Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips
NASA Astrophysics Data System (ADS)
Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.
2018-04-01
Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
NASA Astrophysics Data System (ADS)
Chandrasekharan, Anita; Ramsankaran, Raaj
2017-04-01
The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.
A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation
NASA Astrophysics Data System (ADS)
Mui, Amy B.
Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches, though accurate estimates across human-altered landscapes is challenging. Overall, this body of work supports the use of remote sensing imagery in species distribution models to strengthen the precision, and power of predictive models, and also draws attention to the need to consider a multi-temporal examination of species habitat requirements.
Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review
Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha
2007-01-01
Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
Doi, Ryoichi
2012-09-01
Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.
NASA Astrophysics Data System (ADS)
Zhou, Hongying; Yuan, Xuanjun; Zhang, Youyan; Dong, Wentong; Liu, Song
2016-11-01
It is of great importance for petroleum exploration to study the sedimentary features and the growth pattern of shoal water deltas in lake basins. Taking spatio-temporal remote sensing images as the principal data source, combined with field sedimentation survey, a quantitative research on the modern deposition of Ganjiang delta in the Poyang Lake Basin is described in this paper. Using 76 multi-temporal and multi-type remote sensing images acquired from 1973 to 2015, combined with field sedimentation survey, remote sensing interpretation analysis was conducted on the sedimentary facies of the Ganjiang delta. It is found that that the current Poyang Lake mainly consists of three types of sand body deposits including deltaic deposit, overflow channel deposit, and aeolian deposit, and the distribution of sand bodies was affected by the above three types of depositions jointly. The mid-branch channels of the Ganjiang delta increased on an exponential growth rhythm. The main growth pattern of the Ganjiang delta is dendritic and reticular, and the distributary channel mostly arborizes at lake inlet and was reworked to be reticulatus at late stage.
Compositing multitemporal remote sensing data sets
Qi, J.; Huete, A.R.; Hood, J.; Kerr, Y.
1993-01-01
To eliminate cloud and atmosphere-affected pixels, the compositing of multi temporal remote sensing data sets is done by selecting the maximum vale of the normalized different vegetation index (NDVI) within a compositing period. The NDVI classifier, however, is strongly affected by surface type and anisotropic properties, sensor viewing geometries, and atmospheric conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external effects. To improve the accuracy of compositing products, two key approaches can be taken: one is to refine the compositing classifier (NDVI) and the other is to improve existing compositing algorithms. In this project, an alternative classifier was developed and an alternative pixel selection criterion was proposed for compositing. The new classifier and the alternative compositing algorithm were applied to an advanced very high resolution radiometer data set of different biome types in the United States. The results were compared with the maximum value compositing and the best index slope extraction algorithms. The new approaches greatly reduced the high frequency noises related to the external factors and repainted more reliable data. The results suggest that the geometric-optical canopy properties of specific biomes may be needed in compositing. Limitations of the new approaches include the dependency of pixel selection on the length of the composite period and data discontinuity.
NASA Astrophysics Data System (ADS)
D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco P.; Pasquariello, Guido
2018-03-01
High-resolution, remotely sensed images of the Earth surface have been proven to be of help in producing detailed flood maps, thanks to their synoptic overview of the flooded area and frequent revisits. However, flood scenarios can be complex situations, requiring the integration of different data in order to provide accurate and robust flood information. Several processing approaches have been recently proposed to efficiently combine and integrate heterogeneous information sources. In this paper, we introduce DAFNE, a Matlab®-based, open source toolbox, conceived to produce flood maps from remotely sensed and other ancillary information, through a data fusion approach. DAFNE is based on Bayesian Networks, and is composed of several independent modules, each one performing a different task. Multi-temporal and multi-sensor data can be easily handled, with the possibility of following the evolution of an event through multi-temporal output flood maps. Each DAFNE module can be easily modified or upgraded to meet different user needs. The DAFNE suite is presented together with an example of its application.
NASA Astrophysics Data System (ADS)
Ma, Y.; Liu, S.
2017-12-01
Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.
Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data
NASA Astrophysics Data System (ADS)
Zegrar, Ahmed
2016-07-01
The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-fire regeneration. In this study the use of multi-temporal remote sensing image Alsat-1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.
NASA Astrophysics Data System (ADS)
Kanwar, R.; Narayan, U.; Lakshmi, V.
2005-12-01
Remote sensing has the potential to immensely advance the science and application of hydrology as it provides multi-scale and multi-temporal measurements of several hydrologic parameters. There is a wide variety of remote sensing data sources available to a hydrologist with a myriad of data formats, access techniques, data quality issues and temporal and spatial extents. It is very important to make data availability and its usage as convenient as possible for potential users. The CUAHSI Hydrologic Information System (HIS) initiative addresses this issue of better data access and management for hydrologists with a focus on in-situ data, that is point measurements of water and energy fluxes which make up the 'more conventional' sources of hydrologic data. This paper explores various sources of remotely sensed hydrologic data available, their data formats and volumes, current modes of data acquisition by end users, metadata associated with data itself, and requirements from potential data models that would allow a seamless integration of remotely sensed hydrologic observations into the Hydrologic Information System. Further, a prototype hydrologic observatory (HO) for the Neuse River Basin is developed using surface temperature, vegetation indices and soil moisture estimates available from remote sensing. The prototype (HO) uses the CUAHSI digital library system (DLS) on the back (server) end. On the front (client) end, a rich visual environment has been developed in order to provide better decision making tools in order to make an optimal choice in the selection of remote sensing data for a particular application. An easy point and click interface to the remote sensing data is also implemented for common users who are just interested in location based query of hydrologic variable values.
Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji
2015-01-01
The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-01-01
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-02-07
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.
Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification
NASA Astrophysics Data System (ADS)
Gao, G.; Zhang, M.; Gu, Y.
2017-05-01
Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".
NASA Astrophysics Data System (ADS)
Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.
2014-12-01
Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.
NASA Technical Reports Server (NTRS)
Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James
2003-01-01
We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.
NASA Technical Reports Server (NTRS)
Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert
2015-01-01
Primary Goal: Assist with the evaluation and measuring of wetlands hydroperiod at the PlumBrook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: 1) Show the relative length of hydroperiod using available remote sensing datasets 2) Date linked table of wetlands extent over time for all feasible non-forested wetlands 3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables 4) A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment 5) A MTRI style report summarizing year 2 results. This report serves as a descriptive summary of our completion of these our deliverables. Additionally, two formal meetings were held with Larry Liou and Amanda Sprinzl to provide project updates and receive direction on outputs. These were held on 2/26/15 and 9/17/15 at the Plum Brook Station. Principal Component Analysis (PCA) is a multivariate statistical technique used to identify dominant spatial and temporal backscatter signatures. PCA reduces the information contained in the temporal dataset to the first few new Principal Component (PC) images. Some advantages of PCA include the ability to filter out temporal autocorrelation and reduce speckle to the higher order PC images. A PCA was performed using ERDAS Imagine on a time series of PALSAR dates. Hydroperiod maps were created by separating the PALSAR dates into two date ranges, 2006-2008 and 2010, and performing an unsupervised classification on the PCAs.
Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-11-07
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.
NASA Astrophysics Data System (ADS)
Walther, Christian; Frei, Michaela
2017-04-01
Mining of so-called "conflict minerals" is often related with small-scale mining activities. The here discussed activities are located in forested areas in the eastern DRC, which are often remote, difficult to access and insecure for traditional geological field inspection. In order to accelerate their CTC (Certified Trading Chain)-certification process, remote sensing data are used for detection and monitoring of these small-scale mining operations. This requires a high image acquisition frequency due to mining site relocations and for compensation of year-round high cloud coverage, especially for optical data evaluation. Freely available medium resolution optical data of Sentinel-2 and Landsat-8 as well as SAR data of Sentinel-1 are used for detecting small mining targets with a minimum size of approximately 0.5 km2. The developed method enables a robust multi-temporal detection of mining sites, monitoring of mining site spatio-temporal relocations and environmental changes. Since qualitative and quantitative comparable results are generated, the followed change detection approach is objective and transparent and may push the certification process forward.
Herbreteau, Vincent; Salem, Gérard; Souris, Marc; Hugot, Jean-Pierre; Gonzalez, Jean-Paul
2007-06-01
Remote sensing, referring to the remote study of objects, was originally developed for Earth observation, through the use of sensors on board planes or satellites. Improvements in the use and accessibility of multi-temporal satellite-derived environmental data have, for 30 years, contributed to a growing use in epidemiology. Despite the potential of remote-sensed images and processing techniques for a better knowledge of disease dynamics, an exhaustive analysis of the bibliography shows a generalized use of pre-processed spatial data and low-cost images, resulting in a limited adaptability when addressing biological questions.
Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-01-01
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759
Meng, Ran; Wu, Jin; Zhao, Feng; ...
2018-06-01
Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ran; Wu, Jin; Zhao, Feng
Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less
NASA Astrophysics Data System (ADS)
Anders, Niels; Keesstra, Saskia; Masselink, Rens
2014-05-01
Unmanned Aerial System (UAS) are becoming popular tools in the geosciences due to improving technology and processing/analysis techniques. They can potentially fill the gap between spaceborne or manned aircraft remote sensing and terrestrial remote sensing, both in terms of spatial and temporal resolution. In this study we analyze a multi-temporal data set that was acquired with a fixed-wing UAS in an agricultural catchment (2 sq. km) in Navarra, Spain. The goal of this study is to register soil erosion activity after one year of agricultural activity. The aircraft was equipped with a Panasonic GX1 16MP pocket camera with a 20 mm lens to capture normal JPEG RGB images. The data set consisted of two sets of imagery acquired in the end of February in 2013 and 2014 after harvesting. The raw images were processed using Agisoft Photoscan Pro which includes the structure-from-motion (SfM) and multi-view stereopsis (MVS) algorithms producing digital surface models and orthophotos of both data sets. A discussion is presented that is focused on the suitability of multi-temporal UAS data and SfM/MVS processing for quantifying soil loss, mapping the distribution of eroded materials and analyzing re-occurrences of rill patterns after plowing.
Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data
NASA Astrophysics Data System (ADS)
Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.
Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions
NASA Astrophysics Data System (ADS)
Lim, J. H.; Yu, J.; Koh, S. M.; Lee, G.
2017-12-01
Mining is a major industrial business of North Korea accounting for significant portion of an export for North Korean economy. However, due to its veiled political system, details of mining activities of North Korea is rarely known. This study investigated mining activities of Rakyeon Au-Ag mine, North Korea based on remote sensing based multi-temporal observation. To monitor the mining activities, CORONA data acquired in 1960s and 1970s, SPOT and Landsat data acquired in 1980s and 1990s and KOMPSAT-2 data acquired in 2010s are utilized. The results show that mining activities of Rakyeon mine continuously carried out for the observation period expanding tailing areas of the mine. However, its expanding rate varies between the period related to North Korea's economic and political situations.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
EPA remote sensing capabilities include applied research for priority applications and technology support for operational assistance to clients across the Agency. The idea is to use MODIS in conjunction with the current limited Landsat capability, commercial satellites, and Unma...
A change detection method for remote sensing image based on LBP and SURF feature
NASA Astrophysics Data System (ADS)
Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun
2018-04-01
Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.
Supervised Semantic Classification for Nuclear Proliferation Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Cheriyadat, Anil M; Gleason, Shaun Scott
2010-01-01
Existing feature extraction and classification approaches are not suitable for monitoring proliferation activity using high-resolution multi-temporal remote sensing imagery. In this paper we present a supervised semantic labeling framework based on the Latent Dirichlet Allocation method. This framework is used to analyze over 120 images collected under different spatial and temporal settings over the globe representing three major semantic categories: airports, nuclear, and coal power plants. Initial experimental results show a reasonable discrimination of these three categories even though coal and nuclear images share highly common and overlapping objects. This research also identified several research challenges associated with nuclear proliferationmore » monitoring using high resolution remote sensing images.« less
NASA Astrophysics Data System (ADS)
Alavi-Shoushtari, N.; King, D.
2017-12-01
Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of season date across the sample landscapes and the variability in the corresponding NDVI values at that date showed the strongest correlation with the biodiversity indices; 3) The significance of the models improved when using 3×3km site extent both for MODIS and Landsat based models due most likely to the larger sample size over 3x3km.
Study on paddy rice yield estimation based on multisource data and the Grey system theory
NASA Astrophysics Data System (ADS)
Deng, Wensheng; Wang, Wei; Liu, Hai; Li, Chen; Ge, Yimin; Zheng, Xianghua
2009-10-01
The paddy rice is our important crops. In study of the paddy rice yield estimation, compared with the scholars who usually only take the remote sensing data or meteorology as the influence factors, we combine the remote sensing and the meteorological data to make the monitoring result closer reality. Although the gray system theory has used in many aspects, it is applied very little in paddy rice yield estimation. This study introduces it to the paddy rice yield estimation, and makes the yield estimation model. This can resolve small data sets problem that can not be solved by deterministic model. It selects some regions in Jianghan plain for the study area. The data includes multi-temporal remote sensing image, meteorological and statistic data. The remote sensing data is the 16-day composite images (250-m spatial resolution) of MODIS. The meteorological data includes monthly average temperature, sunshine duration and rain fall amount. The statistical data is the long-term paddy rice yield of the study area. Firstly, it extracts the paddy rice planting area from the multi-temporal MODIS images with the help of GIS and RS. Then taking the paddy rice yield as the reference sequence, MODIS data and meteorological data as the comparative sequence, computing the gray correlative coefficient, it selects the yield estimation factor based on the grey system theory. Finally, using the factors, it establishes the yield estimation model and does the result test. The result indicated that the method is feasible and the conclusion is credible. It can provide the scientific method and reference value to carry on the region paddy rice remote sensing estimation.
Geometric registration of remotely sensed data with SAMIR
NASA Astrophysics Data System (ADS)
Gianinetto, Marco; Barazzetti, Luigi; Dini, Luigi; Fusiello, Andrea; Toldo, Roberto
2015-06-01
The commercial market offers several software packages for the registration of remotely sensed data through standard one-to-one image matching. Although very rapid and simple, this strategy does not take into consideration all the interconnections among the images of a multi-temporal data set. This paper presents a new scientific software, called Satellite Automatic Multi-Image Registration (SAMIR), able to extend the traditional registration approach towards multi-image global processing. Tests carried out with high-resolution optical (IKONOS) and high-resolution radar (COSMO-SkyMed) data showed that SAMIR can improve the registration phase with a more rigorous and robust workflow without initial approximations, user's interaction or limitation in spatial/spectral data size. The validation highlighted a sub-pixel accuracy in image co-registration for the considered imaging technologies, including optical and radar imagery.
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
T. Ryan McCarley; Crystal A. Kolden; Nicole M. Vaillant; Andrew T. Hudak; Alistair M. S. Smith; Brian M. Wing; Bryce S. Kellogg; Jason Kreitler
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots.While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often...
NASA Astrophysics Data System (ADS)
Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun
2018-04-01
Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.
NASA Astrophysics Data System (ADS)
Liu, Pei; Han, Ruimei; Wang, Shuangting
2014-11-01
According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.
Searches over graphs representing geospatial-temporal remote sensing data
Brost, Randolph; Perkins, David Nikolaus
2018-03-06
Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.
NASA Astrophysics Data System (ADS)
Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang
2018-07-01
Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
NASA Astrophysics Data System (ADS)
Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.
2011-12-01
Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA/EORC. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak
2013-01-01
Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...
NASA Astrophysics Data System (ADS)
Li, J.; Warner, T.; Bao, A.
2017-12-01
Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.
MULTI-TEMPORAL REMOTE SENSING ANALYTICAL APPROACHES FOR CHARACTERIZING LANDSCAPE CHANGE
Changes in landscape composition and function result from both acute land-cover conversions and chronic landscape changes. Land-cover conversions are typically mediated by human land-use activities (e.g. conversion from forest to agriculture), while more subtle chronic l...
Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Abdessetar, M.; Zhong, Y.
2017-09-01
Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
NASA Astrophysics Data System (ADS)
Falco, N.; Pedersen, G. B. M.; Vilmunandardóttir, O. K.; Belart, J. M. M. C.; Sigurmundsson, F. S.; Benediktsson, J. A.
2016-12-01
The project "Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS)" aims at providing fast and reliable mapping and monitoring techniques on a big spatial scale with a high temporal resolution of the Icelandic landscape. Such mapping and monitoring will be crucial to both mitigate and understand the scale of processes and their often complex interlinked feedback mechanisms.In the EMMIRS project, the Hekla volcano area is one of the main sites under study, where the volcanic eruptions, extreme weather and human activities had an extensive impact on the landscape degradation. The development of innovative remote sensing approaches to compute earth observation variables as automatically as possible is one of the main tasks of the EMMIRS project. Furthermore, a temporal remote sensing archive is created and composed by images acquired by different sensors (Landsat, RapidEye, ASTER and SPOT5). Moreover, historical aerial stereo photos allowed decadal reconstruction of the landscape by reconstruction of digital elevation models. Here, we propose a novel architecture for automatic unsupervised change detection analysis able to ingest multi-source data in order to detect landscape changes in the Hekla area. The change detection analysis is based on multi-scale analysis, which allows the identification of changes at different level of abstraction, from pixel-level to region-level. For this purpose, operators defined in mathematical morphology framework are implemented to model the contextual information, represented by the neighbour system of a pixel, allowing the identification of changes related to both geometrical and spectral domains. Automatic radiometric normalization strategy is also implemented as pre-processing step, aiming at minimizing the effect of different acquisition conditions. The proposed architecture is tested on multi-temporal data sets acquired over different time periods coinciding with the last three eruptions (1980-1981, 1991, 2000) occurred on Hekla volcano. The results reveal emplacement of new lava flows and the initial vegetation succession, providing insightful information on the evolving of vegetation in such environment. Shadow and snow patch changes are resolved in post-processing by exploiting the available spectral information.
Hans-Erik Andersen; Robert. Pattison
2012-01-01
We investigate how vegetation in the Tanana Valley of interior Alaska (120,000 km2) has responded to a changing climate over the preceding three decades (1982-2012). Expected impacts include: 1) drying of wetlands and subsequent encroachment of woody vegetation into areas previously dominated by herbaceous and bryoid vegetation types, 2) changes...
Remote Sensing Classification of Grass Seed Cropping Practices in Western Oregon
USDA-ARS?s Scientific Manuscript database
Multiband Landsat images and multi-temporal MODIS 16-day composite NDVI were classified into 16 categories representing the primary crop rotation options and stand establishment conditions present in western Oregon grass seed fields. Mismatch in resolution between MODIS and Landsat data was resolved...
Mapping snow cover using multi-source satellite data on big data platforms
NASA Astrophysics Data System (ADS)
Lhermitte, Stef
2017-04-01
Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow cover data provides an essential input for hydrological models to model the water contribution from remote mountain areas and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow cover typically observed over complex mountain areas. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow cover mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow cover areas from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow cover and of ii) differences in satellite viewing angles over complex mountain areas. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow cover.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
SMERGE: A multi-decadal root-zone soil moisture product for CONUS
NASA Astrophysics Data System (ADS)
Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.
2017-12-01
Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
Anthropogenic impervious surfaces are leading contributors to non-point-source water pollution in urban watersheds. These human-created surfaces include such features as roads, parking lots, rooftops, sideways, and driveways. Aerial photography provides a historical vehicle for...
Effect of spatial image support in detecting long-term vegetation change from satellite time-series
USDA-ARS?s Scientific Manuscript database
Context Arid rangelands have been severely degraded over the past century. Multi-temporal remote sensing techniques are ideally suited to detect significant changes in ecosystem state; however, considerable uncertainty exists regarding the effects of changing image resolution on their ability to de...
Multi-scale soil salinity mapping and monitoring with proximal and remote sensing
USDA-ARS?s Scientific Manuscript database
This talk is part of a technical short course on “Soil mapping and process modelling at diverse scales”. In the talk, guidelines, special considerations, protocols, and strengths and limitations are presented for characterizing spatial and temporal variation in soil salinity at several spatial scale...
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review
Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.
2013-01-01
Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
A review of future remote sensing satellite capabilities
NASA Technical Reports Server (NTRS)
Calabrese, M. A.
1980-01-01
Existing, planned and future NASA capabilities in the field of remote sensing satellites are reviewed in relation to the use of remote sensing techniques for the identification of irrigated lands. The status of the currently operational Landsat 2 and 3 satellites is indicated, and it is noted that Landsat D is scheduled to be in operation in two years. The orbital configuration and instrumentation of Landsat D are discussed, with particular attention given to the thematic mapper, which is expected to improve capabilities for small field identification and crop discrimination and classification. Future possibilities are then considered, including a multi-spectral resource sampler supplying high spatial and temporal resolution data possibly based on push-broom scanning, Shuttle-maintained Landsat follow-on missions, a satellite to obtain high-resolution stereoscopic data, further satellites providing all-weather radar capability and the Large Format Camera.
