0.05). In addition, compared with each group of B to G, group H showed highest inhibition of tumor growth (p<0.05). In conclusion, the combination of magnetic induced hyperthermia, chemotherapy and targeted radionuclide of radiation exposure can effectively inhibit the growth of ovarian cancer, which indicates a potential applications in ovarian cancer treatment.
NASA Astrophysics Data System (ADS)
Wootton, Jeffery H.; Prakash, Punit; Hsu, I.-Chow Joe; Diederich, Chris J.
2011-07-01
Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue >=41 °C in a hyperthermia treatment volume was maximized with constraints Tmax <= 47 °C, Trectum <= 41.5 °C, and Tbladder <= 42.5 °C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m-3 s-1) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm3) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T90 in example patient cases was 40.5-42.7 °C (1.9-39.6 EM43 °C) at 1 kg m-3 s-1 with 10/14 patients >=41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T90 >= 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to generate conformal therapeutic heating ranging from a single endocervical device targeting small volumes local to the cervix (<2 cm radial) to a combination of a 2 × 180° endocervical and directional interstitial applicators in the lateral periphery to target much larger volumes (6 cm radial), while preferentially limiting heating of the bladder and rectum.
Winter, Lukas; Oezerdem, Celal; Hoffmann, Werner; van de Lindt, Tessa; Periquito, Joao; Ji, Yiyi; Ghadjar, Pirus; Budach, Volker; Wust, Peter; Niendorf, Thoralf
2015-09-22
Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by "fighting fire with fire". Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.
NASA Astrophysics Data System (ADS)
Wu, Kai; Wang, Jian-Ping
2017-05-01
The heating performance of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.
Metterlein, Thomas; Schuster, Frank; Kranke, Peter; Roewer, Norbert; Anetseder, Martin
2010-01-01
A new minimally invasive metabolic test for the diagnosis of susceptibility for malignant hyperthermia measuring intramuscular p(CO(2)) and lactate following local application of caffeine and halothane in humans was recently proposed. The present study tested the hypothesis that a more simplified test protocol allows a differentiation between malignant hyperthermia susceptible (MHS) and malignant hyperthermia nonsusceptible (MHN) and control individuals. With approval of the local ethics committee and informed consent, microdialysis and p(CO(2)) probes with attached microtubing were placed into the lateral vastus muscle of six MHS, seven MHN and seven control individuals. Following equilibration, boluses of 500 microl caffeine 80 mmol l(-1) and halothane 10 vol% dissolved in soybean oil were injected locally. p(CO(2)) and lactate were measured spectrophotometrically. The maximal rate of p(CO(2)) increase was significantly higher in MHS than in MHN and control individuals following application of halothane and caffeine, respectively. Intramuscular caffeine injection leads to a significantly higher increase of local lactate levels in MHS than in MHN and control individuals, whereas halothane increased local lactate levels in all investigated groups. Haemodynamic and systemic metabolic parameters did not differ between the investigated groups. Local caffeine and halothane injection increased intramuscular metabolism in MHS individuals significantly more than in the two other groups. In contrast to previous investigations, direct injection of the concentrations of halothane described here increased lactate and p(CO(2)) even in MHN skeletal muscle.
Kok, H P; Korshuize-van Straten, L; Bakker, A; de Kroon-Oldenhof, R; Westerveld, G H; Versteijne, E; Stalpers, L J A; Crezee, J
2017-11-16
The effectiveness of hyperthermia is strongly dependent on the achieved tumour temperatures. Phased-array systems allow flexible power steering to realise good tumour heating while avoiding excessive heating in normal tissue, but the limited quantitative accuracy of pre-treatment planning complicates realising optimal tumour heating. On-line hyperthermia treatment planning could help to improve the heating quality. This paper demonstrates the feasibility of using on-line temperature-based treatment planning to improve the heating quality during hyperthermia in three patients. Hyperthermia treatment planning was performed using the Plan2Heat software package combined with a dedicated graphical user interface for on-line application. Electric fields were pre-calculated to allow instant update and visualisation of the predicted temperature distribution for user-selected phase-amplitude settings during treatment. On-line treatment planning using manual variation of system settings for the AMC-8 hyperthermia system was applied in one patient with a deep-seated pelvic melanoma metastasis and two cervical cancer patients. For a clinically relevant improvement the increase in average target temperature should be at least 0.2 °C. With the assistance of on-line treatment planning a substantial improvement in tumour temperatures was realised for all three patients. In the melanoma patient, the average measured target temperature increased from 38.30 °C to 39.15 °C (i.e. +0.85 °C). In the cervical cancer patients, the average measured target temperature increased from 41.30 °C to 42.05 °C (i.e. +0.75 °C) and from 41.70 °C to 42.80 °C (i.e. +1.1 °C), respectively. On-line temperature-based treatment planning is clinically feasible to improve tumour temperatures. A next, worthwhile step is automatic optimisation for a larger number of patients.
NASA Astrophysics Data System (ADS)
Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John
2017-10-01
To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.
NASA Astrophysics Data System (ADS)
Aklan, Bassim; Gierse, Pia; Hartmann, Josefin; Ott, Oliver J.; Fietkau, Rainer; Bert, Christoph
2017-06-01
Patient positioning plays an important role in regional deep hyperthermia to obtain a successful hyperthermia treatment. In this study, the influence of possible patient mispositioning was systematically assessed on specific absorption rate (SAR) and temperature distribution. With a finite difference time domain approach, the SAR and temperature distributions were predicted for six patients at 312 positions. Patient displacements and rotations as well as the combination of both were considered inside the Sigma-Eye applicator. Position sensitivity is assessed for hyperthermia treatment planning -guided steering, which relies on model-based optimization of the SAR and temperature distribution. The evaluation of the patient mispositioning was done with and without optimization. The evaluation without optimization was made by creating a treatment plan for the patient reference position in the center of the applicator and applied for all other positions, while the evaluation with optimization was based on creating an individual plan for each position. The parameter T90 was used for the temperature evaluation, which was defined as the temperature that covers 90% of the gross tumor volume (GTV). Furthermore, the hotspot tumor quotient (HTQ) was used as a goal function to assess the quality of the SAR and temperature distribution. The T90 was shown considerably dependent on the position within the applicator. Without optimization, the T90 was clearly decreased below 40 °C by patient shifts and the combination of shifts and rotations. However, the application of optimization for each positon led to an increase of T90 in the GTV. Position inaccuracies of less than 1 cm in the X-and Y-directions and 2 cm in the Z-direction, resulted in an increase of HTQ of less than 5%, which does not significantly affect the SAR and temperature distribution. Current positioning precision is sufficient in the X (right-left)-direction, but position accuracy is required in the Y-and Z-directions.
NASA Astrophysics Data System (ADS)
Hervault, Aziliz; Dunn, Alexander E.; Lim, May; Boyer, Cyrille; Mott, Derrick; Maenosono, Shinya; Thanh, Nguyen T. K.
2016-06-01
Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour.Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07773g
Application of hyperthermia for cancer treatment: recent patents review.
Soares, Paula I P; Ferreira, Isabel M M; Igreja, Rui A G B N; Novo, Carlos M M; Borges, Joao P M R
2012-01-01
Cancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and since early it was established as a cancer treatment option, mainly in superficial cancers. More recently the concept of intracellular hyperthermia emerged wherein magnetic particles are concentrated at the tumor site and remotely heated using an applied magnetic field to achieve hyperthermic temperatures (42-45°C). Many patents have been registered in this area since the year 2000. This review presents the most relevant information, organizing them according to the hyperthermic method used: 1) external Radio-Frequency devices; 2) hyperthermic perfusion; 3) frequency enhancers; 4) apply heating to the target site using a catheter; 5) injection of magnetic and ferroelectric particles; 6) injection of magnetic nanoparticles that may carry a pharmacological active drug. The use of magnetic nanoparticles is a very promising treatment approach since it may be used for diagnostic and treatment. An ideal magnetic nanoparticle would be able to detect and diagnose the tumor, carry a pharmacological active drug to be delivered in the tumor site, apply hyperthermia through an external magnetic field and allow treatment monitoring by magnetic resonance imaging.
Specific loss power in superparamagnetic hyperthermia: nanofluid versus composite
NASA Astrophysics Data System (ADS)
Osaci, M.; Cacciola, M.
2017-01-01
Currently, the magnetic hyperthermia induced by nanoparticles is of great interest in biomedical applications. In the literature, we can find a lot of models for magnetic hyperthermia, but many of them do not give importance to a significant detail, such as the geometry of nanoparticle positions in the system. Usually, a nanofluid is treated by considering random positions of the nanoparticles, geometry that is actually characteristic to the composite nanoparticles. To assess the error which is frequently made, in this paper we propose a comparative analysis between the specific loss power (SLP) in case of a nanofluid and the SLP in case of a composite with magnetic nanoparticles. We are going to use a superparamagnetic hyperthermia model based on the improved model for calculating the Néel relaxation time in a magnetic field oblique to the nanoparticle magnetic anisotropy axes, and on the improved theoretical model LRT (linear response theory) for SLP. To generate the nanoparticle geometry in the system, we are going to apply a Monte Carlo method to a nanofluid, by minimising the interaction potentials in liquid medium and, for a composite environment, a method for generating random positions of the nanoparticles in a given volume.
Anisotropic Magnetic Nanostructures For Enhanced Hyperthermia
NASA Astrophysics Data System (ADS)
Torres, D.; Das, R.; Alonso, J.; Phan, M. H.; Srikanth, H.
Magnetic nanoparticles assisted hyperthermia is one of the most promising techniques for cancer treatment. By the use of magnetic nanoparticles in an external AC magnetic field, one can target a specific tumor location and deliver toxic doses of heat to the tumor area without damaging the surrounding healthy tissue. Magnetite is typically used in biomedical applications due to its biocompatibility, but the heating efficiency of the commonly used magnetite nanoparticles is not enough to obtain the best results in cancer treatment. Therefore, novel magnetic nanostructures are required in order to improve the heating efficiency. Recently, it has been proposed by different groups that it is possible to increase the heating efficiency of the nanoparticles by tuning their effective anisotropy. Considering this, we have synthesized high aspect ratio magnetic nanorods with increased effective anisotropy. A thorough structural and magnetic characterization has revealed high crystallinity and optimal magnetic properties of these nanorods. The hyperthermia response shows that by increasing the aspect ratio from 5 to 11, their heating efficiency is increased by 150%. In addition, we have observed that a good alignment of the nanorods with the magnetic field ensures the best heating results. Hence, these nanorods appear to be promising candidates for cancer treatment with magnetic hyperthermia.
Conformal Microwave Array (CMA) Applicators for Hyperthermia of Diffuse Chestwall Recurrence
Stauffer, Paul R.; Maccarini, Paolo; Arunachalam, Kavitha; Craciunescu, Oana; Diederich, Chris; Juang, Titania; Rossetto, Francesca; Schlorff, Jaime; Milligan, Andrew; Hsu, Joe; Sneed, Penny; Vujaskovic, Zeljko
2010-01-01
Purpose This article summarizes the evolution of microwave array applicators for heating large area chestwall disease as an adjuvant to external beam radiation, systemic chemotherapy, and potentially simultaneous brachytherapy. Methods Current devices used for thermotherapy of chestwall recurrence are reviewed. The largest conformal array applicator to date is evaluated in four studies: i) ability to conform to the torso is demonstrated with a CT scan of a torso phantom and MR scan of the conformal waterbolus component on a mastectomy patient; ii) Specific Absorption Rate (SAR) and temperature distributions are calculated with electromagnetic and thermal simulation software for a mastectomy patient; iii). SAR patterns are measured with a scanning SAR probe in liquid muscle phantom for a buried coplanar waveguide CMA; and iv) heating patterns and patient tolerance of CMA applicators are characterized in a clinical pilot study with 13 patients. Results CT and MR scans demonstrate excellent conformity of CMA applicators to contoured anatomy. Simulations demonstrate effective control of heating over contoured anatomy. Measurements confirm effective coverage of large treatment areas with no gaps. In 42 hyperthermia treatments, CMA applicators provided well-tolerated effective heating of up to 500cm2 regions, achieving target temperatures of Tmin=41.4±0.7°C, T90=42.1±0.6°C, Tave=42.8±0.6°C, and Tmax=44.3±0.8°C as measured in an average of 90 points per treatment. Summary The CMA applicator is an effective thermal therapy device for heating large-area superficial disease such as diffuse chestwall recurrence. It is able to cover over three times the treatment area of conventional hyperthermia devices while conforming to typical body contours. PMID:20849262
2015-01-01
Mitochondria-targeting peptides have garnered immense interest as potential chemotherapeutics in recent years. However, there is a clear need to develop strategies to overcome the critical limitations of peptides, such as poor solubility and the lack of target specificity, which impede their clinical applications. To this end, we report magnetic core–shell nanoparticle (MCNP)-mediated delivery of a mitochondria-targeting pro-apoptotic amphipathic tail-anchoring peptide (ATAP) to malignant brain and metastatic breast cancer cells. Conjugation of ATAP to the MCNPs significantly enhanced the chemotherapeutic efficacy of ATAP, while the presence of targeting ligands afforded selective delivery to cancer cells. Induction of MCNP-mediated hyperthermia further potentiated the efficacy of ATAP. In summary, a combination of MCNP-mediated ATAP delivery and subsequent hyperthermia resulted in an enhanced effect on mitochondrial dysfunction, thus resulting in increased cancer cell apoptosis. PMID:25133971
Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas.
Matteucci, M L; Anyarambhatla, G; Rosner, G; Azuma, C; Fisher, P E; Dewhirst, M W; Needham, D; Thrall, D E
2000-09-01
The effect of hyperthermia on the accumulation of technetium-99m-labeled liposomes was studied in feline sarcomas. Each cat received two separate injections of liposomes. The first was used to quantify the amount of technetium-99m-labeled liposomes within the tumor under normothermic conditions. The second injection was made at the beginning of a 60-min hyperthermia procedure. Planar scintigraphy was used to measure the activity of technetium-99m-labeled liposomes within the tumor at predetermined times up to 18 h after injection. Regions of interest were drawn for the tumor, lungs, liver, kidney, and aorta. Counts in the regions of interest were decay corrected. Counts/pixel in the tumor under normothermic and hyperthermic conditions were normalized to aorta counts/pixel. A total of 16 cats were eligible for the study. In two of the 16 cats, incomplete count data precluded analysis. In the remaining 14 cats, hyperthermia resulted in a significant increase in liposome accumulation in the tumor (P = 0.001). Tumor volume ranged from 1.2 to 236.2 cm3, and thermal dose ranged from 2.0 to 243.3 CEM43CT90 (equivalent time that the 10th percentile temperature was equal to 43 degrees C). There was not a relationship between either tumor volume or hyperthermia dose on the magnitude of increased liposome accumulation, suggesting that this method has application across a range of tumor volumes and degrees of heatibility.
High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)
NASA Astrophysics Data System (ADS)
Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.
2016-06-01
Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Electronic supplementary information (ESI) available: Detailed IONP synthetic methods, description of magnetic particle relaxometer set-up, TEM of reference IONP (Senior Scientific PrecisionMRX™ 25 nm oleic acid-coated nanoparticles), concentration dependent PSF of all IONP samples, PSF and SAR of Zn-Sph and Zn-Cube mixture sample, upper right quadrant of field-dependent hysteresis curve labelled with static field strengths, and the magnetic hyperthermia temperature profiles with and without the presence of external magnetic fields. See DOI: 10.1039/c6nr01877g
Ultra-miniature wireless temperature sensor for thermal medicine applications
Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed
2017-01-01
This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems. PMID:28989222
... about MH: Malignant Hyperthermia Association of the United States -- www.mhaus.org National Organization for Rare Disorders -- rarediseases.org/rare-diseases/malignant-hyperthermia NIH Genetics Home Reference -- ghr.nlm.nih.gov/condition/malignant-hyperthermia
Synthesis of multifunctional clustered nano-Fe3O4 chitosan nanocomposite for biomedical applications
NASA Astrophysics Data System (ADS)
Villamin, Maria Emma; Kitamoto, Yoshitaka
2018-01-01
Clustered iron oxide nanoparticles covered with chitosan hydrogel (FeOx/Ch NC) have multiple potential functionalities in biomedical applications such as pH-controlled drug release, magnetic hyperthermia, and magnetic non-contact pH sensing. In the present study, the synthesis and characterization of FeOx/Ch NC are demonstrated. Moreover, the heating capability of the nanocomposites is also explored for the potential magnetic hyperthermia application by measuring the temperature curves under different AC frequencies (900 kHz to 2500 kHz). Monodispersed FeOx NPs are first synthesized via thermal decomposition. Then, dried FeOx NPs are combined with chitosan using a homogenizer to form the clustered composites. Synthesized composites are then characterized using XRD, TEM, and FTIR. Temperature curves are measured via a custom-built hyperthermia setup. Results show successful synthesis of clustered Fe3O4-chitosan nanocomposite with XRD peaks corresponding to magnetite (Fe3O4) structure. FTIR results show the presence of functional groups of chitosan (N-H, C-O) and FeOx NPs (Fe-O). These confirms the successful fabrication of FeOx/Ch NC. The temperature curves show maximum temperature changes of about 2°C to 22°C depending on the AC frequency. The heating rate is found to increase with the frequency, which suggests that the resonance frequency is higher than 2500 kHz.
Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.
2014-01-01
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697
Multi-focal HIFU reduces cavitation in mild-hyperthermia.
Chaplin, Vandiver; Caskey, Charles F
2017-01-01
Mild-hyperthermia therapy (40-45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5 W, and created heating that was more spatially diffuse than single focus, resulting in more voxels in the mild heating (3-8 °C) range. Multi-focal HIFU can be used to achieve mild temperature elevation and reduce cavitation activity.
Magnetic and hydrogel composite materials for hyperthermia applications.
Lao, L L; Ramanujan, R V
2004-10-01
Micron-sized magnetic particles (Fe3O4) were dispersed in a polyvinyl alcohol hydrogel to study their potential for hyperthermia applications. Heating characteristics of this ferrogel in an alternating magnetic field (375 kHz) were investigated. The results indicate that the amount of heat generated depends on the Fe3O4 content and magnetic field amplitude. A stable maximum temperature ranging from 43 to 47 degrees C was successfully achieved within 5-6 min. The maximum temperature was a function of Fe3O4 concentration. A specific absorption rate of up to 8.7 W/g Fe3O4 was achieved; this value was found to depend on the magnetic field strength. Hysteresis loss is the main contribution to the heating effect experienced by the sample.
The role of temperature increase rate in combinational hyperthermia chemotherapy treatment
NASA Astrophysics Data System (ADS)
Tang, Yuan; McGoron, Anthony J.
2010-02-01
Hyperthermia in combination with chemotherapy has been widely used in cancer treatment. Our previous study has shown that rapid rate hyperthermia in combination with chemotherapy can synergistically kill cancer cells whereas a sub-additive effect was found when a slow rate hyperthermia was applied. In this study, we explored the basis of this difference. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. P-glycoprotein (P-gp) expression, Caspase 3 activity, and heat shock protein 70 (HSP 70) expression following the two different modes of heating were measured. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. Slow rate hyperthermia was provided by a cell culture incubator. Two sets of thermal doses were delivered by either slow rate or rapid rate hyperthermia. HSP70 expression was highly elevated under low dose slow rate incubator hyperthermia while maintained at the baseline level under the other three treatments. Caspase3 level slightly increased after low dose slow rate incubator hyperthermia while necrotic cell death was found in the other three types of heat treatment. In conclusion, when given at the same thermal dose, slow rate hyperthermia is more likely to induce thermotolerance. Meanwhile, hyperthermia showed a dose dependent capability in reversing P-gp mediated MDR; when MDR is reversed, the combinational treatment induced extensive necrotic cell death. During this process, the rate of heating also played a very important role; necrosis was more dramatic in rapid rate hyperthermia than in slow rate hyperthermia even though they were given at the same dose.
Chung, Ren-Jei; Shih, Hui-Ting
2014-01-24
Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.
Thermosensitive Ni-based magnetic particles for self-controlled hyperthermia applications
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad
2017-04-01
A number of ferromagnetic alloys in the bulk-form "thermoseeds" have been investigated for localized self-controlled hyperthermia treatment of cancer by substituting V, Mo, Cu, and Ga for Ni. The samples were prepared by arc-melting technique and annealed at 1223 K (950 °C) for 12 h in sealed quartz tubes. The structural, magnetic, and magnetocaloric properties of the samples were studied, using room temperature X-ray diffraction and a Superconducting Quantum Interference Device (SQUID) magnetometer. The magnetocaloric parameters (magnetic entropy changes, refrigeration capacity (RC), and hysteretic effects) have been calculated. It has been shown that recrystallization, i.e., annealing time and temperature, is crucial for controlling the heating characteristics of the seeds. A linear decrease in Curie temperature (TC) from 380 K (107 °C) to 200 K (-73 °C) was observed with increasing substitution of Ni by V, Mo, Cu, and Ga, while the magnetization value remained nearly constant for all substitutions. The optimal composition of these Ni-based alloys has been determined in order to allow self-controlling hyperthermia, implying a Curie temperature near the therapeutic level, 315-318 K (41-45 °C). The results showed that an extraordinary self-regulating heating effect has been achieved in Ni-based magnetic materials, which may create new vistas for hyperthermia cancer treatment.
Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang
2018-03-01
A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Kanter, Mehmet; Aktas, Cevat; Erboga, Mustafa
2013-03-01
Scrotal hyperthermia has been known as a cause of male infertility but the exact mechanism leading to impaired spermatogenesis is unknown. This work was aimed to investigate the role of scrotal hyperthermia on cell proliferation and apoptosis in testes. The rats were randomly allotted into one of the four experimental groups: A (control), B (1 day after scrotal hyperthermia), C (14 days after scrotal hyperthermia), and D (35 days after scrotal hyperthermia); each group comprised 7 animals. Scrotal hyperthermia was carried out in a thermostatically controlled water bath at 43°C for 30 min once daily for 6 consecutive days. Control rats were treated in the same way, except the testes were immersed in a water bath maintained at 22°C. Hyperthermia-exposed rats were killed under 50 mg/kg ketamine anaesthesia and tissue samples were obtained for biochemical and histopathological investigations. Hyperthermia treatment significantly decreased the testicular antioxidant system, including decreases in the glutathione level, superoxide dismutase, and glutathione peroxidase activities. Moreover, exposure to hyperthermia resulted in lipid peroxidation increase in testes. Our data indicate a significant reduction in the expression of proliferating cell nuclear antigen and an enhancement in the activity of terminal deoxynucleotidyl transferase dUTP nick end labelling after scrotal hyperthermia. In scrotal hyperthermia, the mitochondrial degeneration, dilatation of smooth endoplasmic reticulum, and enlarged intercellular spaces were observed in both Sertoli and spermatid cells. Scrotal hyperthermia is one of the major factors that impair spermatogenesis in testis. This heat stress is shown to be closely associated with oxidative stress, followed by apoptosis of germ cells.
Cyclooxygenase inhibitors are potent sensitizers of prostate tumours to hyperthermia and radiation.
Asea, A; Mallick, R; Lechpammer, S; Ara, G; Teicher, B A; Fiorentino, S; Stevenson, M A; Calderwood, S K
2001-01-01
It has previously been demonstrated that hyperthermia can activate prostaglandin synthesis and that prostaglandins are protective against hyperthermia. This study examined the use of inhibitors of prostaglandin synthesis on the response of prostate tumours to hyperthermia. The non-steroidal anti-inflammatory drugs (NSAID) ibuprofen and sulindac, known cyclooxygenase inhibitors that inhibit prostaglandin production, were effective hyperthermia sensitizers and augmented growth delay of DU-145 and PC-3 prostate tumours to combined radiation and hyperthermia treatment protocols. Pre-treatment of mice with ibuprofen and sulindac at hyperthermia sensitizing doses resulted in significant (p < 0.01) inhibition of hyperthemia-induced serum prostaglandin E2. These findings indicate that NSAID may have both sensitizing effects on prostate tumour growth and may function by inhibiting prostaglandin synthesis.
Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer.
Fernandez-Fernandez, Alicia; Manchanda, Romila; Carvajal, Denny A; Lei, Tingjun; Srinivasan, Supriya; McGoron, Anthony J
2014-01-01
Near-infrared dyes can be used as theranostic agents in cancer management, based on their optical imaging and localized hyperthermia capabilities. However, their clinical translatability is limited by issues such as photobleaching, short circulation times, and nonspecific biodistribution. Nanoconjugate formulations of cyanine dyes, such as IR820, may be able to overcome some of these limitations. We covalently conjugated IR820 with 6 kDa polyethylene glycol (PEG)-diamine to create a nanoconjugate (IRPDcov) with potential for in vivo applications. The conjugation process resulted in nearly spherical, uniformly distributed nanoparticles of approximately 150 nm diameter and zeta potential -0.4±0.3 mV. The IRPDcov formulation retained the ability to fluoresce and to cause hyperthermia-mediated cell-growth inhibition, with enhanced internalization and significantly enhanced cytotoxic hyperthermia effects in cancer cells compared with free dye. Additionally, IRPDcov demonstrated a significantly longer (P<0.05) plasma half-life, elimination half-life, and area under the curve (AUC) value compared with IR820, indicating larger overall exposure to the theranostic agent in mice. The IRPDcov conjugate had different organ localization than did free IR820, with potential reduced accumulation in the kidneys and significantly lower (P<0.05) accumulation in the lungs. Some potential advantages of IR820-PEG-diamine nanoconjugates may include passive targeting of tumor tissue through the enhanced permeability and retention effect, prolonged circulation times resulting in increased windows for combined diagnosis and therapy, and further opportunities for functionalization, targeting, and customization. The conjugation of PEG-diamine with a near-infrared dye provides a multifunctional delivery vector whose localization can be monitored with noninvasive techniques and that may also serve for guided hyperthermia cancer treatments.
Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.
Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.
Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.
2011-01-01
We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068
NASA Astrophysics Data System (ADS)
Manh, D. H.; Phong, P. T.; Nam, P. H.; Tung, D. K.; Phuc, N. X.; Lee, In-Ja
We investigated structural and magnetic properties and alternating current magnetic heating characteristics of La0.7Sr0.3MnO3 nanoparticles with respect to the possible application for magnetic hyperthermia treatments. Using Rietveld Profile refinement of powder X-ray diffraction data, the hexagonal structure has been observed. The particle sizes varied from 20 to 50 nm as the annealing temperature increases from 700 to 900 °C. The hysteresis loop is not observed and the good fit of Langevin function with magnetization data reveals the superparamagnetic nature at room temperature for all samples. Characteristic magnetic parameters of the particles including saturation magnetization in the temperature range 10-300 K, an effective anisotropy constant and a magnetocrystalline anisotropy constant have been determined. The Specific Absorption Rate for 15 mg/mL sample concentration was measured in alternating magnetic fields of 50-80 Oe at a fixed frequency of 236 kHz. In addition, the intrinsic loss power (ILP) has been calculated from SAR values. It is believed that La0.7Sr0.3MnO3 nanoparticles with a high ILP will be useful for the in situ hyperthermia treatment of cancer.
Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.
Lin, Mei; Huang, Junxing; Sha, Min
2014-01-01
This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.
Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications
NASA Astrophysics Data System (ADS)
Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia
2013-10-01
Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.
Branquinho, Luis C.; Carrião, Marcus S.; Costa, Anderson S.; Zufelato, Nicholas; Sousa, Marcelo H.; Miotto, Ronei; Ivkov, Robert; Bakuzis, Andris F.
2013-01-01
Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP. Monte Carlo simulations corroborate the FMR results. We propose a theoretical model describing dipole interactions valid for the linear response regime to explain the observed trends. This model predicts optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size. Also, optimum chain lengths depended on nanoparticle surface-to-surface distance. Our results might have important implications to cancer treatment and could motivate new strategies to optimize magnetic hyperthermia. PMID:24096272
NASA Astrophysics Data System (ADS)
de Paula, L. B.; Primo, F. L.; Jardim, D. R.; Morais, P. C.; Tedesco, A. C.
2012-04-01
A glioblastoma multiforme (GBM) is the highest grade glioma tumor (grade IV) and is the most malignant form of astrocytomas. Grade IV tumors, which are the most malignant and aggressive, affect people between the ages of 45 and 70 years. A GBM exhibits remarkable characteristics that include excessive proliferation, necrosis, genetic instability, and chemoresistance. Because of these characteristics, GBMs are difficult to treat and have a poor prognosis with a median survival of less than one year. New methods to achieve widespread distribution of therapeutic agents across infiltrative gliomas significantly improve brain tumor therapy. Photodynamic therapy (PDT) and hyperthermia (HPT) are well-established tumor therapies with minimal side effects while acting synergistically. This study introduces a new promising nanocarrier for the synergistic application of PDT and magnetic hyperthermia therapy against human glioma cell line T98 G, with cellular viability reduction down to as low as 17% compared with the control.
NASA Astrophysics Data System (ADS)
Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun
2016-06-01
Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02273a
Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy
NASA Astrophysics Data System (ADS)
Kim, Hyun-Chul; Kim, Eunjoo; Jeong, Sang Won; Ha, Tae-Lin; Park, Sang-Im; Lee, Se Guen; Lee, Sung Jun; Lee, Seung Woo
2015-10-01
Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia.Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04130a
Worden, Matthew; Bruckman, Michael A.; Kim, Min-Ho; Steinmetz, Nicole F.; Kikkawa, James M.; LaSpina, Catherine
2015-01-01
A low temperature, aqueous synthesis of polyhedral iron oxide nanoparticles (IONPs) is presented. The modification of the co-precipitation hydrolysis method with Triton X surfactants results in the formation of crystalline polyhedral particles. The particles are herein termed iron oxide “nanobricks” (IONBs) as the variety of particles made are all variations on a simple “brick-like” rhombohedral shape as evaluated by TEM. These IONBs can be easily coated with hydrophilic silane ligands, allowing them to be dispersed in aqueous media. The dispersed particles are investigated for potential applications as hyperthermia and T2 MRI contrast agents. The results demonstrate that the IONBs perform better than comparable spherical IONPs in both applications, and show r2 values amongst the highest for iron oxide based materials reported in the literature. PMID:26693011
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
Prostacyclin-induced hyperthermia - Implication of a protein mediator
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1982-01-01
The mechanism of the prostacyclin-linked hyperthermia is studied in rabbits. Results show that intracerebroventricular administration of prostacyclin (PGI2) induces dose-related hyperthermia at room temperature (21 C), as well as at low (4 C) and high (30 C) ambient temperatures. It is found that this PGI2-induced hyperthermia is not mediated by its stable metabolite 6-keto prostaglandin F-1(alpha). Only one of the three anion transport systems, the liver transport system, appears to be important to the central inactivation of pyrogen, prostaglandin E2, and PGI2. Phenoxybenzamine and pimozide have no thermolytic effect on PGI2-induced hyperthermia, while PGI2 still induces hyperthermia after norepinephrine (NE) and dopamine levels are depleted by 6-hydroxydopamine. Indomethacin and SC-19220 (a PG antagonist) do not antagonize PGI2 induced hyperthermia, while theophylline does not accentuate the PGI2-induced hyperthermia. However, the hyperthermic response to PGI2 is attenuated by central administration of the protein synthesis inhibitor, anisomycin. It is concluded that PGI2-induced hyperthermia is not induced by NE, dopamine, or cyclic AMP, but rather that a protein mediator is implicated in the induction of fever by PG12.
Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans
NASA Astrophysics Data System (ADS)
Yamazaki, F.; Sagawa, S.; Torii, R.; Endo, Y.; Shiraki, K.
The purpose of this study was to examine the effect of hyperthermia on the carotid baroreceptor-cardiac reflexes in humans. Nine healthy males underwent acute hyperthermia (esophageal temperature 38.0° C) produced by hot water-perfused suits. Beat-to-beat heart rate (HR) responses were determined during positive and negative R-wave-triggered neck pressure steps from +40 to -65 mm Hg during normothermia and hyperthermia. The carotid baroreceptor-cardiac reflex sensitivity was evaluated from the maximum slope of the HR response to changes in carotid distending pressure. Buffering capacity of the HR response to carotid distending pressure was evaluated in % from a reference point calculated as (HR at 0 mm Hg neck pressure-minimum HR)/HR range ×100. An upward shift of the curve was evident in hyperthermia because HR increased from 57.7+/-2.4 beats/min in normothermia to 88.7+/-4.1 beats/min in hyperthermia (P<0.05) without changes in mean arterial pressure. The maximum slope of the curve in hyperthermia was similar to that in normothermia. The reference point was increased (P<0.05) during hyperthermia. These results suggest that the sensitivity of the carotid baroreflex of HR remains unchanged in hyperthermia. However, the capacity for tachycardia response to rapid onset of hypotension is reduced and the capacity for bradycardia response to sudden hypertension is increased during acute hyperthermia.