The application analysis of the multi-angle polarization technique for ocean color remote sensing
NASA Astrophysics Data System (ADS)
Zhang, Yongchao; Zhu, Jun; Yin, Huan; Zhang, Keli
2017-02-01
The multi-angle polarization technique, which uses the intensity of polarized radiation as the observed quantity, is a new remote sensing means for earth observation. With this method, not only can the multi-angle light intensity data be provided, but also the multi-angle information of polarized radiation can be obtained. So, the technique may solve the problems, those could not be solved with the traditional remote sensing methods. Nowadays, the multi-angle polarization technique has become one of the hot topics in the field of the international quantitative research on remote sensing. In this paper, we firstly introduce the principles of the multi-angle polarization technique, then the situations of basic research and engineering applications are particularly summarized and analysed in 1) the peeled-off method of sun glitter based on polarization, 2) the ocean color remote sensing based on polarization, 3) oil spill detection using polarization technique, 4) the ocean aerosol monitoring based on polarization. Finally, based on the previous work, we briefly present the problems and prospects of the multi-angle polarization technique used in China's ocean color remote sensing.
Landsat's role in ecological applications of remote sensing.
Warren B. Cohen; Samuel N. Goward
2004-01-01
Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...
NASA Astrophysics Data System (ADS)
Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot
2017-04-01
This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.
Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach
NASA Astrophysics Data System (ADS)
Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.
2012-12-01
Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-04-01
The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.
Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.
1993-01-01
Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues involving regional extrapolations and parameterizations of dynamic land processes within simulation models.
NASA Astrophysics Data System (ADS)
Davies, Gwendolyn E.
Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.
NASA Astrophysics Data System (ADS)
Mahlein, Anne-Katrin; Hillnhütter, Christian; Mewes, Thorsten; Scholz, Christine; Steiner, Ulrike; Dehne, Heinz-Willhelm; Oerke, Erich-Christian
2009-09-01
Depending on environmental factors fungal diseases of crops are often distributed heterogeneously in fields. Precision agriculture in plant protection implies a targeted fungicide application adjusted these field heterogeneities. Therefore an understanding of the spatial and temporal occurrence of pathogens is elementary. As shown in previous studies, remote sensing techniques can be used to detect and observe spectral anomalies in the field. In 2008, a sugar beet field site was observed at different growth stages of the crop using different remote sensing techniques. The experimental field site consisted of two treatments. One plot was sprayed with a fungicide to avoid fungal infections. In order to obtain sugar beet plants infected with foliar diseases the other plot was not sprayed. Remote sensing data were acquired from the high-resolution airborne hyperspectral imaging ROSIS in July 2008 at sugar beet growth stage 39 and from the HyMap sensor systems in August 2008 at sugar beet growth stage 45, respectively. Additionally hyperspectral signatures of diseased and non-diseased sugar beet plants were measured with a non-imaging hand held spectroradiometer at growth stage 49 in September. Ground truth data, in particular disease severity were collected at 50 sampling points in the field. Changes of reflection rates were related to disease severity increasing with time. Erysiphe betae causing powdery mildew was the most frequent leaf pathogen. A classification of healthy and diseased sugar beets in the field was possible by using hyperspectral vegetation indices calculated from canopy reflectance.
Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei
2016-01-01
Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m(-2) d(-1) and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m(-2) d(-1) and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling results. This research suggested that the utilization of multi-source data with various scales would help to the establishment of an appropriate model for calculating GPP and NPP at regional scales with relatively high spatial and temporal resolution.
Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei
2016-01-01
Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m-2 d-1 and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m-2 d-1 and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling results. This research suggested that the utilization of multi-source data with various scales would help to the establishment of an appropriate model for calculating GPP and NPP at regional scales with relatively high spatial and temporal resolution. PMID:27088356
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Hansen, Matt; Stehman, Steve; Loveland, Tom; Vogelmann, Jim; Cochrane, Mark
2009-01-01
Quantifying rates of forest-cover change is important for improved carbon accounting and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. A practical solution to examining trends in forest cover change at global scale is to employ remotely sensed data. Satellite-based monitoring of forest cover can be implemented consistently across large regions at annual and inter-annual intervals. This research extends previous research on global forest-cover dynamics and land-cover change estimation to establish a robust, operational forest monitoring and assessment system. The approach integrates both MODIS and Landsat data to provide timely biome-scale forest change estimation. This is achieved by using annual MODIS change indicator maps to stratify biomes into low, medium and high change categories. Landsat image pairs can then be sampled within these strata and analyzed for estimating area of forest cleared.
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements
NASA Astrophysics Data System (ADS)
Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.
2012-12-01
The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some validation experiments demonstrated that the models yield accurate estimates at flux measurement sites, the question remains whether they are performing well over the broader landscape. Moreover, a large number of RS_ET products have been released in recent years. Thus, we also pay attention to the cross-validation method of RS_ET derived from multi-source models. "The Multi-scale Observation Experiment on Evapotranspiration over Heterogeneous Land Surfaces: Flux Observation Matrix" campaign is carried out at the middle reaches of the Heihe River Basin, China in 2012. Flux measurements from an observation matrix composed of 22 EC and 4 LAS are acquired to investigate the cross-validation of multi-source models over different landscapes. In this case, six remote sensing models, including the empirical statistical model, the one-source and two-source models, the Penman-Monteith equation based model, the Priestley-Taylor equation based model, and the complementary relationship based model, are used to perform an intercomparison. All the results from the two cases of RS_ET validation showed that the proposed validation methods are reasonable and feasible.
NASA Astrophysics Data System (ADS)
Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.
2015-12-01
Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in combination with advanced analytic and extraction techniques provides a vital remote sensing tool for decision makers and scientists with a high-degree of flexibility to adapt to different uses.
NASA Technical Reports Server (NTRS)
Steffen, K.; Schweiger, A.; Maslanik, J.; Key, J.; Weaver, R.; Barry, R.
1990-01-01
The application of multi-spectral satellite data to estimate polar surface energy fluxes is addressed. To what accuracy and over which geographic areas large scale energy budgets can be estimated are investigated based upon a combination of available remote sensing and climatological data sets. The general approach was to: (1) formulate parameterization schemes for the appropriate sea ice energy budget terms based upon the remotely sensed and/or in-situ data sets; (2) conduct sensitivity analyses using as input both natural variability (observed data in regional case studies) and theoretical variability based upon energy flux model concepts; (3) assess the applicability of these parameterization schemes to both regional and basin wide energy balance estimates using remote sensing data sets; and (4) assemble multi-spectral, multi-sensor data sets for at least two regions of the Arctic Basin and possibly one region of the Antarctic. The type of data needed for a basin-wide assessment is described and the temporal coverage of these data sets are determined by data availability and need as defined by parameterization scheme. The titles of the subjects are as follows: (1) Heat flux calculations from SSM/I and LANDSAT data in the Bering Sea; (2) Energy flux estimation using passive microwave data; (3) Fetch and stability sensitivity estimates of turbulent heat flux; and (4) Surface temperature algorithm.
Yun Yang; Martha C. Anderson; Feng Gao; Christopher R. Hain; Kathryn A. Semmens; William P. Kustas; Asko Noormets; Randolph H. Wynne; Valerie A. Thomas; Ge Sun
2017-01-01
As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and biological processes and is directly affected by water and land management, land use change and climate variability. Satellite remote sensing provides an effective means for diagnosing ET patterns over heterogeneous landscapes; however, limitations on the spatial and temporal...
NASA Astrophysics Data System (ADS)
Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.
2016-06-01
The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.
NASA Astrophysics Data System (ADS)
Taramelli, A.; Zanuttigh, B.; Zucca, F.; Dejana, M.; Valentini, E.
2011-12-01
Coastal marine and inland landforms are dynamic systems undergoing adjustments in form at different time and space scales in response to varying conditions external to the system. Coastal emerged and shallow submerged nearshore areas, affected by short-term perturbations, return to their pre-disturbance morphology and generally reach a dynamic equilibrium. Worldwide in the last century we have experienced in increased coastal inundation, erosion and ecosystem losses. However, erosion can result from a number of other factors, such as altered wind and current patterns, high-energy waves, and reduced fluvial sediment inputs. Direct impacts of human activities, including reclamation of coastal wetlands, deforestation, damming, channelization, diversions of coastal waterways, construction of seawalls and other structures, alter circulation patterns. Also indirect human impacts such as land-uses changes through time (eg. from agricultural to industrial use) have affected coastal ecosystems. The objective of this research is to propose innovative remote sensing applications to monitor specific coastal processes in order to use them within a physical modelling to quantify and model their time evolution. The research was applied in two dynamic and densely populated deltas and coastal areas (the Po and the Plymouth delta) by combining multi-sensor spaceborne remote sensing (SAR and OPTICAL) to physical modelling. The main results are: a) deformation and spatiotemporal variations maps in coastal morphology with a special focus to point out the temporal subsidence evolution, b) inter and intra-annual change detection maps that are both used a to feed a coastal physical modelling (MIKE 21). The basic strategy was to highlight the different components of the coastal system environment through: 1) deformation and spatio-temporal variations maps of coastal morphology, by the use of time-stack from 1992 up today of ESA SAR data (ERS-1/2 and ENVISAT-ASAR sensors) were used to produce deformation maps and to point out the temporal evolution and 2) multitemporal hyperspectral endmembers fractions map of coastal morphology, 3) numerical model well-established through remote sensed based procedures and results in order to produce spatio-temporal scenario in coastal areas. The objective was to locate and characterize important coastal indicators for different regions using multitemporal data from the multi-hyperspectral sensors, as well as topographic elevation, SAR and derived products (eg. coherence) data. The identification of different indicators was based on land spectral properties, topography/landforms (low topography), disturbed areas (agricultural, construction), and vegetation distribution. Moreover, the indicators were assessed at seasonal and interannual time scales over two temporal decades horizons starting from 1990 and 2000.
Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping
2018-01-01
Simple Summary The understanding of the spatio-temporal distribution of the species habitats would facilitate wildlife resource management and conservation efforts. Existing methods have poor performance due to the limited availability of training samples. More recently, location-aware sensors have been widely used to track animal movements. The aim of the study was to generate suitability maps of bar-head geese using movement data coupled with environmental parameters, such as remote sensing images and temperature data. Therefore, we modified a deep convolutional neural network for the multi-scale inputs. The results indicate that the proposed method can identify the areas with the dense goose species around Qinghai Lake. In addition, this approach might also be interesting for implementation in other species with different niche factors or in areas where biological survey data are scarce. Abstract With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction. PMID:29701686
Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.
2016-04-01
Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution
Evaluation of MuSyQ land surface albedo based on LAnd surface Parameters VAlidation System (LAPVAS)
NASA Astrophysics Data System (ADS)
Dou, B.; Wen, J.; Xinwen, L.; Zhiming, F.; Wu, S.; Zhang, Y.
2016-12-01
satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. However, the accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. A new comprehensive and systemic project of china, called the Remote Sensing Application Network (CRSAN), has been launched recent years. Two subjects of this project is developing a Multi-source data Synergized Quantitative Remote Sensin g Production System ( MuSyQ ) and a Web-based validation system named LAnd surface remote sensing Product VAlidation System (LAPVAS) , which aims to generate a quantitative remote sensing product for ecosystem and environmental monitoring and validate them with a reference validation data and a standard validation system, respectively. Land surface BRDF/albedo is one of product datasets of MuSyQ which has a pentad period with 1km spatial resolution and is derived by Multi-sensor Combined BRDF Inversion ( MCBI ) Model. In this MuSyQ albedo evaluation, a multi-validation strategy is implemented by LAPVAS, including directly and multi-scale validation with field measured albedo and cross validation with MODIS albedo product with different land cover. The results reveal that MuSyQ albedo data with a 5-day temporal resolution is in higher sensibility and accuracy during land cover change period, e.g. snowing. But results without regard to snow or changed land cover, MuSyQ albedo generally is in similar accuracy with MODIS albedo and meet the climate modeling requirement of an absolute accuracy of 0.05.
Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity
NASA Astrophysics Data System (ADS)
Leyequien, Euridice; Verrelst, Jochem; Slot, Martijn; Schaepman-Strub, Gabriela; Heitkönig, Ignas M. A.; Skidmore, Andrew
2007-02-01
Amongst many ongoing initiatives to preserve biodiversity, the Millennium Ecosystem Assessment again shows the importance to slow down the loss of biological diversity. However, there is still a gap in the overview of global patterns of species distributions. This paper reviews how remote sensing has been used to assess terrestrial faunal diversity, with emphasis on proxies and methodologies, while exploring prospective challenges for the conservation and sustainable use of biodiversity. We grouped and discussed papers dealing with the faunal taxa mammals, birds, reptiles, amphibians, and invertebrates into five classes of surrogates of animal diversity: (1) habitat suitability, (2) photosynthetic productivity, (3) multi-temporal patterns, (4) structural properties of habitat, and (5) forage quality. It is concluded that the most promising approach for the assessment, monitoring, prediction, and conservation of faunal diversity appears to be the synergy of remote sensing products and auxiliary data with ecological biodiversity models, and a subsequent validation of the results using traditional observation techniques.
Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data
Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.
2011-01-01
Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics using GIDA and remote sensing. Extensive field campaigns to help in better classification and validation of irrigated areas using high (30 m ) to very high (<5 m) resolution remote sensing data that are fused with multi temporal data like MODIS are the way forward. This is especially true in accounting for small yet contiguous patches of irrigated areas from dug-wells and dug-outs. ?? 2011 by the authors.
Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei
2015-12-01
Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.
Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)
Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean
2010-01-01
The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.
Calibration of a distributed hydrologic model for six European catchments using remote sensing data
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.
2017-12-01
While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.
NASA Astrophysics Data System (ADS)
Koppa, A.; Gebremichael, M.; Yeh, W. W. G.
2017-12-01
Calibrating hydrologic models in large catchments using a sparse network of streamflow gauges adversely affects the spatial and temporal accuracy of other water balance components which are important for climate-change, land-use and drought studies. This study combines remote sensing data and the concept of Pareto-Optimality to address the following questions: 1) What is the impact of streamflow (SF) calibration on the spatio-temporal accuracy of Evapotranspiration (ET), near-surface Soil Moisture (SM) and Total Water Storage (TWS)? 2) What is the best combination of fluxes that can be used to calibrate complex hydrological models such that both the accuracy of streamflow and the spatio-temporal accuracy of ET, SM and TWS is preserved? The study area is the Mississippi Basin in the United States (encompassing HUC-2 regions 5,6,7,9,10 and 11). 2003 and 2004, two climatologically average years are chosen for calibration and validation of the Noah-MP hydrologic model. Remotely sensed ET data is sourced from GLEAM, SM from ESA-CCI and TWS from GRACE. Single objective calibration is carried out using DDS Algorithm. For Multi objective calibration PA-DDS is used. First, the Noah-MP model is calibrated using a single objective function (Minimize Mean Square Error) for the outflow from the 6 HUC-2 sub-basins for 2003. Spatial correlograms are used to compare the spatial structure of ET, SM and TWS between the model and the remote sensing data. Spatial maps of RMSE and Mean Error are used to quantify the impact of calibrating streamflow on the accuracy of ET, SM and TWS estimates. Next, a multi-objective calibration experiment is setup to determine the pareto optimal parameter sets (pareto front) for the following cases - 1) SF and ET, 2) SF and SM, 3) SF and TWS, 4) SF, ET and SM, 5) SF, ET and TWS, 6) SF, SM and TWS, 7) SF, ET, SM and TWS. The best combination of fluxes that provides the optimal trade-off between accurate streamflow and preserving the spatio-temporal structure of ET, SM and TWS is then determined by validating the model outputs for the pareto-optimal parameter sets. Results from single-objective calibration experiment with streamflow shows that it does indeed negatively impact the accuracy of ET, SM and TWS estimates.
NASA Astrophysics Data System (ADS)
Shew, A. M.; Ghosh, A.
2017-10-01
Remote sensing in the optical domain is widely used in agricultural monitoring; however, such initiatives pose a challenge for developing countries due to a lack of high quality in situ information. Our proposed methodology could help developing countries bridge this gap by demonstrating the potential to quantify patterns of dry season rice production in Bangladesh. To analyze approximately 90,000 km2 of cultivated land in Bangladesh at 30 m spatial resolution, we used two decades of remote sensing data from the Landsat archive and Google Earth Engine (GEE), a cloud-based geospatial data analysis platform built on Google infrastructure and capable of processing petabyte-scale remote sensing data. We reconstructed the seasonal patterns of vegetation indices (VIs) for each pixel using a harmonic time series (HTS) model, which minimizes the effects of missing observations and noise. Next, we combined the seasonality information of VIs with our knowledge of rice cultivation systems in Bangladesh to delineate rice areas in the dry season, which are predominantly hybrid and High Yielding Varieties (HYV). Based on historical Landsat imagery, the harmonic time series of vegetation indices (HTS-VIs) model estimated 4.605 million ha, 3.519 million ha, and 4.021 million ha of rice production for Bangladesh in 2005, 2010, and 2015 respectively. Fine spatial scale information on HYV rice over the last 20 years will greatly improve our understanding of double-cropped rice systems, current status of production, and potential for HYV rice adoption in Bangladesh during the dry season.
A new method of Quickbird own image fusion
NASA Astrophysics Data System (ADS)
Han, Ying; Jiang, Hong; Zhang, Xiuying
2009-10-01
With the rapid development of remote sensing technology, the means of accessing to remote sensing data become increasingly abundant, thus the same area can form a large number of multi-temporal, different resolution image sequence. At present, the fusion methods are mainly: HPF, IHS transform method, PCA method, Brovey, Mallat algorithm and wavelet transform and so on. There exists a serious distortion of the spectrums in the IHS transform, Mallat algorithm omits low-frequency information of the high spatial resolution images, the integration results of which has obvious blocking effects. Wavelet multi-scale decomposition for different sizes, the directions, details and the edges can have achieved very good results, but different fusion rules and algorithms can achieve different effects. This article takes the Quickbird own image fusion as an example, basing on wavelet transform and HVS, wavelet transform and IHS integration. The result shows that the former better. This paper introduces the correlation coefficient, the relative average spectral error index and usual index to evaluate the quality of image.
Data and techniques for studying the urban heat island effect in Johannesburg
NASA Astrophysics Data System (ADS)
Hardy, C. H.; Nel, A. L.
2015-04-01
The city of Johannesburg contains over 10 million trees and is often referred to as an urban forest. The intra-urban spatial variability of the levels of vegetation across Johannesburg's residential regions has an influence on the urban heat island effect within the city. Residential areas with high levels of vegetation benefit from cooling due to evapo-transpirative processes and thus exhibit weaker heat island effects; while their impoverished counterparts are not so fortunate. The urban heat island effect describes a phenomenon where some urban areas exhibit temperatures that are warmer than that of surrounding areas. The factors influencing the urban heat island effect include the high density of people and buildings and low levels of vegetative cover within populated urban areas. This paper describes the remote sensing data sets and the processing techniques employed to study the heat island effect within Johannesburg. In particular we consider the use of multi-sensorial multi-temporal remote sensing data towards a predictive model, based on the analysis of influencing factors.
The Feasibility Evaluation of Land Use Change Detection Using GAOFEN-3 Data
NASA Astrophysics Data System (ADS)
Huang, G.; Sun, Y.; Zhao, Z.
2018-04-01
GaoFen-3 (GF-3) satellite, is the first C band and multi-polarimetric Synthetic Aperture Radar (SAR) satellite in China. In order to explore the feasibility of GF-3 satellite in remote sensing interpretation and land-use remote sensing change detection, taking Guangzhou, China as a study area, the full polarimetric image of GF-3 satellite with 8 m resolution of two temporal as the data source. Firstly, the image is pre-processed by orthorectification, image registration and mosaic, and the land-use remote sensing digital orthophoto map (DOM) in 2017 is made according to the each county. Then the classification analysis and judgment of ground objects on the image are carried out by means of ArcGIS combining with the auxiliary data and using artificial visual interpretation, to determine the area of changes and the category of change objects. According to the unified change information extraction principle to extract change areas. Finally, the change detection results are compared with 3 m resolution TerraSAR-X data and 2 m resolution multi-spectral image, and the accuracy is evaluated. Experimental results show that the accuracy of the GF-3 data is over 75 % in detecting the change of ground objects, and the detection capability of new filling soil is better than that of TerraSAR-X data, verify the detection and monitoring capability of GF-3 data to the change information extraction, also, it shows that GF-3 can provide effective data support for the remote sensing detection of land resources.
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.
2017-12-01
Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.
Identification and characterization of agro-ecological infrastructures by remote sensing
NASA Astrophysics Data System (ADS)
Ducrot, D.; Duthoit, S.; d'Abzac, A.; Marais-Sicre, C.; Chéret, V.; Sausse, C.