Dang, Yaoguo; Mao, Wenxin
2018-01-01
In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method. PMID:29510521
Sun, Huifang; Dang, Yaoguo; Mao, Wenxin
2018-03-03
In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method.
Microwave and radiofrequency techniques for clinical hyperthermia.
Cheung, A. Y.
1982-01-01
Biological and practical constraints on the use of clinical hyperthermia for the management of cancer are discussed. Commonly used electromagnetic techniques for producing clinical hyperthermia are reviewed and compared. Innovative engineering designs leading to the realization of an integrated, safe and reliable clinical hyperthermia system are also presented. PMID:6950753
Kirui, Dickson K.; Mai, Juahua; Palange, Anna-Lisa; Qin, Guoting; van de Ven, Anne L.; Liu, Xuewu; Shen, Haifa; Ferrari, Mauro
2014-01-01
Background Hyperthermia treatment has been explored as a strategy to overcome biological barriers that hinder effective drug delivery in solid tumors. Most studies have used mild hyperthermia treatment (MHT) to target the delivery of thermo-sensitive liposomes carriers. Others have studied its application to permeabilize tumor vessels and improve tumor interstitial transport. However, the role of MHT in altering tumor vessel interfacial and adhesion properties and its relationship to improved delivery has not been established. In the present study, we evaluated effects of MHT treatment on tumor vessel flow dynamics and expression of adhesion molecules and assessed enhancement in particle localization using mesoporous silicon vectors (MSVs). We also determined the optimal time window at which maximal accumulation occur. Results In this study, using intravital microscopy analyses, we showed that temporal mild hyperthermia (∼1 W/cm2) amplified delivery and accumulation of MSVs in orthotopic breast cancer tumors. The number of discoidal MSVs (1000×400 nm) adhering to tumor vasculature increased 6-fold for SUM159 tumors and 3-fold for MCF-7 breast cancer tumors. By flow chamber experiments and Western blotting, we established that a temporal increase in E-selectin expression correlated with enhanced particle accumulation. Furthermore, MHT treatment was shown to increase tumor perfusion in a time-dependent fashion. Conclusions Our findings reveal that well-timed mild hyperthermia treatment can transiently elevate tumor transport and alter vascular adhesion properties and thereby provides a means to enhance tumor localization of non-thermally sensitive particles such as MSVs. Such enhancement in accumulation could be leveraged to increase therapeutic efficacy and reduce drug dosing in cancer therapy. PMID:24558362
Kim, Dong-Hyun; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Lee, Yong-Keun
2009-01-01
The delivery of hyperthermic thermoseeds to a specific target site with minimal side effects is an important challenge in targeted hyperthermia, which employs magnetic method and functional polymers. An external magnetic field is used to control the site-specific targeting of the magnetic nanoparticles. Polymer-coated magnetic nanoparticles can confer a higher affinity to the biological cell membranes. In this study, uncoated, chitosan-coated, and starch-coated magnetic nanoparticles were synthesized for use as a hyperthermic thermoseed. Each sample was examined with respect to their applications to hyperthermia using XRD, VSM, and FTIR. In addition, the temperature changes under an alternating magnetic field were observed. As in vitro tests, the magnetic responsiveness of chitosan- and starch-coated magnetite was determined by a simple blood vessel model under various intensities of magnetic field. L929 normal cells and KB carcinoma cells were used to examine the cytotoxicity and affinity of each sample using the MTT method. The chitosan-coated magnetic nanoparticles generated a higher DeltaT of 23 degrees C under an AC magnetic field than the starch-coated magnetite, and the capturing rate of the particles was 96% under an external magnetic field of 0.4 T. The highest viability of L929 cells was 93.7%. Comparing the rate of KB cells capture with the rate of L929 cells capture, the rate of KB cells capture relatively increased with 10.8% in chitosan-coated magnetic nanoparticles. Hence, chitosan-coated magnetic nanoparticles are biocompatible and have a selective affinity to KB cells. The targeting of magnetic nanoparticles in hyperthermia was improved using a controlled magnetic field and a chitosan-coating. Therefore, chitosan-coated magnetic nanoparticles are expected to be promising materials for use in magnetic targeted hyperthermia. 2008 Wiley Periodicals, Inc.
Thermometric analysis of intra-cavitary hyperthermia for esophageal cancer.
Qi, C; Li, D J
1999-01-01
Thermometric analysis was carried out in 51 patients with esophageal cancer treated with intra-cavitary hyperthermia combined with radio chemotherapy, to test whether temperature index (T20, T50) and T90) could be used as an indicator for tumour control. Hyperthermia was administered by intra-cavitary microwave applicator. The T20, T50 and T90 were deducted from the temperature sensors T0 and T3 situated at the center of the tumour surface and 3cm from it. Eighteen patients with local control > or =36 months were named long term control patients (LC), 24 patients with local recurrence within 24 months (LR) (there were no events occurring between 24 and 36 months) and nine patients died of metastasis without local recurrence (DM). The overall survival rates were 80.4 +/- 5.6% at 1 year, 38.3 +/- 6.9% at 3 years and 31 +/- 6.7% at 5 years, respectively. Chi-square test showed no influence of the number of hyperthermia sessions on the local control (p > 0.25). The 5-year local control rate was 18.8% for the patients with T90 < 43 degrees C and 45% for those with T90 > or = 43 degrees C (p < 0.01). The average T90 was 43.76 +/- 0.74 degrees C for the LC patients and 43.17 +/- 0.57 degrees C for those LR (p = 0.024). The mean T90 was higher than 43 degrees C in 94.4% of LC, whereas in 58.8% of LR. The study suggested that T90 was a good parameter for thermal dose in the intracavitary hyperthermia for the treatment of esophageal cancer.
Joshi, Neha; Duhan, Vikas; Lingwal, Neelam; Bhaskar, Sangeeta; Upadhyay, Pramod
2012-01-01
Hyperthermia enhanced transdermal (HET) immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C) to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT). We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.
Multi-organ dysfunction due to bath salts: are we aware of this entity?
Valsalan, Rohith; Varghese, Benoj; Soman, Diya; Buckmaster, Jonathan; Yew, Steven; Cooper, David
2017-01-01
Methylenedioxypyrovalerone (MDPV) is a synthetic, cathinone-derivative, central nervous system stimulant taken to produce a cocaine- or methamphetamine-like high. Physical manifestations include tachycardia, hypertension, arrhythmias, hyperthermia, sweating, rhabdomyolysis, hyperkalaemia, disseminated intravascular coagulation, oliguria and seizures. We report a patient who presented with severe metabolic acidosis, multi-organ dysfunction, rhabdomyolysis, hyperkalaemia and seizures. This case highlights that even though a urine drug screen for routine psychostimulant drugs is negative, clinicians need to be vigilant about the adverse effects of MDPV as a possible cause of multi-organ dysfunction. Substances such as this can only be detected by special tests, such as gas/liquid chromatography mass spectrometry. This is the first reported case of MDPV toxicity successfully treated in Australia to the best of our knowledge. © 2017 Royal Australasian College of Physicians.
Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis.
Hatamie, Shadie; Ahadian, Mohammad Mahdi; Ghiass, Mohammad Adel; Iraji Zad, Azam; Saber, Reza; Parseh, Benyamin; Oghabian, Mohammad Ali; Shanehsazzadeh, Saeed
2016-10-01
Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and ultraviolet visible spectroscopy. Using ion-coupled plasma optical emission spectroscopy, cobalt concentration in the nanocomposites was found to be 80%. In addition, cytotoxicity of graphene/cobalt nanocomposites were evaluated using 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide or MTT assay. MTT viability assay exhibited biocompatibility to L929 mouse fibroblasts cells, under a high dose of 100μg/mL over 24h. Hyperthermia results showed the superior conversion of electromagnetic energy into heat at 350kHz frequency for 0.01 and 0.005g/L of the nanocomposites solution. The measured heat generation and energy transfer results were anticipated by the finite element analysis, conducted for the 3D structure. Magnetic resonance imaging characteristics also showed that negatively charge graphene/cobalt nanocomposites are suitable for T1-weighted imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Bettaieb, Ahmed; Averill-Bates, Diana A
2015-01-01
Hyperthermia (39-45°C) has emerged as an alternate prospect for cancer therapy in combination with radiation and chemotherapy. Despite promising progress in the clinic, molecular mechanisms involved in hyperthermia-induced cell death are not clear. Hyperthermia causes protein denaturation/aggregation, which results in cell death by apoptosis and/or necrosis. Hyperthermia also induces thermotolerance, which renders cells resistant to subsequent exposure to lethal heat shock. This study investigates the role of both lethal (42-43°C) and mild (40°C) hyperthermia in regulating ER stress and ER stress-induced apoptosis in HeLa cells. The ability of mild thermotolerance induced at 40°C to alleviate either or both of these processes is also determined. Hyperthermia (42-43°C) induced ER stress, revealed by phosphorylation of PERK, eIF2α and IRE1α, cleavage of ATF6 and increased expression of BiP and sXBP1. Real-time PCR revealed that mRNA levels of ATF6, ATF4, BiP, sXBP1 and CHOP increased in cells exposed to hyperthermia. Moreover, hyperthermia caused disruption of calcium homeostasis and activated the calpain-calpastatin proteolytic system and ER resident caspase 4. Pre-exposure to mild hyperthermia (40°C) alleviated the induction of cytotoxicity and ER stress by hyperthermia (42-43°C) and protected cells against ER stress-induced apoptosis. ShRNA-mediated depletion of Hsp72 abrogated protective effects of mild thermotolerance (40°C) against heat-shock induced ER stress and sensitized cells to ER stress-mediated apoptosis. Our findings show that Hsp72 contributes to the protective effects of mild hyperthermia (40°C) against hyperthermia-induced ER stress and apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Canters, R. A. M.; Franckena, M.; van der Zee, J.; van Rhoon, G. C.
2011-01-01
During deep hyperthermia treatment, patient pain complaints due to heating are common when maximizing power. Hence, there exists a good rationale to investigate whether the locations of predicted SAR peaks by hyperthermia treatment planning (HTP) are correlated with the locations of patient pain during treatment. A retrospective analysis was performed, using the treatment reports of 35 patients treated with deep hyperthermia controlled by extensive treatment planning. For various SAR indicators, the average distance from a SAR peak to a patient discomfort location was calculated, for each complaint. The investigated V0.1 closest (i.e. the part of the 0.1th SAR percentile closest to the patient complaint) performed the best, and leads to an average distance between the SAR peak and the complaint location of 3.9 cm. Other SAR indicators produced average distances that were all above 10 cm. Further, the predicted SAR peak location with V0.1 provides a 77% match with the region of complaint. The current study demonstrates that HTP is able to provide a global indication of the regions where hotspots during treatment will most likely occur. Further development of this technology is necessary in order to use HTP as a valuable toll for objective and advanced SAR steering. The latter is especially valid for applications that enable 3D SAR steering.
How does temperature affect the function of tissue macrophages?
NASA Astrophysics Data System (ADS)
Lee, Chen-Ting; Repasky, Elizabeth A.
2011-03-01
Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.
NASA Astrophysics Data System (ADS)
Kim, Jung Kyung; Prasad, Bibin; Kim, Suzy
2017-02-01
To evaluate the synergistic effect of radiotherapy and radiofrequency hyperthermia therapy in the treatment of lung and liver cancers, we studied the mechanism of heat absorption and transfer in the tumor using electro-thermal simulation and high-resolution temperature mapping techniques. A realistic tumor-induced mouse anatomy, which was reconstructed and segmented from computed tomography images, was used to determine the thermal distribution in tumors during radiofrequency (RF) heating at 13.56 MHz. An RF electrode was used as a heat source, and computations were performed with the aid of the multiphysics simulation platform Sim4Life. Experiments were carried out on a tumor-mimicking agar phantom and a mouse tumor model to obtain a spatiotemporal temperature map and thermal dose distribution. A high temperature increase was achieved in the tumor from both the computation and measurement, which elucidated that there was selective high-energy absorption in tumor tissue compared to the normal surrounding tissues. The study allows for effective treatment planning for combined radiation and hyperthermia therapy based on the high-resolution temperature mapping and high-precision thermal dose calculation.
Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe
NASA Astrophysics Data System (ADS)
Garaio, Eneko; Collantes, Juan-Mari; Garcia, Jose Angel; Plazaola, Fernando; Sandre, Olivier
2015-09-01
Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.
The U.S. Environmental Protection Agency (EPA) is developing a comprehensive environmental exposure and risk analysis software system for agency-wide application using the methodology of a Multi-media, Multi-pathway, Multi-receptor Risk Assessment (3MRA) model. This software sys...
NASA Astrophysics Data System (ADS)
Mallick, A.; Mahapatra, A. S.; Mitra, A.; Greneche, J. M.; Ningthoujam, R. S.; Chakrabarti, P. K.
2018-02-01
Nanoparticles of Zn substituted lithium ferrite (Li0.31Zn0.38Fe2.31O4, LZFO) synthesized by the sol-gel route are successfully dispersed in layers of reduced graphene oxide (RGO) during the course of preparation. The analysis of X-ray diffractograms confirms the desired crystallographic phase of the nanocomposite sample of LZFO-RGO. The results of field emission scanning electron microscopy and high resolution transmission electron microscopy are consistent with the presence of dispersed nanoparticles in different layers of graphene oxide. Structural information obtained from selected area electron diffraction and nanocrystalline fringe patterns agree well with those obtained from X-ray diffractogram analysis. Mössbauer spectra recorded at 300 and 77 K suggest the presence of a fraction of superparamagnetic particles together with ferrimagnetic particles. Static magnetic measurements include observation of hysteresis loops at 300 and 5 K, magnetization vs. temperature curves under zero field cooling and field cooling conditions. Saturation magnetizations, coercive field, and saturation to remanence ratio are also evaluated. To explore the suitability of this nanocomposite for hyperthermia application, inductive heating of LZFO and LZFO-RGO is measured at different concentrations of nanoparticles. Interestingly, the inductive heating rate of LZFO nanoparticles is enhanced in the nanocomposite phase of LZFO-RGO, suggesting their high potential for hyperthermia therapy in cancer treatment.
Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila
2009-09-01
The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.
Cribb, Peter H.; Olfert, Ernest A.; Reynolds, F. Barry
1986-01-01
A Doberman-German Shepherd cross-bred male dog, previously diagnosed as malignant hyperthermia susceptible, was mated to an unrelated nonsusceptible German Shepherd cross-bred female. The resultant litter was subjected to hematological, biochemical and erythrocyte osmotic fragility testing in an endeavor to predict the susceptibility of individuals to malignant hyperthermia. Laboratory evaluations were repeated at one year of age and the litter subjected to the halothane challenge test. No significant difference in erythrocyte osmotic fragility was found between malignant hyperthermia susceptible and nonsusceptible siblings at six weeks or at one year of age. Erythrocyte osmotic fragility, in both malignant hyperthermia susceptible and nonsusceptible animals, increased between six weeks and one year of age. Dantrolene sodium was an effective treatment for malignant hyperthermia in the dog when administered early in an episode and in adequate dosage. The initial sign of a malignant hyperthermia episode was a very rapid increase in end tidal partial pressure of carbon dioxide. This finding reinforces the value of capnographic monitoring in anesthesia. PMID:17422730
Shah, S A; Jain, R K; Finney, P L
1982-01-01
Hyperthermia (temperatures less than 42 degrees C) is widely used in the treatment of cancer. Current thrust in this field is directed towards using agents which can potentiate the effects of hyperthermia. Combined local hyperthermia (43 degrees C/2 hours) and hyperglycemia (6g glucose/kg body weight; mean blood glucose levels of 500 mg%) was investigated for treating a metastasizing form of a rat W256 carcinosarcoma. Glucose loading of the tumor-bearing rats rendered the foot tumors physically more easy to heat (due to inhibition of tumor blood flow), but combined hyperthermia and hyperglycemia lead to a decrease in survival rate (13% compared to 41% with heat alone), most animals died with widespread metastases in lymph nodes, lungs and kidneys. The data does not support the postulate that hyperglycemia leads to sensitization of tumor destruction by hyperthermia. We suggest that Corynebacterium parvum, a non-specific immunostimulant, should be thoroughly investigated as a potentiator of hyperthermia.
Asea, A; Ara, G; Teicher, B A; Stevenson, M A; Calderwood, S K
2001-01-01
Tumour hyperthermia, although potentially a powerful therapeutic agent and radiation sensitizer, is hindered by a number of considerations including inhomogeneous heating of deep seated tumours due to energy deposition and perfusion issues. One solution is to design hyperthermia sensitizers to amplify the effects of hyperthermia, particularly at cold spots within the tumour undergoing treatment. This study examined the use of Quercetin, a flavonoid drug shown previously to antagonize the expression of HSP72 and induce apoptosis as a sensitizer of prostate cancer growth in vivo. Quercetin dose-dependently suppressed PC-3 tumour growth in vitro and in vivo. When combined in a treatment protocol with hyperthermia, quercetin drastically inhibited tumour growth and potently amplified the effects of hyperthermia on two prostate tumour types, PC-3 and DU-145 in vivo. These experiments, thus, suggest the use of Quercetin as a hyperthermia sensitizer in the treatment of prostate carcinoma.
Maityt, Dipak; Pradhan, Pallab; Chandrasekharan, Prashant; Kale, S N; Shuter, Borys; Bahadur, Dhirendra; Feng, Si-Shen; Xue, Jun-Min; Ding, Jun
2011-03-01
In this paper, we report single step synthesis of hydrophilic superparamagnetic magnetite nanoparticles by thermolysis of Fe(acac)3 and their characterization of the properties relevant to biomedical applications like hyperthermia and magnetic resonance imaging (MRI). Size and morphology of the particles were determined by Transmission electron microscopy (TEM) while phase purity and structure of the particles were identified by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Magnetic properties were evaluated using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements. The as prepared nanoparticles were found to be superparamagnetic with the blocking temperature of 136 K and were easily suspendable in water. Cytotoxicity studies on human cervical (SiHa), mouse melanoma (B16F10) and mouse primary fibroblast cells demonstrated that up to a dose of 0.1 mg/ml, the magnetite nanoparticles were nontoxic to the cells. To evaluate the feasibility of their uses in hyperthermia and MRI applications, specific absorption rate (SAR) and spin-spin relaxation time (T2) were measured respectively. SAR has been calculated to be above 80 Watt/g for samples with the iron concentration of 5-20 mg/ml at 10 kA/m AC magnetic field and 425 kHz frequency. r2 relaxivity value was measured as 358.4 mM(-1)S(-1) which is almost double as compared to that of the Resovist, a commercially available MRI contrast agent. Thus the as-prepared magnetite nanoparticles may be used for hyperthermia and MRI applications due to their promising SAR and r2 values.
Sasikala, Arathyram Ramachandra Kurup; Unnithan, Afeesh Rajan; Yun, Yeo-Heung; Park, Chan Hee; Kim, Cheol Sang
2016-02-01
The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner. Thus, an implantable smart magnetic nanofiber device can be exploited to both apply hyperthermia with an alternating magnetic field (AMF) and to achieve cancer cell-specific drug release to enable synergistic cancer therapy. These results confirm that the BTZ-loaded mussel-inspired magnetic nanofiber matrix (BTZ-MMNF) is highly beneficial not only due to the higher therapeutic efficacy and low toxicity towards normal cells but also, as a result of the availability of magnetic nanoparticles for repeated hyperthermia application and tumor-triggered controlled drug release. The current work report on the design and development of a smart nanoplatform responsive to a magnetic field to administer both hyperthermia and pH-dependent anticancer drug release for the synergistic anticancer treatment. The iron oxide nanoparticles (IONPs) incorporated nanofiber matrix was developed by electrospinning a biocompatible polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the boratecontaining anticancer drug bortezomib through a catechol metal binding in a pH-sensitive manner. This implantable magnetic nanofiber device can be exploited to apply hyperthermia with an alternating magnetic field and to achieve cancer cell-specific drug release to enable synergistic cancer therapy, which results in an improvement in both quality of life and patient compliance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Attaluri, Anilchandra
Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass transport model is developed to simulate nanoparticle convection and diffusion in tumors, heat-induced tumor structural changes, as well as nanoparticle re-distribution during nanoparticle hyperthermia procedures. The modeled thermal damage induced nanoparticle redistribution predicts a 20% increase in the radius of the spherical tissue region containing nanoparticles. The developed model has demonstrated the feasibility of enhancing nanoparticle dispersion from injection sites using targeted thermal damage.
Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment
NASA Astrophysics Data System (ADS)
Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.
2007-02-01
The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle hyperthermia is more effective than non-nanoparticle tumor heating techniques when similar thermal doses are applied. Initial electron and light microscopy studies of iron oxide nanoparticle and AMF exposed tumor cells show a rapid uptake of particles and acute cytotoxicity following AMF exposure.
Magnetic microspheres and tissue model studies for therapeutic applications
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Mazuruk, Konstantin
2004-01-01
The use of magnetic fluids and magnetic particles in combinatorial hyperthermia therapy for cancer treatment is reviewed. The investigation approach adopted for producing thermoregulating particles and tissue model studies for studying particle retention and heating characteristics is discussed.
Babincová, Melánia; Vrbovská, Hana; Sourivong, Paul; Babinec, Peter; Durdík, Štefan
2018-05-01
Malignant gliomas remain refractory to several therapeutic approaches and the requirement for novel treatment modalities is critical to combat this disease. Etoposide is a topoisomerase-II inhibitor, which promotes DNA damage and apoptosis of cancer cells. In this study, we prepared albumin with embedded magnetic nanoparticles and etoposide for in vitro evaluation of combined hyperthermia and chemotherapy. Magnetic nanoparticles were prepared by a modified co-precipitation method in the presence of human serum albumin and etoposide. A cellular proliferation assay was used to determine the effects of these nanostructures on the viability of U87 glioma cells in an alternating magnetic field. The in vitro experiments showed that cell viability decreased to 59.4% after heat treatment alone and to 53.8% on that with free etoposide, while combined treatment resulted in 7.8% cell viability. Integrating hyperthermia and chemotherapy using albumin co-embedded magnetic nanoheaters and etoposide may represent a promising therapeutic option for glioblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Underwood, H R; Peterson, A F; Magin, R L
1992-02-01
A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode-dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low (epsilon r = 10) and high (epsilon r = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios at 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.
Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.
Avazzadeh, Reza; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Amanpour, Saeid; Sadeghi, Mohsen
2017-09-01
Cancer treatment has been very challenging in recent decades. One of the most promising cancer treatment methods is hyperthermia, which increases the tumor temperature (41-45 °C). Magnetic nanoparticles have been widely used for selective targeting of cancer cells. In the present study, magnetic dextran-spermine nanoparticles, conjugated with Anti-HER2 antibody to target breast cancer cells were developed. The magnetic dextran-spermine nanoparticles (DMNPs) were prepared by ionic gelation, followed by conjugation of antibody to them using EDC-NHS method. Then the Prussian blue method was used to estimate the targeting ability and cellular uptake. Cytotoxicity assay by MTT showed that antibody-conjugated MNPs (ADMNPs) have no toxic effect on SKBR3 and human fibroblast cells. Finally, the hyperthermia was applied to show that synthesized ADMNPs, could increase the cancer cells temperature up to 45 °C and kill most of them without affecting normal cells. These observations proved that Anti-HER2 conjugated magnetic dextran-spermine nanoparticles can target and destroy cancer cells and are potentially suitable for cancer treatment.
Costa Lima, Sofia A.; Bouziotis, Penelope; Vranješ-Djurić, Sanja; Efthimiadou, Eleni Κ.; Laurenzana, Anna; Barbosa, Ana Isabel; Jones, Carlton; Jankovic, Drina; Gobbo, Oliviero L.
2018-01-01
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (“Radiomag”). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work. PMID:29734795
Spirou, Spiridon V; Costa Lima, Sofia A; Bouziotis, Penelope; Vranješ-Djurić, Sanja; Efthimiadou, Eleni Κ; Laurenzana, Anna; Barbosa, Ana Isabel; Garcia-Alonso, Ignacio; Jones, Carlton; Jankovic, Drina; Gobbo, Oliviero L
2018-05-06
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.
Studies On Endoscopic Local Hyperthermia Using Nd-YAG Laser
NASA Astrophysics Data System (ADS)
Tsunekawa, H.; Kanemaki, N.; Furusawa, A.; Hotta, M.; Kuroiwa, A.; Nishida, M.; Mori, N.; Watanabe, Y.; Morise, K.; Iizuka, A.
1987-03-01
Attempting a new method of laser irradiation for depressed gastric carcinoma, using a newly developed interstitial probe and laser attenuator, we applied local hyperthermia with prolonged low watt contact irradiation. Experimental studies were performed with this probe, using BDF1 mice injected hypodermically with Lewis lung carcinoma. A laser power of 2.0 w at the tip of fiber produced the most desirable temperature curve, about 43 - 60°C at the irradiation site. Clinical applications were carried out on 15 patients with early gastric carcinoma (mainly depressed), 10 preoperative pilot cases and 5 inoperable cases. In follow-up operations and biopsies gastric carcinoma was found to have completely dis-appeared in 2 of the preoperative and 4 of the inoperable cases. In the remaining 8 preoperative cases residual traces of carcinoma were found at the margin of the laser ulcer, but not at the bottom of it. We propose that endoscopic local hyperthermia using interstitial probe and low power irradiation (2.0 W) is the safest and most suitable method of dealing with depressed carcinoma.
Sinha, Rakesh Kumar; Aggarwal, Yogender
2007-01-01
Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) whole body hyperthermia group and (iii) p-CPA (para-Chlorophenylalanine) pretreated hyperthermia group. Hyperthermia was produced by subjecting the rats to high ambient temperature of 38 +/- 1 degrees C (relative humidity 45-50%). Each group was divided for EEG (electroencephalogram) study and for determination of edematous swelling in the brain. Urethane anesthetized rats under hyperthermia show highly significant reduction in their survival time. The body temperature recorded during the hyperthermia was observed with significant and linear rise with marked increase in brain water content, which was analyzed just after the death of the subjects. The results of the electroencephalographic study in urethane-anesthetized rats recorded before death indicate that brain function varies in systematic manner during hyperthermia as sequential changes in EEG patterns were observed. However, a serotonin antagonist, p-CPA pretreatment increases the survival time with significant reduction in edematous swelling in brain but it does not affect the relationship between the core body temperature and the brain cortical potentials as observed in urethane anesthetized subjects exposed to whole body hyperthermia. The core body temperature in p-CPA pretreated rats show non-linear relationship with respect to the exposure time as it was observed in drug untreated subjects. The findings of the present study indicate that although pretreatment of p-CPA in rats has a marked correlation between the extravasations of the blood-brain barrier under hyperthermia but shows minimum effect on the EEG in a model of hyperthermia under irreversible anesthesia.
A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
NASA Astrophysics Data System (ADS)
Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.
2017-10-01
A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.
Mashup Scheme Design of Map Tiles Using Lightweight Open Source Webgis Platform
NASA Astrophysics Data System (ADS)
Hu, T.; Fan, J.; He, H.; Qin, L.; Li, G.
2018-04-01
To address the difficulty involved when using existing commercial Geographic Information System platforms to integrate multi-source image data fusion, this research proposes the loading of multi-source local tile data based on CesiumJS and examines the tile data organization mechanisms and spatial reference differences of the CesiumJS platform, as well as various tile data sources, such as Google maps, Map World, and Bing maps. Two types of tile data loading schemes have been designed for the mashup of tiles, the single data source loading scheme and the multi-data source loading scheme. The multi-sources of digital map tiles used in this paper cover two different but mainstream spatial references, the WGS84 coordinate system and the Web Mercator coordinate system. According to the experimental results, the single data source loading scheme and the multi-data source loading scheme with the same spatial coordinate system showed favorable visualization effects; however, the multi-data source loading scheme was prone to lead to tile image deformation when loading multi-source tile data with different spatial references. The resulting method provides a low cost and highly flexible solution for small and medium-scale GIS programs and has a certain potential for practical application values. The problem of deformation during the transition of different spatial references is an important topic for further research.
Introduction: Special issue on advances in topobathymetric mapping, models, and applications
Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne
2016-01-01
Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.
O'Brien, P J
1986-01-01
This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367
Verduijn, G M; de Wee, E M; Rijnen, Z; Togni, P; Hardillo, J A U; Ten Hove, I; Franckena, M; van Rhoon, G C; Paulides, M M
2018-05-11
Radiotherapy (RT) treatment of locally-advanced and recurrent head and neck carcinoma (HNC) results in disappointing outcomes. Combination of RT with cisplatin or cetuximab improves survival but the increased toxicity and patient's comorbidity warrant the need for a less-toxic radiosensitizer. Stimulated by several randomized studies demonstrating the radio-sensitizing effect of hyperthermia, we developed the HYPERcollar. Here, we report early experience and toxicity in patients with advanced HNC. 119 hyperthermia treatments given to 27 patients were analyzed. Hyperthermia was applied once a week by the HYPERcollar aimed at achieving 39-43 °C in the target area, up to patients' tolerance. Pre-treatment planning was used to optimize treatment settings. When possible, invasive thermometry catheters were placed. Mean power applied during the 119 hyperthermia treatments ranged from 120 to 1007 W (median 543 W). 15 (13%) hyperthermia treatments were not fully completed due to: pain allocated to hyperthermia (6/15), dyspnea from sticky saliva associated with irradiation (2/15) and unknown reasons (7/15). No severe complications or enhanced thermal or mucosal toxicities were observed. Excluding post-operative treatment, response rates after 3 months were 46% (complete) and 7% (partial). Hyperthermia with the HYPERcollar proved to be safe and feasible with good compliance and promising outcome.
Multi-wavelength and multiband RE-doped optical fiber source array for WDM-GPON applications
NASA Astrophysics Data System (ADS)
Perez-Sanchez, G. G.; Bertoldi-Martins, I.; Gallion, P.; Gosset, C.; Álvarez-Chávez, J. A.
2013-12-01
In this paper, a multiband, multi-wavelength, all-fibre source array consisting of an 810nm pump laser diode, thretwo fiber splitters and three segments of Er-, Tm- and Nd-doped fiber is proposed for PON applications. In the set-up, cascaded pairs of standard fiber gratings are used for extracting the required multiple wavelengths within their corresponding bands. A thorough design parameter description, optical array details and full simulation results, such as: full multi-wavelength spectrum, peak and average powers for each generated wavelength, linewidth at FWHM for each generated signal, and individual and overall conversion efficiency, will be included in the manuscript.
Gulabani, Michell; Gurha, Pavan; Ahmad, Sabih; Dass, Prashant
2014-01-01
Malignant Hyperthermia is a pharmacogenetic disorder. Classical manifestations comprise of tachycardia, increase in expired carbon dioxide levels, muscle rigidity, hyperthermia (>38.8°C) and unexpected acidosis. Here we report a case of 16-year-old female patient, ASA-I with chronic rhino-sinusitis and slight strabismus of the left eye posted for functional endoscopic sinus surgery, developing a rise in ETCO2 and temperature immediately following anesthesia induction. She was aggressively managed to an uneventful recovery. We present a case of intra-operative post-induction hyperthermia possibly MH, its anesthetic implications, challenges encountered and its management. PMID:25425784
Tudorancea, Ionuț; Porumb, Vlad; Trandabăţ, Alexandru; Neaga, Decebal; Tamba, Bogdan; Iliescu, Radu; Dimofte, Gabriel M
2017-01-01
Our aim was to develop a new experimental model for in vivo hyperthermia using non-directional microwaves, applicable to small experimental animals. We present an affordable approach for targeted microwave heat delivery to an isolated liver lobe in rat, which allows rapid, precise and stable tissue temperature control. A new experimental model is proposed. We used a commercial available magnetron generating 2450 MHz, with 4.4V and 14A in the filament and 4500V anodic voltage. Modifications were required in order to adjust tissue heating such as to prevent overheating and to allow for fine adjustments according to real-time target temperature. The heating is controlled using a virtual instrument application implemented in LabView® and responds to 0.1° C variations in the target. Ten healthy adult male Wistar rats, weighing 250-270 g were used in this study. The middle liver lobe was the target for controlled heating, while the rest of the living animal was protected. In vivo microwave delivery using our experimental setting is safe for the animals. Target tissue temperature rises from 30°C to 40°C with 3.375°C / second (R2 = 0.9551), while the increment is lower it the next two intervals (40-42°C and 42-44°C) with 0.291°C/ s (R2 = 0.9337) and 0.136°C/ s (R2 = 0.7894) respectively, when testing in sequences. After reaching the desired temperature, controlled microwave delivery insures a very stable temperature during the experiments. We have developed an inexpensive and easy to manufacture system for targeted hyperthermia using non-directional microwave radiation. This system allows for fine and stable temperature adjustments within the target tissue and is ideal for experimental models testing below or above threshold hyperthermia.
Iliescu, Radu; Dimofte, Gabriel M.
2017-01-01
Purpose Our aim was to develop a new experimental model for in vivo hyperthermia using non-directional microwaves, applicable to small experimental animals. We present an affordable approach for targeted microwave heat delivery to an isolated liver lobe in rat, which allows rapid, precise and stable tissue temperature control. Materials and methods A new experimental model is proposed. We used a commercial available magnetron generating 2450 MHz, with 4.4V and 14A in the filament and 4500V anodic voltage. Modifications were required in order to adjust tissue heating such as to prevent overheating and to allow for fine adjustments according to real-time target temperature. The heating is controlled using a virtual instrument application implemented in LabView® and responds to 0.1° C variations in the target. Ten healthy adult male Wistar rats, weighing 250–270 g were used in this study. The middle liver lobe was the target for controlled heating, while the rest of the living animal was protected. Results In vivo microwave delivery using our experimental setting is safe for the animals. Target tissue temperature rises from 30°C to 40°C with 3.375°C / second (R2 = 0.9551), while the increment is lower it the next two intervals (40–42°C and 42–44°C) with 0.291°C/ s (R2 = 0.9337) and 0.136°C/ s (R2 = 0.7894) respectively, when testing in sequences. After reaching the desired temperature, controlled microwave delivery insures a very stable temperature during the experiments. Conclusions We have developed an inexpensive and easy to manufacture system for targeted hyperthermia using non-directional microwave radiation. This system allows for fine and stable temperature adjustments within the target tissue and is ideal for experimental models testing below or above threshold hyperthermia PMID:28934251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Ionascu, D; Wilson, G
2014-06-01
Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less
King, Roderick; Hanhan, Jaber; Harrison, T Kyle; Kou, Alex; Howard, Steven K; Borg, Lindsay K; Shum, Cynthia; Udani, Ankeet D; Mariano, Edward R
2018-05-15
Malignant hyperthermia is a rare but potentially fatal complication of anesthesia, and several different cognitive aids designed to facilitate a timely and accurate response to this crisis currently exist. Eye tracking technology can measure voluntary and involuntary eye movements, gaze fixation within an area of interest, and speed of visual response and has been used to a limited extent in anesthesiology. With eye tracking technology, we compared the accessibility of five malignant hyperthermia cognitive aids by collecting gaze data from twelve volunteer participants. Recordings were reviewed and annotated to measure the time required for participants to locate objects on the cognitive aid to provide an answer; cumulative time to answer was the primary outcome. For the primary outcome, there were differences detected between cumulative time to answer survival curves (P < 0.001). Participants demonstrated the shortest cumulative time to answer when viewing the Society for Pediatric Anesthesia (SPA) cognitive aid compared to four other publicly available cognitive aids for malignant hyperthermia, and this outcome was not influenced by the anesthesiologists' years of experience. This is the first study to utilize eye tracking technology in a comparative evaluation of cognitive aid design, and our experience suggests that there may be additional applications of eye tracking technology in healthcare and medical education. Potentially advantageous design features of the SPA cognitive aid include a single page, linear layout, and simple typescript with minimal use of single color blocking.
Thermal and magnetic properties of iron oxide colloids: influence of surfactants
NASA Astrophysics Data System (ADS)
Soares, Paula I. P.; Lochte, Frederik; Echeverria, Coro; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João P. M. R.
2015-10-01
Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.
Thorat, Nanasaheb D; Bohara, Raghvendra A; Malgras, Victor; Tofail, Syed A M; Ahamad, Tansir; Alshehri, Saad M; Wu, Kevin C-W; Yamauchi, Yusuke
2016-06-15
Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs.
NASA Astrophysics Data System (ADS)
Harabech, Mariem; Kiselovs, Normunds Rungevics; Maenhoudt, Wim; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc
2017-05-01
Percutaneous vertebroplasty comprises the injection of Polymethylmethacrylate (PMMA) bone cement into vertebrae and can be used for the treatment of compression fractures of vertebrae. Metastatic bone tumors can cause such compression fractures but are not treated when injecting PMMA-based bone cement. Hyperthermia of tumors can on the other hand be attained by placing magnetic nanoparticles (MNPs) in an alternating magnetic field (AMF). Loading the PMMA-based bone cement with MNPs could both serve vertebra stabilization and metastatic bone tumor hyperthermia when subjecting this PMMA-MNP to an AMF. A dedicated pancake coil is designed with a self-inductance of 10 μH in series with a capacitance of 0.1 μF that acts as resonant inductor-capacitor circuit to generate the AMF. The thermal rise is appraised in beef vertebra placed at 10 cm from the AMF generating circuit using optical temperatures sensors, i.e. in the center of the PMMA-MNP bone cement, which is located in the vicinity of metastatic bone tumors in clinical applications; and in the spine, which needs to be safeguarded to high temperature exposures. Results show a temperature rise of about 7 °C in PMMA-MNP whereas the temperature rise in the spine remains limited to 1 °C. Moreover, multicycles heating of PMMA-MNP is experimentally verified, validating the technical feasibility of having PMMA-MNP as basic component for percutaneous vertebroplasty combined with hyperthermia treatment of metastatic bone tumors.
Bailey, E A; Dutton, A W; Mattingly, M; Devasia, S; Roemer, R B
1998-01-01
Reduced-order modelling techniques can make important contributions in the control and state estimation of large systems. In hyperthermia, reduced-order modelling can provide a useful tool by which a large thermal model can be reduced to the most significant subset of its full-order modes, making real-time control and estimation possible. Two such reduction methods, one based on modal decomposition and the other on balanced realization, are compared in the context of simulated hyperthermia heat transfer problems. The results show that the modal decomposition reduction method has three significant advantages over that of balanced realization. First, modal decomposition reduced models result in less error, when compared to the full-order model, than balanced realization reduced models of similar order in problems with low or moderate advective heat transfer. Second, because the balanced realization based methods require a priori knowledge of the sensor and actuator placements, the reduced-order model is not robust to changes in sensor or actuator locations, a limitation not present in modal decomposition. Third, the modal decomposition transformation is less demanding computationally. On the other hand, in thermal problems dominated by advective heat transfer, numerical instabilities make modal decomposition based reduction problematic. Modal decomposition methods are therefore recommended for reduction of models in which advection is not dominant and research continues into methods to render balanced realization based reduction more suitable for real-time clinical hyperthermia control and estimation.
Thermal and magnetic properties of iron oxide colloids: influence of surfactants.
Soares, Paula I P; Lochte, Frederik; Echeverria, Coro; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João P M R
2015-10-23
Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1983-01-01
The effects of several peptide and non-peptide opiods and naloxone on induced hyperthermia is studied in rabbits. The effect of tyical mu, kappa, and sigma receptor antagonists (morphine, ketocyclazcine and SKF 10,0 10, 047) and some opioid peptides (Beta-endorphin /BE/, methionine-enkaphalin /ME/, and D-Ala2-methionine-enkaphalin-amide /DAME/ are determined. The role of prostaglandins (PG), cAMP, and norepinephrine (NE) in morphine, BE, and DAME induced hyperthermia is investigated. In addition, the effect of naloxone on pyrogen, arachidonic acid, PGE2, prostacyclin, dibutyryl cAMP, and NE induced hyperthermia is determined. Among other results, it is found that the three receptor antagonists induced hyperthermia in rabbits. BE, ME, and DAME were also found to cause hyperthermia, and it is suggested that they act on the same type of receptor. It is also determined that neither NE nor cAMP is involved in the hyperthermia due to morphine, BE, and DAME. It is suggested that an action of endogenous peptides on naloxone sensitive receptors plays little role in normal thermoregulation or in hyperthermia.
Recent Advances in Hydrogel-Based Drug Delivery for Melanoma Cancer Therapy: A Mini Review
Elupula, Ravinder
2017-01-01
The purpose of this study is to describe some of the latest advances in using hydrogels for cancer melanoma therapy. Hydrogel formulations of polymeric material from natural or synthetic sources combined with therapeutic agents have gained great attention in the recent years for treating various maladies. These formulations can be categorized according to the strategies that induce cancer cell death in melanoma. First of all, we should note that these formulations can only play a supporting role that releases bioactive agents against cancer cells rather than the main role. This strategy involves delivering the drug via transdermal pathways, resulting in the death of cancerous cells. Another strategy utilizes magnetic gel composites to combat melanoma via hyperthermia therapy. This review discusses both transdermal and hyperthermia therapies and the recent advances that have occurred in the field. PMID:28852576
Peptide and non-peptide opioid-induced hyperthermia in rabbits
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1983-01-01
The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.
Robson, Matthew J; Seminerio, Michael J; McCurdy, Christopher R; Coop, Andrew; Matsumoto, Rae R
2013-01-01
Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice. This allowed us to determine whether the ability of σ receptor antagonists (AZ66 and AC927) to mitigate METH-induced neurotoxicity depends upon their ability to modulate METH-induced hyperthermia. Mice were treated using a repeated dosing paradigm and body temperatures recorded. Striatal dopamine was measured one week post-treatment. The data indicate that the ability of σ receptor antagonists to attenuate METH-induced dopaminergic neurotoxicity is linked to their ability to block METH-induced hyperthermia. The ability of σ receptor antagonists to mitigate METH-induced hyperthermia may contribute to its neuroprotective actions.
Hyperthermia in the treatment of cancer: A review of the radiobiological basis
NASA Technical Reports Server (NTRS)
Baker, D. G.
1978-01-01
Temperatures in the range 41.5 C to 43.5 C tend to be more damaging to malignant than nonmalignant cells. Where local hyperthermia (41.5 C to 43.5 C) is combined with ionizing radiation, a significant therapeutic ratio may be realized. Total body hyperthermia, alone or combined with other therapeutic modalities, can provide palliation for some systemic malignancies but may not be as effective as local hyperthermia for treating local disease. The influence of hyperthermia on immune mechanisms and the risk of metastatic spread of potential tumor growth stimulation need further investigation. Among other questions needing elucidation before hyperthermia can be considered a standard treatment modality are the time-dose (for heating) relationships to produce an optimal therapeutic ratio and whether the late sequela of combined heat and ionizing radiation may result in an unacceptable risk of patient morbidity.
Sambuughin, N; Nelson, T E; Jankovic, J; Xin, C; Meissner, G; Mullakandov, M; Ji, J; Rosenberg, H; Sivakumar, K; Goldfarb, L G
2001-09-01
Malignant hyperthermia is a pharmacogenetic disorder associated with mutations in Ca(2+) regulatory proteins. It manifests as a hypermetabolic crisis triggered by commonly used anesthetics. Malignant hyperthermia susceptibility is a dominantly inherited predisposition to malignant hyperthermia that can be diagnosed by using caffeine/halothane contracture tests. In a multigenerational North American family with a severe form of malignant hyperthermia that has caused four deaths, a novel RYR1 A2350T missense mutation was identified in all individuals testing positive for malignant hyperthermia susceptibility. The same A2350T mutation was identified in an Argentinean family with two known fatal MH reactions. Functional analysis in HEK-293 cells revealed an altered Ca(2+) dependence and increased caffeine sensitivity of the expressed mutant protein thus confirming the pathogenic potential of the RYR1 A2350T mutation.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Bing; Huang, Tao; Ouyang, Hua-Fu; Zhang, Hua-Shun; Gong, Ke-Yun
2010-12-01
The permanent magnets of the discharge chamber in a multi-cusp proton source are studied and designed. The three electrode extraction system is adopted and simulated. A method to extract different amounts of current while keeping the beam emittance unchanged is proposed.
Multi-Source Evaluation of Interpersonal and Communication Skills of Family Medicine Residents
ERIC Educational Resources Information Center
Leung, Kai-Kuen; Wang, Wei-Dan; Chen, Yen-Yuan
2012-01-01
There is a lack of information on the use of multi-source evaluation to assess trainees' interpersonal and communication skills in Oriental settings. This study is conducted to assess the reliability and applicability of assessing the interpersonal and communication skills of family medicine residents by patients, peer residents, nurses, and…
NASA Astrophysics Data System (ADS)
Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog
2018-05-01
We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.
Nyholm, Lena; Howells, Tim; Lewén, Anders; Hillered, Lars; Enblad, Per
2017-01-01
Background Hyperthermia is a common secondary insult in traumatic brain injury (TBI). The aim was to evaluate the relationship between hyperthermia and intracranial pressure (ICP), and if intracranial compliance and cerebral blood flow (CBF) pressure autoregulation affected that relationship. The relationships between hyperthermia and cerebral oximetry (BtipO2) and cerebral metabolism were also studied. Methods A computerized multimodality monitoring system was used for data collection at the neurointensive care unit. Demographic and monitoring data (temperature, ICP, blood pressure, microdialysis, BtipO2) were analyzed from 87 consecutive TBI patients. ICP amplitude was used as measure of compliance, and CBF pressure autoregulation status was calculated using collected blood pressure and ICP values. Mixed models and comparison between groups were used. Results The influence of hyperthermia on intracranial dynamics (ICP, brain energy metabolism, and BtipO2) was small, but individual differences were seen. Linear mixed models showed that hyperthermia raises ICP slightly more when temperature increases in the groups with low compliance and impaired CBF pressure autoregulation. There was also a tendency (not statistically significant) for increased BtipO2, and for increased pyruvate and lactate, with higher temperature, while the lactate/pyruvate ratio and glucose were stable. Conclusions The major finding was that the effects of hyperthermia on intracranial dynamics (ICP, brain energy metabolism, and BtipO2) were not extensive in general, but there were exceptional cases. Hyperthermia treatment has many side effects, so it is desirable to identify cases in which hyperthermia is dangerous. Information from multimodality monitoring may be used to guide treatment in individual patients. PMID:28463046
Effects of hyperthermia on ventilation and metabolism during hypoxia in conscious mice.
Iwase, Michiko; Izumizaki, Masahiko; Kanamaru, Mitsuko; Homma, Ikuo
2004-02-01
Hyperthermia and hypoxia influence ventilation and metabolism; however, their synergistic effects remain unanswered. We hypothesized that an enhancement of ventilation induced by hyperthermia is competitive with hypoxic hypometabolism. We then examined the relationship of body temperature, hypoxia, and respiration in conscious mice, measuring minute ventilation (VE), aerobic metabolism, and arterial blood gases. All parameters were measured at two different body temperatures (BTs), approximately 37 degrees C (normothermia) and 39 degrees C (hyperthermia), under both normoxia (room air inhalation) and hypoxia (7% O2 inhalation). Under normoxia, VE and O2 consumption (VO2) were lower at hyperthermia than at normothermia, and the VE-VO2 ratio remained constant. PaCO2 values were normal at both BTs under normoxia. Hypoxic gas inhalation increased VE, which reached a peak in 2 min, then decreased at both BTs. VE remained at a higher level during hyperthermia than during normothermia throughout the 10 min experiment. VO2 decreased during hypoxia at both BTs. Hypoxia increased the VE-VO2 ratio because of relatively high VE with respect to the decreased VO2, which means hyperventilation. At hypoxia under hyperthermia, serious hyperventilation occurred with a further increase in VE. The augmented ventilation may be due to the thermal stimulus and a lowered thermoregulatory set point for hypoxia. Thus hyperthermia reduces ventilation and metabolism to maintain normocapnia; as a result, thermogenesis is reduced under normoxia. Hyperthermia augments hyperventilation induced by hypoxia, leading to severe hypoxic hypocapnia. Thermal stimuli may impair the adjustment of ventilation and metabolism when O2 is limited.
Wang, Lufang; Dong, Jian; Ouyang, Weiwei; Wang, Xiaowen; Tang, Jintian
2012-03-01
We investigated the effect and feasibility of hyperthermia treatment on subcutaneous pancreatic cancer in female Kunming mice, using a murine pancreatic cancer cell line (MPC-83) established by us and found in this study to originate from epithelial pancreatic acinus. Magnetic fluid (MF) with ferromagnetic particles of about 20 nm in size was used as a heating mediator. MF was injected into the subcutaneous nodules with subaxillary regions of mice 10 days after tumor transplantation; homogeneous distribution of magnetic nanoparticles in nodules was easily detected by X-ray 24 h later. Mice were allocated to four groups as follows: no treatment (control); MF injection alone; alternating magnetic field (AMF) irradiation alone; and MF injection and hyperthermia generated by applying AMF (300 kHz, 110 Gs). The two hyperthermia-treated subgroup tumors reached central temperatures of 47 and 51˚C, respectively, for 30 min; while rectal temperature in both subgroups remained below 36˚C. Tumor growth was inhibited and survival significantly prolonged in the hyperthermia group compared with other groups (P<0.05). Tumor cells near the MF in the hyperthermia group apoptosed or necrosed immediately after hyperthermia. By day 14, there were no subcutaneous nodules; and residual magnetic nanoparticles were ingested by phagocytes. Nuclear proliferating cell nuclear antigen (PCNA) decreased in hyperthermia group tumor cells compared to the other groups; cytoplasmic heat shock protein 70 (HSP 70) was conspicuously higher immediately after hyperthermia (P<0.05). This technique had therapeutic potential and provided a new idea in the treatment of pancreatic cancer.
Peptide-functionalized magnetic nanoparticles for cancer therapy applications
NASA Astrophysics Data System (ADS)
Hauser, Anastasia Kruse
Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron oxide nanoparticles for therapeutic applications, these inherent toxicities were harnessed and utilized to enhance radiation therapy. Therefore, the third application of magnetic nanoparticles was their ability to catalyze reactive oxygen species formation and increase efficacy of radiation. Overall, iron oxide nanoparticles have a variety of cancer therapy applications and are a promising class of materials for increasing efficacy and reducing the side effects of conventional cancer treatments. Keywords: iron oxide nanoparticles, peptides, magnetically mediated hyperthermia, magnetically mediated energy delivery, reactive oxygen species.
NASA biomedical Applications Team Advisory Center for Medical Technology and Systems
NASA Technical Reports Server (NTRS)
Siedband, M. P.
1981-01-01
Projects carried out by the UW-BATeam are reported. The following subjects were investigated: clinical opthalmic ultrasound improvements, magnetic cell sorters, hyperthermia treatment for cancer, joystick driving control for the handicapped, qualitative coronary artery imaging (MIPS), and speech autocuers.
Zhu, Yongwen; Liao, Xiudong; Lu, Lin; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang
2017-03-21
The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
NASA Astrophysics Data System (ADS)
Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao
2017-06-01
Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.
New iron-oxide particles for magnetic nanoparticle hyperthermia: an in-vitro and in-vivo pilot study
NASA Astrophysics Data System (ADS)
Hedayati, Mohammad; Attaluri, Anilchandra; Bordelon, David; Goh, R.; Armour, Michael; Zhou, Haoming; Cornejo, Christine; Wabler, Michele; Zhang, Yonggang; DeWeese, Theodore; Ivkov, Robert
2013-02-01
Magnetic nanoparticle hyperthermia (mNHP) is regarded as a promising minimally invasive procedure. These nanoparticles generate heat when exposed to alternating magnetic fields (AMFs) and thus have shown a potential for selective delivery of heat to a target such as a cancer cell. Despite the great promise however, successful clinical translation has been limited in part by technical challenges of selectively delivering heat only to the target tissue. Interaction of AMF with tissues also deposits heat through Joule heating via eddy currents. Considerations of patient safety thus constrain the choice of AMF power and frequency to values that are insufficient to produce desirable heating from available nanoparticle formulations. Therefore, considerable effort must be directed to the design of particles and the AMF device to maximize the specific delivery of heat to the intended target while minimizing the unintended and non-specific heating. We have recently developed new iron-oxide nanoparticles (IONPs) having much higher heating capability at the clinically relevant amplitudes and frequencies than other formulations. Here, we utilize a new rectangular coil designed for treating multi well tissue culture plate and show that these particles are superior to two commercially available IONPs for hyperthermia of DU145 prostate cancer cells in culture. We report results of pilot in-vivo experiments using the DU145 human prostate xenograft model in nude male mouse. AMF treatment yielded an intratumor temperature rise > 10 °C in <10 min heating (AMF amplitude 29 kA/m @160 kHz) with ~4 mg nanoparticle /g tumor while maintaining rectal (core) temperature well within physiological range.
Lele, P. P.; Parker, K. J.
1982-01-01
Temperature distributions resulting from insonation with stationary or steered beams of unfocused or focused ultrasound were measured in tissue-equivalent phantom, beef muscle in vitro, dog muscle mass, and transplanted murine tumours in vivo. Arrays of 4 to 6 thermocouples stepped through the volume of interest under computer control were used to measure the steady-state temperatures at 600 to 800 locations in both in vitro and in vivo experiments. The results were confirmed in spontaneous tumours in dog patients using fewer multi-thermocouple probes. Plane wave ultrasound was found to result in spatially non-uniform hyperthermia even in superficial tumours. The region of maximum temperature rise was small in extent and was situated at a depth which varied in the different models from 0.5 to 1.0 cm. Neither its location nor its extent could be varied by spatial manipulations of the transducer or by changing the insonation parameters except the ultrasonic frequency. A second region of hyperthermia was produced at depth by reflective heating if an ultrasonically reflective target, such as bone or air-containing tissue, was located below the target tissue. On the other hand, using available steered, focused ultrasound techniques, tumours (whether situated superficially or at depth) could be heated to a uniform, controllable temperature without undesirable temperature elevation in surrounding normal tissues. The use of steered, focused ultrasound permits deposition of energy to be tailored to the specific needs of each individual tumour. The small size of the focal region enables heating of tumours even when located near ultrasound reflecting targets. PMID:6950746
Potocki, J K; Tharp, H S
1993-01-01
Multiple model estimation is a viable technique for dealing with the spatial perfusion model mismatch associated with hyperthermia dosimetry. Using multiple models, spatial discrimination can be obtained without increasing the number of unknown perfusion zones. Two multiple model estimators based on the extended Kalman filter (EKF) are designed and compared with two EKFs based on single models having greater perfusion zone segmentation. Results given here indicate that multiple modelling is advantageous when the number of thermal sensors is insufficient for convergence of single model estimators having greater perfusion zone segmentation. In situations where sufficient measured outputs exist for greater unknown perfusion parameter estimation, the multiple model estimators and the single model estimators yield equivalent results.
NASA Astrophysics Data System (ADS)
Cano, M. E.; Barrera, A.; Estrada, J. C.; Hernandez, A.; Cordova, T.
2011-11-01
The development of a device for generating ac magnetic fields based on a resonant inverter is presented, which has been specially designed to carry out experiments of magnetic hyperthermia. By determining the electric current in the LC resonant circuit, a maximum intensity of magnetic field around of 15 mT is calculated, with a frequency around of 206 kHz. This ac magnetic field is able to heat powdered magnetic materials embedded in biological systems to be used in biomedical applications. Indeed, in order to evaluate the sensitivity of the device we also present the measurements of the specific absorption rate in phantoms performed with commercially prepared Fe3O4 and distilled water at different concentrations.
Yin, Perry T; Shah, Birju P; Lee, Ki-Bum
2014-10-29
A novel therapy is demonstrated utilizing magnetic nanoparticles for the dual purpose of delivering microRNA and inducing magnetic hyperthermia. In particular, the combination of lethal-7a microRNA (let-7a), which targets a number of the survival pathways that typically limit the effectiveness of hyperthermia, with magnetic hyperthermia greatly enhances apoptosis in brain cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin
2016-01-01
MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.
Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin
2016-01-01
MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results. PMID:26105141
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Huang, Wenwen; Rollett, Alexandra; Kaplan, David L
2015-05-01
Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
Suarez, Lucina; Felkner, Marilyn; Hendricks, Kate
2004-10-01
Hyperthermia produces neural tube defects (NTDs) in a variety of animal species. Elevated maternal body temperatures may also place the developing human embryo at risk. We examined the relation between maternal hyperthermia and the development of NTDs in a high-risk Mexican-American population. Case-women were Mexican-American women with NTD-affected pregnancies who resided and delivered in any of the 14 Texas counties bordering Mexico, during 1995-2000. Control-women were randomly selected from study area residents delivering normal live births, frequency-matched to cases by hospital and year. Information on maternal fevers, febrile illnesses, exposures to heat generated from external sources, and hyperthermia-inducing activities was gathered through in-person interviews, conducted about six weeks postpartum. The risk effect (OR) associated with maternal fever in the first trimester, compared to no fever, was 2.9 (95% CI, 1.5-5.7). Women taking fever-reducing medications showed a lower risk effect (OR, 2.4; 95% CI, 1.0-5.6) than those who did not (OR, 3.8; 95% CI, 1.4-10.9). First-trimester maternal exposures to heat devices such as hot tubs, saunas, or electric blankets were associated with an OR of 3.6 (95% CI, 1.1-15.9). Small insignificant effects were observed for activities such as cooking in a hot kitchen (OR, 1.6; 95% CI, 1.0-2.6) and working or exercising in the sun (OR, 1.4; 95% CI, 0.9-2.2). Maternal hyperthermia increases the risk for NTD-affected offspring. Women intending to become pregnant should avoid intense heat exposures, carefully monitor and manage their febrile illnesses, and routinely consume folic acid supplements. (c) 2004 Wiley-Liss, Inc.
Zhu, Yongwen; Lu, Lin; Liao, Xiudong; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang
2017-10-27
Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.
Silva, André C; Oliveira, Tiago R; Mamani, Javier B; Malheiros, Suzana MF; Malavolta, Luciana; Pavon, Lorena F; Sibov, Tatiana T; Amaro, Edson; Tannús, Alberto; Vidoto, Edson LG; Martins, Mateus J; Santos, Ricardo S; Gamarra, Lionel F
2011-01-01
Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays. The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment. We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles. In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival. Two clinical studies showed that MHT could be applied safely and with few side effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT. Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas. PMID:21674016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Ciampa, Silvia; Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome
Purpose: Hyperthermia is the clinical application of heat, in which tumor temperatures are raised to 40°C to 45°C. This proven radiation and chemosensitizer significantly improves clinical outcome for several tumor sites. Earlier studies of the use of pre-treatment planning for hyperthermia showed good qualitative but disappointing quantitative reliability. The purpose of this study was to investigate whether hyperthermia treatment planning (HTP) can be used more reliably for online adaptive treatment planning during locoregional hyperthermia treatments. Methods and Materials: This study included 78 treatment sessions for 15 patients with non-muscle-invasive bladder cancer. At the start of treatments, temperature rise measurements weremore » performed with 3 different antenna settings optimized for each patient, from which the absorbed power (specific absorption rate [SAR]) was derived. HTP was performed based on a computed tomography (CT) scan in treatment position with the bladder catheter in situ. The SAR along the thermocouple tracks was extracted from the simulated SAR distributions. Correlations between measured and simulated (average) SAR values were determined. To evaluate phase steering, correlations between the changes in simulated and measured SAR values averaged over the thermocouple probe were determined for all 3 combinations of antenna settings. Results: For 42% of the individual treatment sessions, the correlation coefficient between measured and simulated SAR profiles was higher than 0.5, whereas 58% showed a weak correlation (R of <0.5). The overall correlation coefficient between measured and simulated average SAR was weak (R=0.31; P<.001). The measured and simulated changes in average SAR after adapting antenna settings correlated much better (R=0.70; P<.001). The ratio between the measured and simulated quotients of maximum and average SARs was 1.03 ± 0.26 (mean ± SD), indicating that HTP can also correctly predict the relative amplitude of SAR peaks. Conclusions: HTP can correctly predict SAR changes after adapting antenna settings during hyperthermia treatments. This allows online adaptive treatment planning, assisting the operator in determining antenna settings resulting in increased tumor temperatures.« less
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya
2017-01-01
Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models.
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia
Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya
2017-01-01
Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal heating efficiency in comparison with the optimal size predicted by previous models. PMID:28894366
NASA Astrophysics Data System (ADS)
Manohar, A.; Krishnamoorthi, C.
2017-12-01
Majority studies on magnetic hyperthermia properties were carried out by modifying the saturation mass magnetization (Ms) of the samples. Here efforts were made to enhance the specific heat generation rate (SHGR) of single domain superparamagnetic (SP) material by modifying its magnetic susceptibility. Well crystallined, inverse spinel structured and close to monosize Fe1-xMgxFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4, & 0.5) compounds with nanosphere geometry (diameter 10 nm) were synthesized by solvothermal reflux method at ≈ 300 °C . In the literature it is reported that magnesium ferrites synthesized at high temperatures yield mixed (normal & inverse) spinel structures. The inverse spinel structure was confirmed by X-ray powder diffraction (XRPD), lattice vibrations and magnetic characteristics of the compounds. The Ms of the compounds decrease with increase of substituent Mg2+ concentration. Under high excitation energy the inter-valance charge transfer whereas under low excitation energy the intra-valance charge transfer process were predominant. The as-synthesized nanospheres were encapsulated by hydrophobic oleic acid and were exchanged by hydrophilic poly(acrylic acid) by chemical exchange process. Estimated magnetic hyperthermia power or SHGR of the x = 0, 0.3 & 0.5 were 11, 11.4 & 22.4 W per gram of respective compounds, respectively, under 63.4 kA m-1 field amplitude and 126 kHz frequency. The SHGR enhances with Mg2+ concentration though its Ms reduces and is attributed to reduced spin-orbital coupling in the compounds with enhanced Mg2+ concentration. This may pave a new way to develop magnetic hyperthermia material by modifying magnetic susceptibility of the compounds against to the reported Ms modification approach. The obtained high SHGR of the biocompatible compounds could be used in magnetic hyperthermia applications in biomedical field.
Sanapala, Krishna K; Hewaparakrama, Kapila; Kang, Kyung A
2011-01-01
Magnetic nanoparticle mediated low heat hyperthermia (42~45( o )C) via alternating electromagnetic (AEM) energy is a promising, cancer specific and minimally-invasive cancer therapy. Iron oxide particles frequently used for this therapy are non-toxic and already used as a contrast agent for magnetic resonance imaging. One important issue in the hyperthermia is applying an appropriate amount of energy to the tumor at various sizes and depths, with a minimal damage to normal tissue. For the therapy to be desirable, the AEM energy applicator needs to be non-invasive and user-friendly. To better understand the effect of the probe on the magnetic field distribution, computer simulation was performed for the field distribution by probes with various configurations. In a solenoid-type probe, the field is mainly inside the probe and, therefore, is difficult to use on body. A pancake-shaped probe is easy to use but the field penetration is shallow and, thus, may better serve surface tumor treatment. A sandwich probe, composed of two pancake probes, has a penetration depth deeper than a pancake probe. The results also showed that the spacing between two adjacent coils and the number of coil turns are very important for controlling the field penetration depth and strength. Experiments were also performed to study the effects of the size and concentration of iron oxide nanoparticles on heating. Among the tested particle sizes of 10~50 nm, 30 nm particles showed the best heating for the same mass.
Long duration mild temperature hyperthermia and brachytherapy.
Armour, E P; Raaphorst, G P
2004-03-01
Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.
Ultrastructure of rabbit embryos exposed to hyperthermia and anti-Hsp 70.