2015-10-01
Agro-Ecological Infrastructures (AEIs) include many semi-natural habitats (hedgerows, grass strips, grasslands, thickets…) and play a key role in biodiversity preservation, water quality and erosion control. Indirect biodiversity indicators based on AEISs are used in many national and European public policies to analyze ecological processes. The identification of these landscape features is difficult and expensive and limits their use. Remote sensing has a great potential to solve this problem. In this study, we propose an operational tool for the identification and characterization of AEISs. The method is based on segmentation, contextual classification and fusion of temporal classifications. Experiments were carried out on various temporal and spatial resolution satellite data (20-m, 10-m, 5-m, 2.5-m, 50-cm), on three French regions southwest landscape (hilly, plain, wooded, cultivated), north (open-field) and Brittany (farmland closed by hedges). The results give a good idea of the potential of remote sensing image processing methods to map fine agro-ecological objects. At 20-m spatial resolution, only larger hedgerows and riparian forests are apparent. Classification results show that 10-m resolution is well suited for agricultural and AEIs applications, most hedges, forest edges, thickets can be detected. Results highlight the multi-temporal data importance. The future Sentinel satellites with a very high temporal resolution and a 10-m spatial resolution should be an answer to AEIs detection. 2.50-m resolution is more precise with more details. But treatments are more complicated. At 50-cm resolution, accuracy level of details is even higher; this amplifies the difficulties previously reported. The results obtained allow calculation of statistics and metrics describing landscape structures.
Assessing the Tundra-taiga Boundary with Multi-Sensor Satellite Data
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.
2004-01-01
Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for identifying the existing tundra- taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi- spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.
NASA Astrophysics Data System (ADS)
Zhang, Yuhu; Yu, Changqing; Qi, Jiaguo; Zhang, Zili; Shi, Qinshan
2007-11-01
The problem of efficient use of multi-temporal remotely sensed data for land-cover and landscape pattern dynamics has already considerable attention in landscape ecology and some other disciplines. This research develops and tests a methodological approach to monitor and analysis landscape dynamics change of Yongding river watershed (Mentougou section) as study area from 1988 to 2005, The result shows that the OIF is the best method of optimal bands selection in Landsat TM remote sensing data, TM3, 4, 5 bands is optimal band combination ;the Mentougou Reach of Yongding river watershed landscape changed significantly in terms of its composition over the period 1988-2005, The total landscape patches of study area in 2005 are more those in 1988,2001, Mean patch size(MPS)decreased sharply, Number of patches(NP) increased sharply, The landscape pattern takes on the fragmentation trends under the effect on the human activity. The forest (woodland and shrubland)are the main landscape matrix. with a significant decrease in croplands and a increase in built-up (residential, urban land) and industrial minerals mining land(coal, open-pit)over the 17 years, And the underlying socio-economic and other drivers of landscape change in study area are discussed.
Tracking MODIS NDVI time series to estimate fuel accumulation
Kellie A. Uyeda; Douglas A. Stow; Philip J. Riggan
2015-01-01
Patterns of post-fire recovery in southern California chaparral shrublands are important for understanding fuel available for future fires. Satellite remote sensing provides an opportunity to examine these patterns over large spatial extents and at high temporal resolution. The relatively limited temporal range of satellite remote sensing products has previously...
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel
2013-01-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.
Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel
2013-01-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206
Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Duan, Guang-Yao; Xie, Jin-Rong
2014-04-01
Long-term over-exploitation of underground resources, and static and dynamic load increase year by year influence the occurrence and development of regional land subsidence to a certain extent. Choosing 29 scenes Envisat ASAR images covering plain area of Beijing, China, the present paper used the multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, and obtained monitoring information of regional land subsidence. Under different situation of space development and utilization, the authors chose five typical settlement areas; With classified information of land-use, multi-spectral remote sensing image, and geological data, and adopting GIS spatial analysis methods, the authors analyzed the time series evolution characteristics of uneven settlement. The comprehensive analysis results suggests that the complex situations of space development and utilization affect the trend of uneven settlement; the easier the situation of space development and utilization, the smaller the settlement gradient, and the less the uneven settlement trend.
Applicability Assessment of Uavsar Data in Wetland Monitoring: a Case Study of Louisiana Wetland
NASA Astrophysics Data System (ADS)
Zhao, J.; Niu, Y.; Lu, Z.; Yang, J.; Li, P.; Liu, W.
2018-04-01
Wetlands are highly productive and support a wide variety of ecosystem goods and services. Monitoring wetland is essential and potential. Because of the repeat-pass nature of satellite orbit and airborne, time-series of remote sensing data can be obtained to monitor wetland. UAVSAR is a NASA L-band synthetic aperture radar (SAR) sensor compact pod-mounted polarimetric instrument for interferometric repeat-track observations. Moreover, UAVSAR images can accurately map crustal deformations associated with natural hazards, such as volcanoes and earthquakes. And its polarization agility facilitates terrain and land-use classification and change detection. In this paper, the multi-temporal UAVSAR data are applied for monitoring the wetland change. Using the multi-temporal polarimetric SAR (PolSAR) data, the change detection maps are obtained by unsupervised and supervised method. And the coherence is extracted from the interfometric SAR (InSAR) data to verify the accuracy of change detection map. The experimental results show that the multi-temporal UAVSAR data is fit for wetland monitor.
NASA Astrophysics Data System (ADS)
Yu, X.; Salama, S.; Shen, F.
2016-08-01
During the Dragon-3 project (ID: 10555) period, we developed and improved the atmospheric correction algorithms (AC) and retrieval models of suspended sediment concentration ( ) and diffuse attenuation coefficient ( ) for the Yangtze estuarine and coastal waters. The developed models were validated by measurements with consistently stable and fairly accurate estimations, reproducing reasonable distribution maps of and over the study area. Spatial-temporal variations of were presented and the mechanisms of the sediment transport were discussed. We further examined the compatibility of the developed AC algorithms and retrieval model and the consistency of satellite products for multi-sensor such as MODIS/Terra/Aqua, MERIS/Envisat, MERSI/ FY-3 and GOCI. The inter-comparison of multi- sensor suggested that different satellite products can be combined to increase revisit frequency and complement a temporal gap of time series satellites that may exist between on-orbit and off- orbit, facilitating a better monitor on the spatial- temporal dynamics of .
Kwoun, Oh-Ig; Lu, Z.
2009-01-01
Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
USDA-ARS?s Scientific Manuscript database
Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.
2017-08-08
Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.
Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua
2009-08-01
Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
NASA Astrophysics Data System (ADS)
Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei
2018-04-01
Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure and increase the robustness of the proposed algorithm. The proposed algorithm is validated with a publicly available 10-class object detection dataset.
USDA-ARS?s Scientific Manuscript database
Hyper-temporal remote sensing is capable of detecting detailed information on vegetation dynamics relating to plant functional types (PFT), a useful proxy for estimating soil physical and chemical properties. A central concept of PFT is that plant morphological and physiological adaptations are link...
USDA-ARS?s Scientific Manuscript database
Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common for DSM; however, selection of the appropriate images is complicated by temporal variabi...
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
NASA Astrophysics Data System (ADS)
Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn
2017-12-01
Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.
Evaluating high temporal and spatial resolution vegetation index for crop yield prediction
USDA-ARS?s Scientific Manuscript database
Remote sensing data have been widely used in estimating crop yield. Remote sensing derived parameters such as Vegetation Index (VI) were used either directly in building empirical models or by assimilating with crop growth models to predict crop yield. The abilities of remote sensing VI in crop yiel...
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong
2016-09-01
With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
NASA Astrophysics Data System (ADS)
Lee, Ching-Fang; Huang, Wei-Kai; Chang, Yu-Lin; Chi, Shu-Yeong; Liao, Wu-Chang
2018-01-01
Typhoons Megi (2010) and Saola (2012) brought torrential rainfall which triggered regional landslides and flooding hazards along Provincial Highway No. 9 in northeastern Taiwan. To reduce property loss and saving lives, this study combines multi-hazard susceptibility assessment with environmental geology map a rock mass rating system (RMR), remote sensing analysis, and micro-topography interpretation to develop an integrated landslide hazard assessment approach and reflect the intrinsic state of slopeland from the past toward the future. First, the degree of hazard as indicated by historical landslides was used to determine many landslide regions in the past. Secondly, geo-mechanical classification of rock outcroppings was performed by in-situ investigation along the vulnerable road sections. Finally, a high-resolution digital elevation model was extracted from airborne LiDAR and multi-temporal remote sensing images which was analyzed to discover possible catastrophic landslide hotspot shortly. The results of the analysis showed that 37% of the road sections in the study area were highly susceptible to landslide hazards. The spatial distribution of the road sections revealed that those characterized by high susceptibility were located near the boundaries of fault zones and in areas of lithologic dissimilarity. Headward erosion of gullies and concave-shaped topographic features had an adverse effect and was the dominant factor triggering landslides. Regional landslide reactivation on this coastal highway are almost related to the past landslide region based on hazard statistics. The final results of field validation demonstrated that an accuracy of 91% could be achieved for forecasting geohazard followed by intense rainfall events and typhoons.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.
2013-01-01
Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.
Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data
NASA Astrophysics Data System (ADS)
Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.
2012-12-01
Even though the first commitment period of the Kyoto Protocol is in the offing, there is still a strong demand for profound, reliable, and up to date information in order to bridge the gap of knowledge of the land cover conversion. Despite the fact that land use change is one of the largest carbon contribution factors, it is still poorly quantified. This is particularly true for many tropical forest areas worldwide. Here, preservation of such pristine forest areas is critically endangered. Enormous population growth, the increasing global demand for various resources, and the ongoing unsustainable management practices put the remaining tropical forests under a huge pressure. Yet, only the United Nations Food and Agriculture Organization's (FAO) global Forest Resources Assessment (FRA) report provides the crucial quantitative information every 5 years on a regional scale. Nonetheless, the assembled information of the FRA reports bear the burden of ambiguity and vagueness, because they were compiled based on autonomously gathered statistics, which are usually driven by the individual country needs. There is a broad consensus among the different scientific disciplines, that only the remote sensing technology allows for a large scale robust monitoring of these widespread, and remote forest areas. Consequently, the FAO decided to supplementary analyze remote sensing data for the present (2010) and upcoming FRAs. However, it is also widely accepted that currently only microwave remote sensing techniques allow for an all-day, weather independent monitoring of the frequently cloud-covered tropics. In this context, high resolution Synthetic Aperture Radar (SAR) images of the German satellites TerraSAR-X and TanDEM-X have been investigated within the pan-tropics to support the latest FRA 2010 report. Data of more than 304 predominantly cloud-covered sites in Latin America (188), Central Africa (45) and Southeast Asia (71) have been acquired. Upon delivery, the corresponding radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.
Near-surface remote sensing of spatial and temporal variation in canopy phenology
Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Julian P. Jenkins; Scott V. Ollinger
2009-01-01
There is a need to document how plant phenology is responding to global change factors, particularly warming trends. "Near-surface" remote sensing, using radiometric instruments or imaging sensors, has great potential to improve phenological monitoring because automated observations can be made at high temporal frequency. Here we build on previous work and...
Teachers as Learners Examine Land-Use Change in the Local Environment Using Remote Sensing Imagery
ERIC Educational Resources Information Center
Klagges, Hope; Harbor, Jon; Shepardson, Daniel; Bell, Cheryl; Meyer, Jason; Burgess, Willie; Leuenberger, Ted
2002-01-01
In environmental science education, learners are exposed to earth phenomena that occur across a wide range of spatial and temporal scales. However, it is challenging for learners to grasp the significance of spatial and temporal change because they have limited perspectives of the Earth. Within the scientific community, remotely sensed imagery is…
NASA Astrophysics Data System (ADS)
Song, L.; Liu, S.; Kustas, W. P.; Nieto, H.
2017-12-01
Operational estimation of spatio-temporal continuously daily evapotranspiration (ET), and the components evaporation (E) and transpiration (T), at watershed scale is very useful for developing a sustainable water resource strategy in semi-arid and arid areas. In this study, multi-year all-weather daily ET, E and T were estimated using MODIS-based (Dual Temperature Difference) DTD model under different land covers in Heihe watershed, China. The remotely sensed ET was validated using ground measurements from large aperture scintillometer systems, with a source area of several kilometers, under grassland, cropland and riparian shrub-forest. The results showed that the remotely sensed ET produced mean absolute percent deviation (MAPD) errors of about 30% during the growing season for all-weather conditions, but the model performed better under clear sky conditions. However, uncertainty in interpolated MODIS land surface temperature input data under cloudy conditions to the DTD model, and the representativeness of LAS measurements for the heterogeneous land surfaces contribute to the discrepancies between the modeled and ground measured surface heat fluxes, especially for the more humid grassland and heterogeneous shrub-forest sites.
NASA Astrophysics Data System (ADS)
Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George
2017-10-01
In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.
NASA Astrophysics Data System (ADS)
Domiri, D. D.
2017-01-01
Rice crop is the most important food crop for the Asian population, especially in Indonesia. During the growth of rice plants have four main phases, namely the early planting or inundation phase, the vegetative phase, the generative phase, and bare land phase. Monitoring the condition of the rice plant needs to be conducted in order to know whether the rice plants have problems or not in its growth. Application of remote sensing technology, which uses satellite data such as Landsat 8 and others which has a spatial and temporal resolution is high enough for monitoring the condition of crops such as paddy crop in a large area. In this study has been made an algorithm for monitoring rapidly of rice growth condition using Maximum of Vegetation Index (EVI Max). The results showed that the time of early planting can be estimated if known when EVI Max occurred. The value of EVI Max and when it occured can be known by trough spatial analysis of multitemporal EVI Landsat 8 or other medium spatial resolution satellites.
NASA Technical Reports Server (NTRS)
Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert
2015-01-01
Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.
GMES Initial Operations - Network for Earth Observation Research Training (GIONET)
NASA Astrophysics Data System (ADS)
Nicolas-Perea, V.; Balzter, H.
2012-12-01
GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and Lidar Campaigns to Radar-Optical Satellite Data Multi-temporal, multi-frequency SAR for landscape dynamics Coastal zone and freshwater monitoring: Optical and SAR-based EO in support of Integrated Coastal Zone Management Dynamics and conservation ecology of emergent and submerged macrophytes in Lake Balaton using airborne remote sensing Satellite remote sensing of water quality (chlorophyll and suspended sediment) using MODIS and ship-mounted LIDAR Geohazards and emergency response: Methods for detection and monitoring of small scale land surface feature changes in complex crisis situations Monitoring landslide displacements with Radar Interferometry DINSAR/PSI hybrid methodologies for ground-motion monitoring Climate adaptation and emergency response: Earth Observation based analysis of regional impact of climate change induced water stress patterns fuelling human crisis and conflict situations in semi dry climate regimes Satellite Derived Information for Drought Detection and Estimation of the Water Balance GIONET will also cover methodologies including (i) modelling fundamental radiative processes determining the satellite signal, (ii) atmospheric correction and calibration, (iii) processing higher-order data products, (iii) developing information products from satellite data to meet user requirements, and (iv) statistical methods for assessing the quality and accuracy of data products.
NASA Astrophysics Data System (ADS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-11-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.
2016-12-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Technical Reports Server (NTRS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-01-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Klug, P.; Schlenz, F.; Hank, T.; Migdall, S.; Weiß, I.; Danner, M.; Bach, H.; Mauser, W.
2016-08-01
The analysis system developed in the frame of the M4Land project (Model based, Multi-temporal, Multi scale and Multi sensorial retrieval of continuous land management information) has proven its capabilities of classifying crop type and creating products on the intensity of agricultural production using optical remote sensing data from Landsat and RapidEye. In this study, Sentinel-2 data is used for the first time together with Landsat 7 ETM+ and 8 OLI data within the M4Land analysis system to derive continuously crop type and the agricultural intensity of fields in an area north of Munich, Germany and the year 2015.
Remote sensing fire and fuels in southern California
Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen
2011-01-01
Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...
Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.
Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858
Development of multi-mission satellite data systems at the German Remote Sensing Data Centre
NASA Astrophysics Data System (ADS)
Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.
1998-11-01
This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.
NASA Astrophysics Data System (ADS)
Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Faffaele; Silverstro, Paolo Cosmo
2016-08-01
Drought is the most costly natural disasters in China and all over the world. It is very important to evaluate the drought-induced crop yield losses and further improve water use efficiency at regional scale. Firstly, crop biomass was estimated by the combined use of Synthetic Aperture Radar (SAR) and optical remote sensing data. Then the estimated biophysical variable was assimilated into crop growth model (FAO AquaCrop) by the Particle Swarm Optimization (PSO) method from farmland scale to regional scale.At farmland scale, the most important crop parameters of AquaCrop model were determined to reduce the used parameters in assimilation procedure. The Extended Fourier Amplitude Sensitivity Test (EFAST) method was used for assessing the contribution of different crop parameters to model output. Moreover, the AquaCrop model was calibrated using the experiment data in Xiaotangshan, Beijing.At regional scale, spatial application of our methods were carried out and validated in the rural area of Yangling, Shaanxi Province, in 2014. This study will provide guideline to make irrigation decision of balancing of water consumption and yield loss.
NASA Astrophysics Data System (ADS)
Tuia, Devis; Marcos, Diego; Camps-Valls, Gustau
2016-10-01
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon manifold alignment. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through kernelization. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.
Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
Stow, Douglas A.; Hope, Allen; McGuire, David; Verbyla, David; Gamon, John A.; Huemmrich, Fred; Houston, Stan; Racine, Charles H.; Sturm, Matthew; Tape, Ken D.; Hinzman, Larry D.; Yoshikawa, Kenji; Tweedie, Craig E.; Noyle, Brian; Silapaswan, Cherie; Douglas, David C.; Griffith, Brad; Jia, Gensuo; Howard E. Epstein,; Walker, Donald A.; Daeschner, Scott; Petersen, Aaron; Zhou, Liming; Myneni, Ranga B.
2004-01-01
The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land–Air–Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations.The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored.
NASA Astrophysics Data System (ADS)
Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.
2016-11-01
The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.
Criteria for the optimal selection of remote sensing optical images to map event landslides
NASA Astrophysics Data System (ADS)
Fiorucci, Federica; Giordan, Daniele; Santangelo, Michele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto
2018-01-01
Landslides leave discernible signs on the land surface, most of which can be captured in remote sensing images. Trained geomorphologists analyse remote sensing images and map landslides through heuristic interpretation of photographic and morphological characteristics. Despite a wide use of remote sensing images for landslide mapping, no attempt to evaluate how the image characteristics influence landslide identification and mapping exists. This paper presents an experiment to determine the effects of optical image characteristics, such as spatial resolution, spectral content and image type (monoscopic or stereoscopic), on landslide mapping. We considered eight maps of the same landslide in central Italy: (i) six maps obtained through expert heuristic visual interpretation of remote sensing images, (ii) one map through a reconnaissance field survey, and (iii) one map obtained through a real-time kinematic (RTK) differential global positioning system (dGPS) survey, which served as a benchmark. The eight maps were compared pairwise and to a benchmark. The mismatch between each map pair was quantified by the error index, E. Results show that the map closest to the benchmark delineation of the landslide was obtained using the higher resolution image, where the landslide signature was primarily photographical (in the landslide source and transport area). Conversely, where the landslide signature was mainly morphological (in the landslide deposit) the best mapping result was obtained using the stereoscopic images. Albeit conducted on a single landslide, the experiment results are general, and provide useful information to decide on the optimal imagery for the production of event, seasonal and multi-temporal landslide inventory maps.
NASA Astrophysics Data System (ADS)
Lin, S.; Li, J.; Liu, Q.
2018-04-01
Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.
2017-01-01
Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.
NASA Astrophysics Data System (ADS)
Lasaponara, R.
2009-04-01
Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire-induced behavioural trends in vegetation covers , Communications in Nonlinear Science and Numerical Simulation, 13, 2018-2023, 2008 Telesca L., A. Lanorte and R. Lasaponara, 2007. Investigating dynamical trends in burned and unburned vegetation covers by using SPOT-VGT NDVI data. Journal of Geophysics and Engineering, Vol. 4, pp. 128-138, 2007 Telesca L., R. Lasaponara, and A. Lanorte, Intra-annual dynamical persistent mechanisms in Mediterranean ecosystems revealed SPOT-VEGETATION Time Series, Ecological Complexity, 5, 151-156, 2008 Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., and Coppin, P. (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment 108: 357-368. Zhang X., S. Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897 Zhang X., Shobha Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897
Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed ob...
Soil moisture observations using L-, C-, and X-band microwave radiometers
NASA Astrophysics Data System (ADS)
Bolten, John Dennis
The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.
Multiscale and Multitemporal Urban Remote Sensing
NASA Astrophysics Data System (ADS)
Mesev, V.
2012-07-01
The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.
NASA Astrophysics Data System (ADS)
Prat, O. P.; Nelson, B. R.