Olexikova, L; Makarevich, A V; Pivko, J; Chrenek, P
2013-08-01
The aim of the study was to determine the effect of short-term hyperthermia and Hsp70 blockage on ultrastructural changes in cell organelles and nucleoli of rabbit preimplantation embryos. The embryos were cultured either at 37.5°C (control, C) or 41.5°C (hyperthermia, HT) during 6 h. The antibody against Hsp70 was added into the culture medium (4 μg/ml) of morula stage embryos from C and HT groups. After termination of the culture, the embryos were processed for transmission electron microscopy. The embryos exposed to hyperthermia showed increased volume of lipid droplets, considerable occurrence of cellular debris in the perivitelline space and slight changes in the occurrence of microvilli on the surface of trophoblastic cells. In the embryos exposed to anti-Hsp 70 at 37.5°C, there were considerable changes in mitochondria morphology, decreased volume of dense bodies in the cytoplasm and considerable changes in the occurrence of microvilli on the surface of trophoblastic cells. In the group of embryos exposed simultaneously to hyperthermia and anti-Hsp 70, mitochondria were also expanded and swollen; the volume of flocculent vesicles and lipid droplets was increased and the volume of dense bodies in the cytoplasm was diminished. General organization of the cytoplasm in groups with anti-Hsp70 was characterized by cell organelle segregation. Averaged size of the nucleolar area was significantly increased in the embryos exposed to hyperthermia, whereas in the group exposed to the anti-Hsp70 without hyperthermia it was significantly diminished. Hyperthermia also caused disintegration of compact status of the nucleoli. In presence of anti-Hsp 70, the structural changes, described within the nucleoli during hyperthermia, were not observed. In conclusion, these results document ultrastructural changes in cell organelles of rabbit preimplantation embryo caused by hyperthermia, and also changes in the nucleolar structures, at which presence of Hsp-70 inhibit these changes. © 2012 Blackwell Verlag GmbH.
Gavva, Narender R; Bannon, Anthony W; Surapaneni, Sekhar; Hovland, David N; Lehto, Sonya G; Gore, Anu; Juan, Todd; Deng, Hong; Han, Bora; Klionsky, Lana; Kuang, Rongzhen; Le, April; Tamir, Rami; Wang, Jue; Youngblood, Brad; Zhu, Dawn; Norman, Mark H; Magal, Ella; Treanor, James J S; Louis, Jean-Claude
2007-03-28
The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood-brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.
Effective elimination of cancer stem cells by magnetic hyperthermia.
Sadhukha, Tanmoy; Niu, Lin; Wiedmann, Timothy Scott; Panyam, Jayanth
2013-04-01
Cancer stem cells (CSCs) are a subpopulation of cancer cells that have stem cell-like properties and are thought to be responsible for tumor drug resistance and relapse. Therapies that can effectively eliminate CSCs will, therefore, likely inhibit tumor recurrence. The objective of our study was to determine the susceptibility of CSCs to magnetic hyperthermia, a treatment that utilizes superparamagnetic iron oxide nanoparticles placed in an alternating magnetic field to generate localized heat and achieve selective tumor cell kill. SPIO NPs having a magnetite core of 12 nm were used to induce magnetic hyperthermia in A549 and MDA-MB-231 tumor cells. Multiple assays for CSCs, including side population phenotype, aldehyde dehydrogenase expression, mammosphere formation, and in vivo xenotransplantation, indicated that magnetic hyperthermia reduced or, in some cases, eliminated the CSC subpopulation in treated cells. Interestingly, conventional hyperthermia, induced by subjecting cells to elevated temperature (46 °C) in a water bath, was not effective in eliminating CSCs. Our studies show that magnetic hyperthermia has pleiotropic effects, inducing acute necrosis in some cells while stimulating reactive oxygen species generation and slower cell kill in others. These results suggest the potential for lower rates of tumor recurrence after magnetic hyperthermia compared to conventional cancer therapies.
A Study for Cryosurgery-Hyperthermia Treatment System
NASA Astrophysics Data System (ADS)
Takahashi, Daishi; Takahashi, Tomoya; Sone, Kazuya; Fukumoto, Ichiro
Cryosurgical system utilizing liquid nitrogen and argon gas as cryogens has been used for the treatment of malignant tumors. Those devices fail to cool the tissues to the low temperatures that completely destroy the bulky tumors. It is of course difficult for the low power cooling devices using Peltier effect, to destroy the large tumors. Therefore adjunctive treatment such as hyperthermia treatment is needed to intensify the tissue destruction. Actually, hyperthermia has been clinically used to destroy tumors, but it is unclear that the hyperthermia enhances the tissue injury in cryosurgery because there have been few studies of the combination use of hyperthermia and cryosurgery. The purposes of this study are to produce the cryosurgery-hyperthermia treatment system utilizing Peltier device and Stirling cooler and to evaluate the effects of hyperthermia treatment immediately after thawing in cryosurgery onto the living normal liver tissue of mouse. In the no-load running test of our system, the minimum temperature of the cryoprobe reached -74.0 degrees C in 30 minutes. The findings of the stained tissues suggested that the combination treatment of both was effective to destroy the tissue and the higher temperature applied immediately after freezing and thawing in cryosurgery might reinforce the tissue destruction.
Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.
Li, Kuen-Che; Huang, Lynn L H; Liang, Jhih-Hao; Chan, Ming-Che
2016-11-01
A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.
EFFECTS OF HYPERTHERMIA AND HYPERTHERMIA PLUS MICROWAVES ON RAT BRAIN ENERGY METABOLISM
The effects of hyperthermia, alone and in conjunction with microwave exposure, on brain energetics were studied in anesthetized male Sprague-Dawley rats. The effects of temperature on adenosine triphosphate concentration (ATP) and creatine phosphate concentration (CP) was determi...
Optimized Hyperthermia Treatment of Prostate Cancer Using a Novel Intracavitary Ultrasound Array
2006-01-01
Overgaard J, Gonzalez GD, Hulshof MC, Arcangeli G, Dahl O, Mella O, et al. 1995. Randomised trial of hyperthermia as adjuvant to radiotherapy for...Gonzalez, G. D., Hulshof , M. C., Arcangeli, G., Dahl, O., Mella, O., and Bentzen, S. M., "Hyperthermia as an adjuvant to radiation therapy of recurrent or...25 pp. 79-85, 1993. 9. Overgaard, J., Gonzalez, G. D., Hulshof , M. C., Arcangeli, G., Dahl, O., Mella, O., and Bentzen, S. M.: Hyperthermia as an
Wang, Peng; Xie, Xiaofeng; Wang, Jian; Shi, Yuan; Shen, Na; Huang, Xinsheng
2015-09-01
Lymph node metastasis of rabbit VX2 pyriform sinus carcinoma can be enhanced by MR scanning after injecting ultra-small superparamagnetic iron oxide (USPIO) into the submucosa beside the tumor. The metastasis lymph node which fit in with the diagnostic criteria will be placed into the alternating magnetic field after MR scanning. Then, magnetic particles can be heated to the effective therapeutic temperature. And it evaluates the possibility of diagnosis together with therapy in cervical metastasis of pyriform sinus carcinoma. Twenty rabbits bearing VX2 tumor in pyriform sinuses were randomly divided into hyperthermia group and control group after USPIO MR scanning; each group contained 10 rabbits. The hyperthermia for the experimental group was conducted by the alternating magnetic field. After hyperthermia, the detection of apoptosis for the two groups was tested by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL), transmission electron microscopy (TEM), and the expression of Bcl-2 and Bax evaluated by immunohistochemical analysis. The apoptosis rate detected by TUNEL in hyperthermia group was 100 %, while the control group was only 20 % (p < 0.05). TEM observation showed that cell chromatin condensation and clumping, condensed cytoplasm, endoplasmic reticulum membrane fusion with loose change, and the formation of a bubble could be seen in the hyperthermia group. However, the control group showed a more complete cytoplasm and nucleus. Bcl-2 protein expression in the hyperthermia group was lower than the control group, and Bax protein expression in hyperthermia group was higher (p < 0.05). USPIO indirect lymphography could localize the metastatic lymph nodes for hyperthermia. And it could make the metastatic cervical lymph nodes apoptosis when placed into the alternating magnetic field.
Regulation of body temperature and nociception induced by non-noxious stress in rat.
Vidal, C; Suaudeau, C; Jacob, J
1984-04-09
The effects of 3 different non-noxious stressors on body temperature (Tb) were investigated in the rat: (1) loose restraint in cylinders, (2) removal of the rats from cylinders, exposure to a novel environment and replacement in cylinders, a stressor called here 'novelty', and (3) gentle holding of the rats by the nape of the neck. Loose restraint and 'novelty' produced hyperthermia. On the contrary, holding induced hypothermia. Hypophysectomy (HX) reduced basal Tb, abolished restraint hyperthermia and reduced both 'novelty' hyperthermia and holding hypothermia. Dexamethasone ( DEXA ) had no effect upon either restraint or novelty hyperthermia but reduced the hypothermia. Naloxone (Nx) produced a slight fall in basal Tb accounting for its reduction of restraint and 'novelty' hyperthermias ; it did not affect holding hypothermia. The inhibitory effects of HX suggest a participation of the pituitary in the hyperthermias ; the neurointermediate lobe would be involved as the hyperthermias were not affected by DEXA , which is known to block the stress-induced release of pituitary secretions from the anterior lobe but not from the neurointermediate lobe. In contrast, substances from the anterior lobe might participate in hypothermia due to holding since it is reduced by HX and DEXA . As to the effects of Nx, endogenous opioids would not be significantly involved in the thermic effects of the stressors used in this study; they might play, if any, only a minor role in the regulation of basal Tb. These results are compared with those previously obtained on nociception using the same non-noxious stressors. It emerges that, depending on the stressor, different types of association between thermoregulation and nociception may occur, i.e. hyperthermia with analgesia, hyperthermia with hyperalgesia and hypothermia with hyperalgesia.
Hesami, Shilan; Mohammadi, Mehdi; Rezaee, Mohamad Ali; Jalili, Ali; Rahmani, Mohammad Reza
2017-11-01
Hyperthermia can modulate inflammation and the immune response. Based on the recruitment of mesenchymal stem cells (MSCs) to inflamed tissues and the immunomodulatory properties of these cells, the aim of this study was to examine the effects of hyperthermia on the immunomodulatory properties of MSCs in a mixed lymphocyte reaction (MLR). Passages 4-6 of human umbilical cord vein mesenchymal stem cells were co-cultured in a two-way MLR. Cells in the hyperthermia groups were incubated at 41 °C for 45 min. A colorimetric assay was employed to examine the effects of MSCs on cell proliferation. The levels of IL-4 and TNF-α proteins in the cell culture supernatant were measured, and non-adherent cells were used for RNA extraction, which was then used for cDNA synthesis. RT-PCR was utilised to assess levels of IL-10, IL-17A, IL-4, TNF-α, TGF-β1, FOX P 3 , IFN-γ, CXCL12 and β-actin mRNA expression. UCV-MSCs co-cultured in an MLR reduced lymphocyte proliferation at 37 °C, whereas hyperthermia attenuated this effect. Hyperthermia increased expression of IL-10, TGF-β1 and FOXP3 mRNAs in co-culture; however, no effects on IL-17A and IFN-γ were observed, and it reduced CXCL12 expression. In co-culture, IL-4 mRNA and protein increased at 37 °C, an effect that was reduced by hyperthermia. No considerable change in TNF-α mRNA expression was found in hyperthermia-treated cells. Hyperthermia increases cell proliferation of the peripheral blood mononuclear cells and modifies the cytokine profile in the presence of UCV-MSCs.
Triton X-100 functionalized Fe3O4 nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Gawali, Santosh L.; Madan, Devendra P.; Barick, K. C.; Somani, R.; Hassan, P. A.
2018-04-01
We report the preparation of Triton X-100 functionalized Fe3O4 nanoparticles (TXMNPs) and investigated their potential application in hyperthermia therapy. The formation of highly crystalline, spinel-structured Fe3O4 nanoparticles of average size of about 10 nm was evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy and zeta-potential measurements suggest the successful functionalization of nanoparticles with TX-100. These TXMNPs exhibit good colloidal stabilization in aqueous medium and show protein resistance characteristic in physiological medium. They showed excellent heating efficacy under AC magnetic field (AMF) with specific absorption rate (SAR) values of 146 and 260 W/g of Fe for 1.25 and 0.625 mg/ml of Fe, respectively at an applied AMF of 507 Oe and frequency of 300 kHz. Thus, these nanoparticles can be used as effective thermoseed for hyperthermia treatment of cancer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... for Incidental Take Permit; NiSource, Inc. AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice... NiSource, Inc. (Applicant), for an incidental take permit under the Endangered Species Act of 1973... have received an application from NiSource, Inc., for an incidental take permit (ITP) (TE02636A) under...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... for Incidental Take Permit; NiSource, Inc. AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice... (Service), are extending the public comment period on all documents related to NiSource, Inc.'s application... Register notice (76 FR 41288), we provided a list of 10 species for which NiSource, Inc. (the applicant...
Hypothermia in a combined intoxication with doxepin and moclobemide in an adolescent.
Armbrust, Sven; Nikischin, Werner; Rochholz, Gertrud; Franzelius, Cornelia; Bielstein, Andreas; Kramer, Hans-Heiner
2010-02-25
Intoxication with antidepressants, frequently encountered in pediatric emergency medicine, can often lead to life threatening situations. While hyperthermia, hypertonicity and rigidity are symptoms indicative of a serotonin syndrome triggered by an intoxication with serotonin reuptake inhibitors or monoamine oxidase inhibitors, cardiotoxicity, coma and ECG changes are typical of an intoxication with tricyclic antidepressants. Hypothermia (instead of the expected hyperthermia) is described for the first time as a persistent symptom during the course of a combined moclobemide-doxepin intoxication in an attempted suicide of a 16-year-old adolescent. The administration of serotonin reuptake inhibitors alone or in combination with other medication which increases the level of 5-hydroxytryptamine, i.e. serotonin, in the synaptic cleft mainly leads to hyperthermia. According to a recent study, however, the application of a selective 5-HT(1a) agonist to transgenic mice with a prominent overexpression of the 5-HT(1a) receptor lead to immobility and hypothermia. These findings might help to explain the hypothermia observed in the case of the intoxicated 16-year-old. Intoxication with antidepressants should not be excluded a priori in a hypothermic patient who displays other clinical signs of the said intoxication. 2009. Published by Elsevier Ireland Ltd.
Song, Xinxin; Kim, Seog-Young; Lee, Yong J.
2012-01-01
Colorectal cancer is the third leading cause of cancer-related mortality in the world. The main cause of death of colorectal cancer is hepatic metastases which can be treated using isolated hepatic perfusion (IHP), allowing treatment of colorectal metastasis with various methods. In this study we present a novel potent multimodality strategy comprising humanized death receptor 4 (DR4) antibody mapatumumab (Mapa) in combination with oxaliplatin and hyperthermia to treat human colon cancer cells. Oxaliplatin and hyperthermia sensitized colon cancer cells to Mapa in the mitochondrial dependent apoptotic pathway and increased reactive oxygen species production, leading to Bcl-xL phosphorylation at Serine 62 in a c-Jun N-terminal kinase (JNK)-dependent manner. Overexpression of Bcl-xL reduced the efficacy of the multimodality treatment, while phosphorylation of Bcl-xL decreased its anti-apoptotic activity. The multimodality treatment dissociated Bcl-xL from Bax, allowing Bax oligomerization to induce cytochrome c release from mitochondria. In addition, the multimodality treatment significantly inhibited colorectal cancer xenografts’ tumor growth. The successful outcome of this study will support the application of multimodality strategy to colorectal hepatic metastases. PMID:23051936
Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour.
Yu, Tian-Hua; Zhou, Yi-Xin; Liu, Jing
2004-01-01
A new mini-invasive hyperthermia probe using high-temperature water vapour for deep regional tumour treatment was developed in this paper. The vacuum insulation mechanism was incorporated into the probe to avoid heating damage to the normal tissues around the edge of the insertion path. To better understand the heat transfer behaviour in living tissues due to operation of the probe, theoretical models based on the Pennes' equation were established and two closed form analytical solutions under constant flux or temperature heating at the tip of probe were obtained. Parametric studies were performed to investigate the influence of various parameters on the temperature response of tissues heated by the probe. Further, several simulating experiments on the actual heating performance of the probe fabricated in this paper were conducted on the in vitro biological materials (fresh pork) and phantom gel. It was demonstrated that the probe can cause a high enough temperature over the treatment area to thermally destroy the tumour tissue in due time, while the temperature over the surrounding healthy tissues can be kept below a safe threshold value. This mini-invasive heating probe may have significant applications in future clinical tumour hyperthermia.
Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia
NASA Astrophysics Data System (ADS)
Khandhar, Amit P.; Ferguson, R. Matthew; Simon, Julian A.; Krishnan, Kannan M.
2012-04-01
Magnetic fluid hyperthermia (MFH) employs heat dissipation from magnetic nanoparticles to elicit a therapeutic outcome in tumor sites, which results in either cell death (>42 °C) or damage (<42 °C) depending on the localized rise in temperature. We investigated the therapeutic effect of MFH in immortalized T lymphocyte (Jurkat) cells using monodisperse magnetite (Fe3O4) nanoparticles (MNPs) synthesized in organic solvents and subsequently transferred to aqueous phase using a biocompatible amphiphilic polymer. Monodisperse MNPs, ˜16 nm diameter, show maximum heating efficiency, or specific loss power (watts/g Fe3O4) in a 373 kHz alternating magnetic field. Our in vitro results, for 15 min of heating, show that only 40% of cells survive for a relatively low dose (490 μg Fe/ml) of these size-optimized MNPs, compared to 80% and 90% survival fraction for 12 and 13 nm MNPs at 600 μg Fe/ml. The significant decrease in cell viability due to MNP-induced hyperthermia from only size-optimized nanoparticles demonstrates the central idea of tailoring size for a specific frequency in order to intrinsically improve the therapeutic potency of MFH by optimizing both dose and time of application.
Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Subramanian, Manny; Ishmael Parsai, E.
2014-01-01
Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301 125I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images, and a preliminary experiment demonstrates thermal self-regulation and adequate heating of a tissue-mimicking phantom by seed prototypes. The effect of self-shielding of the seed against the external magnetic field is small, and only minor thermal stress is induced in heating of the seeds from room temperature to well above the seed operating temperature. With proper selection of magnetic field parameters, the thermal dose distribution of an arrangement of TB and hyperthermia-only seeds may be made to match with its radiation dose distribution. Conclusions: The presented analyses address several practical considerations for manufacturing of the proposed TB seeds and identify critical issues for the prototype implementation. The authors’ preliminary experiments demonstrate close agreement with the modeling results, confirming the feasibility of combining sources of heat and radiation into a single thermobrachytherapy seed. PMID:24506651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana
2014-02-15
Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulatingmore » thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301{sup 125}I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images, and a preliminary experiment demonstrates thermal self-regulation and adequate heating of a tissue-mimicking phantom by seed prototypes. The effect of self-shielding of the seed against the external magnetic field is small, and only minor thermal stress is induced in heating of the seeds from room temperature to well above the seed operating temperature. With proper selection of magnetic field parameters, the thermal dose distribution of an arrangement of TB and hyperthermia-only seeds may be made to match with its radiation dose distribution. Conclusions: The presented analyses address several practical considerations for manufacturing of the proposed TB seeds and identify critical issues for the prototype implementation. The authors’ preliminary experiments demonstrate close agreement with the modeling results, confirming the feasibility of combining sources of heat and radiation into a single thermobrachytherapy seed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana
Purpose: A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulatingmore » thermal properties. Methods: The new seed's geometry is based on the standard BEST Model 2301{sup 125}I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni–Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni–Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Results: Annealing the Ni–Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images, and a preliminary experiment demonstrates thermal self-regulation and adequate heating of a tissue-mimicking phantom by seed prototypes. The effect of self-shielding of the seed against the external magnetic field is small, and only minor thermal stress is induced in heating of the seeds from room temperature to well above the seed operating temperature. With proper selection of magnetic field parameters, the thermal dose distribution of an arrangement of TB and hyperthermia-only seeds may be made to match with its radiation dose distribution. Conclusions: The presented analyses address several practical considerations for manufacturing of the proposed TB seeds and identify critical issues for the prototype implementation. The authors’ preliminary experiments demonstrate close agreement with the modeling results, confirming the feasibility of combining sources of heat and radiation into a single thermobrachytherapy seed.« less
Connected Vehicle Applications : Mobility
DOT National Transportation Integrated Search
2017-03-03
Connected vehicle mobility applications are commonly referred to as dynamic mobility applications (DMAs). DMAs seek to fully leverage frequently collected and rapidly disseminated multi-source data gathered from connected travelers, vehicles, and inf...
Development of a web application for water resources based on open source software
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri P.
2014-01-01
This article presents research and development of a prototype web application for water resources using latest advancements in Information and Communication Technologies (ICT), open source software and web GIS. The web application has three web services for: (1) managing, presenting and storing of geospatial data, (2) support of water resources modeling and (3) water resources optimization. The web application is developed using several programming languages (PhP, Ajax, JavaScript, Java), libraries (OpenLayers, JQuery) and open source software components (GeoServer, PostgreSQL, PostGIS). The presented web application has several main advantages: it is available all the time, it is accessible from everywhere, it creates a real time multi-user collaboration platform, the programing languages code and components are interoperable and designed to work in a distributed computer environment, it is flexible for adding additional components and services and, it is scalable depending on the workload. The application was successfully tested on a case study with concurrent multi-users access.
NASA Astrophysics Data System (ADS)
Wootton, Jeffery; Chen, Xin; Prakash, Punit; Juang, Titania; Diederich, Chris
2010-03-01
The feasibility of targeted hyperthermia delivery by an intrauterine ultrasound applicator to patient-specific treatment volumes in conjunction with HDR brachytherapy was investigated using theory and experiment. 30 HDR brachytherapy treatment plans were inspected to define hyperthermia treatment volumes (HTVs) based on tumor and radiation target volumes. Several typical cases were imported into a patient-specific treatment planning platform that optimized acoustic output power from an endocavity multisectored tubular array to conform temperature and thermal dose to HTVs. Perfusion was within a clinical range of 0.5-3 kg m-3 s-1. Applicators were constructed with 1-3 elements at 6.5-8 MHz with 90°-360° sectoring and 25-35 mm heating length housed in a water-cooled PET catheter. Acoustic output was compared to heating in ex vivo tissue assessed with implanted thermometry. Radiation attenuation through the device was measured in an ionization chamber. The HTV extends 2-4 cm in diameter and 2-4 cm in length. The bladder and rectum can be within 10-12 mm. HTV targets can be covered with temperature clouds >41° and thermal dose t43>5 min with 45° C maximum temperature and rectal temperature <41.5° C. Sectored applicators preferentially direct energy laterally into the parametrium to limit heating of rectum and bladder. Interstitial brachytherapy catheters within the HTV could be used for thermal feedback during HT treatment. Temperature distributions in phantom show preferential heating within sectors and align well with acoustic output. Heating control along the device length and in angle is evident. A 4-6% reduction in radiation transmission through the transducers was observed, which could likely be compensated for in planning. Patient-specific modeling and experimental heating demonstrated 3-D conformal heating capabilities of endocavity ultrasound applicators.
An integrated multi-source energy harvester based on vibration and magnetic field energy
NASA Astrophysics Data System (ADS)
Hu, Zhengwen; Qiu, Jing; Wang, Xian; Gao, Yuan; Liu, Xin; Chang, Qijie; Long, Yibing; He, Xingduo
2018-05-01
In this paper, an integrated multi-source energy harvester (IMSEH) employing a special shaped cantilever beam and a piezoelectric transducer to convert vibration and magnetic field energy into electrical energy is presented. The electric output performance of the proposed IMSEH has been investigated. Compared to a traditional multi-source energy harvester (MSEH) or single source energy harvester (SSEH), the proposed IMSEH can simultaneously harvest vibration and magnetic field energy with an integrated structure and the electric output is greatly improved. When other conditions keep identical, the IMSEH can obtain high voltage of 12.8V. Remarkably, the proposed IMSEHs have great potential for its application in wireless sensor network.
NASA Astrophysics Data System (ADS)
Dutta, Jaideep; Kundu, Balaram
2018-05-01
This paper aims to develop an analytical study of heat propagation in biological tissues for constant and variable heat flux at the skin surface correlated with Hyperthermia treatment. In the present research work we have attempted to impose two unique kind of oscillating boundary condition relevant to practical aspect of the biomedical engineering while the initial condition is constructed as spatially dependent according to a real life situation. We have implemented Laplace's Transform method (LTM) and Green Function (GFs) method to solve single phase lag (SPL) thermal wave model of bioheat equation (TWMBHE). This research work strongly focuses upon the non-invasive therapy by employing oscillating heat flux. The heat flux at the skin surface is considered as constant, sinusoidal, and cosine forms. A comparative study of the impact of different kinds of heat flux on the temperature field in living tissue explored that sinusoidal heat flux will be more effective if the time of therapeutic heating is high. Cosine heating is also applicable in Hyperthermia treatment due to its precision in thermal waveform. The result also emphasizes that accurate observation must be required for the selection of phase angle and frequency of oscillating heat flux. By possible comparison with the published experimental research work and published mathematical study we have experienced a difference in temperature distribution as 5.33% and 4.73%, respectively. A parametric analysis has been devoted to suggest an appropriate procedure of the selection of important design variables in viewpoint of an effective heating in hyperthermia treatment.
Foiret, Josquin; Ferrara, Katherine W.
2015-01-01
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value. PMID:26244783
Deckers, Roel; Debeissat, Christelle; Fortin, Pierre-Yves; Moonen, Chrit T W; Couillaud, Franck
2012-01-01
Tight regulation of gene expression in the region where therapy is necessary and for the duration required to achieve a therapeutic effect and to minimise systemic toxicity is very important for clinical applications of gene therapy. Hyperthermia in combination with a temperature sensitive heat shock protein (Hsp70) promoter presents a unique approach allowing non-invasive spatio-temporal control of transgene expression. In this study we investigated the in vivo and ex vivo relationship between temperature and duration of thermal stress with respect to the resulting gene expression using an Arrhenius analysis. A transgenic mouse expressing the luciferase reporter gene under the transcriptional control of a thermosensitive promoter was used to assure identical genotype for in vivo (mouse leg) and ex vivo (bone marrow mononuclear and embryonic fibroblast cells) studies. The mouse leg and cells were heated at different temperatures and different exposure times. Bioluminescence imaging and in vitro enzymatic assay were used to measure the resulting transgene expression. We showed that temperature-induced Hsp70 promoter activation was modulated by both temperature as well as duration of hyperthermia. The relationship between temperature and duration of hyperthermia and the resulting reporter gene expression can be modelled by an Arrhenius analysis for both in vivo as well as ex vivo. However, the increase in reporter gene expression after elevating the temperature of the thermal stress with 1°C is not comparable for in vivo and ex vivo situations. This information may be valuable for optimising clinical gene therapy protocols.
Hyperthermia modifies muscle metaboreceptor and baroreceptor modulation of heat loss in humans.
Binder, Konrad; Lynn, Aaron G; Gagnon, Daniel; Kondo, Narihiko; Kenny, Glen P
2012-02-15
The relative influence of muscle metabo- and baroreflex activity on heat loss responses during post-isometric handgrip (IHG) exercise ischemia remains unknown, particularly under heat stress. Therefore, we examined the separate and integrated influences of metabo- and baroreceptor-mediated reflex activity on sweat rate and cutaneous vascular conductance (CVC) under increasing levels of hyperthermia. Twelve men performed 1 min of IHG exercise at 60% of maximal voluntary contraction followed by 2 min of ischemia with simultaneous application of lower body positive pressure (LBPP, +40 mmHg), lower body negative pressure (LBNP, -20 mmHg), or no pressure (control) under no heat stress. On separate days, trials were repeated under heat stress conditions of 0.6°C (moderate heat stress) and 1.4°C (high heat stress) increase in esophageal temperature. For all conditions, mean arterial pressure was greater with LBPP and lower with LBNP than control during ischemia (all P ≤ 0.05). No differences in sweat rate were observed between pressure conditions, regardless of the level of hyperthermia (P > 0.05). Under moderate heat stress, no differences in CVC were observed between pressure conditions. However, under high heat stress, LBNP significantly reduced CVC by 21 ± 4% (P ≤ 0.05) and LBPP significantly elevated CVC by 14 ± 5% (P ≤ 0.05) relative to control. These results show that sweating during post-IHG exercise ischemia is activated by metaboreflex stimulation, and not by baroreflexes. In contrast, our results suggest that baroreflexes can influence the metaboreflex modulation of CVC, but only at greater levels of hyperthermia.
van Stam, Gerard; Kok, H Petra; Hulshof, Maarten C C M; Kolff, M Willemijn; van Tienhoven, Geertjan; Sijbrands, Jan; Bakker, Akke; Zum Vörde Sive Vörding, Paul J; Oldenborg, Sabine; de Greef, Martijn; Rasch, Coen R N; Crezee, Hans
2017-11-01
Superficial tumours with deep infiltration in the upper 15 cm of the trunk cannot be treated adequately with existing hyperthermia systems. The aim of this study was to develop, characterise and evaluate a new flexible two-channel hyperthermia system (AMC-2) for tumours in this region. The two-channel AMC-2 system has two horizontally revolving and height adjustable 70 MHz waveguides. Three different interchangeable antennas with sizes 20 × 34, 15 × 34 and 8.5 × 34 cm were developed and their electrical properties were determined. The performance of the AMC-2 system was tested by measurements of the electric field distribution in a saline water filled elliptical phantom, using an electric field vector probe. Clinical feasibility was demonstrated by treatment of a melanoma in the axillary region. Phantom measurements showed a good performance for all waveguides. The large reflection of the smallest antenna has to be compensated by increased forward power. Field patterns become asymmetrical when using smaller top antennas, necessitating phase corrections. The clinical application showed that tumours deeper than 4 cm can be heated adequately. A median tumour temperature of 42 °C can be reached up to 12 cm depth with adequate antenna positioning and phase-amplitude steering. This 70 MHz AMC-2 waveguide system is a useful addition to existing loco-regional hyperthermia equipment as it is capable of heating axillary tumours and other tumours deeper than 4 cm.
Contaminant source and release history identification in groundwater: A multi-step approach
NASA Astrophysics Data System (ADS)
Gzyl, G.; Zanini, A.; Frączek, R.; Kura, K.
2014-02-01
The paper presents a new multi-step approach aiming at source identification and release history estimation. The new approach consists of three steps: performing integral pumping tests, identifying sources, and recovering the release history by means of a geostatistical approach. The present paper shows the results obtained from the application of the approach within a complex case study in Poland in which several areal sources were identified. The investigated site is situated in the vicinity of a former chemical plant in southern Poland in the city of Jaworzno in the valley of the Wąwolnica River; the plant has been in operation since the First World War producing various chemicals. From an environmental point of view the most relevant activity was the production of pesticides, especially lindane. The application of the multi-step approach enabled a significant increase in the knowledge of contamination at the site. Some suspected contamination sources have been proven to have minor effect on the overall contamination. Other suspected sources have been proven to have key significance. Some areas not taken into consideration previously have now been identified as key sources. The method also enabled estimation of the magnitude of the sources and, a list of the priority reclamation actions will be drawn as a result. The multi-step approach has proven to be effective and may be applied to other complicated contamination cases. Moreover, the paper shows the capability of the geostatistical approach to manage a complex real case study.
Occupational exposure to electromagnetic fields from medical sources
STAM, Rianne; YAMAGUCHI-SEKINO, Sachiko
2017-01-01
High exposures to electromagnetic fields (EMF) can occur near certain medical devices in the hospital environment. A systematic assessment of medical occupational EMF exposure could help to clarify where more attention to occupational safety may be needed. This paper seeks to identify sources of high exposure for hospital workers and compare the published exposure data to occupational limits in the European Union. A systematic search for peer-reviewed publications was conducted via PubMed and Scopus databases. Relevant grey literature was collected via a web search. For each publication, the highest measured magnetic flux density or internal electric field strength per device and main frequency component was extracted. For low frequency fields, high action levels may be exceeded for magnetic stimulation, MRI gradient fields and movement in MRI static fields. For radiofrequency fields, the action levels may be exceeded near devices for diathermy, electrosurgery and hyperthermia and in the radiofrequency field inside MRI scanners. The exposure limit values for internal electric field may be exceeded for MRI and magnetic stimulation. For MRI and magnetic stimulation, practical measures can limit worker exposure. For diathermy, electrosurgery and hyperthermia, additional calculations are necessary to determine if SAR limits may be exceeded in some scenarios. PMID:29109357
Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.
2013-01-01
Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108
Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G.
2014-01-01
Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736
Source encoding in multi-parameter full waveform inversion
NASA Astrophysics Data System (ADS)
Matharu, Gian; Sacchi, Mauricio D.
2018-04-01
Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.
Itzhak, Y; Martin, J L; Ail, S F
2000-09-11
Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.