2013-12-01
We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, surface observations, and models to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets of TMPA 3B42, CMORPH, and PERSIANN. The satellite based QPEs are compared over the concurrent period with the NCEP Stage IV product, which is a near real time product providing precipitation data at the hourly temporal scale gridded at a nominal 4-km spatial resolution. In addition, remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model), which provides gridded precipitation estimates that are used as a baseline for multi-sensor QPE products comparison. The comparisons are performed at the annual, seasonal, monthly, and daily scales with focus on selected river basins (Southeastern US, Pacific Northwest, Great Plains). While, unconditional annual rain rates present a satisfying agreement between all products, results suggest that satellite QPE datasets exhibit important biases in particular at higher rain rates (≥4 mm/day). Conversely, on seasonal scales differences between remotely sensed data and ground surface observations can be greater than 50% and up to 90% for low daily accumulation (≤1 mm/day) such as in the Western US (summer) and Central US (winter). The conditional analysis performed using different daily rainfall accumulation thresholds (from low rainfall intensity to intense precipitation) shows that while intense events measured at the ground are infrequent (around 2% for daily accumulation above 2 inches/day), remotely sensed products displayed differences from 20-50% and up to 90-100%. A discussion on the impact of differing spatial and temporal resolutions with respect to the datasets ability to capture extreme precipitation events is also provided. Furthermore, this work is part of a broader effort to evaluate long-term multi-sensor QPEs in the perspective of developing Climate Data Records (CDRs) for precipitation.
Large scale maps of cropping intensity in Asia from MODIS
NASA Astrophysics Data System (ADS)
Gray, J. M.; Friedl, M. A.; Frolking, S. E.; Ramankutty, N.; Nelson, A.
2013-12-01
Agricultural systems are geographically extensive, have profound significance to society, and also affect regional energy, carbon, and water cycles. Since most suitable lands worldwide have been cultivated, there is growing pressure to increase yields on existing agricultural lands. In tropical and sub-tropical regions, multi-cropping is widely used to increase food production, but regional-to-global information related to multi-cropping practices is poor. Such information is of critical importance to ensure sustainable food production while mitigating against negative environmental impacts associated with agriculture such as contamination and depletion of freshwater resources. Unfortunately, currently available large-area inventory statistics are inadequate because they do not capture important spatial patterns in multi-cropping, and are generally not available in a timeframe that can be used to help manage cropping systems. High temporal resolution sensors such as MODIS provide an excellent source of information for addressing this need. However, relative to studies that document agricultural extensification, systematic assessment of agricultural intensification via multi-cropping has received relatively little attention. The goal of this work is to help close this methodological and information gap by developing methods that use multi-temporal remote sensing to map multi-cropping systems in Asia. Image time series analysis is especially challenging in Asia because atmospheric conditions including clouds and aerosols lead to high frequencies of missing or low quality remote sensing observations, especially during the Asian Monsoon. The methodology that we use for this work builds upon the algorithm used to produce the MODIS Land Cover Dynamics product (MCD12Q2), but employs refined methods to segment, smooth, and gap-fill 8-day EVI time series calculated from MODIS BRDF corrected surface reflectances. Crop cycle segments are identified based on changes in slope for linear regressions estimated for local windows, and constrained by the EVI amplitude and length of crop cycles that are identified. The procedure can be used to map seasonal or long-term average cropping strategies, and to characterize changes in cropping intensity over longer time periods. The datasets produced using this method therefore provide information related to global cropping systems, and more broadly, provide important information that is required to ensure sustainable management of Earth's resources and ensure food security. To test our algorithm, we applied it to time series of MODIS EVI images over Asia from 2000-2012. Our results demonstrate the utility of multi-temporal remote sensing for characterizing multi-cropping practices in some of the most important and intensely agricultural regions in the world. To evaluate our approach, we compared results from MODIS to field-scale survey data at the pixel scale, and agricultural inventory statistics at sub-national scales. We then mapped changes in multi-cropped area in Asia from the early MODIS period (2001-2004) to present (2009-2012), and characterizes the magnitude and location of changes in cropping intensity over the last 12 years. We conclude with a discussion of the challenges, future improvements, and broader impacts of this work.
NASA Astrophysics Data System (ADS)
Chen, Fulong; Masini, Nicola; Yang, Ruixia; Feng, Dexian; Lasaponara, Rosa
2015-04-01
The availability of Very High Resolution (VHR) Synthetic Aperture SAR (SAR) data (Lasaponara and Masini 2013, Tapete et al. 2013), such as TerraSAR-X and Cosmo Sky Med launched in 2007, opened a new era in the spaceborne SAR remote sensing, including archaeology remote sensing previous mainly based on optical data (see for example Lasaponara and Masini 2012, Ciminale et al. 2009, Masini and Lasaponara 2006). They provide powerful tools, based on active sensors from space operating in the microwave frequency range, which are useful to extract information about the contemporary landscape and make possible, in some conditions, to infer changes in the former environment and to detect archaeological remains. Nevertheless, the capability of satellite radar technology in archaeology has so far not been fully assessed. This paper (Chen et al 2015) is a pioneering effort to assess the potential of satellite SAR X-band data in the detection of archaeological marks. We focus on the results obtained from a collaborative contribution jointly carried out by archaeologists and remote sensing experts in order to test the use of COSMO-SkyMed data in different contexts and environmental conditions. The methodological approach we adopted is based on multi-temporal analysis performed to reduce noise and highlight archaeological marks. Results from multi-temporal data analysis, conducted using 40 scenes from COSMO-SkyMed X-band Stripmap data (27 February to 17 October 2013), enable us to detect unknown archaeological crop, soil, and shadow marks representing Luoyang city, dating from the Eastern-Han to Northern-Wei Dynasties. Reference Chen F., Masini N., Yang R., Milillo P., Feng D., Lasaponara R., 2015 A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sens. 2015, 7, 24-50; doi:10.3390/rs70100024. Lasaponara R., Masini N. 2013, Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview. Archaeological Prospection, 20, 71-78, doi: 10.1002/arp.1452 Tapete D., Cigna F., Masini N., Lasaponara R. 2013. Prospection and monitoring of the archaeological heritage of Nasca, Peru, with ENVISAT ASAR, Archaeological Prospection, 20, 133-147, doi: 10.1002/arp.1449. Ciminale M, D Gallo, R Lasaponara, N Masini, 2009 A multiscale approach for reconstructing archaeological landscapes: applications in Northern Apulia (Italy) Archaeological Prospection 16 (3), 143-153 Lasaponara R, N Masini, 2012 Satellite Remote Sensing, A New Tool for Archaeology (Series Remote Sensing and Digital Image) Springer book Masini N, R Lasaponara, 2006, Satellite-based recognition of landscape archaeological features related to ancient human transformation Journal of Geophysics and Engineering 3 (3), 230.
Remote sensing of forest dynamics and land use in Amazonia
NASA Astrophysics Data System (ADS)
Toomey, Michael Paul
The rich, vast Amazonian ecosystem is directly and indirectly threatened by human activities; remote sensing serves as an essential tool for monitoring, understanding and mitigating these threats. A multi-faceted body of work is described here, addressing three major issues that employ and advance remote sensing techniques for the study of Amazonia and other tropical rainforest regions. In Chapter 2, canopy reflectance modeling and satellite observations were used to quantify the effect of epiphylls on remote sensing of humid forests. Modeling simulations demonstrated sensitivity of canopy-level near infrared and green reflectance to epiphylls on leaves. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and vegetation indices which must be accounted for when using optical remote sensing in humid forests. In Chapter 4, 11 years (2000--2010) of MODIS land surface temperature (LST) data covering the entire Amazon basin were used to ascertain the role of heat stress during droughts in 2005 and 2010. Preliminary accuracy assessments showed that LST data provided reasonably accurate estimates of daytime air temperatures (RMSE = 1.45°C; Chapter 3). There were moderate to strong correlations between LST-based air temperature estimates and tower measurements (mean r = 0.64), illustrating a sensitivity to temporal variability. During both droughts, MODIS LST data detected anomalously high daytime and nighttime canopy temperatures throughout drought-affected regions. Multivariate linear models of LST and precipitation anomalies explained 65.1% of the variability in forest biomass losses, as determined from a wide network of forest inventory plots. These results suggest that models should incorporate both heat and moisture to predict drought effects on tropical forests. In Chapter 5, I performed high spatial and temporal resolution modeling of carbon stocks and fluxes in the state of Rondonia, Brazil for the period 1985--2009. Based on this analysis, Rondonia contributed ˜4% of pan-tropical humid forest deforestation emissions while carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Spatial analysis of land cover change demonstrated the necessity for fine resolution carbon monitoring in tropical regions dominated by non-mechanized, smallholder land uses.
NASA Astrophysics Data System (ADS)
Fawzi, N. I.; Husna, V. N.; Helms, J. A.
2018-05-01
Gunung Palung National Park (1,080 km2, 1°3’ – 1°22’ S, 109°54’ – 110°28’ E) was first protected in 1937 and is now one of the largest remaining primary lowland mixed dipterocarp forests on Borneo. To help inform conservation efforts, we measured forest cover change in the protected area using 11 multi-temporal Landsat series images with path/row 121/61. Annual deforestation rates have declined since measurement began in 1989, to around 68 hectares per year in 2011 and 112 hectares per year in 2017. Halting deforestation in this protected area requires to tackle its underlying economic and social causes, and find ways for communities to meet their needs without resorting to forest clearing. Community empowerment, forest rehabilitation, and health care incentives as payment for ecosystem services can help reduce deforestation in Gunung Palung National Park. This becomes a positive trend which we must continue to always work in forest conservation. Future forest monitoring will be dependency with remote sensing analysis and open source remote sensing data such as Landsat and Sentinel data remain an important data source for historical forest change monitoring.
Katharine White; Jennifer Pontius; Paul Schaberg
2014-01-01
Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...
NASA Astrophysics Data System (ADS)
D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco; Pasquariello, Guido
2016-04-01
Flooding is one of the most frequent and expansive natural hazard. High-resolution flood mapping is an essential step in the monitoring and prevention of inundation hazard, both to gain insight into the processes involved in the generation of flooding events, and from the practical point of view of the precise assessment of inundated areas. Remote sensing data are recognized to be useful in this respect, thanks to the high resolution and regular revisit schedules of state-of-the-art satellites, moreover offering a synoptic overview of the extent of flooding. In particular, Synthetic Aperture Radar (SAR) data present several favorable characteristics for flood mapping, such as their relative insensitivity to the meteorological conditions during acquisitions, as well as the possibility of acquiring independently of solar illumination, thanks to the active nature of the radar sensors [1]. However, flood scenarios are typical examples of complex situations in which different factors have to be considered to provide accurate and robust interpretation of the situation on the ground: the presence of many land cover types, each one with a particular signature in presence of flood, requires modelling the behavior of different objects in the scene in order to associate them to flood or no flood conditions [2]. Generally, the fusion of multi-temporal, multi-sensor, multi-resolution and/or multi-platform Earth observation image data, together with other ancillary information, seems to have a key role in the pursuit of a consistent interpretation of complex scenes. In the case of flooding, distance from the river, terrain elevation, hydrologic information or some combination thereof can add useful information to remote sensing data. Suitable methods, able to manage and merge different kind of data, are so particularly needed. In this work, a fully automatic tool, based on Bayesian Networks (BNs) [3] and able to perform data fusion, is presented. It supplies flood maps describing the dynamics of each analysed event, combining time series of images, acquired by different sensors, with ancillary information. Some experiments have been performed by combining multi-temporal SAR intensity images, InSAR coherence and optical data, with geomorphic and other ground information. The tool has been tested on different flood events occurred in the Basilicata region (Italy) during the last years, showing good capabilities of identification of a large area interested by the flood phenomenon, partially overcoming the obstacle constituted by the presence of scattering/coherence classes corresponding to different land cover types, which respond differently to the presence of water and to inundation evolution [1] A. Refice et al, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 7, pp. 2711-2722, 2014. [2] L. Pulvirenti et al., IEEE Trans. Geosci. Rem. Sens., Vol. PP, pp. 1- 13, 2015. [3] A. D'Addabbo et al., "A Bayesian Network for Flood Detection combining SAR Imagery and Ancillary Data," IEEE Trans. Geosci. Rem. Sens., in press.
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Astrophysics Data System (ADS)
Jin, Rui; kang, Jian
2017-04-01
Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.
Remote Sensing Applications to Water Quality Management in Florida
Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...
NASA Astrophysics Data System (ADS)
Sugianto, S.; Heriansyah; Darusman; Rusdi, M.; Karim, A.
2018-04-01
The Indian Ocean Tsunami event on the 26 December 2004 has caused severe damage of some shorelines in Banda Aceh City, Indonesia. Tracing back the impact can be seen using remote sensing data combined with GIS. The approach is incorporated with image processing to analyze the extent of shoreline changes with multi-temporal data after 12 years of tsunami. This study demonstrates multi-resolution and multi-temporal satellite images of QuickBird and IKONOS to demarcate the shoreline of Banda Aceh shoreline from before and after tsunami. The research has demonstrated a significant change to the shoreline in the form of abrasion between 2004 and 2005 from few meters to hundred meters’ change. The change between 2004 and 2011 has not returned to the previous stage of shoreline before the tsunami, considered post tsunami impact. The abrasion occurs between 18.3 to 194.93 meters. Further, the change in 2009-2011 shows slowly change of shoreline of Banda Aceh, considered without impact of tsunami e.g. abrasion caused by ocean waves that erode the coast and on specific areas accretion occurs caused by sediment carried by the river flow into the sea near the shoreline of the study area.
Remote Sensing Data Visualization, Fusion and Analysis via Giovanni
NASA Technical Reports Server (NTRS)
Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.
2007-01-01
We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.
Representation of activity in images using geospatial temporal graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.
Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.
Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
NASA Astrophysics Data System (ADS)
Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien
2018-06-01
In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.
Added-values of high spatiotemporal remote sensing data in crop yield estimation
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.
2017-12-01
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.
Intensive time series data exploitation: the Multi-sensor Evolution Analysis (MEA) platform
NASA Astrophysics Data System (ADS)
Mantovani, Simone; Natali, Stefano; Folegani, Marco; Scremin, Alessandro
2014-05-01
The monitoring of the temporal evolution of natural phenomena must be performed in order to ensure their correct description and to allow improvements in modelling and forecast capabilities. This assumption, that is obvious for ground-based measurements, has not always been true for data collected through space-based platforms: except for geostationary satellites and sensors, that allow providing a very effective monitoring of phenomena with geometric scale from regional to global; smaller phenomena (with characteristic dimension lower than few kilometres) have been monitored with instruments that could collect data only with a time interval in the order of several days; bi-temporal techniques have been the most used ones for years, in order to characterise temporal changes and try identifying specific phenomena. The more the number of flying sensor has grown and their performance improved, the more their capability of monitoring natural phenomena at a smaller geographic scale has grown: we can now count on tenth of years of remotely sensed data, collected by hundreds of sensors that are now accessible from a wide users' community, and the techniques for data processing have to be adapted to move toward a data intensive exploitation. Starting from 2008, the European Space Agency has initiated the development of the Multi-sensor Evolution Analysis (MEA) platform (https://mea.eo.esa.int), whose first aim was to permit the access and exploitation of long term remotely sensed satellite data from different platforms: 15 years of global (A)ATSR data together with 5 years of regional AVNIR-2 data were loaded into the system and were used, through a web-based graphic user interface, for land cover change analysis. The MEA data availability has grown during years integrating multi-disciplinary data that feature spatial and temporal dimensions: so far tenths of Terabytes of data in the land and atmosphere domains are available and can be visualized and exploited, keeping the time dimension as the most relevant one (https://mea.eo.esa.int/data_availability.html). MEA is also used as Climate Data gateway in the framework of the FP7 EarthServer Project. In the present work, principles of the MEA platform are presented, emphasizing the general concept and the methods that have been implemented for data access (including OGC standard data access) and exploitation. In order to show its effectiveness, use cases focused on multi-field and multi-temporal data analysis are shown.
Modeling Atmospheric CO2 Processes to Constrain the Missing Sink
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.
2005-01-01
We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.
Future of Land Remote Sensing: What is Needed
NASA Technical Reports Server (NTRS)
Goward, Samuel N.
2007-01-01
A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do. A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do.
Multi-scale remote sensing of coral reefs
Andréfouët, Serge; Hochberg, E.J.; Chevillon, Christophe; Muller-Karger, Frank E.; Brock, John C.; Hu, Chuanmin
2005-01-01
In this chapter we present how both direct and indirect remote sensing can be integrated to address two major coral reef applications - coral bleaching and assessment of biodiversity. This approach reflects the current non-linear integration of remote sensing for environmental assessment of coral reefs, resulting from a rapid increase in available sensors, processing methods and interdisciplinary collaborations (Andréfouët and Riegl, 2004). Moreover, this approach has greatly benefited from recent collaborations of once independent investigations (e.g., benthic ecology, remote sensing, and numerical modeling).
NASA Astrophysics Data System (ADS)
Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad
2016-04-01
Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Tapete, Deodato; Cigna, Francesca; Perissin, Daniele; Salzer, Jacqueline; Lundgren, Paul; Fielding, Eric; Burgmann, Roland; Biondi, Filippo; Milillo, Giovanni; Serio, Carmine
2016-10-01
Structural health monitoring (SHM) of engineered structures consists of an automated or semi-automated survey system that seeks to assess the structural condition of an anthropogenic structure. The aim of an SHM system is to provide insights into possible induced damage or any inherent signals of deformation affecting the structure in terms of detection, localization, assessment, and prediction. During the last decade there has been a growing interest in using several remote sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR satellites with short repeat time acquisitions permit detailed surveys temporal resolution and millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to the remote sensing of engineered structures. We show how by using multiple-geometry SAR-based products which exploit both phase and amplitude of the SAR signal we can address the main objectives of an SHM system including detection and localization. We highlight that, when external data such as rain or temperature records are available or simple elastic models can be assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment and prediction. We highlight examples of the potential for such imaging capabilities to enable advances in SHM from space, focusing on dams and cultural heritage areas.
Serving Satellite Remote Sensing Data to User Community through the OGC Interoperability Protocols
NASA Astrophysics Data System (ADS)
di, L.; Yang, W.; Bai, Y.
2005-12-01
Remote sensing is one of the major methods for collecting geospatial data. Hugh amount of remote sensing data has been collected by space agencies and private companies around the world. For example, NASA's Earth Observing System (EOS) is generating more than 3 Tb of remote sensing data per day. The data collected by EOS are processed, distributed, archived, and managed by the EOS Data and Information System (EOSDIS). Currently, EOSDIS is managing several petabytes of data. All of those data are not only valuable for global change research, but also useful for local and regional application and decision makings. How to make the data easily accessible to and usable by the user community is one of key issues for realizing the full potential of these valuable datasets. In the past several years, the Open Geospatial Consortium (OGC) has developed several interoperability protocols aiming at making geospatial data easily accessible to and usable by the user community through Internet. The protocols particularly relevant to the discovery, access, and integration of multi-source satellite remote sensing data are the Catalog Service for Web (CS/W) and Web Coverage Services (WCS) Specifications. The OGC CS/W specifies the interfaces, HTTP protocol bindings, and a framework for defining application profiles required to publish and access digital catalogues of metadata for geographic data, services, and related resource information. The OGC WCS specification defines the interfaces between web-based clients and servers for accessing on-line multi-dimensional, multi-temporal geospatial coverage in an interoperable way. Based on definitions by OGC and ISO 19123, coverage data include all remote sensing images as well as gridded model outputs. The Laboratory for Advanced Information Technology and Standards (LAITS), George Mason University, has been working on developing and implementing OGC specifications for better serving NASA Earth science data to the user community for many years. We have developed the NWGISS software package that implements multiple OGC specifications, including OGC WMS, WCS, CS/W, and WFS. As a part of NASA REASON GeoBrain project, the NWGISS WCS and CS/W servers have been extended to provide operational access to NASA EOS data at data pools through OGC protocols and to make both services chainable in the web-service chaining. The extensions in the WCS server include the implementation of WCS 1.0.0 and WCS 1.0.2, and the development of WSDL description of the WCS services. In order to find the on-line EOS data resources, the CS/W server is extended at the backend to search metadata in NASA ECHO. This presentation reports those extensions and discuss lessons-learned on the implementation. It also discusses the advantage, disadvantages, and future improvement of OGC specifications, particularly the WCS.
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
NASA Technical Reports Server (NTRS)
Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.
2013-01-01
The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.
Monitoring of rock glacier dynamics by multi-temporal UAV images
NASA Astrophysics Data System (ADS)
Morra di Cella, Umberto; Pogliotti, Paolo; Diotri, Fabrizio; Cremonese, Edoardo; Filippa, Gianluca; Galvagno, Marta
2015-04-01
During the last years several steps forward have been made in the comprehension of rock glaciers dynamics mainly for their potential evolution into rapid mass movements phenomena. Monitoring the surface movement of creeping mountain permafrost is important for understanding the potential effect of ongoing climate change on such a landforms. This study presents the reconstruction of two years of surface movements and DEM changes obtained by multi-temporal analysis of UAV images (provided by SenseFly Swinglet CAM drone). The movement rate obtained by photogrammetry are compared to those obtained by differential GNSS repeated campaigns on almost fifty points distributed on the rock glacier. Results reveals a very good agreements between both rates velocities obtained by the two methods and vertical displacements on fixed points. Strengths, weaknesses and shrewdness of this methods will be discussed. Such a method is very promising mainly for remote regions with difficult access.
Spatial and temporal remote sensing data fusion for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...
Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring
NASA Astrophysics Data System (ADS)
Brodsky, Lukas; Kodesova, Radka; Kodes, Vit
2010-05-01
The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Remote Sensing Information Gateway
Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.
NASA Astrophysics Data System (ADS)
Racoviteanu, A.
2014-12-01
High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m on average over the last four decades, similar to other studies in the same climatic area. However, at small scales, the behavior of glaciers is highly heterogenous, with contrasting patterns of thickening glacier termini versus retreating nad thinning glacier tongues.
Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series
NASA Astrophysics Data System (ADS)
Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik
2016-06-01
Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model biophysical parameters.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Development of Decision Support System for Remote Monitoring of PIP Corn
The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...
2017-01-07
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Identification of saline soils with multi-year remote sensing of crop yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobell, D; Ortiz-Monasterio, I; Gurrola, F C
2006-10-17
Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less
NASA Astrophysics Data System (ADS)
Marin, Carlo; Callegari, Mattia; Notarnicola, Claudia
2016-10-01
Snow is one of the most relevant natural water resources present in nature. It stores water in winter and releases it in spring during the melting season. Monitoring snow cover and its variability is thus of great importance for a proactive management of water-resources. Of particular interest is the identification of snowmelt processes, which could significantly support water administration, flood prediction and prevention. In the past years, remote sensing has demonstrated to be an essential tool for providing accurate inputs to hydrological models concerning the spatial and temporal variability of snow. Even though the analysis of snow pack can be conducted in the visible, near-infrared and short-wave infrared spectrum, the presence of clouds during the melting season, which may be pervasive in some parts of the World (e.g., polar regions), renders impossible the regular acquisition of information needed for the operational purposes. Therefore, the use of the microwave sensors, which signal can penetrate the clouds, can be an asset for the detection of snow proprieties. In particular, the SAR images have demonstrated to be effective and robust measurements to identify the wet snow. Among the several methods presented in the literature, the best results in wet snow mapping have been achieved by the bi-temporal change detection approach proposed by Nagler and Rott [1], or its slight improvements presented afterwards (e.g., [2]). Nonetheless, with the introduction of the Sentinel-1 by ESA, which provides free-of-charge SAR images every 6 days over the same geographical area with a resolution of 20m, the scientists have the opportunity to better investigate and improve the state-of-the-art methods for wet snow detection. In this work, we propose a novel method based on a supervised learning approach able to exploit both the experience of the state-of-the-art algorithms and the high multi-temporal information provided by the Sentinel-1 data. In detail, this is done by training the proposed method with examples extracted by [1] and refine this information by deriving additional training for the complex cases where the state-of-the-art algorithm fails. In addition, the multi-temporal information is fully exploited by modelling it as a series of statistical moments. Indeed, with a proper time sampling, statistical moments can describe the shape of the probability density function (pdf) of the backscattering time series ([3-4]). Given the description of the shape of the multi-temporal VV and VH backscattering pdfs, it is not necessary to explicitly identify which time instants in the time series are to be assigned to the reference image as done in the bi-temporal approach. This information is implicit in the shape of the pdf and it is used in the training procedure for solving the wet snow detection problem based on the available training samples. The proposed approach is designed to work in an alpine environment and it is validated considering ground truth measurements provided by automatic weather stations that record snow depth and snow temperature over 10 sites deployed in the South Tyrol region in northern Italy. References: [1] Nagler, T.; Rott, H., "Retrieval of wet snow by means of multitemporal SAR data," in Geoscience and Remote Sensing, IEEE Transactions on , vol.38, no.2, pp.754-765, Mar 2000. [2] Storvold, R., Malnes, E., and Lauknes, I., "Using ENVISAT ASAR wideswath data to retrieve snow covered area in mountainous regions", EARSeL eProceedings 4, 2/2006 [3] Inglada, J and Mercier, G., "A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis," in IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 5, pp. 1432-1445, May 2007. [4] Bujor, F., Trouve, E., Valet, L., Nicolas J. M., and Rudant, J. P., "Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 10, pp. 2073-2084, Oct. 2004.
Reducing uncertainty on satellite image classification through spatiotemporal reasoning
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Nikolakaki, Natassa; Psillakis, Periklis; Miliaresis, George; Xanthakis, Michail
2014-05-01
The natural habitat constantly endures both inherent natural and human-induced influences. Remote sensing has been providing monitoring oriented solutions regarding the natural Earth surface, by offering a series of tools and methodologies which contribute to prudent environmental management. Processing and analysis of multi-temporal satellite images for the observation of the land changes include often classification and change-detection techniques. These error prone procedures are influenced mainly by the distinctive characteristics of the study areas, the remote sensing systems limitations and the image analysis processes. The present study takes advantage of the temporal continuity of multi-temporal classified images, in order to reduce classification uncertainty, based on reasoning rules. More specifically, pixel groups that temporally oscillate between classes are liable to misclassification or indicate problematic areas. On the other hand, constant pixel group growth indicates a pressure prone area. Computational tools are developed in order to disclose the alterations in land use dynamics and offer a spatial reference to the pressures that land use classes endure and impose between them. Moreover, by revealing areas that are susceptible to misclassification, we propose specific target site selection for training during the process of supervised classification. The underlying objective is to contribute to the understanding and analysis of anthropogenic and environmental factors that influence land use changes. The developed algorithms have been tested upon Landsat satellite image time series, depicting the National Park of Ainos in Kefallinia, Greece, where the unique in the world Abies cephalonica grows. Along with the minor changes and pressures indicated in the test area due to harvesting and other human interventions, the developed algorithms successfully captured fire incidents that have been historically confirmed. Overall, the results have shown that the use of the suggested procedures can contribute to the reduction of the classification uncertainty and support the existing knowledge regarding the pressure among land-use changes.
NASA Astrophysics Data System (ADS)
Abdikan, S.; Sekertekin, A.; Ustunern, M.; Balik Sanli, F.; Nasirzadehdizaji, R.
2018-04-01
Temporal monitoring of crop types is essential for the sustainable management of agricultural activities on both national and global levels. As a practical and efficient tool, remote sensing is widely used in such applications. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) imagery was utilized to investigate the performance of the sensor backscatter image on crop monitoring. Multi-temporal C-band VV and VH polarized SAR images were acquired simultaneously by in-situ measurements which was conducted at Konya basin, central Anatolia Turkey. During the measurements, plant height of maize plant was collected and relationship between backscatter values and plant height was analysed. The maize growth development was described under Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH). Under BBCH stages, the test site was classified as leaf development, stem elongation, heading and flowering in general. The correlation coefficient values indicated high correlation for both polarimetry during the early stages of the plant, while late stages indicated lower values in both polarimetry. As a last step, multi-temporal coverage of crop fields was analysed to map seasonal land use. To this aim, object based image classification was applied following image segmentation. About 80 % accuracies of land use maps were created in this experiment. As preliminary results, it is concluded that Sentinel-1 data provides beneficial information about plant growth. Dual-polarized Sentinel-1 data has high potential for multi-temporal analyses for agriculture monitoring and reliable mapping.
Armaş, Iuliana; Mendes, Diana A.; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana
2017-01-01
The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992–2010 from ERS-1/-2 and ENVISAT, and 2011–2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements. PMID:28252103
Armaş, Iuliana; Mendes, Diana A; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana
2017-03-02
The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992-2010 from ERS-1/-2 and ENVISAT, and 2011-2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements.
Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery
NASA Astrophysics Data System (ADS)
Zhao, Yuanyuan; Feng, Duole; Jayaraman, Durai; Belay, Daniel; Sebrala, Heiru; Ngugi, John; Maina, Eunice; Akombo, Rose; Otuoma, John; Mutyaba, Joseph; Kissa, Sam; Qi, Shuhua; Assefa, Fiker; Oduor, Nellie Mugure; Ndawula, Andrew Kalema; Li, Yanxia; Gong, Peng
2018-04-01
Mapping the spatial distribution of bamboo in East Africa is necessary for biodiversity conservation, resource management and policy making for rural poverty reduction. In this study, we produced a contemporary bamboo cover map of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery series at 30 m spatial resolution. This is the first bamboo map generated using remotely sensed data for these three East African countries that possess most of the African bamboo resource. The producer's and user's accuracies of bamboos are 79.2% and 84.0%, respectively. The hotspots with large amounts of bamboo were identified and the area of bamboo coverage for each region was estimated according to the map. The seasonal growth status of two typical bamboo zones (one highland bamboo and one lowland bamboo) were analyzed and the multi-temporal imagery proved to be useful in differentiating bamboo from other vegetation classes. The images acquired in September to February are less contaminated by clouds and shadows, and the image series cover the dying back process of lowland bamboo, which were helpful for bamboo identification in East Africa.
Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall
2008-01-01
The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify a variety of plant phenomena and improve monitoring capabilities.
Glacier changes in the Nanga Parbat Himalayas: a re-photographic survey between the 1930s and now
NASA Astrophysics Data System (ADS)
Schmidt, S.; Nüsser, M.
2009-04-01
In contrast to the relatively well investigated glacier and landscape changes in the mountains of Europe and North America, very little investigations and documentations using repeat photography have been undertaken in the Himalayas and other high mountain regions of Asia. The present study seeks to investigate glacier and landscape changes in the Nanga Parbat region (NW-Himalaya) using a multi-temporal and multi-spatial approach which is based on terrestrial repeat photography and remote sensing data. A comprehensive collection of historical landscape photographs, taken by members of the German Himalaya expeditions 1934 and 1937, forms a valuable baseline data set for the area. Recent fieldwork made it possible to repeat a large number of these photographs viewpoints identical to the earlier ones, and the direct comparisons illustrate glacier dynamics and landscape changes over a span of seventy years. Furthermore, in order to fill the temporal gap and to analyze temporal and spatial dynamics of glaciers over the last 40 years we use different satellite sensors (Corona, Aster, Landsat, Spot, QuickBird). First investigations were carried out at the Raikot Glacier, which is located at the northern declivity of the Nanga Parbat, the ninth highest peak on earth. The multi-temporal comparison detects only small down-wasting rates of the Raikot Glacier over the last 70 years and a retreat of the terminus of about 250 m which is characterized by great fluctuations. Based on this multi-temporal and multi-data approach, we will detect and analyze glacier and landscape changes in the whole Nanga Parbat region.
NASA Astrophysics Data System (ADS)
Nagol, J. R.; Chung, C.; Dempewolf, J.; Maurice, S.; Mbungu, W.; Tumbo, S.
2015-12-01
Timely mapping and monitoring of crops like Maize, an important food security crop in Tanzania, can facilitate timely response by government and non-government organizations to food shortage or surplus conditions. Small UAVs can play an important role in linking the spaceborne remote sensing data and ground based measurement to improve the calibration and validation of satellite based estimates of in-season crop metrics. In Tanzania most of the growing season is often obscured by clouds. UAV data, if collected within a stratified statistical sampling framework, can also be used to directly in lieu of spaceborne data to infer mid-season yield estimates at regional scales.Here we present an object based approach to estimate crop metrics like crop type, area, and height using multi-temporal UAV based imagery. The methods were tested at three 1km2 plots in Kilosa, Njombe, and Same districts in Tanzania. At these sites both ground based and UAV based data were collected on a monthly time-step during the year 2015 growing season. SenseFly eBee drone with RGB and NIR-R-G camera was used to collect data. Crop type classification accuracies of above 85% were easily achieved.
Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs
NASA Astrophysics Data System (ADS)
Aksoy, A.; Yuzugullu, O.
2017-12-01
Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.
A review of ultra-short pulse lasers for military remote sensing and rangefinding
NASA Astrophysics Data System (ADS)
Lamb, Robert A.
2009-09-01
Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.
Using plant canopy temperature to improve irrigated crop management
USDA-ARS?s Scientific Manuscript database
Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...
Watershed-scale land-use mapping with satellite imagery
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing data has many advantages compared with other data sources, such as field methods and aerial photography, for land cover classification. In particular,it is useful in evaluating temporal and spatial effects. In addition, remote sensing can offer a cost-effective means of prov...
NASA Astrophysics Data System (ADS)
Sah, Shagan
An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data. We concluded that this approach is capable of generating land cover maps of acceptable accuracy and rapid turnaround, which in turn can yield reliable estimates of crop acreage of a region. The final algorithm is part of an automated software tool, which can be used by emergency response personnel to generate a nuclear ingestion pathway information product within a few hours of data collection.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi
2017-09-01
This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.
Remote sensing of forest insect disturbances: Current state and future directions
NASA Astrophysics Data System (ADS)
Senf, Cornelius; Seidl, Rupert; Hostert, Patrick
2017-08-01
Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.
Remote sensing of forest insect disturbances: Current state and future directions.
Senf, Cornelius; Seidl, Rupert; Hostert, Patrick
2017-08-01
Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
An evaluation of a UAV guidance system with consumer grade GPS receivers
NASA Astrophysics Data System (ADS)
Rosenberg, Abigail Stella
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.
NASA Astrophysics Data System (ADS)
Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos
2015-04-01
Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will briefly describe the current elements of our observational capabilities that enable the aforementioned multi-component assessment strategy by the Unmanned Systems Research Laboratory of the Cyprus Institute. This strategy is applied and utilized in the context of the EU-funded BACCHUS project, aside from other tasks. The ongoing and planned observations are particularly relevant as they are carried out in the Eastern Mediterranean and the Middle East, a region characterized by increasing anthropogenic pressures and ongoing and anticipated severe climatic changes and their impacts.
USDA-ARS?s Scientific Manuscript database
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...
NASA Astrophysics Data System (ADS)
Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo
2008-11-01
This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites
Karl, Jason W.
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches. PMID:28414731
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
Maynard, Jonathan J; Karl, Jason W
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.
Leong, Misha; Roderick, George K
2015-01-01
Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.
NASA Astrophysics Data System (ADS)
Li, J.; Wen, G.; Li, D.
2018-04-01
Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.
NASA Astrophysics Data System (ADS)
Jia, S.; Kim, S. H.; Nghiem, S. V.; Kafatos, M.
2017-12-01
Live fuel moisture (LFM) is the water content of live herbaceous plants expressed as a percentage of the oven-dry weight of plant. It is a critical parameter in fire ignition in Mediterranean climate and routinely measured in sites selected by fire agencies across the U.S. Vegetation growing cycle, meteorological metrics, soil type, and topography all contribute to the seasonal and inter-annual variation of LFM, and therefore, the risk of wildfire. The optical remote sensing-based vegetation indices (VIs) have been used to estimate the LFM. Comparing to the VIs, microwave remote sensing products have advantages like less saturation effect in greenness and representing the water content of the vegetation cover. In this study, we established three models to evaluate the predictability of LFM in Southern California using MODIS NDVI, vegetation temperature condition index (VTCI) from downscaled Soil Moisture Active Passive (SMAP) products, and vegetation optical depth (VOD) derived by Land Parameter Retrieval Model. Other ancillary variables, such as topographic factors (aspects and slope) and meteorological metrics (air temperature, precipitation, and relative humidity), are also considered in the models. The model results revealed an improvement of LFM estimation from SMAP products and VOD, despite the uncertainties introduced in the downscaling and parameter retrieval. The estimation of LFM using remote sensing data can provide an assessment of wildfire danger better than current methods using NDVI-based growing seasonal index. Future study will test the VOD estimation from SMAP data using the multi-temporal dual channel algorithm (MT-DCA) and extend the LFM modeling to a regional scale.
Linking remote sensing, land cover and disease.
Curran, P J; Atkinson, P M; Foody, G M; Milton, E J
2000-01-01
Land cover is a critical variable in epidemiology and can be characterized remotely. A framework is used to describe both the links between land cover and radiation recorded in a remotely sensed image, and the links between land cover and the disease carried by vectors. The framework is then used to explore the issues involved when moving from remotely sensed imagery to land cover and then to vector density/disease risk. This exploration highlights the role of land cover; the need to develop a sound knowledge of each link in the predictive sequence; the problematic mismatch between the spatial units of the remotely sensed and epidemiological data and the challenges and opportunities posed by adding a temporal mismatch between the remotely sensed and epidemiological data. The paper concludes with a call for both greater understanding of the physical components of the proposed framework and the utilization of optimized statistical tools as prerequisites to progress in this field.
Spatial and Temporal Scaling of Thermal Infrared Remote Sensing Data
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Goel, Narendra S.
1995-01-01
Although remote sensing has a central role to play in the acquisition of synoptic data obtained at multiple spatial and temporal scales to facilitate our understanding of local and regional processes as they influence the global climate, the use of thermal infrared (TIR) remote sensing data in this capacity has received only minimal attention. This results from some fundamental challenges that are associated with employing TIR data collected at different space and time scales, either with the same or different sensing systems, and also from other problems that arise in applying a multiple scaled approach to the measurement of surface temperatures. In this paper, we describe some of the more important problems associated with using TIR remote sensing data obtained at different spatial and temporal scales, examine why these problems appear as impediments to using multiple scaled TIR data, and provide some suggestions for future research activities that may address these problems. We elucidate the fundamental concept of scale as it relates to remote sensing and explore how space and time relationships affect TIR data from a problem-dependency perspective. We also describe how linearity and non-linearity observation versus parameter relationships affect the quantitative analysis of TIR data. Some insight is given on how the atmosphere between target and sensor influences the accurate measurement of surface temperatures and how these effects will be compounded in analyzing multiple scaled TIR data. Last, we describe some of the challenges in modeling TIR data obtained at different space and time scales and discuss how multiple scaled TIR data can be used to provide new and important information for measuring and modeling land-atmosphere energy balance processes.
Using NASA UAVSAR Datasets to Link Soil Moisture to Crop Conditions
NASA Astrophysics Data System (ADS)
Davitt, A. W. D.; McDonald, K. C.; Azarderakhsh, M.; Winter, J.
2015-12-01
California and The Central Valley are experiencing one of that region's worst, persistent droughts, which represents the continuation of a prolonged drought that started in the early 2000's. Due to the continued drought, many agricultural regions in The Central Valley have been experiencing water shortages, negatively impacting agricultural production and the socio-economics of the region. Due to these impacts, there has been an increased incentive to find new ways to conserve water for use in irrigation. Recent advances in remote sensing techniques provide the ability for end users to better understand field conditions so they may make more informed decisions on irrigation timing and amounts. However, a good understanding of soil moisture and its role in crop health and yield is lacking to support informed water management decisions. Though known to be important, a robust understanding of the role of the spatio-temporal patterns in soil moisture linked to crop health is lacking. Remote sensing platforms such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provide the capacity to obtain within-field measurements to estimate within-field and field-to-field variability in soil moisture. UAVSAR radar images acquired from 2010 to 2014 for Yolo County, California are being examined to determine the suitability of high resolution (field scale) multi-temporal L-band radar backscatter imagery for soil moisture assessment and crop conditions through the growing season. By using such data and linking to in-situ meteorology measurements, modeling (MIMICS), and other remote sensing derived datasets (Sentinel, Landsat, MODIS, and TOPS-SIMS), an integrated monitoring system can potentially support the assessment of agricultural field conditions. This allows growers to optimize the use of limited water supplies through informed water management practices, potentially improving crop conditions and yield in a water stressed region.
Coskun, H Gonca; Alganci, Ugur; Usta, Gokce
2008-11-13
Accurate and timely information about land use and land cover (LULC) and its changes in urban areas are crucial for urban land management decision-making, ecosystem monitoring and urban planning. Also, monitoring and representation of urban sprawl and its effects on the LULC patterns and hydrological processes of an urbanized watershed is an essential part of water resource planning and management. This paper presents an image analysis study using multi temporal digital satellite imagery of LULC and changes in the Kucukcekmece Watershed (Metropolitan Istanbul, Turkey) from 1992 to 2006. The Kucukcekmece Basin includes portions of the Kucukcekmece District within the municipality of Istanbul so it faces a dramatic urbanization. An urban monitoring analysis approach was first used to implement a land cover classification. A change detection method controlled with ground truth information was then used to determine changes in land cover. During the study period, the variability and magnitude of hydrological components based on land-use patterns were cumulatively influenced by urban sprawl in the watershed. The proposed approach, which uses a combination of Remote Sensing (RS) and Geographical Information System (GIS) techniques, is an effective tool that enhances land-use monitoring, planning, and management of urbanized watersheds.