Characteristics of hyperthermia-induced hyperventilation in humans
Tsuji, Bun; Hayashi, Keiji; Kondo, Narihiko; Nishiyasu, Takeshi
2016-01-01
ABSTRACT In humans, hyperthermia leads to activation of a set of thermoregulatory responses that includes cutaneous vasodilation and sweating. Hyperthermia also increases ventilation in humans, as is observed in panting dogs, but the physiological significance and characteristics of the hyperventilatory response in humans remain unclear. The relative contribution of respiratory heat loss to total heat loss in a hot environment in humans is small, and this hyperventilation causes a concomitant reduction in arterial CO2 pressure (hypocapnia), which can cause cerebral hypoperfusion. Consequently, hyperventilation in humans may not contribute to the maintenance of physiological homeostasis (i.e., thermoregulation). To gain some insight into the physiological significance of hyperthermia-induced hyperventilation in humans, in this review, we discuss 1) the mechanisms underlying hyperthermia-induced hyperventilation, 2) the factors modulating this response, and 3) the physiological consequences of the response. PMID:27227102
Zhou, Yangzhong; Cattley, Richard T.; Cario, Clinton L.; Bai, Qing; Burton, Edward A.
2014-01-01
This article describes a method to quantify the movements of larval zebrafish in multi-well plates, using the open-source MATLAB® applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly-illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB® scripts; implementation of validation controls. The method is reliable, automated and flexible, requires less than one hour of hands-on work for completion once optimized, and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine: positional preference; displacement, velocity and acceleration; duration and frequency of movement events and rest periods. This approach is widely applicable to analyze spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multi-well plate format suitable for high-throughput applications. PMID:24901738
Conducting processes in simulated chronic inflammatory demyelinating polyneuropathy at 20°C-42°C.
Stephanova, D I; Daskalova, M; Mladenov, M
2015-03-01
Decreased conducting processes leading usually to conduction block and increased weakness of limbs during cold (cold paresis) or warmth (heat paresis) have been reported in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). To explore the mechanisms of these symptoms, the effects of temperature (from 20°C to 42°C) on nodal action potentials and their current kinetics in previously simulated case of 70% CIDP are investigated, using our temperature dependent multi-layered model of the myelinated human motor nerve fiber. The results show that potential amplitudes have a bifid form at 20°C. As in the normal case, for the CIDP case, the nodal action potentials are determined mainly by the nodal sodium currents (I Na ) for the temperature range of 20-39°C, as the contribution of nodal fast and slow potassium currents (I Kf and I Ks ) to the total ionic current (Ii) is negligible. Also, the contribution of I Kf and I Ks to the membrane repolarization is enhanced at temperatures higher than 39°C. However, in the temperature range of 20-42°C, all potential parameters in the CIDP case, except for the conduction block during hyperthermia (≥ 40°C) which is again at 45°C, worsen: (i) conduction velocities and potential amplitudes are decreased; (ii) afterpotentials and threshold stimulus currents for the potential generation are increased; (iii) the current kinetics of action potentials is slowed and (iv) the conduction block during hypothermia (≤ 25°C) is at temperatures lower than 20°C. These potential parameters are more altered during hyperthermia and are most altered during hypothermia. The present results suggest that the conducting processes in patients with CIDP are in higher risk during hypothermia than hyperthermia.
Multifunctional ferromagnetic disks for modulating cell function
Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.
2013-01-01
In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544
Directional microwave applicator and methods
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)
2008-01-01
A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.
NASA Technical Reports Server (NTRS)
1983-01-01
Highlights of major accomplishments and applications made during the past year illustrate the broad range of research and technology activities at the Langley Research Center. Advances are reported in the following areas: systems engineering and operation; aeronautics; electronics; space applications; aircraft and spacecraft structures; composite structures; laminar flow control; subsonic transport aircraft; and supersonic fighter concepts. Technology utilization efforts described cover a hyperthermia monitor, a lightweight composite wheelchair; and a vehicle ride quality meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.
2014-03-01
Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less
Nie, Hongyi; Liu, Chun; Zhang, Yinxia; Zhou, Mengting; Huang, Xiaofeng; Peng, Li; Xia, Qingyou
2014-01-01
The ability to respond quickly and efficiently to transient extreme environmental conditions is an important property of all biota. However, the physiological basis of thermotolerance in different species is still unclear. Here, we found that the cot mutant showed a seizure phenotype including contraction of the body, rolling, vomiting gut juice and a momentary cessation of movement, and the heartbeat rhythm of the dorsal vessel significantly increases after hyperthermia. To comprehensively understand this process at the molecular level, the transcriptomic profile of cot mutant, which is a behavior mutant that exhibits a seizure phenotype, was investigated after hyperthermia (42°C) that was induced for 5 min. By digital gene expression profiling, we determined the gene expression profile of three strains (cot/cot ok/ok, +/+ ok/ok and +/+ +/+) under hyperthermia (42°C) and normal (25°C) conditions. A Venn diagram showed that the most common differentially expressed genes (DEGs, FDR<0.01 and log2 Ratio≥1) were up-regulated and annotated with the heat shock proteins (HSPs) in 3 strains after treatment with hyperthermia, suggesting that HSPs rapidly increased in response to high temperature; 110 unique DEGs, could be identified in the cot mutant after inducing hyperthermia when compared to the control strains. Of these 110 unique DEGs, 98.18% (108 genes) were up-regulated and 1.82% (two genes) were down-regulated in the cot mutant. KEGG pathways analysis of these unique DEGs suggested that the top three KEGG pathways were “Biotin metabolism,” “Fatty acid biosynthesis” and “Purine metabolism,” implying that diverse metabolic processes are active in cot mutant induced-hyperthermia. Unique DEGs of interest were mainly involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation–contraction coupling or the Notch signaling pathway. Insights into hyperthermia-induced alterations in gene expression and related pathways could yield hints for understanding the relationship between behaviors and environmental stimuli (hyperthermia) in insects. PMID:25423472
King, Michelle A; Clanton, Thomas L; Laitano, Orlando
2016-01-15
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. Copyright © 2016 the American Physiological Society.
Magnetic nanoparticles for medical applications: Progress and challenges
NASA Astrophysics Data System (ADS)
Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Hempelmann, R.; Caltun, O. F.
2013-11-01
Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose ZnxCo1-xFe2O4 ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.
NASA Astrophysics Data System (ADS)
D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco P.; Pasquariello, Guido
2018-03-01
High-resolution, remotely sensed images of the Earth surface have been proven to be of help in producing detailed flood maps, thanks to their synoptic overview of the flooded area and frequent revisits. However, flood scenarios can be complex situations, requiring the integration of different data in order to provide accurate and robust flood information. Several processing approaches have been recently proposed to efficiently combine and integrate heterogeneous information sources. In this paper, we introduce DAFNE, a Matlab®-based, open source toolbox, conceived to produce flood maps from remotely sensed and other ancillary information, through a data fusion approach. DAFNE is based on Bayesian Networks, and is composed of several independent modules, each one performing a different task. Multi-temporal and multi-sensor data can be easily handled, with the possibility of following the evolution of an event through multi-temporal output flood maps. Each DAFNE module can be easily modified or upgraded to meet different user needs. The DAFNE suite is presented together with an example of its application.
Thermometry system development for thermoradiotherapy of deep-seated tumours
NASA Astrophysics Data System (ADS)
Fadeev, A. M.; Ivanov, S. M.; Perelstein, E. A.; Polozov, S. M.
2017-12-01
Therapeutic hyperthermia (including RF hyperthermia) in combination with radiotherapy (called thermoradiotherapy) is one of widely used contemporary cancer treatment methods. The independent electron linac and RF system or their combinations are necessary for effective therapy. Whole-body hyperthermia is used for treatment of metastatic cancer that was spread throughout the body, regional one is used for treatment of part of the body (for instance leg or abdominal cavity). Local hyperthermia with characteristic size of heating volume of 20-100 mm permits to heat tumour without overheating of healthy tissues. The thermometry of deep suited tissues during the hyperthermia process is an important and complex task. Invasive methods as thermistors, optical sensors or thermo-couples can not be widely used because all of them are able to transport tumor cells to the healthy region of the patient body. Distant methods of the temperature measurement such, as radiothermometry and acoustic thermometry can not be used for tissues seated deeper than 5-7 cm. One of possible ways to solve the problem of temperature measurement of the deep suited tissues is discussed in this article: it was proposed to use the same electrodes for RF hyperthermia and thermometry. As known electrodynamics characteristics of tissues are sufficiently depends on temperature. It was proposed to use this effect for active radiothermometry in local hyperthermia. Two opposite RF dipoles can be used as generator and receiver of pick-up signal.
Ultrasound interstitial thermal therapy (USITT) for the treatment of uterine myomas
NASA Astrophysics Data System (ADS)
Nau, William H., Jr.; Diederich, Chris J.; Simko, Jeff; Juang, Titania; Jacoby, Alison; Burdette, E. C.
2007-02-01
Uterine myomas (fibroids) are the most common pelvic tumors occurring in women, and are the leading cause of hysterectomy. Symptoms can be severe, and traditional treatments involve either surgical removal of the uterus (hysterectomy), or the fibroids (myomectomy). Interstitial ultrasound technologies have demonstrated potential for hyperthermia and high temperature thermal therapy in the treatment of benign and malignant tumors. These ultrasound devices offer favorable energy penetration allowing large volumes of tissue to be treated in short periods of time, as well as axial and angular control of heating to conform thermal treatment to a targeted tissue, while protecting surrounding tissues from thermal damage. The goal of this project is to evaluate interstitial ultrasound for controlled thermal coagulation of fibroids. Multi-element applicators were fabricated using tubular transducers, some of which were sectored to produce 180° directional heating patterns, and integrated with water cooling. Human uterine fibroids were obtained after routine myomectomies, and instrumented with thermocouples spaced at 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 cm from the applicator. Power levels ranging from 8-15 W per element were applied for up to 15 minute heating periods. Results demonstrated that therapeutic temperatures >50° C and cytotoxic thermal doses (t 43) extended beyond 2 cm radially from the applicator (>4 cm diameter). It is anticipated that this system will make a significant contribution toward the treatment of uterine fibroids.
Novel Magnetic Fluids for Breast Cancer Therapy
2008-01-01
technology, in particular. The last one gave birth to the magnetic fluid hyperthermia (MFH) - an important tool for cancer treatment . Hyperthermia is...MODELING WORK In order to theoretically demonstrate the advantage of the novel magnetic nanoparticles for hyperthermia , we have developed a...AD_________________ Award Number: DAMD17-03-1-0176 TITLE: Novel Magnetic Fluids for Breast Cancer
NASA Astrophysics Data System (ADS)
Zhou, Ping; Lin, Hui; Zhang, Qi
2018-01-01
The reference source system is a key factor to ensure the successful location of the satellite interference source. Currently, the traditional system used a mechanical rotating antenna which leaded to the disadvantages of slow rotation and high failure-rate, which seriously restricted the system’s positioning-timeliness and became its obvious weaknesses. In this paper, a multi-beam antenna scheme based on the horn array was proposed as a reference source for the satellite interference location, which was used as an alternative to the traditional reference source antenna. The new scheme has designed a small circularly polarized horn antenna as an element and proposed a multi-beamforming algorithm based on planar array. Moreover, the simulation analysis of horn antenna pattern, multi-beam forming algorithm and simulated satellite link cross-ambiguity calculation have been carried out respectively. Finally, cross-ambiguity calculation of the traditional reference source system has also been tested. The comparison between the results of computer simulation and the actual test results shows that the scheme is scientific and feasible, obviously superior to the traditional reference source system.
Bing, Chenchen; Nofiele, Joris; Staruch, Robert; Ladouceur-Wodzak, Michelle; Chatzinoff, Yonatan; Ranjan, Ashish; Chopra, Rajiv
2015-01-01
Purpose Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. Material and methods The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. Results 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41–45 °C was 31.1 min within the ROI. Conclusions The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min. PMID:26540488
Iglesias-Rey, Ramón; Rodríguez-Yáñez, Manuel; Arias, Susana; Santamaría, María; Rodríguez-Castro, Emilio; López-Dequidt, Iria; Hervella, Pablo; Sobrino, Tomás; Campos, Francisco; Castillo, José
2018-05-11
The deleterious effect of hyperthermia on intracerebral hemorrhage (ICH) has been studied, however the results are not completely conclusive and new studies are needed to elucidate clinical factors that condition the poor outcome. The aim of this study was to identify the clinical factors (including ICH etiology) that influence the poor outcome associated with hyperthermia on ICH. We additionally tried to identify potential mechanisms involved in hyperthermia during ICH. From a prospective registry, we conducted a retrospective study enrolling non-traumatic ICH patients. We used logistic regression models to analyze the influence of hyperthermia in relation to different inflammatory and endothelial dysfunction markers, hematoma growth and edema volume in hypertensive and non-hypertensive ICH patients. We included 887 ICH patients: 433 hypertensive, 50 amyloid, 117 by anticoagulants and 287 by other causes. Patients with hypertensive ICH showed the higher body temperature (37.5±0.8°C) as well as the maximum increase in temperature (0.9±0.1°C) within the first 24 hours. ICH patients with hypertensive etiologic origin, who presented hyperthermia, showed a 5.3 fold-higher risk to have poor outcome at 3 months. We found a positive relationship (r=0.717, P<0.0001) between edema volume and hyperthermia during the first 24 hours but only in ICH patients with hypertensive etiologic origin, and this relationship seems to be mediated by inflammatory markers. Our data suggest that hyperthermia, together with inflammation and edema is associated with poor outcome only in ICH from hypertensive etiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification.more » As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franckena, Martine; Lutgens, Ludy C.; Koper, Peter C.
2009-01-01
Purpose: To report response rate, pelvic tumor control, survival, and late toxicity after treatment with combined radiotherapy and hyperthermia (RHT) for patients with locally advanced cervical carcinoma (LACC) and compare the results with other published series. Methods and Materials: From 1996 to 2005, a total of 378 patients with LACC (International Federation of Gynecology and Obstetrics Stage IB2-IVA) were treated with RHT. External beam radiotherapy (RT) was applied to 46-50.4 Gy and combined with brachytherapy. The hyperthermia (HT) was prescribed once weekly. Primary end points were complete response (CR) and local control. Secondary end points were overall survival, disease-specific survival,more » and late toxicity. Patient, tumor, and treatment characteristics predictive for the end points were identified in univariate and multivariate analyses. Results: Overall, a CR was achieved in 77% of patients. At 5 years, local control, disease-specific survival, and incidence of late toxicity Common Terminology Criteria for Adverse Events Grade 3 or higher were 53%, 47%, and 12%, respectively. In multivariate analysis, number of HT treatments emerged as a predictor of outcome in addition to commonly identified prognostic factors. Conclusions: The CR, local control, and survival rates are similar to previously observed results of RHT in the randomized Dutch Deep Hyperthermia Trial. Reported treatment results for currently applied combined treatment modalities (i.e., RT with chemotherapy and/or HT) do not permit definite conclusions about which combination is superior. The present results confirm previously shown beneficial effects from adding HT to RT and justify the application of RHT as first-line treatment in patients with LACC as an alternative to chemoradiation.« less
TU-B-210-02: MRg HIFU - Advanced Approaches for Ablation and Hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moonen, C.
2015-06-15
MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less
The influence of tissue layering on microwave thermographic measurements.
Hawley, M S; Conway, J; Anderson, A P; Cudd, P A
1988-01-01
Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.
Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms
Stone, R. C.; Fellows, B. D.; Qi, B.; ...
2015-08-05
Magnetic nanoparticles are the next tool in medical diagnoses and treatment in many different biomedical applications, including magnetic hyperthermia as alternative treatment for cancer and bacterial infections, as well as the disruption of biofilms. The colloidal stability of the magnetic nanoparticles in a biological environment is crucial for efficient delivery. A surface that can be easily modifiable can also improve the delivery and imaging properties of the magnetic nanoparticle by adding targeting and imaging moieties, providing a platform for additional modification. The strategy presented in this paper includes multiple nitroDOPA anchors for robust binding to the surface tied to themore » same polymer backbone as multiple poly(ethylene oxide) chains for steric stability. This approach provides biocompatibility and enhanced stability in fetal bovine serum (FBS) and phosphate buffer saline (PBS). As a proof of concept, these polymer-particles complexes were then modified with a near infrared dye and utilized in characterizing the integration of magnetic nanoparticles in biofilms. Finally, the work presented in this manuscript describes the synthesis and characterization of a nontoxic platform for the labeling of near IR-dyes for bioimaging.« less
NASA Astrophysics Data System (ADS)
Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi
Bionized nano-ferrite (iron oxide/dextran) nanoparticles have been shown to have a large heating response in an alternating magnetic field, making them very promising for applications in magnetic nanoparticle hyperthermia cancer treatment. Magnetic hysteresis loop measurements of these particles provide insight into the magnetic reversal behavior of these particles, and thus their heating response. Measurements have been performed on frozen suspensions of nanoparticles dispersed in H2O, which have been frozen in a range of applied fields in order to tune the interparticle dipolar interactions through formation of linear chains. These experimental results are compared with micromagnetic models of both monolithic (single-domain) and internally structured (multi-grain) particles. It is found that the internal structure of the nanoparticles, which are made up of parallelepiped-shaped grains, is important for describing the magnetic reversal behavior of the particles and the resulting shape of the hysteresis loops. In addition to this, interparticle interactions between particles in a linear chain modify the reversal behavior and thus the shape of the hysteresis loop.
Synthesis and characterization of palladium-cobalt alloy for new medical micro-devices
NASA Astrophysics Data System (ADS)
Kafrouni, Lina
According to Canadian Cancer Statistics, it is estimated that 196,900 Canadians will develop cancer and 78,000 will die of cancer in 2015. Given that tumor cells are more sensitive to a temperature increase than healthy ones, this property can be used in vivo to destroy the cancerous cells by elevation of body temperature, otherwise known as hyperthermia. Magnetic hyperthermia is a promising technique for cancer treatment because of ease in targeting the cancerous cells using magnetic nanoparticles (MNPs) and hence having fewer side effects than chemotherapy and radiotherapy. Despite the use of magnetic hyperthermia to treat cancer for thousands of years, the challenge of only heating malignant cells remains daunting. Thus, oncologists often use the heat treatment in combination with radiotherapy or chemotherapy or both. The combined approach results in eliminating many cancer cells in addition to making the resistant cancer cells more vulnerable to other treatments. To use stand-alone magnetic hyperthermia therapy, difficulties in surface modification of magnetic particles for selective uptake by cancerous cells and stability as well as magnetic properties for high heating capacity (> 1000 W/g) must be overcome. The ultimate objective of this thesis is to synthesize an excellent candidate for a powerful magnetic hyperthermia. Due to rapid advances in nanotechnology, a synthesis method of nanoparticles (NPs) with the ability to rigorously control the structure and morphology, such as size, shape and crystallinity, is needed. Electrodeposition is a versatile method for the synthesis of metal NPs directly and selectively onto conductive substrates, simply by regulating applied current or voltage. Furthermore, the particles size and the shape are easily controllable. Besides, studies have shown that the electrodeposition technique is of great utility in the fabrication of nanocrystalline palladium-cobalt (PdCo) alloys. The primary goal of this project is to synthesize monodispersed PdCo alloy NPs by electrodeposition, on graphite electrode. The secondary goals are to optimize the following parameters: composition, size, shape and surface of the PdCo alloy NPs in order to enhance its stability, heat generation and nanotoxicity facing their use for clinical applications.
Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia
Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.
2010-01-01
Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363
Kowalski, M E; Jin, J M
2003-03-07
A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1983-01-01
The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.
Experimental Study of Ultrasound Contrast Agent Mediated Heat Transfer for Therapeutic Applications
NASA Astrophysics Data System (ADS)
Razansky, D.; Adam, D. R.; Einziger, P. D.
2006-05-01
Ultrasound Contrast Agents (UCA) have been recently suggested as efficient enhancers of ultrasonic power deposition in tissue. The ultrasonic energy absorption by UCA, considered as disadvantageous in diagnostic imaging, might be valuable in therapeutic applications such as targeted hyperthermia or ablation treatments. The current study, based on theoretical predictions, was designed to experimentally measure the dissipation and heating effects of encapsulated UCA (Optison™) in a well-controlled and calibrated environment.
Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.
Takook, Pegah; Persson, Mikael; Gellermann, Johanna; Trefná, Hana Dobšíček
2017-01-08
Using UWB hyperthermia systems has the potential to improve the heat delivery to deep seated tumours. In this paper, we present a novel self-grounded Bow-Tie antenna design which is to serve as the basis element in a phased-array applicator. The UWB operation in the frequency range of 0.43-1 GHz is achieved by immersing the antenna in a water bolus. The radiation characteristics are improved by appropriate shaping the water bolus and by inclusion of dielectric layers on the top of the radiating arms of the antenna. In order to find the most appropriate design, we use a combination of performance indicators representing the most important attributes of the antenna. These are the UWB impedance matching, the transmission capability and the effective field size. The antenna was constructed and experimentally validated on muscle-like phantom. The measured reflection and transmission coefficients as well as radiation characteristics are in excellent agreement with the simulated results. MR image acquisitions with antenna located inside MR bore indicate a negligible distortion of the images by the antenna itself, which indicates MR compatibility.
Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water
NASA Astrophysics Data System (ADS)
Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi
2014-03-01
Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.
Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter
2002-11-01
Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.
NASA Astrophysics Data System (ADS)
Hoopes, P. Jack; Moodie, Karen L.; Petryk, Alicia A.; Petryk, James D.; Sechrist, Shawntel; Gladstone, David J.; Steinmetz, Nicole F.; Veliz, Frank A.; Bursey, Alicea A.; Wagner, Robert J.; Rajan, Ashish; Dugat, Danielle; Crary-Burney, Margaret; Fiering, Steven N.
2017-02-01
It has recently been shown that cancer treatments such as radiation and hyperthermia, which have conventionally been viewed to have modest immune based anti-cancer effects, may, if used appropriately stimulate a significant and potentially effective local and systemic anti-cancer immune effect (abscopal effect) and improved prognosis. Using eight spontaneous canine cancers (2 oral melanoma, 3 oral amelioblastomas and 1 carcinomas), we have shown that hypofractionated radiation (6 x 6 Gy) and/or magnetic nanoparticle hyperthermia (2 X 43°C / 45 minutes) and/or an immunogenic virus-like nanoparticle (VLP, 2 x 200 μg) are capable of delivering a highly effective cancer treatment that includes an immunogenic component. Two tumors received all three therapeutic modalities, one tumor received radiation and hyperthermia, two tumors received radiation and VLP, and three tumors received only mNP hyperthermia. The treatment regimen is conducted over a 14-day period. All patients tolerated the treatments without complication and have had local and distant tumor responses that significantly exceed responses observed following conventional therapy (surgery and/or radiation). The results suggest that both hypofractionated radiation and hyperthermia have effective immune responses that are enhanced by the intratumoral VLP treatment. Molecular data from these tumors suggest Heat Shock Protein (HSP) 70/90, calreticulin and CD47 are targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of radiation and hyperthermia cancer treatment.
Intra-Peritoneal Hyperthermia Combining α-Galactosylceramide in the Treatment of Ovarian Cancer
Hsu, Yun-Ting; Huang, Jung-Tang; Wu, T. -C; Hung, Chien-Fu; Yang, Yuh-Cheng; Chang, Chih-Long
2013-01-01
The purpose of this study was to investigate the anti-tumor effect and potential mechanisms of i.p. hyperthermia in combination with α-galactosylceramide (α-GalCer) for the treatment of ovarian cancer. In this study, immuno-competent tumor models were established using murine ovarian cancer cell lines and treated with i.p. hyperthermia combining α-GalCer. Th1/Th2 cytokine expression profiles in the serum, NK cell cytotoxicity and phagocytic activities of dendritic cells (DCs) were assayed. We also analyzed the number of CD8+/IFN-γ+ tumor specific cytotoxic T cells, as well as the tumor growth based on depletion of lymphocyte sub-population. Therapeutic effect on those ovarian tumors was monitored by a non-invasive luminescent imaging system. Intra-peritoneal hyperthermia induced significant pro-inflammatory cytokines expression, and sustained the response of NK and DCs induced by α-GalCer treatment. The combination treatment enhanced the cytotoxic T lymphocyte (CTL) immune response in two mouse ovarian cancer models. This novel treatment modality by combination of hyperthermia and glycolipid provides a pronounced anti-tumor immune response and better survival. In conclusion, intra-peritoneal hyperthermia enhanced the pro-inflammatory cytokine secretion and phagocytic activity of DCs stimulated by α-GalCer. The subsequent CTL immune response induced by α-GalCer was further strengthened by combining with i.p. hyperthermia. Both innate and adaptive immunities were involved and resulted in a superior therapeutic effect in treating the ovarian cancer. PMID:23935988
A case of malignant hyperthermia captured by an anesthesia information management system.
Maile, Michael D; Patel, Rajesh A; Blum, James M; Tremper, Kevin K
2011-04-01
Many cases of malignant hyperthermia triggered by volatile anesthetic agents have been described. However, to our knowledge, there has not been a report describing the precise changes in physiologic data of a human suffering from this process. Here we describe a case of malignant hyperthermia in which monitoring information was frequently and accurately captured by an anesthesia information management system.
UNIX: A Tool for Information Management.
ERIC Educational Resources Information Center
Frey, Dean
1989-01-01
Describes UNIX, a computer operating system that supports multi-task and multi-user operations. Characteristics that make it especially suitable for library applications are discussed, including a hierarchical file structure and utilities for text processing, database activities, and bibliographic work. Sources of information on hardware…
Kumar, Dinesh; Rai, K N
2017-07-01
In this paper, we investigated the thermal behavior in living biological tissues using time fractional dual-phase-lag bioheat transfer (DPLBHT) model subjected to Dirichelt boundary condition in presence of metabolic and electromagnetic heat sources during thermal therapy. We solved this bioheat transfer model using finite element Legendre wavelet Galerkin method (FELWGM) with help of block pulse function in sense of Caputo fractional order derivative. We compared the obtained results from FELWGM and exact method in a specific case, and found a high accuracy. Results are interpreted in the form of standard and anomalous cases for taking different order of time fractional DPLBHT model. The time to achieve hyperthermia position is discussed in both cases as standard and time fractional order derivative. The success of thermal therapy in the treatment of metastatic cancerous cell depends on time fractional order derivative to precise prediction and control of temperature. The effect of variability of parameters such as time fractional derivative, lagging times, blood perfusion coefficient, metabolic heat source and transmitted power on dimensionless temperature distribution in skin tissue is discussed in detail. The physiological parameters has been estimated, corresponding to the value of fractional order derivative for hyperthermia treatment therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Iglesias, G. R.; Delgado, A. V.; González-Caballero, F.; Ramos-Tejada, M. M.
2017-06-01
In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles.
Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola
2016-01-25
An analytical solution for Low-Density Lipoprotein transport through an arterial wall under hyperthermia conditions is established in this work. A four-layer model is used to characterize the arterial wall. Transport governing equations are obtained as a combination between Staverman-Kedem-Katchalsky membrane equations and volume-averaged porous media equations. Temperature and solute transport fields are coupled by means of Ludwig-Soret effect. Results are in excellent agreement with numerical and analytical literature data under isothermal conditions, and with numerical literature data for the hyperthermia case. Effects of hypertension combined with hyperthermia, are also analyzed in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
Chakaravarthi, Geetha; Arunachalam, Kavitha
2015-01-01
The aim of this study was to describe the design and characterisation of a miniaturised 434 MHz patch antenna enclosed in a metal cavity for microwave hyperthermia treatment of cancer. Electromagnetic (EM) field distribution in the near field of a microstrip patch irradiating body tissue was studied using finite element method (FEM) simulations. Antenna miniaturisation was achieved through dielectric loading with very high permittivity, metal enclosure, patch folding and shorting post. Frequency dependent electrical properties of materials were incorporated wherever appropriate using dispersion model and measurements. Antenna return loss and specific absorption rate (SAR) at 434 MHz were measured on muscle phantoms for characterisation. The design was progressively optimised to yield a compact 434 MHz patch (22 mm × 8.8 mm × 10 mm) inside a metal cavity (40 mm × 12 mm) with integrated coupling water bolus (35 mm). The fabricated antenna with integrated water bolus was self resonant at 434 MHz without load, and has better than -10 dB return loss (S11) with 13-20 MHz bandwidth on two different phantoms. SAR at 434 MHz measured using an infrared (IR) thermal camera on split phantoms indicated penetration depth for -3 dB SAR as 8.25 mm compared to 8.87 mm for simulation. The simulated and measured SAR coverage along phantom depth was 3.09 cm(2) and 3.21 cm(2) respectively at -3 dB, and 6.42 cm(2) and 9.07 cm(2) respectively at -6 dB. SAR full width at half maximum (FWHM) at 5 mm and 20 mm depths were 54.68 mm and 51.18 mm respectively in simulation, and 49.47 mm and 43.75 mm respectively in experiments. Performance comparison of the cavity-backed patch indicates more than 89% co-polarisation and higher directivity which resulted in deeper penetration compared to the patch applicators of similar or larger size proposed for hyperthermia treatment of cancer. The fabricated cavity-backed applicator is self-resonant at 434 MHz with a negligible shift in resonance when coupled to different phantoms, Δf/f0 less than 1.16%. IR thermography-based SAR measurements indicated that the -3 dB SAR of the cavity-backed aperture antenna covered the radiating aperture surface at 5 mm and 20 mm depths. It can be concluded that the compact cavity-backed patch antenna has stable resonance, higher directivity and low cross polarisation, and is suitable for design of microwave hyperthermia array applicators with adjustable heating pattern for superficial and/or deep tissue heating.
NASA Astrophysics Data System (ADS)
Das, Harinarayan; Inukai, Akihiro; Debnath, Nipa; Kawaguchi, Takahiko; Sakamoto, Naonori; Hoque, Sheikh Manjura; Aono, Hiromichi; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki
2018-01-01
In this paper, we report a detailed study of magnetic properties and AC magnetic heat generation characteristics of La0.77Sr0.23MnO3 (LSMO) nanoparticles to investigate appropriate crystallite size with a view to the proper application of self-controlled magnetic hyperthermia treatments of cancer. A series of nanocrystalline LSMO manganite was synthesized through the chemical route called as "polymerized complex method" and then subsequently annealed at the different temperature from 600 to 1400 °C to obtain various crystallite size. Phase formation and crystal structure of the prepared powder were determined by the powder X-ray diffraction (XRD) using Rietveld analysis. The XRD patterns reveal that all powder samples are a single phase rhombohedral perovskite-like structure with R 3 bar c space group. The mean crystallite size of prepared particles varied from 19 to 243.8 nm with the increase of the annealing temperature starting from 600 to 1400 °C. The field emission scanning electron microscopy (FE-SEM) analysis shows the surface morphology with a strong agglomeration of fine nanoparticles. The Magnetic study reveals that these nanoparticles exhibit ferromagnetic nature with different value of magnetization, coercivity, Curie temperature which is strongly dependent on their crystallite size. The maximum saturation temperature (TS = 66 °C) under AC magnetic field (H = 1.77 kA/m, f = 370 kHz) was found for the crystallite size of 39.5 nm due to its pure single domain phase. Such LSMO nanoparticles, having the higher heating rate, can be used in magnetically induced hyperthermia cancer treatment.
Magnetic nanoparticles for medical applications: Progress and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doaga, A.; Cojocariu, A. M.; Constantin, C. P.
2013-11-13
Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignantmore » or benign tumors. For this purpose Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.« less
[Malignant hyperthermia - problem in dental surgery. An introductory report].
Kamińska, Ewa; Janas, Anna; Osica, Piotr
2014-01-01
Malignant hyperthermia is a genetic defect of uncontrolled hypermetabolic skeletal muscle response to anesthetic triggering drugs. Some congenital myopathies are regarded as risk increasing factors. The use of volatile anaesthetics or suxamethonium (succinylcholine) in patients who are predisposed to malignant hyperthermia leads to an increase in Ca2+ release from sarcoplasmic reticulum, which in turn causes a set of biochemical and clinical symptoms, which can be a cause of death, if dantrolene is not administered adequately. The aim of the study was to draw attention to the problem of malignant hyperthermia, which is hardly ever described in Polish literature, and requires the necessity of intensifying the cooperation between the dentist and specialists from other medical fields. The origin of the article was a case of congenital myopathy with recognized malignant hyperthermia in an 18-year-old patient, in whom surgical extraction of teeth was indicated. The course of diagnostics and treatment showed once more that contemporary medicine is in need of holistic approach, and in consequence, promising and effective cooperation of many specialists.