Coskun, H. Gonca; Alganci, Ugur; Usta, Gokce
2008-01-01
Accurate and timely information about land use and land cover (LULC) and its changes in urban areas are crucial for urban land management decision-making, ecosystem monitoring and urban planning. Also, monitoring and representation of urban sprawl and its effects on the LULC patterns and hydrological processes of an urbanized watershed is an essential part of water resource planning and management. This paper presents an image analysis study using multi temporal digital satellite imagery of LULC and changes in the Kucukcekmece Watershed (Metropolitan Istanbul, Turkey) from 1992 to 2006. The Kucukcekmece Basin includes portions of the Kucukcekmece District within the municipality of Istanbul so it faces a dramatic urbanization. An urban monitoring analysis approach was first used to implement a land cover classification. A change detection method controlled with ground truth information was then used to determine changes in land cover. During the study period, the variability and magnitude of hydrological components based on land-use patterns were cumulatively influenced by urban sprawl in the watershed. The proposed approach, which uses a combination of Remote Sensing (RS) and Geographical Information System (GIS) techniques, is an effective tool that enhances land-use monitoring, planning, and management of urbanized watersheds. PMID:27873924
NASA Astrophysics Data System (ADS)
Waldhoff, Guido; Lussem, Ulrike; Bareth, Georg
2017-09-01
Spatial land use information is one of the key input parameters for regional agro-ecosystem modeling. Furthermore, to assess the crop-specific management in a spatio-temporal context accurately, parcel-related crop rotation information is additionally needed. Such data is scarcely available for a regional scale, so that only modeled crop rotations can be incorporated instead. However, the spectrum of the occurring multiannual land use patterns on arable land remains unknown. Thus, this contribution focuses on the mapping of the actually practiced crop rotations in the Rur catchment, located in the western part of Germany. We addressed this by combining multitemporal multispectral remote sensing data, ancillary information and expert-knowledge on crop phenology in a GIS-based Multi-Data Approach (MDA). At first, a methodology for the enhanced differentiation of the major crop types on an annual basis was developed. Key aspects are (i) the usage of physical block data to separate arable land from other land use types, (ii) the classification of remote sensing scenes of specific time periods, which are most favorable for the differentiation of certain crop types, and (iii) the combination of the multitemporal classification results in a sequential analysis strategy. Annual crop maps of eight consecutive years (2008-2015) were combined to a crop sequence dataset to have a profound data basis for the mapping of crop rotations. In most years, the remote sensing data basis was highly fragmented. Nevertheless, our method enabled satisfying crop mapping results. As an example for the annual crop mapping workflow, the procedure and the result of 2015 are illustrated. For the generation of the crop sequence dataset, the eight annual crop maps were geometrically smoothened and integrated into a single vector data layer. The resulting dataset informs about the occurring crop sequence for individual areas on arable land, so that crop rotation schemes can be derived. The resulting dataset reveals that the spectrum of the practiced crop rotations is extremely heterogeneous and contains a large amount of crop sequences, which strongly diverge from model crop rotations. Consequently, the integration of remote sensing-based crop rotation data can considerably reduce uncertainties regarding the management in regional agro-ecosystem modeling. Finally, the developed methods and the results are discussed in detail.
NASA Astrophysics Data System (ADS)
Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita
2017-04-01
Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation along with its properties. Plant species recovery seems to be controlled by the local lithology as it was found weaker in plots overlying limestones and marbles, comparing to that observed over schists, even for the same species. In conclusion, post-fire vegetation recovery seems to be a complex process controlled not only from species biology, but also from the geological features.
NASA Astrophysics Data System (ADS)
Liu, C.; Li, W.; Lu, P.; Sang, K.; Hong, Y.; Li, R.
2012-07-01
Under the circumstances of global climate change, nowadays landslide occurs in China more frequently than ever before. The landslide hazard and risk assessment remains an international focus on disaster prevention and mitigation. It is also an important approach for compiling and quantitatively characterizing landslide damages. By integrating empirical models for landslide disasters, and through multi-temporal ground data and remote sensing data, this paper will perform a landslide susceptibility assessment throughout China. A landslide susceptibility (LS) map will then be produced, which can be used for disaster evaluation, and provide basis for analyzing China's major landslide-affected regions. Firstly, based on previous research of landslide susceptibility assessment, this paper collects and analyzes the historical landslide event data (location, quantity and distribution) of past sixty years in China as a reference for late-stage studies. Secondly, this paper will make use of regional GIS data of the whole country provided by the National Geomatics Centre and China Meteorological Administration, including regional precipitation data, and satellite remote sensing data such as from TRMM and MODIS. By referring to historical landslide data of past sixty years, it is possible to develop models for assessing LS, including producing empirical models for prediction, and discovering both static and dynamic key factors, such as topography and landforms (elevation, curvature and slope), geologic conditions (lithology of the strata), soil type, vegetation cover, hydrological conditions (flow distribution). In addition, by analyzing historical data and combining empirical models, it is possible to synthesize a regional statistical model and perform a LS assessment. Finally, based on the 1km×1km grid, the LS map is then produced by ANN learning and multiplying the weighted factor layers. The validation is performed with reference to the frequency and distribution of historical data. This research reveals the spatiotemporal distribution of landslide disasters in China. The study develops a complete algorithm of data collecting, processing, modelling and synthesizing, which fulfils the assessment of landslide susceptibility, and provides theoretical basis for prediction and forecast of landslide disasters throughout China.
NASA Astrophysics Data System (ADS)
Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.
2013-05-01
Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual interpretation of the geological structures. The study shows that GIS and RS have great application potential in the geothermal exploration in volcanic areas and will promote the exploration of renewable energy resources of great potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...
2015-07-08
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
Zhang, Dianjun; Zhou, Guoqing
2016-01-01
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.
Zhang, Dianjun; Zhou, Guoqing
2016-08-17
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.
Multi-decadal Arctic sea ice roughness.
NASA Astrophysics Data System (ADS)
Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.
2017-12-01
The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.
USDA-ARS?s Scientific Manuscript database
With the rapid development of small imaging sensors and unmanned aerial vehicles (UAVs), remote sensing is undergoing a revolution with greatly increased spatial and temporal resolutions. While more relevant detail becomes available, it is a challenge to analyze the large number of images to extract...
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...
Remote sensing for restoration planning: how the big picture can inform stakeholders
Susan Cordell; Erin J. Questad; Gregory P. Asner; Kealoha M. Kinney; Jarrod M. Thaxton; Amanda Uowolo; Sam Brooks; Mark W. Chynoweth
2016-01-01
The use of remote sensing in ecosystem management has transformed how land managers, practitioners, and policymakers evaluate ecosystem loss, gain, and change at multiple spatial and temporal scales. Less developed is the use of these spatial tools for planning, implementing, and evaluating ecosystem restoration projects and especially so in multifunctional...
Analysis of multispectral signatures and investigation of multi-aspect remote sensing techniques
NASA Technical Reports Server (NTRS)
Malila, W. A.; Hieber, R. H.; Sarno, J. E.
1974-01-01
Two major aspects of remote sensing with multispectral scanners (MSS) are investigated. The first, multispectral signature analysis, includes the effects on classification performance of systematic variations found in the average signals received from various ground covers as well as the prediction of these variations with theoretical models of physical processes. The foremost effects studied are those associated with the time of day airborne MSS data are collected. Six data collection runs made over the same flight line in a period of five hours are analyzed, it is found that the time span significantly affects classification performance. Variations associated with scan angle also are studied. The second major topic of discussion is multi-aspect remote sensing, a new concept in remote sensing with scanners. Here, data are collected on multiple passes by a scanner that can be tilted to scan forward of the aircraft at different angles on different passes. The use of such spatially registered data to achieve improved classification of agricultural scenes is investigated and found promising. Also considered are the possibilities of extracting from multi-aspect data, information on the condition of corn canopies and the stand characteristics of forests.
NASA Astrophysics Data System (ADS)
Archer, Reginald S.
This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics
S.I.I.A for monitoring crop evolution and anomaly detection in Andalusia by remote sensing
NASA Astrophysics Data System (ADS)
Rodriguez Perez, Antonio Jose; Louakfaoui, El Mostafa; Munoz Rastrero, Antonio; Rubio Perez, Luis Alberto; de Pablos Epalza, Carmen
2004-02-01
A new remote sensing application was developed and incorporated to the Agrarian Integrated Information System (S.I.I.A), project which is involved on integrating the regional farming databases from a geographical point of view, adding new values and uses to the original information. The project is supported by the Studies and Statistical Service, Regional Government Ministry of Agriculture and Fisheries (CAP). The process integrates NDVI values from daily NOAA-AVHRR and monthly IRS-WIFS images, and crop classes location maps. Agrarian local information and meteorological information is being included in the working process to produce a synergistic effect. An updated crop-growing evaluation state is obtained by 10-days periods, crop class, sensor type (including data fusion) and administrative geographical borders. Last ten years crop database (1992-2002) has been organized according to these variables. Crop class database can be accessed by an application which helps users on the crop statistical analysis. Multi-temporal and multi-geographical comparative analysis can be done by the user, not only for a year but also for a historical point of view. Moreover, real time crop anomalies can be detected and analyzed. Most of the output products will be available on Internet in the near future by a on-line application.
Geodetic mass balance of key glaciers across High Mountain Asia: a multi-decadal survey
NASA Astrophysics Data System (ADS)
Maurer, J. M.; Schaefer, J. M.; Rupper, S.; Corley, A. D.
2016-12-01
Glaciers in High Mountain Asia (HMA) supply seasonal meltwater for large populations, yet field observations are scarce and glacier sensitivities are poorly understood. In order to link complex atmospheric driving factors with heterogeneous glacier responses, detailed remote sensing observations of past changes in ice volume are needed. Here we compile a spatially and temporally extensive satellite-based remote sensing record to quantify multi-decadal geodetic mass balance of large mountain glaciers across key regions in HMA, including the Pamir, Himachal Pradesh, Uttarakhand, Nepal, Sikkim, and Bhutan regions. By utilizing declassified spy satellite imagery from the 1970's, ASTER scenes spanning 2000-present, and the ALOS global digital surface model, a methodologically homogenous assessment of regional and individual glacier responses to climate change over several decades is obtained. Although gaps due to low radiometric contrast result in significant uncertainties, the consistent approach across the HMA provides a useful comparison of relative geodetic changes between climatically diverse regions. Various patterns of ice loss are observed, including dynamic retreat of clean-ice glaciers and downwasting of debris-covered glaciers. In particular, we highlight the pronounced thinning and retreat of glaciers undergoing calving into proglacial lakes, which has important implications regarding ongoing and future ice loss of HMA glaciers.
Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas
NASA Astrophysics Data System (ADS)
Sun, X. F.; Lin, X. G.
2017-09-01
As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.
Diverse Planning for UAV Control and Remote Sensing
Tožička, Jan; Komenda, Antonín
2016-01-01
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831
Diverse Planning for UAV Control and Remote Sensing.
Tožička, Jan; Komenda, Antonín
2016-12-21
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.
Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.
1999-01-01
Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.
Airborne remote sensing to detect greenbug stress to wheat
USDA-ARS?s Scientific Manuscript database
Vegetation indices calculated from the quantity of reflected electromagnetic radiation have been used to quantify levels of stress to plants. Greenbugs cause stress to wheat plants and therefore multi-spectral remote sensing may be useful for detecting greenbug infested wheat fields. The objective...
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
A Citizen Science Campaign to Validate Snow Remote-Sensing Products
NASA Astrophysics Data System (ADS)
Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.
2017-12-01
The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of this project we will focus on expanding our group of participants to a larger geographic area in Alaska, further develop our partnership with Mountain Hub, and build relationships in new communities as we conduct a photogrammetric survey in a different region next year.
Optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-03-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR.
Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun
2013-01-01
Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha(-1). Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.
Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR
Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun
2013-01-01
Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha−1. Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly. PMID:23967112
NASA Astrophysics Data System (ADS)
An, L.; Zhang, J.; Gong, L.
2018-04-01
Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.
Arctic Tundra Greening and Browning at Circumpolar and Regional Scales
NASA Astrophysics Data System (ADS)
Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.
2017-12-01
Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or regional cooling, or changes in the snow regime (e.g. depth, timing of melt). The spatio-temporal dynamics of tundra vegetation are only now beginning to get serious attention from the scientific community and the continual use of remote sensing data across spatial scales allows us to monitor these dynamics and elucidate their controls.
Using GPS Reflections for Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Mickler, David
2000-01-01
GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.
2016-08-18
multi- sensor remote sensing approach to describe the distribution of oil from the DWH spill. They used airborne and satellite , multi- and hyperspectral...Experimental Sensors e.g., Acoustic and Nuclear Magnetic Resonance (NMR) (Fingas and Brown, 2012; Puestow et al., 2013). These are further...ship, aerial - aircraft, aerostat or UAV, or satellite ), among other classification criteria. A comprehensive review of sensor categories employed
USDA-ARS?s Scientific Manuscript database
Remotely sensed and in-situ data were used to investigate dynamics of root zone soil moisture and evapotranspiration (ET) at four Mesonet stations in north-central Oklahoma over an 11-year period (2000-2010). Two moisture deficit indicators based on soil matric potential had spatial and temporal pat...
Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang
2016-10-01
By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.
USDA-ARS?s Scientific Manuscript database
In this research, we present a novel technique to monitor cyanobacterial algal bloom using remote sensing measurements. We have used a multi-band quasi analytical algorithm that determines phytoplankton absorption coefficients, aF('), from above-surface remote sensing reflectance, Rrs('). In situ da...
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Boldt, J.; Wilson, J. P.; Yee, J. H.; Stoffler, R.
2017-12-01
The multi-spectral STereo Atmospheric Remote Sensing (STARS) concept has the objective to provide high-spatial and -temporal-resolution observations of 3D cloud structures related to hurricane development and other severe weather events. The rapid evolution of severe weather demonstrates a critical need for mesoscale observations of severe weather dynamics, but such observations are rare, particularly over the ocean where extratropical and tropical cyclones can undergo explosive development. Coincident space-based measurements of wind velocity and cloud properties at the mesoscale remain a great challenge, but are critically needed to improve the understanding and prediction of severe weather and cyclogenesis. STARS employs a mature stereoscopic imaging technique on two satellites (e.g. two CubeSats, two hosted payloads) to simultaneously retrieve cloud motion vectors (CMVs), cloud-top temperatures (CTTs), and cloud geometric heights (CGHs) from multi-angle, multi-spectral observations of cloud features. STARS is a pushbroom system based on separate wide-field-of-view co-boresighted multi-spectral cameras in the visible, midwave infrared (MWIR), and longwave infrared (LWIR) with high spatial resolution (better than 1 km). The visible system is based on a pan-chromatic, low-light imager to resolve cloud structures under nighttime illumination down to ¼ moon. The MWIR instrument, which is being developed as a NASA ESTO Instrument Incubator Program (IIP) project, is based on recent advances in MWIR detector technology that requires only modest cooling. The STARS payload provides flexible options for spaceflight due to its low size, weight, power (SWaP) and very modest cooling requirements. STARS also meets AF operational requirements for cloud characterization and theater weather imagery. In this paper, an overview of the STARS concept, including the high-level sensor design, the concept of operations, and measurement capability will be presented.
NASA Astrophysics Data System (ADS)
Gens, R.
2017-12-01
With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.
NASA Astrophysics Data System (ADS)
Zhang, J.; Okin, G.
2016-12-01
Rangelands provide a variety of important ecosystem goods and services across drylands globally. They are also the most important emitters of dust across the globe. Field data collection based on points does not represent spatially continuous information about surface variables and, given the vast size of the world's rangelands, cannot cover even a small fraction of their area. Remote sensing is potentially a labor- and time-saving method to observe important rangeland vegetation variables at both temporal and spatial scales. Information on vegetation cover, bare gap size, and plant height provide key rangeland vegetation variables in arid and semiarid rangelands, in part because they strongly impact dust emission and determine wildlife habitat characteristics. This study reports on relationships between remote sensing in the reflected solar spectrum and field measures related to these three variables, and shows how these relationships can be extended to produce spatially and temporally continuous datasets coupled with quantitative estimates of error. Field data for this study included over 3,800 Assessment, Inventory, and Monitoring (AIM) measurements on Bureau of Land Management (BLM) lands throughout the western US. Remote sensing data were derived from MODIS nadir BRDF-adjusted reflectance (NBAR) and Landsat 8 OLI surface reflectance. Normalized bare gap size, total foliar cover, herbaceous cover and herbaceous height exhibit the greatest predictability from remote sensing variables with physically-reasonable relationships between remote sensing variables and field measures. Data fields produced using these relationships across the western US exhibit good agreement with independent high-resolution imagery.
NASA Astrophysics Data System (ADS)
You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.
2017-12-01
Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key water environmental parameters and further improved the inversion model. The results indicate that our proposed water environment inversion model can be a good inversion for alpine water environmental parameters, and can improve the monitoring and warning ability for the alpine river water environment in the future.
NASA Technical Reports Server (NTRS)
Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams
2010-01-01
This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.
NASA Astrophysics Data System (ADS)
Ladstaetter-Weissenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.
2009-09-01
As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.
NASA Astrophysics Data System (ADS)
Ladstätter-Weißenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.
2009-04-01
As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.
NASA Astrophysics Data System (ADS)
Chen, Jingbo; Wang, Chengyi; Yue, Anzhi; Chen, Jiansheng; He, Dongxu; Zhang, Xiuyan
2017-10-01
The tremendous success of deep learning models such as convolutional neural networks (CNNs) in computer vision provides a method for similar problems in the field of remote sensing. Although research on repurposing pretrained CNN to remote sensing tasks is emerging, the scarcity of labeled samples and the complexity of remote sensing imagery still pose challenges. We developed a knowledge-guided golf course detection approach using a CNN fine-tuned on temporally augmented data. The proposed approach is a combination of knowledge-driven region proposal, data-driven detection based on CNN, and knowledge-driven postprocessing. To confront data complexity, knowledge-derived cooccurrence, composition, and area-based rules are applied sequentially to propose candidate golf regions. To confront sample scarcity, we employed data augmentation in the temporal domain, which extracts samples from multitemporal images. The augmented samples were then used to fine-tune a pretrained CNN for golf detection. Finally, commission error was further suppressed by postprocessing. Experiments conducted on GF-1 imagery prove the effectiveness of the proposed approach.
The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning
Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald
2017-01-01
Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased. PMID:28368346
The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning.
Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald
2017-04-03
Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased.
Characterization of water bodies for mosquito habitat using a multi-sensor approach
NASA Astrophysics Data System (ADS)
Midekisa, A.; Wimberly, M. C.; Senay, G. B.
2012-12-01
Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are potential breeding habitats for anopheline mosquitoes. The resulting products are useful for public health decision making towards effective prevention and control of the malaria burden in the Amhara region of Ethiopia.
NASA Astrophysics Data System (ADS)
Ghosh, A.; Smith, J. C.; Hijmans, R. J.
2017-12-01
Since mid-1990s, the Cambodian government granted nearly 300 `Economic Land Concessions' (ELCs), occupying approximately 2.3 million ha to foreign and domestic organizations (primarily agribusinesses). The majority of Cambodian ELC deals have been issued in areas of both relatively low population density and low agricultural productivity, dominated by smallholder production. These regions often contain highly biodiverse areas, thereby increasing the ecological cost associated with land clearing for extractive purposes. These large-scale land transactions have also resulted in substantial and rapid changes in land-use patterns and agriculture practices by smallholder farmers. In this study, we investigated the spatio-temporal characteristics of land use change associated with large-scale land transactions across Cambodia using multi-temporal multi-reolution remote sensing data. We identified major regions of deforestation during the last two decades using Landsat archive, global forest change data (2000-2014) and georeferenced database of ELC deals. We then mapped the deforestation and land clearing within ELC boundaries as well as areas bordering or near ELCs to quantify the impact of ELCs on local communities. Using time-series from MODIS Vegetation Indices products for the study period, we also estimated the time period over which any particular ELC deal initiated its proposed activity. We found evidence of similar patterns of land use change outside the boundaries of ELC deals which may be associated with i) illegal land encroachments by ELCs and/or ii) new agricultural practices adopted by local farmers near ELC boundaries. We also detected significant time gaps between ELC deal granting dates and initiation of land clearing for ELC purposes. Interestingly, we also found that not all designated areas for ELCs were put into effect indicating the possible proliferation of speculative land deals. This study demonstrates the potential of remote sensing techniques as a tool for monitoring in areas with weak governance and lack of enforcement of land tenure.
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
Strategies for satellite-based monitoring of CO2 from distributed area and point sources
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David
2014-05-01
Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit and sensor provides the full range of temporal sampling needed to characterize distributed area and point source emissions. For instance, point source emission patterns will vary with source strength, wind speed and direction. Because wind speed, direction and other environmental factors change rapidly, short term variabilities should be sampled. For detailed target selection and pointing verification, important lessons have already been learned and strategies devised during JAXA's GOSAT mission (Schwandner et al, 2013). The fact that competing spatial and temporal requirements drive satellite remote sensing sampling strategies dictates a systematic, multi-factor consideration of potential solutions. Factors to consider include vista, revisit frequency, integration times, spatial resolution, and spatial coverage. No single satellite-based remote sensing solution can address this problem for all scales. It is therefore of paramount importance for the international community to develop and maintain a constellation of atmospheric CO2 monitoring satellites that complement each other in their temporal and spatial observation capabilities: Polar sun-synchronous orbits (fixed local solar time, no diurnal information) with agile pointing allow global sampling of known distributed area and point sources like megacities, power plants and volcanoes with daily to weekly temporal revisits and moderate to high spatial resolution. Extensive targeting of distributed area and point sources comes at the expense of reduced mapping or spatial coverage, and the important contextual information that comes with large-scale contiguous spatial sampling. Polar sun-synchronous orbits with push-broom swath-mapping but limited pointing agility may allow mapping of individual source plumes and their spatial variability, but will depend on fortuitous environmental conditions during the observing period. These solutions typically have longer times between revisits, limiting their ability to resolve temporal variations. Geostationary and non-sun-synchronous low-Earth-orbits (precessing local solar time, diurnal information possible) with agile pointing have the potential to provide, comprehensive mapping of distributed area sources such as megacities with longer stare times and multiple revisits per day, at the expense of global access and spatial coverage. An ad hoc CO2 remote sensing constellation is emerging. NASA's OCO-2 satellite (launch July 2014) joins JAXA's GOSAT satellite in orbit. These will be followed by GOSAT-2 and NASA's OCO-3 on the International Space Station as early as 2017. Additional polar orbiting satellites (e.g., CarbonSat, under consideration at ESA) and geostationary platforms may also become available. However, the individual assets have been designed with independent science goals and requirements, and limited consideration of coordinated observing strategies. Every effort must be made to maximize the science return from this constellation. We discuss the opportunities to exploit the complementary spatial and temporal coverage provided by these assets as well as the crucial gaps in the capabilities of this constellation. References Burton, M.R., Sawyer, G.M., and Granieri, D. (2013). Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75: 323-354. Duren, R.M., Miller, C.E. (2012). Measuring the carbon emissions of megacities. Nature Climate Change 2, 560-562. Schwandner, F.M., Oda, T., Duren, R., Carn, S.A., Maksyutov, S., Crisp, D., Miller, C.E. (2013). Scientific Opportunities from Target-Mode Capabilities of GOSAT-2. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, White Paper, 6p., March 2013.
Incorporating Applied Undergraduate Research in Senior to Graduate Level Remote Sensing Courses
ERIC Educational Resources Information Center
Henley, Richard B.; Unger, Daniel R.; Kulhavy, David L.; Hung, I-Kuai
2016-01-01
An Arthur Temple College of Forestry and Agriculture (ATCOFA) senior spatial science undergraduate student engaged in a multi-course undergraduate research project to expand his expertise in remote sensing and assess the applied instruction methodology employed within ATCOFA. The project consisted of performing a change detection…
Stratospheric measurement requirements and satellite-borne remote sensing capabilities
NASA Technical Reports Server (NTRS)
Carmichael, J. J.; Eldridge, R. G.; Frey, E. J.; Friedman, E. J.; Ghovanlou, A. H.
1976-01-01
The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors.
NASA Astrophysics Data System (ADS)
Vargas Zesati, Sergio A.
The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).
A Vision for an International Multi-Sensor Snow Observing Mission
NASA Technical Reports Server (NTRS)
Kim, Edward
2015-01-01
Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.
Monitoring water quality by remote sensing
NASA Technical Reports Server (NTRS)
Brown, R. L. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.
Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry
Jones, John W.
2011-01-01
Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management.
Tracing grassland degradation on the Eastern Tibetan Plateau with multi-temporal remote sensing data
NASA Astrophysics Data System (ADS)
Fassnacht, Fabian E.; Li, Li; Fritz, Andreas
2017-04-01
The Tibetan Plateau in Western China is the world's largest alpine landscape, sheltering a rich diversity of native flora and fauna. In the past few decades, the Tibetan Plateau was found to suffer from grassland degradation processes. Grassland degradation is assumed to not only endanger biodiversity but also to increase the risk for natural hazards in other parts of the country which are ecologically and hydrologically connected to the area. Grassland degradation is furthermore, changing the albedo of the surfaces of the Plateau and may therefore even notably affect atmospheric and climatic processes. However, the mechanisms behind the degradation processes remain poorly understood due to scarce baseline data and insufficient scientific research as well as manifold potential influences on the degradation processes including pastoral management, climate, herbivor mammals and administrative decisions. This study tries to contribute to this research gap by tracing grassland degradation processes by time-series analysis of multi-spectral Landsat data. After identifying the degraded areas, it is examined whether the degradation patterns relate to topographic properties, climatic gradients or administrative borders. Results from a first study showed that most degradation occurred in high-altitude areas, while slope and aspect where not having a notable influence. Furthermore, a climatic gradient within the study area was found to correlate with the degradation patterns observed for large extents. Currently, the study is being expanded over a larger area and more detailed spatially-adaptive analysis concerning the degradation drivers are being developed. Corresponding results will be presented. We conclude that remotely sensed patterns of grassland degradation can contribute to an improved understanding of the degradation processed on the Tibetan Plateau by providing spatially and temporally explicit information on the degradation processes at an adequate scale.
USDA-ARS?s Scientific Manuscript database
A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...
Review of FEWS NET Biophysical Monitoring Requirements
NASA Technical Reports Server (NTRS)
Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.
2009-01-01
The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
NASA Astrophysics Data System (ADS)
Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan
2018-07-01
Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
Selkowitz, D.J.
2010-01-01
Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.
2015-02-01
Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.
NASA Astrophysics Data System (ADS)
Goswami, S.; Gamon, J. A.; Tweedie, C. E.
2012-12-01
Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of landsurface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite, suggesting that published findings showing a 'greening of the Arctic' may be related to a 'drying of the Arctic' in landscapes dominated by vegetated landscapes where WTD is close to ground level.
Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion
Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G.; Sun, Mindy; Simard, Marc; Holmes, Richard
2012-01-01
Background Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. Methodology and Principal Findings A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy (“fusion”) models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Conclusion and Significance Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level. PMID:22235254
Uniform competency-based local feature extraction for remote sensing images
NASA Astrophysics Data System (ADS)
Sedaghat, Amin; Mohammadi, Nazila
2018-01-01
Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.
Mapping migratory bird prevalence using remote sensing data fusion.
Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G; Sun, Mindy; Simard, Marc; Holmes, Richard
2012-01-01
Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine
2018-01-01
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988
Imagery for Disaster Response and Recovery
NASA Astrophysics Data System (ADS)
Bethel, G. R.
2011-12-01
Exposing the remotely sensed imagery for disaster response and recovery can provide the basis for an unbiased understanding of current conditions. Having created consolidated remotely sensed and geospatial data sources documents for US and Foreign disasters over the past six years, availability and usability are continuing to evolve. By documenting all existing sources of imagery and value added products, the disaster response and recovery community can develop actionable information. The past two years have provided unique situations to use imagery including a major humanitarian disaster and response effort in Haiti, a major environmental disaster in the Gulf of Mexico, a killer tornado in Joplin Missouri and long-term flooding in the Midwest. Each disaster presents different challenges and requires different spatial resolutions, spectral properties and/or multi-temporal collections. The community of data providers continues to expand with organized actives such as the International Charter for Space and Major Disasters and acquisitions by the private sector for the public good rather than for profit. However, data licensing, the lack of cross-calibration and inconsistent georeferencing hinder optimal use. Recent pre-event imagery is a critial component to any disaster response.
NASA Astrophysics Data System (ADS)
Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.
2012-04-01
Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks
Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe
NASA Astrophysics Data System (ADS)
Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing
2017-04-01
Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine
2018-03-07
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.
Ricotta, C.; Reed, B.C.; Tieszen, L.T.
2003-01-01
Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Omar, Ali
2013-01-01
Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Omar, Ali
2012-01-01
Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.
Predicting Intra-Urban Population Densities in Africa using SAR and Optical Remote Sensing Data
NASA Astrophysics Data System (ADS)
Linard, C.; Steele, J.; Forget, Y.; Lopez, J.; Shimoni, M.
2017-12-01
The population of Africa is predicted to double over the next 40 years, driving profound social, environmental and epidemiological changes within rapidly growing cities. Estimations of within-city variations in population density must be improved in order to take urban heterogeneities into account and better help urban research and decision making, especially for vulnerability and health assessments. Satellite remote sensing offers an effective solution for mapping settlements and monitoring urbanization at different spatial and temporal scales. In Africa, the urban landscape is covered by slums and small houses, where the heterogeneity is high and where the man-made materials are natural. Innovative methods that combine optical and SAR data are therefore necessary for improving settlement mapping and population density predictions. An automatic method was developed to estimate built-up densities using recent and archived optical and SAR data and a multi-temporal database of built-up densities was produced for 48 African cities. Geo-statistical methods were then used to study the relationships between census-derived population densities and satellite-derived built-up attributes. Best predictors were combined in a Random Forest framework in order to predict intra-urban variations in population density in any large African city. Models show significant improvement of our spatial understanding of urbanization and urban population distribution in Africa in comparison to the state of the art.
Hans-Erik Andersen; Strunk Jacob; Hailemariam Temesgen; Donald Atwood; Ken Winterberger
2012-01-01
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual...
2014-06-12
interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849
USDA-ARS?s Scientific Manuscript database
A continuous monitoring of daily evapotranspiration (ET) at field scale can be achieved by combining thermal infrared remote sensing data information from multiple satellite platforms. Here, an integrated approach to field scale ET mapping is described, combining multi-scale surface energy balance e...
An algorithm for retrieving rock-desertification from multispectral remote sensing images
NASA Astrophysics Data System (ADS)
Xia, Xueqi; Tian, Qingjiu; Liao, Yan
2009-06-01
Rock-desertification is a typical environmental and ecological problem in Southwest China. As remote sensing is an important means of monitoring spatial variation of rock-desertification, a method is developed for measurement and information retrieval of rock-desertification from multi-spectral high-resolution remote sensing images. MNF transform is applied to 4-band IKONOS multi-spectral remotely sensed data to reduce the number of spectral dimensions to three. In the 3-demension endmembers are extracted and analyzed. It is found that various vegetations group into a line defined as "vegetation line", in which "dark vegetations", such as coniferous forest and broadleaf forest, continuously change to "bright vegetations", such as grasses. It is presumed that is caused by deferent proportion of shadow mixed in leaves or branches in various types of vegetation. Normalized distance between the endmember of rocks and the vegetation line is defined as Geometric Rock-desertification Index (GRI), which was used to scale rock-desertification. The case study with ground truth validation in Puding, Guizhou province showed successes and the advantages of this method.
NASA Astrophysics Data System (ADS)
Malbéteau, Y.; Lopez, O.; Houborg, R.; McCabe, M.
2017-12-01
Agriculture places considerable pressure on water resources, with the relationship between water availability and food production being critical for sustaining population growth. Monitoring water resources is particularly important in arid and semi-arid regions, where irrigation can represent up to 80% of the consumptive uses of water. In this context, it is necessary to optimize on-farm irrigation management by adjusting irrigation to crop water requirements throughout the growing season. However, in situ point measurements are not routinely available over extended areas and may not be representative at the field scale. Remote sensing approaches present as a cost-effective technique for mapping and monitoring broad areas. By taking advantage of multi-sensor remote sensing methodologies, such as those provided by MODIS, Landsat, Sentinel and Cubesats, we propose a new method to estimate irrigation input at pivot-scale. Here we explore the development of crop-water use estimates via these remote sensing data and integrate them into a land surface modeling framework, using a farm in Saudi Arabia as a demonstration of what can be achieved at larger scales.
Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions
NASA Astrophysics Data System (ADS)
Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.
2017-12-01
Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.
Remotely-sensed and in-situ observations of Greenland firn aquifers
NASA Astrophysics Data System (ADS)
Forster, R. R.; Miège, C.; Koenig, L.; Solomon, D. K.; Schmerr, N. C.; Miller, O. L.; Ligtenberg, S.; Montgomery, L. N.; Brucker, L.; Miller, J.; Legchenko, A.
2017-12-01
In 2011, prior to seasonal melt, our research team drilled into an unknown firn aquifer system in Southeast Greenland. Since 2013, we have conducted four field seasons, complemented with modeling and remote sensing to gain knowledge regarding firn aquifers and surrounding snow/firn/ice. We aim to provide a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal changes, and connections with the larger ice sheet hydrologic system. This work summarizes remote sensing data since 1993 showing the spatial and temporal evolution of the aquifer extent. To complement the remote sensing and better characterize the firn aquifer in the field, we use a combination of three different geophysics methods. Ground penetrating radar provides us knowledge of the water table elevation and its variations, magnetic-resonance soundings give us the water volume held in the aquifer and the active seismic data allow us to locate the bottom of the aquifer. In addition, firn/ice-core stratigraphy suggests that the timing and evolution of the aquifer bottom is controlled by thermodynamics. Our compilation of remote sensing measurements point to a dynamic and expanding aquifer system. We found that firn aquifers have existed at least since 1993 (dataset start) in the high melt and high accumulation region of the South Eastern Greenland ice sheet. Firn aquifers are now growing toward the interior related to the warming air temperatures in the Arctic and more intense melt during summers. These remotely sensed observations and in-situ measurements are required to validate improved ice sheet mass balance models that incorporate firn aquifers. They are also needed to further investigate the potential of firn aquifer discharge to the glacier bed via crevasse hydrofracturing influencing ice dynamics.
The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications
NASA Astrophysics Data System (ADS)
Rose, Randy; Gleason, Scott; Ruf, Chris
2014-10-01
Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.
NASA Astrophysics Data System (ADS)
Liu, Likun
2018-01-01
In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.
Remote sensing and human health: new sensors and new opportunities.
Beck, L R; Lobitz, B M; Wood, B L
2000-01-01
Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
Applications of Remote Sensing to Alien Invasive Plant Studies
Huang, Cho-ying; Asner, Gregory P.
2009-01-01
Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558
Remote sensing and human health: new sensors and new opportunities
NASA Technical Reports Server (NTRS)
Beck, L. R.; Lobitz, B. M.; Wood, B. L.
2000-01-01
Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
The role of satellite remote sensing in structured ecosystem risk assessments.
Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily
2018-04-01
The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Maunahan, A. A.; Gatti, L.; Quicho, E. D.; Pazhanivelan, S.; Campos-Taberner, M.; Collivignarelli, F.; Haro, J. G.; Intrman, A.; Phuong, D.; Boschetti, M.; Prasadini, P.; Busetto, L.; Minh, V. Q.; Tuan, V. Q.
2017-12-01
This study uses multi-temporal SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations in South and South Asian countries and assimilate the information into ORYZA Crop Growth Simulation Model (CGSM) to monitor rice yield. The study demonstrates examples of operational application of this rice monitoring system in: (1) detecting drought impact on rice planting in Central Thailand and Tamil Nadu, India, (2) mapping heat stress impact on rice yield in Andhra Pradesh, India, and (3) generating historical rice yield data for districts in Red River Delta, Vietnam.
NASA Technical Reports Server (NTRS)
Estes, Sue
2010-01-01
Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss some of their Public Health Projects and also providing the audience with information on opportunities for future collaborations with NASA for future research.
Evolving land cover classification algorithms for multispectral and multitemporal imagery
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.
2002-01-01
The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.
Localized geohazards in West Texas, captured by multi-temporal Sentinel-1A/B interferometry
NASA Astrophysics Data System (ADS)
Kim, J. W.; Lu, Z.
2017-12-01
West Texas contains the Permian Basin and is particularly composed of three major geologic sedimentary basins: Delaware Basin, Central Basin Platform, and Midland Basin. Because the vast region was once covered by a shallow sea and had experienced long-lasting evaporation million years ago, the West Texas is underlain by a thick layer of water soluble rocks including the carbonate and evaporite rocks. In addition, the geologic composition provided abundant hydrocarbons in the depth of several kilometers, but the human activities exploiting the massive oil and gas from the subsurface made negative impacts on the stability of underground and ground surface. Most deformation and localized geohazards have been unnoticed by means of field measurements or remote sensing methods, because the West Texas is located in the low populated, remote region. The Sentinel-1A/B has continuously acquired the SAR imagery with a large swath of 250 km over the region, and its multi-temporal measurements can provide clues on what are really taking place on the ground surface, what are the causes to trigger the localized subsidence/uplift, and what should be done to prevent more severe disasters in the future. We have established an automated Sentinel-1A/B InSAR processing system on SMU supercomputer (Maneframe), its continuous monitoring will help us unveil the current status of deformation occurring in West Texas.
Towards a High-Resolution Global Inundation Delineation Dataset
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.
2011-12-01
Although their importance for biodiversity, flow regulation and ecosystem service provision is widely recognized, wetlands and temporarily inundated landscapes remain poorly mapped globally because of their inherent elusive nature. Inventorying of wetland resources has been identified in international agreements as an essential component of appropriate conservation efforts and management initiatives of these threatened ecosystems. However, despite recent advances in remote sensing surface water monitoring, current inventories of surface water variations remain incomplete at the regional-to-global scale due to methodological limitations restricting truly global application. Remote sensing wetland applications such as SAR L-band are particularly constrained by image availability and heterogeneity of acquisition dates, while coarse resolution passive microwave and multi-sensor methods cannot discriminate distinct surface water bodies. As a result, the most popular global wetland dataset remains to this day the Global Lake & Wetland Database (Lehner and Doll, 2004) a spatially inconsistent database assembled from various existing data sources. The approach taken in this project circumvents the limitations of current global wetland monitoring methods by combining globally available topographic and hydrographic data to downscale coarse resolution global inundation data (Prigent et al., 2007) and thus create a superior inundation delineation map product. The developed procedure downscales inundation data from the coarse resolution (~27km) of current passive microwave sensors to the finer spatial resolution (~500m) of the topographic and hydrographic layers of HydroSHEDS' data suite (Lehner et al., 2006), while retaining the high temporal resolution of the multi-sensor inundation dataset. From the downscaling process emerges new information on the specific location of inundation, but also on its frequency and duration. The downscaling algorithm employs a decision tree classifier trained on regional remote sensing wetland maps, to derive inundation probability followed by a seeded region growing segmentation process to redistribute the inundated area at the finer resolution. Assessment of the algorithm's performance is accomplished by evaluating the level of agreement between its outputted downscaled inundation maps and existing regional remote sensing inundation delineation. Upon completion, this project's will offer a dynamic globally seamless inundation map at an unprecedented spatial and temporal scale, which will provide the baseline inventory long requested by the research community, and will open the door to a wide array of possible conservation and hydrological modeling applications which were until now data-restricted. Literature Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos 89, no. 10. Lehner, B, and P Doll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, no. 1-4: 1-22. Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112, no. D12: 1-13.
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
Enhancing Remotely Sensed TIR Data for Public Health Applications: Is West Nile Virus Heat-Related?
NASA Astrophysics Data System (ADS)
Weng, Q.; Liu, H.; Jiang, Y.
2014-12-01
Public health studies often require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. This technological limitation prevents the wide usage of remote sensing data in epidemiological studies. To solve this issue, we have developed a few image fusion techniques to generate high temporally-resolved image data. We downscaled GOES LST data to 15-minute 1-km resolution to assess community-based heat-related risk in Los Angeles County, California and simulated ASTER datasets by fusing ASTER and MODIS data to derive biophysical variables, including LST, NDVI, and normalized difference water index, to examine the effects of those environmental characteristics on WNV outbreak and dissemination. A spatio-temporal analysis of WNV outbreak and dissemination was conducted by synthesizing the remote sensing variables and mosquito surveillance data, and by focusing on WNV risk areas in July through September due to data sufficiency of mosquito pools. Moderate- and high-risk areas of WNV infections in mosquitoes were identified for five epidemiological weeks. These identified WNV-risk areas were then collocated in GIS with heat hazard, exposure, and vulnerability maps to answer the question of whether WNV is a heat related virus. The results show that elevation and built-up conditions were negatively associated with the WNV propagation, while LST positively correlated with the viral transmission. NDVI was not significantly associated with WNV transmission. San Fernando Valley was found to be the most vulnerable to mosquito infections of WNV. This research provides important insights into how high temporal resolution remote sensing imagery may be used to study time-dependant events in public health, especially in the operational surveillance and control of vector-borne, water-borne, or other epidemic diseases.
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-01-01
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-09-30
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.
Remote sensing of vegetation pattern and condition to monitor changes in everglades biogeochemistry
Jones, J.W.