Predicting thermal history a-priori for magnetic nanoparticle hyperthermia of internal carcinoma
NASA Astrophysics Data System (ADS)
Dhar, Purbarun; Sirisha Maganti, Lakshmi
2017-08-01
This article proposes a simplistic and realistic method where a direct analytical expression can be derived for the temperature field within a tumour during magnetic nanoparticle hyperthermia. The approximated analytical expression for thermal history within the tumour is derived based on the lumped capacitance approach and considers all therapy protocols and parameters. The present method is simplistic and provides an easy framework for estimating hyperthermia protocol parameters promptly. The model has been validated with respect to several experimental reports on animal models such as mice/rabbit/hamster and human clinical trials. It has been observed that the model is able to accurately estimate the thermal history within the carcinoma during the hyperthermia therapy. The present approach may find implications in a-priori estimation of the thermal history in internal tumours for optimizing magnetic hyperthermia treatment protocols with respect to the ablation time, tumour size, magnetic drug concentration, field strength, field frequency, nanoparticle material and size, tumour location, and so on.
CDRH RF phantom for hyperthermia systems evaluations.
Allen, S; Kantor, G; Bassen, H; Ruggera, P
1988-01-01
The National Cancer Institute (NCI) sponsored clinical evaluations of investigational 'regional' hyperthermia systems at four clinical institutions. To support this project, the Center for Devices and Radiological Health (CDRH) developed a series of test instruments to evaluate the magnitude and repeatability of the induced heating by radiofrequency (RF) systems. Data from three institutions using the same model hyperthermia system have been analyzed. After heating, the average temperature from measurements taken at several points in the test phantom at each institution agree within +/- 0.002 degrees C. These differences are about equal to the measurement uncertainty. Thus, this technique can be used for preclinical evaluation and quality control of the total system operation. After one of the institutions relocated its hyperthermia system, a subsequent set of data showed inconsistencies compared to their earlier data. Investigation traced this to cable loss and power meter interference. From the analysis of the data from the three institutions, the utility of the CDRH RF phantom for hyperthermia systems evaluation is demonstrated.
Integrated Dynamic Transit Operations (IDTO) concept of operations.
DOT National Transportation Integrated Search
2012-05-01
In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...
Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben
2012-08-01
X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.
Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming
2017-08-14
To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.
López-Haro, S A; Gutiérrez, M I; Vera, A; Leija, L
2015-10-01
To evaluate the effects of thermal dependence of speed of sound (SOS) and acoustic absorption of biological tissues during noninvasive focused ultrasound (US) hyperthermia therapy. A finite element (FE) model was used to simulate hyperthermia therapy in the liver by noninvasive focused US. The model consisted of an ultrasonic focused transducer radiating a four-layer biological medium composed of skin, fat, muscle, and liver. The acoustic field and temperature distribution along the layers were obtained after 15 s of hyperthermia therapy using the bio-heat equation. The model solution was found with and without the thermal dependence of SOS and acoustic absorption of biological tissues. The inclusion of the thermal dependence of the SOS generated an increment of 0.4 mm in the longitudinal focus axis of the acoustic field. Moreover, results indicate an increment of the hyperthermia area (zone with temperature above 43 °C), and a maximum temperature difference of almost 3.5 °C when the thermal dependence of absorption was taken into account. The increment of the achieved temperatures at the treatment zone indicated that the effects produced by the thermal dependence of SOS and absorption must be accounted for when planning hyperthermia treatment in order to avoid overheating undesired regions.
Vassallo, M.; Gera, K. N.; Allen, S.
1995-01-01
The elderly, the very young, and the sick are known to be adversely affected by high environmental temperatures. In a retrospective open case-note review of 872 patients in a large institution during a hot summer we identified characteristics in the elderly that increase the risk of marginal hyperthermia. Women were more likely to be affected than men (25.6% vs 16.9%). We found an age-related increase in marginal hyperthermia, 15.7% of those below 60 years developed a hyperthermia compared to 18.9% in those between 70-79 years (non-significant), 28.3% in those between 80-89 years (p = 0.01) and 50% in those above 90 years (p < 0.01). There was also a direct relationship between the incidence of hyperthermia and the ambient temperature (29% in the warmer wards, compared to 17.2% in cooler ones; p < 0.01) and with the level of dependence (42.3% of the bedridden group, p < 0.01, and 20.4% of the semi-dependent, p < 0.01, compared to 11.1% of the mobile group). These factors were more significant as predictors of risk than the diagnosis. Identifying high risk patients early and taking appropriate measures to avoid hyperthermia and dehydration is important to try to decrease mortality during heatwaves. PMID:7784280
Yao, Xianxian; Niu, Xingxing; Ma, Kexin; Huang, Ping; Grothe, Julia; Kaskel, Stefan; Zhu, Yufang
2017-01-01
A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo-photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy
Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyam, Jayanth
2015-01-01
Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. PMID:23591395
Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.
Sadhukha, Tanmoy; Wiedmann, Timothy S; Panyam, Jayanth
2013-07-01
Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity
Friend, Danielle M.; Keefe, Kristen A.
2015-01-01
Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. PMID:23994061
Suriyanto; Ng, E Y K; Kumar, S D
2017-03-23
Current clinically accepted technologies for cancer treatment still have limitations which lead to the exploration of new therapeutic methods. Since the past few decades, the hyperthermia treatment has attracted the attention of investigators owing to its strong biological rationales in applying hyperthermia as a cancer treatment modality. Advancement of nanotechnology offers a potential new heating method for hyperthermia by using nanoparticles which is termed as magnetic fluid hyperthermia (MFH). In MFH, superparamagnetic nanoparticles dissipate heat through Néelian and Brownian relaxation in the presence of an alternating magnetic field. The heating power of these particles is dependent on particle properties and treatment settings. A number of pre-clinical and clinical trials were performed to test the feasibility of this novel treatment modality. There are still issues yet to be solved for the successful transition of this technology from bench to bedside. These issues include the planning, execution, monitoring and optimization of treatment. The modeling and simulation play crucial roles in solving some of these issues. Thus, this review paper provides a basic understanding of the fundamental and rationales of hyperthermia and recent development in the modeling and simulation applied to depict the heat generation and transfer phenomena in the MFH.
A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.
Friend, Danielle M; Keefe, Kristen A
2013-10-25
Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.
Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A
2010-01-27
Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.
Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia
Garami, Andras; Shimansky, Yury P.; Pakai, Eszter; Oliveira, Daniela L.; Gavva, Narender R.; Romanovsky, Andrej A.
2010-01-01
Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We have found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia. PMID:20107070
Liu, Lianke; Ni, Fang; Zhang, Jianchao; Wang, Chunyu; Lu, Xiang; Guo, Zhirui; Yao, Shaowei; Shu, Yongqian; Xu, Ruizhi
2011-12-01
Hyperthermia incorporating magnetic nanoparticles (MNPs) is a hopeful therapy to cancers and steps into clinical tests at present. However, the clinical plan of MNPs deposition in tumors, especially applied for directly multipoint injection hyperthermia (DMIH), and the information of temperature rise in tumors by DMIH is lack of studied. In this paper, we mainly discussed thermal distributions induced by MNPs in the rat brain tumors during DMIH. Due to limited experimental measurement for detecting thermal dose of tumors, and in order to acquire optimized results of temperature distributions clinically needed, we designed the thermal model in which three types of MNPs injection for hyperthermia treatments were simulated. The simulated results showed that MNPs injection plan played an important role in determining thermal distribution, as well as the overall dose of MNPs injected. We found that as injected points enhanced, the difference of temperature in the whole tumor volume decreased. Moreover, from temperature detecting data by Fiber Optic Temperature Sensors (FOTSs) in glioma bearing rats during MNPs hyperthermia, we found the temperature errors by FOTSs reduced as the number of points injected enhanced. Finally, the results showed that the simulations are preferable and the optimized plans of the numbers and spatial positions of MNPs points injected are essential during direct injection hyperthermia.
A stepwise, multi-objective, multi-variable parameter optimization method for the APEX model
USDA-ARS?s Scientific Manuscript database
Proper parameterization enables hydrological models to make reliable estimates of non-point source pollution for effective control measures. The automatic calibration of hydrologic models requires significant computational power limiting its application. The study objective was to develop and eval...
Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia
Mace, Thomas A.; Zhong, Lingwen; Kokolus, Kathleen M.; Repasky, Elizabeth A.
2012-01-01
Purpose Clinical trials combining hyperthermia with radiation and/or chemotherapy for cancer treatment have resulted in improved overall survival and control of local recurrences. The contribution of thermally enhanced anti-immune function in these effects is of considerable interest, but not understood; studies on the fundamental effects of elevated temperature on immune effector cells are needed. The goal of this study is to investigate the potential of mild hyperthermia to impact tumor antigen-specific (Ag) effector CD8+ T cell functions. Method Pmel-1 Ag-specific CD8+ T cells were exposed to mild hyperthermia and tested for changes in IFN-γ production and cytotoxicity. Additionally, overall plasma membrane organization and the phosphorylation of signaling proteins were also investigated following heat treatment. Results Exposing effector Pmel-1 specific CD8+ T cells to mild hyperthermia (39.5°C) resulted in significantly enhanced Ag-specific IFN-γ production and tumor target cell killing compared to that seen using lower temperatures (33 and 37°C). Further, inhibition of protein synthesis during hyperthermia did not reduce subsequent Ag-induced IFN-γ production by CD8+ T cells. Correlated with these effects, we observed a distinct clustering of GM1+ lipid microdomains at the plasma membrane and enhanced phosphorylation of LAT and PKCθ which may be related to an observed enhancement of Ag-specific effector CD8+ T cell IFN-γ gene transcription following mild hyperthermia. However, mitogen–mediated production of IFN-γ, which bypasses T cell receptor activation with antigen, was not enhanced. Conclusions Antigen-dependent effector T cell activity is enhanced following mild hyperthermia. These effects could potentially occur in patients being treated with thermal therapies. These data also provide support for the use of thermal therapy as an adjuvant for immunotherapies to improve CD8+ effector cell function. PMID:22235780
Neshasteh-Riz, Ali; Rahdani, Rozhin; Mostaar, Ahmad
2014-01-01
Objective In radiation treatment, the irradiation which is effective enough to control the tumors far exceeds normal-tissues tolerance. Thus to avoid such unfavourable outcomes, some methods sensitizing the tumor cells to radiation are used. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue that known to be effective as a radiosensitizer in human cancer therapy. Improving the potential efficacy of radiation therapy after combining to hyperthermia depends on the magnitude of the differential sensitization of the hyperthermic effects or on the differential cytotoxicity of the radiation effects on the tumor cells. In this study, we evaluated the combined effects of IUdR, hyperthermia and gamma rays of 60Co on human glioblastoma spheroids culture. Materials and Methods In this experimental study,the cultured spheroids with 100µm diameter were treated by 1 µM IUdR, 43°C hyperthermia for an hour and 2 Gy gamma rays, respectively. The DNA damages induced in cells were compared using alkaline comet assay method, and dosimetry was then performed by TLD-100. Comet scores were calculated as mean ± standard error of mean (SEM) using one-way ANOVA. Results Comparison of DNA damages induced by IUdR and hyperthermia + gamma treatment showed 2.67- and 1.92-fold enhancement, respectively, as compared to the damages induced by radiation alone or radiation combined IUdR. Dosimetry results showed the accurate dose delivered to cells. Conclusion Analysis of the comet tail moments of spheroids showed that the radiation treatments combined with hyperthermia and IUdR caused significant radiosensitization when compared to related results of irradiation alone or of irradiation with IUdR. These results suggest a potential clinical advantage of combining radiation with hyperthermia and indicate effectiveness of hyperthermia treatment in inducing cytotoxicity of tumor cells. PMID:24611138
Hyperthermia increases interleukin-6 in mouse skeletal muscle
Welc, Steven S.; Phillips, Neil A.; Oca-Cossio, Jose; Wallet, Shannon M.; Chen, Daniel L.
2012-01-01
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5–42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a “heat stress sensor” at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6. PMID:22673618
NASA Astrophysics Data System (ADS)
Urries, Inmaculada; Muñoz, Cristina; Gomez, Leyre; Marquina, Clara; Sebastian, Victor; Arruebo, Manuel; Santamaria, Jesus
2014-07-01
PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as ``theranostic'' nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).
Urries, Inmaculada; Muñoz, Cristina; Gomez, Leyre; Marquina, Clara; Sebastian, Victor; Arruebo, Manuel; Santamaria, Jesus
2014-08-07
PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as "theranostic" nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).
Post Anesthesia Care Unit Patient Classification System: The Direct Care Nursing Time Component
1991-07-18
Removal 1304 Enema - Cleansing 1305 Enema - Retention 1306 Colostomy - Irrigation 1307 Colostomy - Dressing Change 1308 Lavage 1309 Paracentesis 1310...Curettage 1910 Vaginal /Pelvic Ex,.iiination 1911 Urinary Bladder Training 1912 Condom Catheter Application 1913 Peritoneal Dialysis - Initiation 1914...Hypothermia/Hyperthermia Treatment 2101 Oral Medication 2102 Intramuscular Medication 2103 Subcutaneous Medication 2104 Suppository, Rectal/ Vaginal
Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek
2012-10-01
Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.
Maghemite based silicone composite for arterial embolization hyperthermia.
Smolkova, Ilona S; Kazantseva, Natalia E; Makoveckaya, Kira N; Smolka, Petr; Saha, Petr; Granov, Anatoly M
2015-03-01
Maghemite nanoparticle based silicone composite for application in arterial embolization hyperthermia is developed. It possesses embolization ability, high heating efficiency in alternating magnetic fields and radiopaque property. The initial components of the composite are selected so that the material stays liquid for 20min, providing the opportunity for transcatheter transportation and filling of the tumour vascular system. After this induction period the viscosity increases rapidly and soft embolus is formed which is able to occlude the tumour blood vessels. The composite is thermally stable up to 225°C, displays rubber-elastic properties and has a thermal expansion coefficient higher than that of blood. Maghemite nanoparticles uniformly distributed in the composite provide its rapid heating (tens of °Cmin(-1)) due to Neel magnetization relaxation. Required X-ray contrast of composite is achieved by addition of potassium iodide. Copyright © 2014 Elsevier B.V. All rights reserved.
Golovin, Yuri I.; Gribanovsky, Sergey L.; Golovin, Dmitry Y.; Klyachko, Natalia L.; Majouga, Alexander G.; Master, Alyssa M.; Sokolsky, Marina; Kabanov, Alexander V.
2015-01-01
The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia. PMID:26407671
Golovin, Yuri I; Gribanovsky, Sergey L; Golovin, Dmitry Y; Klyachko, Natalia L; Majouga, Alexander G; Master, Аlyssa M; Sokolsky, Marina; Kabanov, Alexander V
2015-12-10
The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia.
Test readiness assessment summary for Integrated Dynamic Transit Operations (IDTO).
DOT National Transportation Integrated Search
2012-10-01
In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...
NASA Astrophysics Data System (ADS)
Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.
2014-12-01
The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.
Tu, Juan; Ha Hwang, Joo; Chen, Tao; Fan, Tingbo; Guo, Xiasheng; Crum, Lawrence A.; Zhang, Dong
2012-01-01
High intensity focused ultrasound (HIFU)-induced hyperthermia is a promising tool for cancer therapy. Three-dimensional nonlinear acoustic-bioheat transfer-blood flow-coupling model simulations and in vivo thermocouple measurements were performed to study hyperthermia effects in rabbit auricular vein exposed to pulsed HIFU (pHIFU) at varied duty cycles (DCs). pHIFU-induced temperature elevations are shown to increase with increasing DC. A critical DC of 6.9% is estimated for temperature at distal vessel wall exceeding 44 °C, although different tissue depths and inclusions could affect the DC threshold. The results demonstrate clinic potentials of achieving controllable hyperthermia by adjusting pHIFU DCs, while minimizing perivascular thermal injury. PMID:23112347
USDA-ARS?s Scientific Manuscript database
Hydrologic models are essential tools for environmental assessment of agricultural non-point source pollution. The automatic calibration of hydrologic models, though efficient, demands significant computational power, which can limit its application. The study objective was to investigate a cost e...
NASA Astrophysics Data System (ADS)
Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.
2015-11-01
Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with
Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.
Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.
NASA Astrophysics Data System (ADS)
Li, J.; Wen, G.; Li, D.
2018-04-01
Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.
Russell, T; Riazi, S; Kraeva, N; Steel, A C; Hawryluck, L A
2012-09-01
We present the case of a 20-year-old woman who developed rhabdomyolysis, disseminated intravascular coagulopathy and multi-organ failure induced by ecstasy. Following initial improvement, she developed delayed rhabdomyolysis then haloperidol-induced neuroleptic malignant syndrome, which was treated with a total of 50 mg.kg(-1) dantrolene. Subsequent genetic testing revealed a novel potentially pathogenic variant in the ryanodine receptor type 1 gene. However, caffeine-halothane contracture testing of the patient's mother who carried the same gene variant was negative for malignant hyperthermia. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.
Passive heat stress reduces circulating endothelial and platelet microparticles.
Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A
2017-06-01
What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P < 0.05) and apoptosis-derived EMPs by ∼45% (from 46 ± 7 to 23 ± 3 microparticles μl -1 ; P < 0.05). Likewise, circulating PMPs were reduced by ∼75% in response to hyperthermia (from 256 ± 43 to 62 ± 14 microparticles μl -1 ). These beneficial reductions in circulating EMPs and PMPs in response to a 2°C increase in core temperature might partly underlie the reported vascular improvements following therapeutic bouts of physiological hyperthermia. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Cobianchi, M.; Guerrini, A.; Avolio, M.; Innocenti, C.; Corti, M.; Arosio, P.; Orsini, F.; Sangregorio, C.; Lascialfari, A.
2017-12-01
Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of the physical properties that influences the capability of heat release, i.e. the Specific Loss Power, SLP, of three biocompatible ferrofluid samples having a magnetic core of maghemite with different diameter d = 10.2, 14.6 and 19.7 nm. The SLP was measured as a function of frequency f and intensity H of the applied alternating magnetic field, and it turned out to depend on the core diameter, as expected. The results allowed us to highlight experimentally that the physical mechanism responsible for the heating is size-dependent and to establish, at applied constant frequency, the phenomenological functional relationship SLP = c·Hx, with 2 ≤ x<3 for all samples. The x-value depends on sample size and field frequency, here chosen in the typical range of operating magnetic hyperthermia devices. For the smallest sample, the effective relaxation time τeff ≈ 19.5 ns obtained from SLP data is in agreement with the value estimated from magnetization data, thus confirming the validity of the Linear Response Theory model for this system at properly chosen field intensity and frequency.
Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues
NASA Astrophysics Data System (ADS)
Liu, Ran; Wang, Jia; Liu, Jing
2015-07-01
Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.
Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study
Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.
2014-01-01
Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253
Opačak-Bernardi, Teuta; Ryu, Jung Su; Raucher, Drazen
2017-07-01
Notch pathway was found to be activated in most glioblastomas (GBMs), underlining the importance of Notch in formation and recurrence of GBM. In this study, a Notch inhibitory peptide, dominant negative MAML (dnMAML), was conjugated to elastin-like polypeptide (ELP) for tumor targeted delivery. ELP is a thermally responsive polypeptide that can be actively and passively targeted to the tumor site by localized application of hyperthermia. This complex was further modified with the addition of a cell penetrating peptide, SynB1, for improved cellular uptake and blood-brain barrier penetration. The SynB1-ELP1-dnMAML was examined for its cellular uptake, cytotoxicity, apoptosis, cell cycle inhibition and the inhibition of target genes' expression. SynB1-ELP1-dnMAML inhibited the growth of D54 and U251 cells by inducing apoptosis and cell cycle arrest, especially in the presence of hyperthermia. Hyperthermia increased overall uptake of the polypeptide by the cells and enhanced the resulting pharmacological effects of dnMAML, showing the inhibition of targets of Notch pathway such as Hes-1 and Hey-L. These results confirm that dnMAML is an effective Notch inhibitor and combination with ELP may allow thermal targeting of the SynB1-ELP1-dnMAML complex in cancer cells while avoiding the dangers of systemic Notch inhibition.
Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning
NASA Astrophysics Data System (ADS)
Fortunati, Valerio; Verhaart, René F.; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; van Walsum, Theo
2015-08-01
A hyperthermia treatment requires accurate, patient-specific treatment planning. This planning is based on 3D anatomical models which are generally derived from computed tomography. Because of its superior soft tissue contrast, magnetic resonance imaging (MRI) information can be introduced to improve the quality of these 3D patient models and therefore the treatment planning itself. Thus, we present here an automatic atlas-based segmentation algorithm for MR images of the head and neck. Our method combines multiatlas local weighting fusion with intensity modelling. The accuracy of the method was evaluated using a leave-one-out cross validation experiment over a set of 11 patients for which manual delineation were available. The accuracy of the proposed method was high both in terms of the Dice similarity coefficient (DSC) and the 95th percentile Hausdorff surface distance (HSD) with median DSC higher than 0.8 for all tissues except sclera. For all tissues, except the spine tissues, the accuracy was approaching the interobserver agreement/variability both in terms of DSC and HSD. The positive effect of adding the intensity modelling to the multiatlas fusion decreased when a more accurate atlas fusion method was used. Using the proposed approach we improved the performance of the approach previously presented for H&N hyperthermia treatment planning, making the method suitable for clinical application.
Huang, Huang-Chiao; Yang, Yoonsun; Nanda, Alisha; Koria, Piyush; Rege, Kaushal
2012-01-01
Aim Resistance of cancer cells to hyperthermic temperatures and spatial limitations of nanoparticle-induced hyperthermia necessitates the identification of effective combination treatments that can enhance the efficacy of this treatment. Here we show that novel polypeptide-based degradable plasmonic matrices can be employed for simultaneous administration of hyperthermia and chemotherapeutic drugs as an effective combination treatment that can overcome cancer cell resistance to hyperthermia. Method Novel gold nanorod elastin-like polypeptide matrices were generated and characterized. The matrices were also loaded with the heat-shock protein (HSP)90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), currently in clinical trials for different malignancies, in order to deliver a combination of hyperthermia and chemotherapy. Results Laser irradiation of cells cultured over the plasmonic matrices (without 17-AAG) resulted in the death of cells directly in the path of the laser, while cells outside the laser path did not show any loss of viability. Such spatial limitations, in concert with expression of prosurvival HSPs, reduce the efficacy of hyperthermia treatment. 17-AAG–gold nanorod–polypeptide matrices demonstrated minimal leaching of the drug to surrounding media. The combination of hyperthermic temperatures and the release of 17-AAG from the matrix, both induced by laser irradiation, resulted in significant (>90%) death of cancer cells, while ‘single treatments’ (i.e., hyperthermia alone and 17-AAG alone) demonstrated minimal loss of cancer cell viability (<10%). Conclusion Simultaneous administration of hyperthermia and HSP inhibitor release from plasmonic matrices is a powerful approach for the ablation of malignant cells and can be extended to different combinations of nanoparticles and chemotherapeutic drugs for a variety of malignancies. PMID:21542685
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E., E-mail: BEOneill@houstonmethodist.org
Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models.more » In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.« less
The independent influences of heat strain and dehydration upon cognition.
van den Heuvel, Anne M J; Haberley, Benjamin J; Hoyle, David J R; Taylor, Nigel A S; Croft, Rodney J
2017-05-01
Many researchers have addressed the potential effects of hyperthermia and dehydration on cognition, often revealing contradictory outcomes. A possible reason for this inconsistency is that experiments may have been inadequately designed for such effects. In this study, the impact of hyperthermia, dehydration and their combination on cognition were evaluated in eight young males, after accounting for a range of experimental limitations. Passive heating and thermal clamping at two mean body temperatures (36.5, 38.5 °C) were performed under three hydration states (euhydrated, 3 and 5% dehydrated) to assess their effects on difficulty-matched working memory and visual perception tasks, and on a difficulty manipulated perceptual task. Data were analysed according to signal detection theory to isolate changes in response sensitivity, bias and speed. Neither moderate hyperthermia (P = 0.141) nor dehydration (P > 0.604) modified response sensitivity, nor did they significantly interact (P > 0.698). Therefore, the ability to distinguish correct from incorrect responses was unaffected. Nevertheless, hyperthermia, but not dehydration (P = 0.301), reduced the response bias (-0.08 versus 2.2 [normothermia]; P = 0.010) and reaction time (mean reduction 49 ms; P < 0.001), eliciting more liberal and faster responses (P = 0.010). Response bias was reduced for the memory relative to the perceptual task (P = 0.037), and this effect was enhanced during hyperthermia (P = 0.031). These observations imply that, once potentially confounding influences were controlled, moderate hyperthermia, significant dehydration and their combined effects had insufficient impact to impair cognition within the memory and perceptual domains tested. Nonetheless, moderate hyperthermia elicited more liberal and rapid responses.
Strategies to reduce hyperthermia in ambulatory multiple sclerosis patients.
Edlich, Richard F; Buschbacher, Ralph M; Cox, Mary Jude; Long, William B; Winters, Kathryne L; Becker, Daniel G
2004-01-01
Approximately 400,000 Americans have multiple sclerosis. Worldwide, multiple sclerosis affects 2.5 million individuals. Multiple sclerosis affects two to three times as many women as men. The adverse effects of hyperthermia in patients with multiple sclerosis have been known since 1890. While most patients with multiple sclerosis experience reversible worsening of their neurologic deficits, some patients experience irreversible neurologic deficits. In fact, heat-induced fatalities have been encountered in multiple sclerosis patients subjected to hyperthermia. Hyperthermia can be caused through sun exposure, exercise, and infection. During the last 50 years, numerous strategies have evolved to reduce hyperthermia in individuals with multiple sclerosis, such as photoprotective clothing, sunglasses, sunscreens, hydrotherapy, and prevention of urinary tract infections. Hydrotherapy has become an essential component of rehabilitation for multiple sclerosis patients in hospitals throughout the world. On the basis of this positive hospital experience, hydrotherapy has been expanded through the use of compact aquatic exercise pools at home along with personal cooling devices that promote local and systemic hypothermia in multiple sclerosis patients. The Multiple Sclerosis Association of America and NASA have played leadership roles in developing and recommending technology that will prevent hyperthermia in multiple sclerosis patients and should be consulted for new technological advances that will benefit the multiple sclerosis patient. In addition, products recommended for photoprotection by The Skin Cancer Foundation may also be helpful to the multiple sclerosis patient's defense against hyperthermia. Infections in the urinary tract, especially detrusor-external sphincter dyssynergia, are initially managed conservatively with intermittent self-catheterization and pharmacologic therapy. In those cases, refractory to conservative therapy, transurethral external sphincterotomy followed by condom catheter drainage is recommended. However, if external urethral sphincterotomy fails to reduce residual urine and detrusor pressure, urinary diversion or bladder reconstruction may be necessary.
Facy, Olivier; Al Samman, Sophie; Magnin, Guy; Ghiringhelli, Francois; Ladoire, Sylvain; Chauffert, Bruno; Rat, Patrick; Ortega-Deballon, Pablo
2012-12-01
Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) achieve good results in selected patients with peritoneal carcinomatosis. High intra-abdominal pressure could enhance the penetration of chemotherapy drugs. The aim of this study was to compare the effects of high pressure and hyperthermia when used separately and when combined in terms of blood and tissue absorption of oxaliplatin in a swine model of intraperitoneal chemotherapy. Four groups of 5 pigs each underwent laparotomy and open intraperitoneal chemotherapy with oxaliplatin at a constant concentration (150 mg/L) for 30 minutes in normothermia and atmospheric pressure (group 1), or hyperthermia (42°C) and atmospheric pressure (group 2), or normothermia and high pressure (25 cm H2O) (group 3), or hyperthermia and high pressure (group 4). High pressure was achieved thorough a water column over the abdomen. Systemic absorption and abdominal tissue mapping of the penetration of oxaliplatin in each group were studied. Blood concentrations of oxaliplatin were similar in the different groups. Hyperthermia achieved higher concentrations in visceral surfaces (P = 0.0014), but not in parietal surfaces. High pressure enhanced diffusion of the drug in both the visceral and parietal peritoneum (P = 0.0058 and P = 0.0044, respectively). The combination of hyperthermia and high pressure significantly increased the penetration of oxaliplatin and achieved the highest tissue concentrations (10.39 mg/kg vs 5.48 mg/kg; P = 0.00001 in the visceral peritoneum, and 66.16 mg/kg vs 35.62 mg/kg; P = 0.0003 in the parietal peritoneum). Open high-pressure HIPEC with oxaliplatin is feasible in the pig. Hyperthermia enhances diffusion in the visceral peritoneum, whereas high pressure is effective in the visceral and parietal peritoneum. The combination of the two achieves the highest tissue concentrations of oxaliplatin.
Albers, D S; Sonsalla, P K
1995-12-01
Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate that hyperthermia per se contributes to but is not solely responsible for the METH-induced neuropathology.
Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min
2015-05-01
The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 μg/ml) (P<0.05), but not by hyperthermia plus 50 μg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.
Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.
2017-02-01
Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.
Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.
2017-01-01
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors. PMID:28287120
Ware, Matthew J; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A; Corr, Stuart J
2017-03-13
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.
NASA Astrophysics Data System (ADS)
Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.
2017-03-01
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.
Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan
2017-12-04
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia.
Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan
2017-01-01
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia. PMID:29207552
Hallasch, Sandra; Frick, Sindy; Jung, Maximilian; Hilger, Ingrid
2017-07-31
The outcome of tumor treatment via hyperthermia in the clinic has been reported to be heterogeneous. Here, we assessed how the presence of gastrin-releasing peptide receptor (GRPR) and α v β 3 integrin together with the morphology of the vascularization reflects the growth behavior of tumors after hyperthermia treatment. MDA-MB-231 tumor bearing mice were treated either with high (46 °C) or low dose (42 °C) water hyperthermia for 60 min. Changes of GRPR and α v β 3 integrin expression were assessed via multiplexed optical imaging. Vascularization was reconstructed and quantified by µCT imaging after contrast agent injection. We found that high dose hyperthermia is capable of increasing the expression of GRPR, α v β 3 integrin, CD31, and Ki67 in tumors. Also the morphology of tumor vasculature changed (increased relative blood volume and small-diameter vessel density, decreased expression of α-SMA). Low dose hyperthermia induced comparatively moderate effects on the investigated protein expression pattern and vascular remodeling. We conclude that under defined circumstances, specific temperature doses affect the reorganization of tumor regrowth, which is triggered by residual "dormant" cells even though tumor volumes are transiently decreasing. Further on, GRPR, α v β 3 integrin expression are versatile tools to surveil potential tumor regrow during therapy, beyond the conventional determination of tumor volumes.
Beam shaping as an enabler for new applications
NASA Astrophysics Data System (ADS)
Guertler, Yvonne; Kahmann, Max; Havrilla, David
2017-02-01
For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).
Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E
2015-01-01
The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80 pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5 mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10 m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. PMID:25725382
Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da
2016-03-01
Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas.
Late response to whole-lung irradiation alone and with whole-body hyperthermia in dogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillette, S.M.; Gillette, E.L.; Dawson, C.A.
1997-02-01
The late effects of whole-lung irradiation with and without whole-body hyperthermia were studied in beagle dogs. The reference doses ranged from 18 to 49.5 Gy given in 1.5-Gy fractions over 6 weeks. Whole-body hyperthermia was given in three 2-h treatments to a deep rectal temperature of 42.0{degrees}C. Radiation was given simultaneously with hyperthermia on those days. Physiological and histopathological responses were evaluated. Physiological changes included decreases in cardiac output, systemic blood pressure, dynamic compliance and serotonin uptake. Early changes included an increase in extravascular water and total protein in the lavage. These changes were considered mild, were compensated for andmore » occurred only in dogs receiving doses of 40.5 Gy or greater given in 1.5-Gy fractions over 6 weeks. Histopathological change were typical of irradiated lung and included pleural fibrosis, interstitial fibrosis, fibrotic foci, and peribronchial and perivascular fibrosis. There was no enhancement of late injury to lung by hyperthermia seen in this study. 17 refs., 3 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Panjehpour, Masoud; Overholt, Bergein F.; Frazier, Donita L.; Klebanow, Edward R.
1991-05-01
Conventional hyperthermia treatment of superficial tumors in the oral cavity is difficult due to inability in accessing the lesion. A new hyperthermia technique employing near infrared Nd:YAG irradiation delivered through an optical fiber is introduced for heating oral and nasal tumors in animals. This system consisted of an Nd:YAG laser, a He-Ne laser, a computer controlled optical shutter, an interstitial thermometer, computer and a printer. The tumors were heated via surface illumination of the lesion. A thermocouple implanted in the base of the tumor provided temperature feedback for laser energy regulation. Three spontaneously occurring canine (two squamous cell carcinoma on the gum, one pigmented melanoma on the hard palate) and one feline tumor (squamous cell carcinoma on the nose) have been treated with the Nd:YAG laser-induced hyperthermia delivered following radiation therapy. The tumor temperature was maintained between 43.2-43.5 degree(s)C for one hour. Nd:YAG hyperthermia allowed efficient delivery of heat to veterinary oral and nasal lesions otherwise impossible to treat with conventional heating techniques.
Circulatory failure during severe hyperthermia in dog.
Miki, K; Morimoto, T; Nose, H; Itoh, T; Yamada, S
1983-01-01
The effect of acute hyperthermia on circulatory function was studied in 6 mongrel dogs. At a core temperature of about 40 degrees C, central venous pressure and stroke volume were maintained at almost normal level. Cardiac output significantly increased (26 ml/(kg . min)) while systemic vascular resistance significantly decreased (1.2 mmHg . sec/ml). In addition, significant decrease in vascular compliance by 40% was observed. When body temperature was raised further (severe hyperthermia), an abrupt fall of arterial pressure was observed at the rectal temperature of about 41-42 degrees C. Concomitant decreases in central venous pressure (3 mmHg), stroke volume (2.1 ml/beat) and cardiac output (29 ml/(kg . min)) were observed while heart rate increased (48 beats/min). These results suggest that the decrease in cardiac output during severe hyperthermia is due to the fall of central venous pressure, and the fall was attributed to the increase in unstressed vascular volume of systemic circulation due to the heat-induced cutaneous vasodilation. The observed decrease in systemic vascular compliance is considered to have a significant role in the maintenance of central venous pressure under hyperthermia.
Weather, geography, and vehicle-related hyperthermia in children.
Grundstein, Andrew; Null, Jan; Meentemeyer, Vernon
2011-01-01
Vehicle-related hyperthermia is an unfortunate tragedy that leads to the accidental deaths of children each year. This research utilizes the most extensive dataset of child vehicle-related hyperthermia deaths in the United States, including 414 deaths between 1998 and 2008. Deaths follow a seasonal pattern, with a peak in July and no deaths in December or January. Also, deaths occurred over a wide range of temperature and radiation levels and across virtually all regions, although most of them took place across the southern United States. In particular, the Phoenix, Houston, Dallas, and Las Vegas metropolitan areas had the greatest number of deaths. We utilize our vehicle hyperthermia index (vhi) to compare expected deaths versus actual deaths in a metropolitan area, based on the number of children in the area who are under the age of five and on the frequency of hot days in the area. The vhi indicates that the Memphis, West Palm Beach-Boca Raton, and Las Vegas metropolitan areas are the most dangerous places for vehicle-related hyperthermia. We conclude by discussing several recommendations with public health policy implications.
Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles
Cervadoro, Antonio; Giverso, Chiara; Pande, Rohit; Sarangi, Subhasis; Preziosi, Luigi; Wosik, Jarek; Brazdeikis, Audrius; Decuzzi, Paolo
2013-01-01
A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. Here, we study the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs), with core diameter of 5, 7 and 14 nm, in terms of absolute temperature increase ΔT and specific absorption rate (SAR). These nanoparticles are operated under a broad range of AMF conditions, with frequency f varying between 0.2 and 30 MHz; field strength H ranging from 4 to 10 kA m−1; and concentration cMNP varying from 0.02 to 3.5 mg ml−1. At high frequency field (∼30 MHz), non specific heating dominates and ΔT correlates with the electrical conductivity of the medium. At low frequency field (<1 MHz), non specific heating is negligible and the relaxation of the SPIO within the AMF is the sole energy source. We show that the ΔT of the medium grows linearly with cMNP, whereas the SARMNP of the magnetic nanoparticles is independent of cMNP and varies linearly with f and H2. Using a computational model for heat transport in a biological tissue, the minimum requirements for local hyperthermia (Ttissue >42°C) and thermal ablation (Ttissue >50°C) are derived in terms of cMNP, operating AMF conditions and blood perfusion. The resulting maps can be used to rationally design hyperthermic treatments and identifying the proper route of administration – systemic versus intratumor injection – depending on the magnetic and biodistribution properties of the nanoparticles. PMID:23451208
Social factors modulate restraint stress induced hyperthermia in mice.
Watanabe, Shigeru
2015-10-22
Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Dinges, S; Harder, C; Wurm, R; Buchali, A; Blohmer, J; Gellermann, J; Wust, P; Randow, H; Budach, V
1998-10-01
The disappointing results for inoperable, advanced tumors of the uterine cervix after conventional radiotherapy alone necessitates improving of radiation therapy. Simultaneous chemotherapy or altered radiation fractionation, such as accelerated regimen, increase acute toxicity and treatment is often difficult to deliver in the planned manner. The purpose of this phase II study was to investigate the toxicity and effectiveness of a combined approach with radiotherapy and regional hyperthermia. From January 1994 to October 1995 18 patients with advanced carcinomas of the uterine cervix were treated in combination with radiotherapy and hyperthermia. The patients were treated with 6 to 20 MV photons delivered by a linear accelerator in a 4-field-box technique to a total dose of 50.4 Gy in 28 fractions. In the first and fourth week 2 regional hyperthermia treatments were each applied with the Sigma-60 applicator from a BSD-2000 unit. After this a boost to the primary tumor was given with high-dose-rate iridium-192 brachytherapy by an afterloading technique with 4 x 5 Gy at point A to a total of 20 Gy and for the involved parametrium anterioposterior-posterioanterior to 9 Gy in 5 fractions. The acute toxicity was low and similar to an external radiotherapy alone treatment. No Grade III/IV acute toxicity was found. The median age was 47 years (range 34 to 67 years). In 16 of 18 patients a rapid tumor regression was observed during combined thermo-radiotherapy, which allowed the use of intracavitary high-dose-rate brachytherapy in these cases. Complete and partial remission were observed in 13 and 4 cases, respectively. One patient did not respond to the treatment. The median follow-up was 24 months (range 17 to 36 months). The local tumor control rate was 48% at 2 years. Median T20, T50 and T90 values were 41.7 degrees C (range 40.3 to 43.2 degrees C), 41.1 degrees C (range 39.2 to 42.5 degrees C) and 39.9 degrees C (range 37.7 to 41.9 degrees C), respectively. Cumulative minutes of T90 > 40 degrees C (Cum40T90) and cumulative minutes, which were isoeffective to 43 degrees C, were calculated (CEM43T90, CEM43T50, CEM43T20). CEM43T90 was found to be a significant parameter in terms of local tumor control for the 4 hyperthermia treatments (p = 0.019). This treatment modality has proved to be feasible and well tolerable. The rapid tumor shrinkage in the combined approach of radiotherapy with hyperthermia before beginning brachytherapy seems to be a good prerequisite for improving of the disappointing results in cure of advanced cancer of the uterine cervix.
Technical use of compact micro-onde devicesa)
NASA Astrophysics Data System (ADS)
Sortais, P.; Lamy, T.; Médard, J.; Angot, J.; Sudraud, P.; Salord, O.; Homri, S.
2012-02-01
Due to the very small size of a COMIC (Compact MIcrowave and Coaxial) device [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B31 (2010), 10.1063/1.3272878] it is possible to install such plasma or ion source inside very different technical environments. New applications of such a device are presented, mainly for industrial applications. We have now designed ion sources for highly focused ion beam devices, ion beam machining ion guns, or thin film deposition machines. We will mainly present new capabilities opened by the use of a multi-beam system for thin film deposition based on sputtering by medium energy ion beams. With the new concept of multi-beam sputtering (MBS), it is possible to open new possibilities concerning the ion beam sputtering (IBS) technology, especially for large size deposition of high uniformity thin films. By the use of multi-spots of evaporation, each one corresponding to an independent tuning of an individual COMIC ion source, it will be very easy to co-evaporate different components.
Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications.
Mosayebi, Jalal; Kiyasatfar, Mehdi; Laurent, Sophie
2017-12-01
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic Responsive Hydrogel Material Delivery System II
2010-08-29
phase. MNPs have found very useful applications in bioseparation, drug delivery system, hyperthermia for cancer therapy, and magnetic resonance...and the poly(N-isoproplyacrylamide) (poly(NIPAAm) shell in aqueous medium. Magnetic nanoparticles (MNPs) were coated with first oleic acid (OA) and...potentially important in target delivery of therapeutic agent in vivo, hyperthermic treatment of tumors, magnetic resonance imaging (MRI) as contrasting
The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.
Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John
2015-01-01
The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.
Temperature distribution in the human body under various conditions of induced hyperthermia
NASA Technical Reports Server (NTRS)
Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.
1977-01-01
A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.
Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat.
Mete, Fatih; Kilic, Ertugrul; Somay, Adnan; Yilmaz, Bayram
2012-01-01
Heat stress related hyperthermia may cause damage to various organ systems. There are very few studies on the effects of hyperthermia on the endocrine system. We therefore, investigated effects of exogenously induced hyperthermia on adrenal, testicular and thyroid functions and behavioural alterations in pre-pubertal male Sprague-Dawley rats. Three groups of 30-day old rats (n=7 per group) were used. Body temperature was increased to 39 °C (Group I) and 41 °C (Group II) in a hyperthermia induction chamber for 30 min. The rats in the Group III served as control (36 °C). All animals received saline and were decapitated 48 h after the experiments. Serum free triiodothyronin (fT3), free thyroxine (fT4), total testosterone and dehydroepiandrosterone sulphate (DHEA-S) levels were determined by chemiluminescence assay, and corticosterone by enzyme immunoassay. Testes, pituitary and adrenal glands were dissected out and processed for histopathological examination. To assess activity and anxiety of the animals, the open field test and elevated-0-maze test, respectively, were used in all groups 24 h before (day 29) and after (day 31) hyperthermia induction. Serum corticosterone levels (3.22 ± 1.3) were significantly reduced in the 39 °C (1.3 ± 0.9) and 41 °C (1.09 ± 0.7) hyperthermia groups (P<0.01) compared to controls. Serum levels of thyroid hormones did not significantly differ among the groups. DHEA-S and testosterone values were below the limit of detection in all groups. Histopathological examination revealed that there was mild hydropic degeneration in the pituitary and adrenal glands. Apoptotic germ cells were seen in the seminiferous tubules of pre-pubertal male rats exposed to hyperthermia (41 °C). Progression time in the open field test was significantly decreased and anxiety test scores increased in animals exposed to 39 °C compared to the control group (P<0.01). These parameters were more pronounced in the 41 °C hyperthermia group. Our results show that heat exposure-induced stress may cause delayed reduction in serum corticosterone levels which may be associated with behavioural deficits in pre-pubertal male rats.
Multi-Core Processor Memory Contention Benchmark Analysis Case Study
NASA Technical Reports Server (NTRS)
Simon, Tyler; McGalliard, James
2009-01-01
Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.
Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J
2016-02-01
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muscarella, Donna E.; Bloom, Stephen E.
2008-04-01
The c-Jun N-terminal kinase (JNK) pathway can play paradoxical roles as either a pro-survival or a pro-cell death pathway depending on type of stress and cell type. The goal of the present study was to determine the role of JNK pathway signaling for regulating B-cell apoptosis in two important but contrasting situations-global proteotoxic damage, induced by arsenite and hyperthermia, versus specific microtubule inhibition, induced by the anti-cancer drug vincristine, using the EW36 B-cell line. This cell line over-expresses the Bcl-2 protein and is a useful model to identify treatments that can overcome multi-drug resistance in lymphoid cells. Exposure of EW36more » B-cells to arsenite or lethal hyperthermia resulted in activation of the JNK pathway and induction of apoptosis. However, pharmacological inhibition of the JNK pathway did not inhibit apoptosis, indicating that JNK pathway activation is not required for apoptosis induction by these treatments. In contrast, vincristine treatment of EW36 B-cells resulted in JNK activation and apoptosis that was suppressed by JNK inhibition. A critical difference between the two types of stress treatments was that only vincristine-induced JNK activation resulted in phosphorylation of Bcl-2 at threonine-56, a modification that can block its anti-apoptotic function. Importantly, Bcl-2 phosphorylation was attenuated by JNK inhibition implicating JNK as the upstream kinase. Furthermore, arsenite and hyperthermia treatments activated a p53/p21 pathway associated with apoptosis induction, whereas vincristine did not activate this pathway. These results reveal two stress-activated pathways, one JNK-dependent and another JNK-independent, either of which can bypass Bcl-2 mediated resistance, resulting in cell death.« less
Liu, Xiao Li; Ng, Cheng Teng; Chandrasekharan, Prashant; Yang, Hai Tao; Zhao, Ling Yun; Peng, Erwin; Lv, Yun Bo; Xiao, Wen; Fang, Jie; Yi, Jia Bao; Zhang, Huan; Chuang, Kai-Hsiang; Bay, Boon Huat; Ding, Jun; Fan, Hai Ming
2016-08-01
Uniform wüstite Fe0.6 Mn0.4 O nanoflowers have been successfully developed as an innovative theranostic agent with T1 -T2 dual-mode magnetic resonance imaging (MRI), for diagnostic applications and therapeutic interventions via magnetic hyperthermia. Unlike their antiferromagnetic bulk counterpart, the obtained Fe0.6 Mn0.4 O nanoflowers show unique room-temperature ferromagnetic behavior, probably due to the presence of an exchange coupling effect. Combined with the flower-like morphology, ferromagnetic Fe0.6 Mn0.4 O nanoflowers are demonstrated to possess dual-modal MRI sensitivity, with longitudinal relaxivity r1 and transverse relaxivity r2 as high as 4.9 and 61.2 mm(-1) s(-1) [Fe]+[Mn], respectively. Further in vivo MRI carried out on the mouse orthotopic glioma model revealed gliomas are clearly delineated in both T1 - and T2 -weighted MR images, after administration of the Fe0.6 Mn0.4 O nanoflowers. In addition, the Fe0.6 Mn0.4 O nanoflowers also exhibit excellent magnetic induction heating effects. Both in vitro and in vivo magnetic hyperthermia experimentation has demonstrated that magnetic hyperthermia by using the innovative Fe0.6 Mn0.4 O nanoflowers can induce MCF-7 breast cancer cell apoptosis and a complete tumor regression without appreciable side effects. The results have demonstrated that the innovative Fe0.6 Mn0.4 O nanoflowers can be a new magnetic theranostic platform for in vivo T1 -T2 dual-mode MRI and magnetic thermotherapy, thereby achieving a one-stop diagnosis cum effective therapeutic modality in cancer management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetics Home Reference: malignant hyperthermia
... Genetic and Rare Diseases Information Center (2 links) King Denborough syndrome Malignant hyperthermia Educational Resources (4 links) ... 19 [updated 2013 Jan 31]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean ...
Gibbs, F A
1981-06-01
The technical aspects of an experience with clinical hyperthermia utilizing the BSD-1000 and BDS annular phased array applicator are reviewed. The design and operation of the basic console functions of the BSD apparatus relating to temperature data presentation and recording and computer control leave little need for significant improvement. Such improvements as may eventually be desired can probably be made as software changes in the computer programs. The 100 W generator capacity is occasionally inadequate to drive even a single applicator and certainly inadequate to supply multiple applicator arrays or larger low frequency applicators. Amplifiers will eventually be added for the frequency ranges of greatest interest. The temperature probes and utilization routines have been excellent but their diameter is undesirably large. However, the design of the basic instrument is such that improved smaller probes and systems for dynamic temperature sampling matrices can be interfaced readily. Due to the limited superficial volumes that can be presently heated with this device, most important potentially curable tumors cannot be treated. Possible important exceptions to this are a number of sites in the upper respiratory tract. The depth and superficial extent of heatable volumes may be moderately extended with increased power, appropriate study of applicator arrays and new applicator designs. Provisions for surface temperature control are important and will need to be incorporated. The annular phased array applicator, though still a prototype design, has demonstrated encouraging results regarding its possible use for regional heating of central abdominal and thoracic tumors. Improvements in "human engineering" and study of the effects and implications of departures from basic cylindrical anatomy are required and are in progress. The improved sophistication in temperature sampling techniques described is considered important for adequate monitoring of temperature gradients in the abdomen and chest.
NASA Astrophysics Data System (ADS)
Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.
2016-11-01
The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.
Magnetic hydrogel nanocomposites and composite nanoparticles--a review of recent patented works.
Daniel-da-Silva, Ana L; Carvalho, Rui S; Trindade, Tito
2013-06-01
Magnetic hydrogel nanocomposites and composite nanoparticles form a class of soft materials with remote controllable properties that have attracted great attention due to their potential use in diverse applications. These include medical applications such as controlled drug delivery, clinical imaging and cancer hyperthermia and ecological applications as well, such as wastewater treatment. The present review provides an overview of the patents disclosed and research work developed in the last decade on magnetic hydrogel nanocomposites and magnetic hydrogel composite nanoparticles envisaging the above mentioned applications. In this context, recent patented advances on chemical methods for the preparation of bulk hydrogel nanocomposites and composite nanoparticles will be reviewed.
Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor
Mukherjee, Amarnath; Castanares, Mark; Hedayati, Mohammad; Wabler, Michele; Trock, Bruce; Kulkarni, Prakash; Rodriguez, Ronald; Getzenberg, Robert H; DeWeese, Theodore L; Ivkov, Robert; Lupold, Shawn E
2014-01-01
Aim To develop and apply a heat-responsive and secreted reporter assay for comparing cellular response to nanoparticle (NP)- and macroscopic-mediated sublethal hyperthermia. Materials & methods Reporter cells were heated by water bath (macroscopic heating) or iron oxide NPs activated by alternating magnetic fields (nanoscopic heating). Cellular responses to these thermal stresses were measured in the conditioned media by secreted luciferase assay. Results & conclusion Reporter activity was responsive to macroscopic and nanoparticle heating and activity correlated with measured macroscopic thermal dose. Significant cellular responses were observed with NP heating under doses that were insufficient to measurably change the temperature of the system. Under these conditions, the reporter response correlated with proximity to cells loaded with heated nanoparticles. These results suggest that NP and macroscopic hyperthermia may be distinctive under conditions of mild hyperthermia. PMID:24547783
Eynali, Samira; Khoei, Samideh; Khoei, Sepideh; Esmaelbeygi, Elaheh
2016-10-04
The purpose of this study was to evaluate the combined effects of heat and poly lactic-co-glycolic acid (PLGA) nanoparticles, as 5-fluorouracil carriers with/without iron oxide core, on the viability and proliferation capacity of human colon cancer cell line HT-29 in the spheroid model. HT-29 spheroid cells were treated with different concentrations of 5-FU or 5-FU loaded into both nanoparticles for 74 h. Hyperthermia was then performed at 43°C for 60 min. Finally, the effects of the mentioned treatments on cell viability and proliferation capacity were evaluated using the trypan blue dye exclusion test and colony formation assay, respectively. Our results showed that hyperthermia, in combination with 5-FU or PLGA nanoparticles as 5-FU carriers, significantly enhanced the cytotoxic effects as compared to the control group. Considering that nanoparticles could increase the intracellular concentration of drugs in cancer cells, the extent of cytotoxic effects following treatment with 5-FU loaded into both nanoparticles was significantly higher than that with free 5-FU. In addition, the presence of iron oxide cores in nanoparticles during hyperthermia enhanced the cytotoxic effects of hyperthermia compared with nanoparticles without iron oxide core. Based on this study, hyperthermia in combination with 5-FU-loaded PLGA nanoparticles with iron oxide core drastically reduced the proliferation capacity of HT-29 cells; therefore, it may be considered a new direction in the treatment of colon cancer.
Effects of hyperthermia on enzymes and electrolytes in blood and cerebrospinal fluid in dogs
NASA Astrophysics Data System (ADS)
Deswal, K.; Chohan, I. S.
1981-09-01
The effects of exposure to various degrees of heat stress on serum glutamate—oxaloacetate transaminase (SGOT), serum glutamate-pyruvate transaminase (SGPT), alkaline phosphatase (ALK-P-ase), calcium and chlorides have been studied on 75 dogs. Rectal temperature (Tre) was recorded before and after exposure to heat stress. These dogs were divided into 5 groups, according to the Tre level attained after exposure to heat stress. Rectal temperature was raised from normal to 39.45±0.47‡C in the first group, to 40.93±0.17‡C in the second group, to 41.87±0.22‡C in the third group, to 42.90 ± 0.21‡C in the fourth group and to 43.93±0.19‡C in the fifth group. The concentration of enzymes SGOT, SGPT and ALK-P-ase in blood and cerebrospinal fluid (CSF) increased significantly with hyperthermia. Calcium and chlorides concentrations in blood and in CSF tended to increase in hyperthermia. The integrity of the blood brain barrier for these enzymes and calcium is maintained under mild hyperthermia but it breaks down partially under influence of more severe hyperthermia. Core temperature above 41‡C results in damage to tissues and consequential rise of plasma enzymes. This degree of hyperthermia also seems to mark the beginning of injury to blood brain barrier. Critical core temperature tolerated by 50% of animals was 44‡C.
TU-EF-210-02: MRg Hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, R.
2015-06-15
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
Kok, H Petra; De Greef, Martijn; Correia, Davi; Vörding, Paul J Zum Vörde Sive; Van Stam, Gerard; Gelvich, Edward A; Bel, Arjan; Crezee, Johannes
2009-01-01
Contact flexible microstrip applicators (CFMA), operating at 434 MHz, are applied at the Academic Medical Center (AMC) for superficial hyperthermia (e.g. chest wall recurrences and melanoma). This paper investigates the performance of CFMA, evaluating the stability of the specific absorption rate (SAR) distribution, effective heating depth (EHD) and effective field size (EFS) under different conditions. Simulations were performed using finite differences and were compared to existing measurement data, performed using a rectangular phantom with a superficial fat-equivalent layer of 1 cm and filled with saline solution. The electrode plates of the applicators measure approximately 7 x 20, 29 x 21 and 20 x 29 cm(2). Bolus thickness varied between 1 and 2 cm. The impact of the presence of possible air layers between the rubber frame and the electrodes on the SAR distribution was investigated. The EHD was approximately 1.4 cm and the EFS ranged between approximately 60 and approximately 300 cm(2), depending on the applicator type. Both measurements and simulations showed a split-up of the SAR focus with a 2 cm water bolus. The extent and location of air layers has a strong influence on the shape and size of the iso-SAR contours with a value higher than 50%, but the impact on EFS and EHD is limited. Simulations, confirmed by measurements, showed that the presence of air between the rubber and the electrodes changes the iso-SAR contours, but the impact on the EFS and EHD is limited.
DOT National Transportation Integrated Search
2012-03-01
In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...
Design and characterisation of a phased antenna array for intact breast hyperthermia.
Curto, Sergio; Garcia-Miquel, Aleix; Suh, Minyoung; Vidal, Neus; Lopez-Villegas, Jose M; Prakash, Punit
2018-05-01
Currently available hyperthermia technology is not well suited to treating cancer malignancies in the intact breast. This study investigates a microwave applicator incorporating multiple patch antennas, with the goal of facilitating controllable power deposition profiles for treating lesions at diverse locations within the intact breast. A 3D-computational model was implemented to assess power deposition profiles with 915 MHz applicators incorporating a hemispheric groundplane and configurations of 2, 4, 8, 12, 16 and 20 antennas. Hemispheric breast models of 90 mm and 150 mm diameter were considered, where cuboid target volumes of 10 mm edge length (1 cm 3 ) and 30 mm edge length (27 cm 3 ) were positioned at the centre of the breast, and also located 15 mm from the chest wall. The average power absorption (αPA) ratio expressed as the ratio of the PA in the target volume and in the full breast was evaluated. A 4-antenna proof-of-concept array was fabricated and experimentally evaluated. Computational models identified an optimal inter-antenna spacing of 22.5° along the applicator circumference. Applicators with 8 and 12 antennas excited with constant phase presented the highest αPA at centrally located and deep-seated targets, respectively. Experimental measurements with a 4-antenna proof-of-concept array illustrated the potential for electrically steering power deposition profiles by adjusting the relative phase of the signal at antenna inputs. Computational models and experimental results suggest that the proposed applicator may have potential for delivering conformal thermal therapy in the intact breast.
NASA Astrophysics Data System (ADS)
Paulides, M. M.; Bakker, J. F.; Hofstetter, L. W.; Numan, W. C. M.; Pellicer, R.; Fiveland, E. W.; Tarasek, M.; Houston, G. C.; van Rhoon, G. C.; Yeo, D. T. B.; Kotek, G.
2014-05-01
Clinical studies have established a strong benefit from adjuvant mild hyperthermia (HT) to radio- and chemotherapy for many tumor sites, including the head and neck (H&N). The recently developed HYPERcollar allows the application of local radiofrequency HT to tumors in the entire H&N. Treatment quality is optimized using electromagnetic and thermal simulators and, whenever placement risk is tolerable, assessed using invasively placed thermometers. To replace the current invasive procedure, we are investigating whether magnetic resonance (MR) thermometry can be exploited for continuous and 3D thermal dose assessment. In this work, we used our simulation tools to design an MR compatible laboratory prototype applicator. By simulations and measurements, we showed that the redesigned patch antennas are well matched to 50 Ω (S11<-10 dB). Simulations also show that, using 300 W input power, a maximum specific absorption rate (SAR) of 100 W kg-1 and a temperature increase of 4.5 °C in 6 min is feasible at the center of a cylindrical fat/muscle phantom. Temperature measurements using the MR scanner confirmed the focused heating capabilities and MR compatibility of the setup. We conclude that the laboratory applicator provides the possibility for experimental assessment of the feasibility of hybrid MR-HT in the H&N region. This versatile design allows rigorous analysis of MR thermometry accuracy in increasingly complex phantoms that mimic patients' anatomies and thermodynamic characteristics.
Zheng, Xinyan; Hasegawa, Hiroshi
2016-10-01
Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia.
Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A.
Cui, Zheng-Guo; Piao, Jin-Lan; Rehman, Mati U R; Ogawa, Ryohei; Li, Peng; Zhao, Qing-Li; Kondo, Takashi; Inadera, Hidekuni
2014-01-15
Hyperthermia is a good therapeutic tool for non-invasive cancer therapy; however, its cytotoxic effects are not sufficient. In the present study, withaferin A (WA), a steroidal lactone derived from the plant Withania somnifera Dunal, has been investigated for its possible enhancing effects on hyperthermia-induced apoptosis. In HeLa cells, treatment with 0.5 or 1.0μM WA at 44°C for 30min induced significant apoptosis accompanied by decreased intracellular GSH/GSSG ratio and caspase-3 activation, while heat or WA alone did not induce such changes. The upregulation in apoptosis was significantly inhibited by glutathione monoethyl ester, a cell permeable glutathione precursor. Mitochondrial transmembrane potentials were dramatically decreased by the combined treatment, with increases in pro-apoptotic Bcl-2-family proteins tBid and Noxa, and downregulation of antiapoptotic Bcl-2 and Mcl-1. Combined treatment with hyperthermia and WA induced significant increases in JNK phosphorylation (p-JNK), and decreases in the phosphorylation of ERK (p-ERK) compared with either treatment alone. These results suggest that WA enhances hyperthermia-induced apoptosis via a mitochondria-caspase-dependent pathway; its underlying mechanism involves elevated intracellular oxidative stress, mitochondria dysfunction, and JNK activation. © 2013 Elsevier B.V. All rights reserved.
Radiotherapy and hyperthermia in the treatment of fibrosarcomas in the dog.
Brewer, W G; Turrel, J M
1982-07-15
Ten dogs with oral or external nasal fibrosarcoma were treated sequentially with orthovoltage radiation and radiofrequency (RF)-induced hyperthermia. Total radiation doses ranged from 3,200 to 4,800 rad given in 8 to 12 fractions of 400 rad. Immediately after 2 to 4 radiation treatments, hyperthermia was given. Six oral fibrosarcomas were heated to 50 C for 30 sec, using a hand-held RF generator. Four nasomaxillary fibrosarcomas were heated to 43 C for 30 minutes, using a 500-kHz RF generator. Hyperthermia of 50 C resulted in tumor necrosis and infection in 3 dogs and fatal septicemia in 1 dog. Nine of 10 tumors responded to therapy. One year after therapy, 5 dogs were free of disease. Tumor regrowth occurred in 5 dogs. Mean time to tumor regrowth and mean survival time of all dogs were 343 and 398 days, respectively. The results suggested that sequential radiation-hyperthermia is an effective therapeutic regimen for canine fibrosarcoma. It was concluded that this modality not only may be beneficial in the treatment of canine tumors but may be useful for designing new therapeutic approaches to similar tumors in man.
Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E
2015-05-22
The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. Copyright © 2015 Elsevier B.V. All rights reserved.
On the temperature control in self-controlling hyperthermia therapy
NASA Astrophysics Data System (ADS)
Ebrahimi, Mahyar
2016-10-01
In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.
Zhao, Lei; Cui, Tie Jun
2005-12-01
An enhancement of the specific absorption rate (SAR) inside a lossy dielectric object has been investigated theoretically based on a slab of left-handed medium (LHM). In order to make an accurate analysis of SAR distribution, a proper Green's function involved in the LHM slab is proposed, from which an integral equation for the electric field inside the dielectric object is derived. Such an integral equation has been solved accurately and efficiently using the conjugate gradient method and the fast Fourier transform. We have made a lot of numerical experiments on the SAR distributions inside the dielectric object excited by a line source with and without the LHM slab. Numerical experiments show that SAR can be enhanced tremendously when the LHM slab is involved due to the proper usage of strong surface waves, which will be helpful in the potential biomedical applications for hyperthermia. The physical insight for such a phenomenon has also been discussed.
Broadband Sources in the 1-3 THz Range
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Ward, John; Maestrini, Alain; Chattopadhyay, Goutam; Schlecht, Erich; Thomas, Bertrand; Lin, Robert; Lee, Choonsup; Gill, John
2009-01-01
Broadband electronically tunable sources in the terahertz range are a critical technology for enabling space-borne as well as ground-based applications. By power-combining MMIC amplifier and frequency tripler chips, we have recently demonstrated >1 mW of output power at 900 GHz. This source provides a stepping stone to enable sources in the 2-3 THz range than can sufficiently pump multi-pixel imaging arrays.
NASA Astrophysics Data System (ADS)
Heitlager, Ilja; Helms, Remko; Brinkkemper, Sjaak
Information Technology Outsourcing practice and research mainly considers the outsourcing phenomenon as a generic fulfilment of the IT function by external parties. Inspired by the logic of commodity, core competencies and economies of scale; assets, existing departments and IT functions are transferred to external parties. Although the generic approach might work for desktop outsourcing, where standardisation is the dominant factor, it does not work for the management of mission critical applications. Managing mission critical applications requires a different approach where building relationships is critical. The relationships involve inter and intra organisational parties in a multi-sourcing arrangement, called an IT service chain, consisting of multiple (specialist) parties that have to collaborate closely to deliver high quality services.
The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia
Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John
2015-01-01
The Dartmouth Center for Cancer Nanotechnology Excellence – one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer – focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response. PMID:26080693
Phencyclidine-induced malignant hyperthermia causing submassive liver necrosis.
Armen, R; Kanel, G; Reynolds, T
1984-07-01
This report describes three male patients arrested for aggressive and combative behavior, characteristic of phencyclidine intoxication, in whom severe hyperthermia, respiratory failure, and coma developed. Two days after the malignant hyperthermic event, serum transaminase levels rose acutely to extremely high levels with concomitant elevations in bilirubin levels and a fall in prothrombin activity. Liver biopsy specimens in two patients showed marked perivenular necrosis and collapse. No specific treatment was directed at the phencyclidine intoxication. Two of the three patients survived. Submassive liver necrosis caused by malignant hyperthermia is an unusual complication of phencyclidine abuse.
Nanoparticle-mediated hyperthermia in cancer therapy
Chatterjee, Dev Kumar; Diagaradjane, Parmeswaran; Krishnan, Sunil
2011-01-01
A small rise in tumor temperature (hyperthermia) makes cancer cells more susceptible to radiation and chemotherapy. The means of achieving this is not trivial, and traditional methods have certain drawbacks. Loading tumors with systematically asministered energy-transducing nanoparticles can circumvent several of the obstacles to achieve tumor hyperthermia. However, nanoparticles also face unique challenges prior to clinical implementation. This article summarizes the state-of-the-art current technology and discusses the advantages and challenges of the three major nanoparticle formulations in focus: gold nanoshells and nanorods, superparamagnetic iron oxide particles and carbon nanotubes. PMID:22506095
Portable Body Temperature Conditioner
2013-10-18
disposable PVDF turbine flowmeter that is compact in size and capable of accommodating a volumetric flow rate from 0.03 L/min to 2.0 L/min of water . The...pictorial representation of the flowmeter along with a dimensional drawing. 33 Figure 27. Water flowmeter for PBTC As displayed in the dimensional...suitable for military applications. 15. SUBJECT TERMS Hypothermia, Circulating Water -blanket, Trauma, Hyperthermia, Military, Thermal Manikin 16
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
DOT National Transportation Integrated Search
2018-01-01
Connected vehicle mobility applications are commonly referred to as dynamic mobility applications (DMAs). DMAs seek to fully leverage frequently collected and rapidly disseminated multi-source data gathered from connected travelers, vehicles, and inf...
DOT National Transportation Integrated Search
2012-08-01
In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...
DOT National Transportation Integrated Search
2011-11-01
In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...
Dhumal, V.R.; Gulati, O.D.; Raghunath, P.R.; Sivaramakrishna, N.
1974-01-01
1 The cerebral ventricles of dogs under intravenous pentobarbitone sodium anaesthesia, were perfused with artificial cerebro-spinal fluid (CSF) at a rate of 0.4-0.5 ml/min from the ventricular to the aqueductal cannulae. The effluent was collected from the aqueductal cannula in 20 min samples. The animals' temperatures were recorded from the rectum. 2 γ-Aminobutyric acid (GABA) 0.1-5 mg when injected into the ventricles produced variable temperature effects. Doses of 0.1 and 0.5 mg always produced hyperthermia and 1 and 5 mg doses sometimes produced hyperthermia and sometimes hypothermia. 3 Intraventricular perfusion with 2-bromolysergic acid diethylamide (BOL) and hyoscine did not block hyperthermia. Tests on the rat isolated stomach strip or the guinea-pig isolated superfused ileum for the possible release, respectively, of 5-hydroxytryptamine or acetylcholine by GABA were negative. 4 When tested for the presence of prostaglandin E(PGE)-like substances on the isolated rat stomach strip, both the control effluent and the GABA effluent showed activity, the latter being much more potent. There was a temporal correlation between this effect and hyperthermia. Intraventricularly administered sodium salicylate converted the GABA-induced hyperthermia to hypothermia and blocked the release of PGE-like substances. 5 Hypothermia induced by GABA alone or in the presence of sodium salicylate was associated with the release of noradrenaline into the effluent. 6 Intraventricular administration of GABA in reserpinized dogs produced hyperthermia and not hypothermia. Similar results were obtained with phentolamine perfusion in normal dogs. 7 Perfusion with calcium-free solution blocked both the noradrenaline-releasing and hypothermic actions of GABA. 8 It is concluded that hyperthermia associated with intraventricular injections of GABA is due to the release of PGE-like substance and hypothermia is due to the release of noradrenaline. PMID:4155652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, William, E-mail: William.Chu@sunnybrook.ca; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario; Staruch, Robert M.
Purpose: To evaluate the feasibility of magnetic resonance–guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. Methods and Materials: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh weremore » evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. Results: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. Conclusions: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.« less
Orthotopic Esophageal Cancers: Intraesophageal Hyperthermia-enhanced Direct Chemotherapy in Rats
Shi, Yaoping; Zhang, Feng; Bai, Zhibin; Wang, Jianfeng; Qiu, Longhua; Li, Yonggang; Meng, Yanfeng; Valji, Karim
2017-01-01
Purpose To determine the feasibility of using intraesophageal radiofrequency (RF) hyperthermia to enhance local chemotherapy in a rat model with orthotopic esophageal squamous cancers. Materials and Methods The animal protocol was approved by the institutional animal care and use committee and the institutional review board. Human esophageal squamous cancer cells were transduced with luciferase lentiviral particles. Cancer cells, mice with subcutaneous cancer esophageal xenografts, and nude rats with orthotopic esophageal cancers in four study groups of six animals per group were treated with (a) combination therapy of magnetic resonance imaging heating guidewire–mediated RF hyperthermia (42°C) plus local chemotherapy (cisplatin and 5-fluorouracil), (b) chemotherapy alone, (c) RF hyperthermia alone, and (d) phosphate-buffered saline. Bioluminescent optical imaging and transcutaneous ultrasonographic imaging were used to observe bioluminescence signal and changes in tumor size among the groups over 2 weeks, which were correlated with subsequent histologic results. The nonparametric Mann-Whitney U test was used for comparisons of variables. Results Compared with chemotherapy alone, RF hyperthermia alone, and phosphate-buffered saline, combination therapy with RF hyperthermia and chemotherapy induced the lowest cell proliferation (relative absorbance of formazan: 23.4% ± 7, 44.6% ± 7.5, 95.8% ± 2, 100%, respectively; P < .0001), rendered the smallest relative tumor volume (0.65 mm3 ± 0.15, P < .0001) and relative bioluminescence optical imaging photon signal (0.57 × 107 photons per second per square millimeter ± 0.15, P < .001) of mice with esophageal cancer xenografts, as well as the smallest relative tumor volume (0.68 mm3 ± 0.13, P < .05) and relative photon signal (0.56 × 107 photons per second per square millimeter ± 0.11. P < .001) of rat orthotopic esophageal cancers. Conclusion Intraesophageal RF hyperthermia can enhance the effect of chemotherapy on esophageal squamous cell cancers. © RSNA, 2016 PMID:27404050
Kossatz, Susanne; Grandke, Julia; Couleaud, Pierre; Latorre, Alfonso; Aires, Antonio; Crosbie-Staunton, Kieran; Ludwig, Robert; Dähring, Heidi; Ettelt, Volker; Lazaro-Carrillo, Ana; Calero, Macarena; Sader, Maha; Courty, José; Volkov, Yuri; Prina-Mello, Adriele; Villanueva, Angeles; Somoza, Álvaro; Cortajarena, Aitziber L; Miranda, Rodolfo; Hilger, Ingrid
2015-05-13
Tumor cells can effectively be killed by heat, e.g. by using magnetic hyperthermia. The main challenge in the field, however, is the generation of therapeutic temperatures selectively in the whole tumor region. We aimed to improve magnetic hyperthermia of breast cancer by using innovative nanoparticles which display a high heating potential and are functionalized with a cell internalization and a chemotherapeutic agent to increase cell death. The superparamagnetic iron oxide nanoparticles (MF66) were electrostatically functionalized with either Nucant multivalent pseudopeptide (N6L; MF66-N6L), doxorubicin (DOX; MF66-DOX) or both (MF66-N6LDOX). Their cytotoxic potential was assessed in a breast adenocarcinoma cell line MDA-MB-231. Therapeutic efficacy was analyzed on subcutaneous MDA-MB-231 tumor bearing female athymic nude mice. All nanoparticle variants showed an excellent heating potential around 500 W/g Fe in the alternating magnetic field (AMF, conditions: H=15.4 kA/m, f=435 kHz). We could show a gradual inter- and intracellular release of the ligands, and nanoparticle uptake in cells was increased by the N6L functionalization. MF66-DOX and MF66-N6LDOX in combination with hyperthermia were more cytotoxic to breast cancer cells than the respective free ligands. We observed a substantial tumor growth inhibition (to 40% of the initial tumor volume, complete tumor regression in many cases) after intratumoral injection of the nanoparticles in vivo. The proliferative activity of the remaining tumor tissue was distinctly reduced. The therapeutic effects of breast cancer magnetic hyperthermia could be strongly enhanced by the combination of MF66 functionalized with N6L and DOX and magnetic hyperthermia. Our approach combines two ways of tumor cell killing (magnetic hyperthermia and chemotherapy) and represents a straightforward strategy for translation into the clinical practice when injecting nanoparticles intratumorally.
Tilly, Wolfgang; Gellermann, Johanna; Graf, Reinhold; Hildebrandt, Bert; Weissbach, Lothar; Budach, Volker; Felix, Roland; Wust, Peter
2005-01-01
Since long-term results of the standard treatment of locally advanced or recurrent prostatic carcinoma are unsatisfactory, the role for additional regional hyperthermia was evaluated in a phase I/II study. From 08/1996 to 03/2000, 22 patients were treated by a standard irradiation regimen (68.4 Gy) in combination with regional hyperthermia (weekly, five to six times), and five of 22 patients received short-term (neoadjuvant) hormonal treatment. Of these, 15 patients had primary prostatic carcinoma T3 pN0 M0 and seven a histologically confirmed local recurrence after radical prostatectomy. Feasibility of hyperthermia, and acute/late toxicity as well as long-term follow-up (prostate- specific antigen [PSA] control, overall survival) were analyzed. Clinical endpoints were correlated with thermal parameters. Mean maximum temperatures along the urethra of 41.4 degrees C (41.0 degrees C for the recurrences), and mean T(90) values of 40.7 degrees C could be achieved. Severe acute toxicity of grade 3 occurred at the rectum in three, at the urethra in four, at the intestine in one, and a burn induced by hyperthermia in one of 22 patients. Late toxicity was only observed rectally in one patient (grade 3) and at the urethra in two patients (grade 2). There was no correlation between thermal parameters and any toxicity. The survival curves showed a PSA control for primary prostatic carcinoma > 50% after 6 years, but no long-term PSA control for the recurrences. Overall survival after 6 years was 95% for primary carcinoma, and 60% for the recurrences. There was a clear correlation between higher temperatures or thermal doses with long-term PSA control. Regional hyperthermia might be a low-toxicity approach to increase PSA control of common treatment schedules. Further evaluation, in particular employing improved hyperthermia technology, is worthwhile.
TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.
Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H
2016-12-01
Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but possibly involves impaired development of thermoregulatory mechanisms, although at present the mechanism remain unknown. Copyright © 2016 Elsevier B.V. All rights reserved.
Díaz, Fernando Erra; Dantas, Ezequiel; Cabrera, Maia; Benítez, Constanza A; Delpino, María V; Duette, Gabriel; Rubione, Julia; Sanjuan, Norberto; Trevani, Analía S; Geffner, Jorge
2016-10-27
Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis, limiting their deleterious potential. However, this tightly regulated cell death program can be modulated by pathogen-associated molecular patterns (PAMPs), danger-associated molecular pattern (DAMPs), and inflammatory cytokines. We have previously reported that low pH, a hallmark of inflammatory processes and solid tumors, moderately delays neutrophil apoptosis. Here we show that fever-range hyperthermia accelerates the rate of neutrophil apoptosis at neutral pH but markedly increases neutrophil survival induced by low pH. Interestingly, an opposite effect was observed in lymphocytes; hyperthermia plus low pH prevents lymphocyte activation and promotes the death of lymphocytes and lymphoid cell lines. Analysis of the mechanisms through which hyperthermia plus low pH increased neutrophil survival revealed that hyperthermia further decreases cytosolic pH induced by extracellular acidosis. The fact that two Na + /H + exchanger inhibitors, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and amiloride, reproduced the effects induced by hyperthermia suggested that it prolongs neutrophil survival by inhibiting the Na + /H + antiporter. The neutrophil anti-apoptotic effect induced by PAMPs, DAMPs, and inflammatory cytokines usually leads to the preservation of the major neutrophil effector functions such as phagocytosis and reactive oxygen species (ROS) production. In contrast, our data revealed that the anti-apoptotic effect induced by low pH and hyperthermia induced a functional profile characterized by a low phagocytic activity, an impairment in ROS production and a high ability to suppress T-cell activation and to produce the angiogenic factors VEGF, IL-8, and the matrix metallopeptidase 9 (MMP-9). These results suggest that acting together fever and local acidosis might drive the differentiation of neutrophils into a profile able to promote both cancer progression and tissue repair during the late phase of inflammation, two processes that are strongly dependent on the local production of angiogenic factors by infiltrating immune cells.
Lucas, Rebekah A. I.; Pearson, James; Schlader, Zachary J.; Crandall, Craig G.
2016-01-01
This study tested the hypothesis that baroreceptor unloading during passive hyperthermia contributes to increases in ventilation and decreases in end-tidal partial pressure of carbon dioxide (PET,CO2) during that exposure. Two protocols were performed, in which healthy subjects underwent passive hyperthermia (increasing intestinal temperature by ~1.8°C) to cause a sustained increase in ventilation and reduction in PET,CO2. Upon attaining hyperthermic hyperventilation, in protocol 1 (n = 10; three females) a bolus (19 ± 2 ml kg−1) of warm (~38°C) isotonic saline was rapidly (5–10 min) infused intravenously to restore reductions in central venous pressure, whereas in protocol 2 (n = 11; five females) phenylephrine was infused intravenously (60–120 μg min−1) to return mean arterial pressure to normothermic levels. In protocol 1, hyperthermia increased ventilation (by 2.2 ± 1.7 l min−1, P < 0.01), while reducing PET,CO2 (by 4 ± 3 mmHg, P = 0.04) and central venous pressure (by 5 ± 1 mmHg, P <0.01). Saline infusion increased central venous pressure by 5 ± 1 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or PET,CO2 (P > 0.05). In protocol 2, hyperthermia increased ventilation (by 5.0 ± 2.7l min−1, P <0.01) and reduced PET ,CO2 (by 5 ± 2 mmHg, P < 0.01) and mean arterial pressure (by 9 ± 7 mmHg, P <0.01). Phenylephrine infusion increased mean arterial pressure by 12 ± 3 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or PET,CO2 (P > 0.05). The absence of a reduction in ventilation upon reloading the cardiopulmonary and arterial baroreceptors to pre-hyperthermic levels indicates that baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. PMID:26299270
New quantum cascade laser sources for sensing applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Troccoli, Mariano
2017-05-01
In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long-Wave IR Quantum Cascade Lasers for emission in the λ = 8-12μm spectral region", Opt. Mat. Expr., 3 (9), 1546-1560 (2013).
Tuning single-photon sources for telecom multi-photon experiments.
Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip
2018-02-05
Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.
Carrião, Marcus S; Bakuzis, Andris F
2016-04-21
The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.
A case report of suspected malignant hyperthermia where patient survived the episode.
Iqbal, Asif; Badoo, Shoaib; Naqeeb, Ruqsana
2017-01-01
Malignant hyperthermia is rare inherited disorder in our part of the world; there are only few cases reported in literature in India who were suspected of having this condition. The overall incidence of malignant hyperthermia during general anesthesia is estimated to range from 1: 5000 to 1: 50,000-100,000 and mortality rate is estimated to be <5% in the presence of standard care. In India, there is no center where in vitro halothane caffeine contraction test is performed to confirm diagnosis in suspected cases. Second, dantrolene drug of choice for this condition is not freely available in market in India and is stored only in some hospitals in few major cities. Among the cases reported of suspected of malignant hyperthermia in India almost 50% have survived the condition despite nonavailability of dantrolene emphasizing role of early detection and aggressive management in these cases.
A case report of suspected malignant hyperthermia where patient survived the episode
Iqbal, Asif; Badoo, Shoaib; Naqeeb, Ruqsana
2017-01-01
Malignant hyperthermia is rare inherited disorder in our part of the world; there are only few cases reported in literature in India who were suspected of having this condition. The overall incidence of malignant hyperthermia during general anesthesia is estimated to range from 1: 5000 to 1: 50,000–100,000 and mortality rate is estimated to be <5% in the presence of standard care. In India, there is no center where in vitro halothane caffeine contraction test is performed to confirm diagnosis in suspected cases. Second, dantrolene drug of choice for this condition is not freely available in market in India and is stored only in some hospitals in few major cities. Among the cases reported of suspected of malignant hyperthermia in India almost 50% have survived the condition despite nonavailability of dantrolene emphasizing role of early detection and aggressive management in these cases. PMID:28442967
Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Wang, Jia
Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated tomore » quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.« less
NASA Astrophysics Data System (ADS)
Pominova, Daria V.; Ryabova, Anastasia V.; Romanishkin, Igor D.; Grachev, Pavel V.; Burmistrov, Ivan A.; Kuznetsov, Sergei V.
2018-04-01
For clinical application in photothermal therapy the nanoparticles should be efficient light-to-heat converters and luminescent markers. In this work, we investigate upconversion nanoparticles with NaYxGd1-xF4 (x=0-1) host lattice as self-monitored thermo-agents for bioimaging and local laser hyperthermia with real-time temperature control. The ability of non-contact temperature sensing using NaYxGd1-xF4 on one hand and laser induced heating on the other hand was shown. It was found, that the heat conversion luminescence efficiency is strongly affected by the concentration ratio of Gd3+ to Y3+ ions in host lattice. The optimal composition among the studied is NaY0.4Gd0.4Yb0.17Er0.03 with luminescence efficiency of 3.5% under 1 W/cm2 pumping power. Higher Gd3+ concentrations lead to higher heating temperature, but also to the decrease of the luminescence intensity and the accuracy of the ratiometric temperature determination. It was also shown that the optimization of Yb3+ doping concentration is one of the possible ways for optimization of the conditions of laser induced photothermal effects. Experimental in vitro study of hyperthermia with use of upconversion nanoparticles on HeLa and C6 cell lines was performed. The investigated nanoparticles are capable of in vitro photothermal heating, luminescent localization and thermal sensing.
Traikov, L; Antonov, I; Gerou, A; Vesselinova, L; Hadjiolova, R; Raynov, J
2015-09-01
Ferro-Magnetic nanoparticles (Fe-MNP) have gained a lot of attention in biomedical and industrial applications due to their biocompatibility, ease of surface modification and paramagnetic properties. The basic idea of our study is whether it is possible to use glucose-conjugate Fe-MNP (Glc-Fe-MNP) for targeting and more accurate focusing in order to increase the effect of high-frequency electromagnetic fields induced hyperthermia in solid tumors. Tumors demonstrate high metabolic activity for glucose in comparison with other somatic cells.Increasing of accumulation of glucose conjugated (Glc)-Fe-MNP on tumor site and precision of radio frequency electro-magnetic field (RF-EMF) energy absorption in solid tumors, precede RF-EMF induced hyperthermia. Rat model for monitoring the early development of breast cancer. Twenty female Wistar rats (MU-line-6171) were divided into two groups of 10 rats that were either treated with N-methyl-N-nitrosourea to induce breast cancer and 10 with carrageenan to induce inflammation (control). Glc-Fe-MNP can offer a solution to increase hyperthermia effect to the desired areas in the body by accumulation and increasing local concentration due to high tissue metabolic assimilation. In this condition, it is considered that the magnetization of the nanoparticles is a single-giant magnetic moment, the sum of all the individual magnetic moments and is proportional to the concentration of Glc-Fe-MNP.
Lin, Ta-Chun; Lin, Feng-Huei; Lin, Jui-Che
2012-07-01
Hyperthermia has been reported to be an effective cancer treatment modality, as tumor cells are more temperature-sensitive than their normal counterparts. Since the ambient temperature can be increased by placing magnetic nanoparticles in an alternating magnetic field it has become of interest to incorporate these magnetic nanoparticles into biodegradable nanofibers for possible endoscopic hyperthermia treatment of malignant tumors. In this preliminary investigation we have explored various characteristics of biodegradable electrospun chitosan nanofibers containing magnetic nanoparticles prepared by different methods. These methods included: (1) E-CHS-Fe(3)O(4), with electrospun chitosan nanofibers directly immersed in a magnetic nanoparticle solution; (2) E-CHS-Fe(2+), with the electrospun chitosan nanofibers initially immersed in Fe(+2)/Fe(+3) solution, followed by chemical co-precipitation of the magnetic nanoparticles. The morphology and crystalline phase of the magnetic electrospun nanofiber matrices were determined by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray diffraction spectroscopy. The magnetic characteristics were measured using a superconducting quantum interference device. The heating properties of these magnetic electrospun nanofiber matrices in an alternating magnetic field were investigated at a frequency of 750 kHz and magnetic intensity of 6.4 kW. In vitro cell incubation experiments indicated that these magnetic electrospun nanofiber matrices are non-cytotoxic and can effectively reduce tumor cell proliferation upon application of a magnetic field. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lechpammer, S; Asea, A; Mallick, R; Zhong, R; Sherman, M Y; Calderwood, S K
2002-01-01
It is now possible to search for new drugs using high-throughput screening of chemical libraries accumulated over the past few years. To detect potential new hyperthermia sensitizers, we are screening for chemical inhibitors of thermotolerance. For the screening of a large chemical library, a rapid and simple assay based on the XTT-tetrazolium salt with the addition of intermediate electron acceptor, phenazine methosulphate (PMS) as a promoter, was developed. It was found that the sensitivity of the XTT/PMS assay is sufficient for assessing thermal cell killing and thermotolerance, although it was highly dependent on cell number and type. When the formazan assay system was challenged with the bioflavonoid drug quercetin (up to 25mm) and validated against the clonogenic cell survival assay, significant decreases in thermotolerant cell viability were observed, directly reflecting inhibition of thermotolerance. Although short-term assays can, in some instances, underestimate overall cell killing, the dose dependency of inhibition of thermotolerance by quercetin recorded in this study by clonogenic and XTT/PMS assays was similar. Application of the XTT/PMS assay in chemical library screening was highly effective in differentiating potential thermotolerance inhibitors from both chemicals with lack of efficacy and from toxic compounds. Taken together, these results show that the XTT/PMS assay, when carried out under careful conditions, is well suited for primary high-flux screen of many thousands of compounds, thus opening up new areas for discovery of hyperthermia sensitizers.
Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.
Chen, Chuanfang; Wang, Pingping; Li, Linlin
2016-03-01
The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.
NASA Astrophysics Data System (ADS)
Hoopes, P. Jack; Wagner, Robert J.; Song, Ailin; Osterberg, Bjorn; Gladstone, David J.; Bursey, Alicea A.; Fiering, Steven N.; Giustini, Andrew J.
2017-02-01
It is now known that many tumors develop molecular signals (immune checkpoint modulators) that inhibit an effective tumor immune response. New information also suggest that even well-known cancer treatment modalities such as radiation and hyperthermia generate potentially beneficial immune responses that have been blocked or mitigated by such immune checkpoints, or similar molecules. The cancer therapy challenge is to; a) identify these treatment-based immune signals (proteins, antigens, etc.); b) the treatment doses or regimens that produce them; and c) the mechanisms that block or have the potential to promote them. The goal of this preliminary study, using the B6 mouse - B16 tumor model, clinically relevant radiation doses and fractionation schemes (including those used clinically in hypofractionated radiation therapy), magnetic nanoparticle hyperthermia (mNPH) and sophisticated protein, immune and tumor growth analysis techniques and modulators, is to determine the effect of specific radiation or hyperthermia alone and combined on overall treatment efficacy and immunologic response mechanisms. Preliminary analysis suggests that radiation dose (10 Gy vs. 2 Gy) significantly alters the mechanism of cell death (apoptosis vs. mitosis vs. necrosis) and the resulting immunogenicity. Our hypothesis and data suggest this difference is protein/antigen and immune recognition-based. Similarly, our evidence suggest that radiation doses larger than the conventional 2 Gy dose and specific hyperthermia doses and techniques (including mNP hyperthermia treatment) can be immunologically different, and potentially superior to, the radiation and heat therapy regimens that are typically used in research and clinical practice.
Abbasian Ardakani, Ali; Rajaee, Jila; Khoei, Samideh
2017-11-01
Hyperthermia and radiation have the ability to induce structural and morphological changes on both macroscopic and microscopic level. Normal and damage cells have a different texture but may be perceived by human eye, as having the same texture. To explore the potential of texture analysis based on run-length matrix, a total of 32 sphere images for each group and treatment regime were used in this study. Cells were subjected to the treatment with different doses of 6 MeV electron radiation (0 2, 4 and 6 Gy), hyperthermia (at 43° C in 0, 30, 60 and 90 min) and radiation + hyperthermia (at 43 °C in 30 min with 2, 4 and 6 Gy dose), respectively. Twenty run-length matrix (RLM) features were extracted as descriptors for each selected region of interest for texture analysis. Linear discriminant analysis was employed to transform raw data to lower-dimensional spaces and increase discriminative power. The features were classified by the first nearest neighbor classifier. RLM features represented the best performance with sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 100% between 0 and 6 Gy radiation, 0 and 6 Gy radiation + hyperthermia, 0 and 90 min and 30 and 90 min hyperthermia groups. The area under receiver operating characteristic curve was 1 for these groups. RLM features have a high potential to characterize cell changes during different treatment regimes.
Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Brandt, Yekaterina I.; Withers, Nathan J.; Plumley, John B.; Cook, Nathaniel C.; Rivera, Antonio C.; Yadav, Surabhi; Smolyakov, Gennady A.; Monson, Todd; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2012-03-01
Iron oxide colloidal nanocrystals (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanocrystals to increase the effectiveness of inhalation aerosol antibiotics therapy through two mechanisms: directed particle movement in the presence of a static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm thereby increasing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Nanocrystals in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide-zinc selenide core-shell nanoparticles were prepared in parallel in order to allow imaging of the iron oxide nanoparticles.
Acoustothermometric study of the human hand under hyperthrmia and hypothermia
NASA Astrophysics Data System (ADS)
Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.
2013-01-01
The results of an acoustothermometric study of the human hand under local hyperthermia and hypothermia are presented. Individuals under testing plunged their hands in hot or cold water for several minutes. Thermal acoustic radiation was detected by two sensors placed near the palm and near the backside of the tested hand. The internal temperature profiles of the hand were reconstructed. The indirect estimate of the reconstruction error was 0.6°C, which is acceptable for medical applications. Hyperthermia was achieved by placing the hand in water with a maximal temperature of 44°C for 2 min. In this case, the internal temperature was 35.4 ± 0.6°C. Hypothermia was achieved by placing the hand in water with a temperature of 17.8°C for 15 min. In this case, the internal temperature decreased from 26 to 24°C. The use of a four-sensor planar receiving array allowed dynamic mapping of the acoustic brightness temperature of the hand.
Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang
2016-02-04
A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.
Achieving a new controllable male contraception by the photothermal effect of gold nanorods.
Li, Wen-qing; Sun, Chun-yang; Wang, Feng; Wang, Yu-cai; Zhai, Yi-wen; Liang, Meng; Liu, Wen-jing; Liu, Zhi-min; Wang, Jun; Sun, Fei
2013-06-12
During the process of human civilization, owning household pets has become increasingly popular. However, dogs and cats may be reservoirs or vectors of transmissible diseases to humans. Confronted with the overpopulation of pets, traditional contraception methods, surgical methods of sterilization, for animals are used, namely, ovariohysterectomy and orchidectomy. Therefore, a simple, nonsurgical, controllable, more effective and less expensive contraception method is highly desirable. In this study, we show that in situ testicular injection of methoxy poly(ethylene glycol)-modified gold nanorods with near-infrared irradiation in male mice can achieve short-lived or permanent male infertility. In a lower hyperthermia treatment, the morphology of testes and seminiferous tubules is only partly injured, and fertility indices are decreased to 10% at day 7, then recovered to 50% at day 60. In a higher hyperthermia treatment, the morphology of testes and seminiferous tubules are totally destroyed, and fertility indices are decreased to 0 at day 7. Overall, our results indicate a potential application of plasmonic nanomaterials for male contraception.
NASA Astrophysics Data System (ADS)
Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang
2016-02-01
A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.
Multi-sources data fusion framework for remote triage prioritization in telehealth.
Salman, O H; Rasid, M F A; Saripan, M I; Subramaniam, S K
2014-09-01
The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.
Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie
2006-01-01
Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38°C and 43.1 ± 0.80°C, respectively, for 20 minutes of heating. Conclusion Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate. PMID:17064421
Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat
Mete, Fatih; Kilic, Ertugrul; Somay, Adnan; Yilmaz, Bayram
2012-01-01
Background & objectives: Heat stress related hyperthermia may cause damage to various organ systems. There are very few studies on the effects of hyperthermia on the endocrine system. We therefore, investigated effects of exogenously induced hyperthermia on adrenal, testicular and thyroid functions and behavioural alterations in pre-pubertal male Sprague-Dawley rats. Methods: Three groups of 30-day old rats (n=7 per group) were used. Body temperature was increased to 39°C (Group I) and 41°C (Group II) in a hyperthermia induction chamber for 30 min. The rats in the Group III served as control (36 °C). All animals received saline and were decapitated 48 h after the experiments. Serum free triiodothyronin (fT3), free thyroxine (fT4), total testosterone and dehydroepiandrosterone sulphate (DHEA-S) levels were determined by chemiluminescence assay, and corticosterone by enzyme immunoassay. Testes, pituitary and adrenal glands were dissected out and processed for histopathological examination. To assess activity and anxiety of the animals, the open field test and elevated-0-maze test, respectively, were used in all groups 24 h before (day 29) and after (day 31) hyperthermia induction. Results: Serum corticosterone levels (3.22±1.3) were significantly reduced in the 39°C (1.3±0.9) and 41°C (1.09±0.7) hyperthermia groups (P<0.01) compared to controls. Serum levels of thyroid hormones did not significantly differ among the groups. DHEA-S and testosterone values were below the limit of detection in all groups. Histopathological examination revealed that there was mild hydropic degeneration in the pituitary and adrenal glands. Apoptotic germ cells were seen in the seminiferous tubules of pre-pubertal male rats exposed to hyperthermia (41°C). Progression time in the open field test was significantly decreased and anxiety test scores increased in animals exposed to 39°C compared to the control group (P<0.01). These parameters were more pronounced in the 41°C hyperthermia group. Interpretation & conclusions: Our results show that heat exposure-induced stress may cause delayed reduction in serum corticosterone levels which may be associated with behavioural deficits in pre-pubertal male rats. PMID:22446867
Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie
2006-10-25
Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43 degrees C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. A 3D acoustical prostate model was created using photographic data from the Visible Human Project. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 x 20 elements phased array were 1 x 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0 degrees C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 +/- 0.38 degrees C and 43.1 +/- 0.80 degrees C, respectively, for 20 minutes of heating. Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate.
Transformation Systems at NASA Ames
NASA Technical Reports Server (NTRS)
Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey
1999-01-01
In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.
NASA Astrophysics Data System (ADS)
Jang, Jung-tak; Bae, Seongtae
2017-10-01
The effects of Mg doping on the magnetic and AC self-heating temperature rising characteristics of γ-Fe2O3 superparamagnetic nanoparticles (SPNPs) were investigated for hyperthermia applications in biomedicine. The doping concentration of nonmagnetic Mg2+ cation was systematically controlled from 0 to 0.15 at. % in Mgx-γFe2O3 SPNPs during chemically and thermally modified one-pot thermal decomposition synthesis under bubbling O2/Ar gas mixture. It was empirically observed that the saturation magnetization (Ms) and the out-of-phase magnetic susceptibility ( χm″)of Mgx-γFe2O3 SPNPs were increased by increasing the Mg2+ cation doping concentration from 0.05 to 0.13 at. %. Correspondingly, the AC magnetically induced self-heating temperature (Tac,max) in solid state and the intrinsic loss power in water were increased up to 184 °C and 14.2 nH m2 kg-1 (Mgx-γFe2O3, x = 0.13), respectively, at the biologically and physiologically safe range of AC magnetic field (Happl × fappl = 1.2 × 109 A m-1 s-1). All the chemically and physically analyzed results confirmed that the dramatically improved AC magnetic induction heating characteristics and the magnetic properties of Mgx-γFe2O3 SPNPs (x = 0.13) are primarily due to the significantly enhanced magnetic susceptibility (particularly, χm″) and the improved AC/DC magnetic softness (lower AC/DC magnetic anisotropy) resulting from the systematically controlled nonmagnetic Mg2+ cation concentrations and distributions (occupation ratio) in the Fe vacancy sites of γ-Fe2O3 (approximately 12% vacancy), instead of typically well-known Fe3O4 (no vacancy) SPNPs. The cell viability and biocompatibility with U87 MG cell lines demonstrated that Mgx-γFe2O3 SPNPs (x = 0.13) has promising bio-feasibility for hyperthermia agent applications.
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Lacy, Mark; Sajina, Anna; Pforr, Janine; Farrah, Duncan; Wilson, Gillian; Surace, Jason; Häußler, Boris; Vaccari, Mattia; Jarvis, Matt
2017-05-01
We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μm over five well-studied deep fields spanning 18 deg2. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.
Design of current source for multi-frequency simultaneous electrical impedance tomography
NASA Astrophysics Data System (ADS)
Han, Bing; Xu, Yanbin; Dong, Feng
2017-09-01
Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.