2011-01-01
Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management. Copyright ?? 2011 Taylor & Francis Group, LLC.
Characterization and analysis of pasture degradation in Rondonia using remote sensing
NASA Astrophysics Data System (ADS)
Numata, Izaya
2006-04-01
Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. This dissertation evaluated pasture degradation as it varied due to environmental and human factors across different scales by combining field measures, ancillary data, and remote sensing. To better understand the link between pasture nutrients and soil chemistry, samples were analyzed in the laboratory demonstrating that pasture soil fertility and grass nutrients varied significantly according to soil order. Pastures established on Alfisols, nutrient-rich soils, had higher levels of Phosphorus in soil and grass compared to pastures established on Oxisols and Ultisols. To evaluate remote sensing measures of pasture biophysical properties related to pasture degradation, remote sensing analysis focused on a variety of sensors that provide a range in spatial, spectral and temporal scales, including Landsat Thematic Mapper (TM), a field spectrometer, Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). Of the measures derived from Landsat, degraded pastures were best characterized by high non-photosynthetic vegetation (NPV) and low shade fractions, while pastures with high biomass were characterized by high green vegetation and low NPV fractions. Absorption features calculated from hyperspectral spectra collected in the field, including water and ligno-cellulose absorption depth and area, provided the best estimates of field grass measures. Temporal MODIS Normalized Difference Vegetation Index (NDVI) data were used to characterize changes in pasture quality across the region and through time. Degraded pastures were characterized by low temporal NDVI variation and occurred in dry or very wet climate conditions and on nutrient poor soils. Productive pastures were characterized by high temporal NDVI variation, were predominantly found more in the central part of the state, and were located in areas with milder climate conditions and relatively more fertile soils. As a general trend of regional pasture change in Rondonia, the proportions of productive pastures decreased and degraded pastures increased as pastures aged. The results obtained in this dissertation will contribute to understanding pasture sustainability needs for the future of Rondonia and provide the first step in monitoring pasture degradation in the Amazon using remote sensing.
Environmental monitoring of Galway Bay: fusing data from remote and in-situ sources
NASA Astrophysics Data System (ADS)
O'Connor, Edel; Hayes, Jer; Smeaton, Alan F.; O'Connor, Noel E.; Diamond, Dermot
2009-09-01
Changes in sea surface temperature can be used as an indicator of water quality. In-situ sensors are being used for continuous autonomous monitoring. However these sensors have limited spatial resolution as they are in effect single point sensors. Satellite remote sensing can be used to provide better spatial coverage at good temporal scales. However in-situ sensors have a richer temporal scale for a particular point of interest. Work carried out in Galway Bay has combined data from multiple satellite sources and in-situ sensors and investigated the benefits and drawbacks of using multiple sensing modalities for monitoring a marine location.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto
2017-09-08
Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p < 0.05, RMSE = 2.20 kg/m²) and 85% ( n = 100, p < 0.01, RMSE = 1.71 kg/m²) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.
Lu, Xiaoman; Zheng, Guang; Miller, Colton
2017-01-01
Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB. PMID:28885556
Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.
Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin
2018-02-09
Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.
Regional Drought Monitoring Based on Multi-Sensor Remote Sensing
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Im, Jungho; Park, Seonyoung
2014-05-01
Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.
A Webgis Framework for Disseminating Processed Remotely Sensed on Land Cover Transformations
NASA Astrophysics Data System (ADS)
Caradonna, Grazia; Novelli, Antonio; Tarantino, Eufemia; Cefalo, Raffaela; Fratino, Umberto
2016-06-01
Mediterranean regions have experienced significant soil degradation over the past decades. In this context, careful land observation using satellite data is crucial for understanding the long-term usage patterns of natural resources and facilitating their sustainable management to monitor and evaluate the potential degradation. Given the environmental and political interest on this problem, there is urgent need for a centralized repository and mechanism to share geospatial data, information and maps of land change. Geospatial data collecting is one of the most important task for many users because there are significant barriers in accessing and using data. This limit could be overcome by implementing a WebGIS through a combination of existing free and open source software for geographic information systems (FOSS4G). In this paper we preliminary discuss methods for collecting raster data in a geodatabase by processing open multi-temporal and multi-scale satellite data aimed at retrieving indicators for land degradation phenomenon (i.e. land cover/land use analysis, vegetation indices, trend analysis, etc.). Then we describe a methodology for designing a WebGIS framework in order to disseminate information through maps for territory monitoring. Basic WebGIS functions were extended with the help of POSTGIS database and OpenLayers libraries. Geoserver was customized to set up and enhance the website functions developing various advanced queries using PostgreSQL and innovative tools to carry out efficiently multi-layer overlay analysis. The end-product is a simple system that provides the opportunity not only to consult interactively but also download processed remote sensing data.
NASA Astrophysics Data System (ADS)
Han, P.; Long, D.
2017-12-01
Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River
NASA Astrophysics Data System (ADS)
Michel, Dominik; Hirschi, Martin; Jimenez, Carlos; McCabe, Mathew; Miralles, Diego; Wood, Eric; Seneviratne, Sonia
2014-05-01
Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which can not be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). Currently, a multi-decadal global reference heat flux data set for ET at the land surface is being developed within the LandFlux initiative of the Global Energy and Water Cycle Experiment (GEWEX). This LandFlux v0 ET data set comprises four ET algorithms forced with a common radiation and surface meteorology. In order to estimate the agreement of this LandFlux v0 ET data with existing data sets, it is compared to the recently available LandFlux-EVAL synthesis benchmark product. Additional evaluation of the LandFlux v0 ET data set is based on a comparison to in situ observations of a weighing lysimeter from the hydrological research site Rietholzbach in Switzerland. These analyses serve as a test bed for similar evaluation procedures that are envisaged for ESA's WACMOS-ET initiative (http://wacmoset.estellus.eu). Reference: Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10): 3707-3720.
Automated Detection of Thermo-Erosion in High Latitude Ecosystems
NASA Astrophysics Data System (ADS)
Lara, M. J.; Chipman, M. L.; Hu, F.
2017-12-01
Detecting permafrost disturbance is of critical importance as the severity of climate change and associated increase in wildfire frequency and magnitude impacts regional to global carbon dynamics. However, it has not been possible to evaluate spatiotemporal patterns of permafrost degradation over large regions of the Arctic, due to limited spatial and temporal coverage of high resolution optical, radar, lidar, or hyperspectral remote sensing products. Here we present the first automated multi-temporal analysis for detecting disturbance in response to permafrost thaw, using meso-scale high-frequency remote sensing products (i.e. entire Landsat image archive). This approach was developed, tested, and applied in the Noatak National Preserve (26,500km2) in northwestern Alaska. We identified thermo-erosion (TE), by capturing the indirect spectral signal associated with episodic sediment plumes in adjacent waterbodies following TE disturbance. We isolated this turbidity signal within lakes during summer (mid-summer & late-summer) and annual time-period image composites (1986-2016), using the cloud-based geospatial parallel processing platform, Google Earth Engine™API. We validated the TE detection algorithm using seven consecutive years of sub-meter high resolution imagery (2009-2015) covering 798 ( 33%) of the 2456 total lakes in the Noatak lowlands. Our approach had "good agreement" with sediment pulses and landscape deformation in response to permafrost thaw (overall accuracy and kappa coefficient of 85% and 0.61). We identify active TE to impact 10.4% of all lakes, but was inter-annually variable, with the highest and lowest TE years represented by 1986 ( 41.1%) and 2002 ( 0.7%), respectively. We estimate thaw slumps, lake erosion, lake drainage, and gully formation to account for 23.3, 61.8, 12.5, and 1.3%, of all active TE across the Noatak National Preserve. Preliminary analysis, suggests TE may be subject to a hysteresis effect following extreme climatic conditions or wildfire. This work demonstrates the utility of meso-scale high frequency remote sensing products for advancing high latitude permafrost research.
Does remote sensing help translating local SGD investigation to large spatial scales?
NASA Astrophysics Data System (ADS)
Moosdorf, N.; Mallast, U.; Hennig, H.; Schubert, M.; Knoeller, K.; Neehaul, Y.
2016-02-01
Within the last 20 years, studies on submarine groundwater discharge (SGD) have revealed numerous processes, temporal behavior and quantitative estimations as well as best-practice and localization methods. This plethora on information is valuable regarding the understanding of magnitude and effects of SGD for the respective location. Yet, since given local conditions vary, the translation of local understanding, magnitudes and effects to a regional or global scale is not trivial. In contrast, modeling approaches (e.g. 228Ra budget) tackling SGD on a global scale do provide quantitative global estimates but have not been related to local investigations. This gap between the two approaches, local and global, and the combination and/or translation of either one to the other represents one of the mayor challenges the SGD community currently faces. But what if remote sensing can provide certain information that may be used as translation between the two, similar to transfer functions in many other disciplines allowing an extrapolation from in-situ investigated and quantified SGD (discrete information) to regional scales or beyond? Admittedly, the sketched future is ambitious and we will certainly not be able to present a solution to the raised question. Nonetheless, we will show a remote sensing based approach that is already able to identify potential SGD sites independent on location or hydrogeological conditions. Based on multi-temporal thermal information of the water surface as core of the approach, SGD influenced sites display a smaller thermal variation (thermal anomalies) than surrounding uninfluenced areas. Despite the apparent simplicity, the automatized approach has helped to localize several sites that could be validated with proven in-situ methods. At the same time it embodies the risk to identify false positives that can only be avoided if we can `calibrate' the so obtained thermal anomalies to in-situ data. We will present all pros and cons of our approach with the intention to contribute to the solution of translating SGD investigation to larger scales.
NASA Astrophysics Data System (ADS)
Chang, Ni-Bin; Yang, Y. Jeffrey; Daranpob, Ammarin
2010-03-01
The impact of recent drought and water pollution episodes results in an acute need to project future water availability to assist water managers in water utility infrastructure management within many metropolitan regions. Separate drought and water quality indices previously developed might not be sufficient for the purpose of such an assessment. This paper describes the development of the "Metropolitan Water Availability Index (MWAI)" and its potential applications in assessing the middle-term water availability at the watershed scale in a fast growing metropolitan region - the Manatee County near Tampa Bay, Florida, U.S.A. The MWAI framework is based on a statistical approach that seeks to reflect the continuous spatial and temporal variations of both water quantity and quality using a simple numerical index. Such a trend analysis will surely result in the final MWAI values for regional water management systems within a specified range. By using remote sensing technologies and data processing techniques, continuous monitoring of spatial and temporal distributions of key water availability variables, such as evapotranspiration (ET) and precipitation, is made achievable. These remote sensing technologies can be ground-based (e.g., radar estimates of rainfall), or based on remote sensing data gathered by aircraft or satellites. Using a middle term historical record, the MWAI was applied to the Manatee County water supplies. The findings clearly indicate that only eight out of twelve months in 2008 had positive MWAI values during the year. Such numerical findings are consistent with the observational evidence of statewide drought events in 2006-2008, which implies the time delay between the ending of severe drought period and the recovery of water availability in MWAI. It is expected that this forward-looking novel water availability forecasting platform will help provide a linkage in methodology between strategic planning, master planning, and the plant operation and adaptations in response to the MWAI implications.
Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics
NASA Technical Reports Server (NTRS)
Csatho, Beata M.
2003-01-01
Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.
NASA Astrophysics Data System (ADS)
van der Linden, Sebastian
2016-05-01
Compiling a good book on urban remote sensing is probably as hard as the research in this disciplinary field itself. Urban areas comprise various environments and show high heterogeneity in many respects, they are highly dynamic in time and space and at the same time of greatest influence on connected and even tele-connected regions due to their great economic importance. Urban remote sensing is therefore of great importance, yet as manifold as its study area: mapping urban areas (or sub-categories thereof) plays an important (and challenging) role in land use and land cover (change) monitoring; the analysis of urban green and forests is by itself a specialization of ecological remote sensing; urban climatology asks for spatially and temporally highly resolved remote sensing products; the detection of artificial objects is not only a common and important remote sensing application but also a typical benchmark for image analysis techniques, etc. Urban analyses are performed with all available spaceborne sensor types and at the same time they are one of the most relevant fields for airborne remote sensing. Several books on urban remote sensing have been published during the past 10 years, each taking a different perspective. The book Global Urban Monitoring and Assessment through Earth Observation is motivated by the objectives of the Global Urban Observation and Information Task (SB-04) in the GEOSS (Global Earth Observation System of Systems) 2012-2015 workplan (compare Chapter 2) and wants to highlight the global aspects of state-of-the-art urban remote sensing.
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification
NASA Astrophysics Data System (ADS)
Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.
2018-04-01
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.
NASA Astrophysics Data System (ADS)
Lin, Yueguan; Wang, Wei; Wen, Qi; Huang, He; Lin, Jingli; Zhang, Wei
2015-12-01
Ms8.0 Wenchuan earthquake that occurred on May 12, 2008 brought huge casualties and property losses to the Chinese people, and Beichuan County was destroyed in the earthquake. In order to leave a site for commemorate of the people, and for science propaganda and research of earthquake science, Beichuan National Earthquake Ruins Museum has been built on the ruins of Beichuan county. Based on the demand for digital preservation of the earthquake ruins park and collection of earthquake damage assessment of research and data needs, we set up a data set of Beichuan National Earthquake Ruins Museum, including satellite remote sensing image, airborne remote sensing image, ground photogrammetry data and ground acquisition data. At the same time, in order to make a better service for earthquake science research, we design the sharing ideas and schemes for this scientific data set.
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas
2015-06-01
Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.
Remote sensing of seasonal light use efficiency in temperate bog ecosystems.
Tortini, R; Coops, N C; Nesic, Z; Christen, A; Lee, S C; Hilker, T
2017-08-17
Despite storing approximately half of the atmosphere's carbon, estimates of fluxes between wetlands and atmosphere under current and future climates are associated with large uncertainties, and it remains a challenge to determine human impacts on the net greenhouse gas balance of wetlands at the global scale. In this study we demonstrate that the relationship between photochemical reflectance index, derived from high spectral and temporal multi-angular observations, and vegetation light use efficiency was strong (r 2 = 0.64 and 0.58 at the hotspot and darkspot, respectively), and can be utilized to estimate carbon fluxes from remote at temperate bog ecosystems. These results improve our understanding of the interactions between vegetation physiology and spectral characteristics to understand seasonal magnitudes and variations in light use efficiency, opening new perspectives on the potential of this technique over extensive areas with different landcover.
Resource analysis applications in Michigan. [NASA remote sensing
NASA Technical Reports Server (NTRS)
Schar, S. W.; Enslin, W. R.; Sattinger, I. J.; Robinson, J. G.; Hosford, K. R.; Fellows, R. S.; Raad, J. H.
1974-01-01
During the past two years, available NASA imagery has been applied to a broad spectrum of problems of concern to Michigan-based agencies. These demonstrations include the testing of remote sensing for the purposes of (1) highway corridor planning and impact assessments, (2) game management-area information bases, (3) multi-agency river basin planning, (4) timber resource management information systems, (5) agricultural land reservation policies, and (6) shoreline flooding damage assessment. In addition, cost accounting procedures have been developed for evaluating the relative costs of utilizing remote sensing in land cover and land use analysis data collection procedures.
Remote Sensing of Aerosol and their Radiative Forcing of Climate
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.
1999-01-01
Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the spectral flux reaching the surface. Effort to introduce remote sensing from lidars will literally additional dimension to aerosol remote sensing. The vertical dimension is a critical link between the global satellite observations and modeling of aerosol transport. Lidars are also critical to study aerosol impact on cloud microphysics and reflectance. Both lidar ground networks and satellite systems are in development. This new capability is expected to put remote sensing in the forefront of aerosol and climate studies. Together with field experiments, chemical analysis and chemical transport models we anticipate, in the next decade, to be able to resolve some of the outstanding questions regarding the role of aerosol in climate, in atmospheric chemistry and its influence on human health and life on this planet.
Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.
2002-01-01
The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.
Reviews and Syntheses: optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-07-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over 2 decades of proximal remote sensing at flux tower sites are reviewed. The organizing framework used here is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the photochemical reflectance index (PRI) and solar-induced chlorophyll fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of the sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary normalized difference vegetation index (NDVI) and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. I conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging from assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
Tasseled cap transformation for HJ multispectral remote sensing data
NASA Astrophysics Data System (ADS)
Han, Ling; Han, Xiaoyong
2015-12-01
The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.
Vegetation changes caused by fire in the Florida flatwoods as observed by remote sensing
NASA Technical Reports Server (NTRS)
Mealor, W. T., Jr.; Prunty, M. C., Jr.
1969-01-01
The nature of the flatwoods and the role that ground fires have played in maintaining them are discussed. Emphasis is placed on the areal and temporal extent of burns as recorded uniformly by remote sensors. Thermal infrared, color infrared, and Ektachrome imagery were obtained from sensors flown by a NASA aircraft at 15,000 feet over a test site in Osceola County, Florida, in March 1968. The overall pattern of burning can be sequenced and mapped uniformly from the imagery. By comparing the various imagery, areal and temporal extent of burned areas can be determined. It was concluded that remote sensed imagery provides more accurate and areally comprehensive media for assessing the impact of ground fires on the landscape of the flatwoods region than are available from any other data source.
Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak
2005-01-01
The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...
Education, outreach and the future of remote sensing in human health
NASA Technical Reports Server (NTRS)
Wood, B. L.; Beck, L. R.; Lobitz, B. M.; Bobo, M. R.
2000-01-01
The human health community has been slow to adopt remote sensing technology for research, surveillance, or control activities. This chapter presents a brief history of the National Aeronautics and Space Administration's experiences in the use of remotely sensed data for health applications, and explores some of the obstacles, both real and perceived, that have slowed the transfer of this technology to the health community. These obstacles include the lack of awareness, which must be overcome through outreach and proper training in remote sensing, and inadequate spatial, spectral and temporal data resolutions, which are being addressed as new sensor systems are launched and currently overlooked (and underutilized) sensors are newly discovered by the health community. A basic training outline is presented, along with general considerations for selecting training candidates. The chapter concludes with a brief discussion of some current and future sensors that show promise for health applications.
Separating vegetation and soil temperature using airborne multiangular remote sensing image data
NASA Astrophysics Data System (ADS)
Liu, Qiang; Yan, Chunyan; Xiao, Qing; Yan, Guangjian; Fang, Li
2012-07-01
Land surface temperature (LST) is a key parameter in land process research. Many research efforts have been devoted to increase the accuracy of LST retrieval from remote sensing. However, because natural land surface is non-isothermal, component temperature is also required in applications such as evapo-transpiration (ET) modeling. This paper proposes a new algorithm to separately retrieve vegetation temperature and soil background temperature from multiangular thermal infrared (TIR) remote sensing data. The algorithm is based on the localized correlation between the visible/near-infrared (VNIR) bands and the TIR band. This method was tested on the airborne image data acquired during the Watershed Allied Telemetry Experimental Research (WATER) campaign. Preliminary validation indicates that the remote sensing-retrieved results can reflect the spatial and temporal trend of component temperatures. The accuracy is within three degrees while the difference between vegetation and soil temperature can be as large as twenty degrees.
Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia
NASA Technical Reports Server (NTRS)
Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.
2011-01-01
The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.
Toward accelerating landslide mapping with interactive machine learning techniques
NASA Astrophysics Data System (ADS)
Stumpf, André; Lachiche, Nicolas; Malet, Jean-Philippe; Kerle, Norman; Puissant, Anne
2013-04-01
Despite important advances in the development of more automated methods for landslide mapping from optical remote sensing images, the elaboration of inventory maps after major triggering events still remains a tedious task. Image classification with expert defined rules typically still requires significant manual labour for the elaboration and adaption of rule sets for each particular case. Machine learning algorithm, on the contrary, have the ability to learn and identify complex image patterns from labelled examples but may require relatively large amounts of training data. In order to reduce the amount of required training data active learning has evolved as key concept to guide the sampling for applications such as document classification, genetics and remote sensing. The general underlying idea of most active learning approaches is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and/or the data structure to iteratively select the most valuable samples that should be labelled by the user and added in the training set. With relatively few queries and labelled samples, an active learning strategy should ideally yield at least the same accuracy than an equivalent classifier trained with many randomly selected samples. Our study was dedicated to the development of an active learning approach for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. The developed approach is a region-based query heuristic that enables to guide the user attention towards few compact spatial batches rather than distributed points resulting in time savings of 50% and more compared to standard active learning techniques. The approach was tested with multi-temporal and multi-sensor satellite images capturing recent large scale triggering events in Brazil and China and demonstrated balanced user's and producer's accuracies between 74% and 80%. The assessment also included an experimental evaluation of the uncertainties of manual mappings from multiple experts and demonstrated strong relationships between the uncertainty of the experts and the machine learning model.
NASA Technical Reports Server (NTRS)
Houston, W. R.; Stephenson, D. G.; Measures, R. M.
1975-01-01
A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.
The emerging role of lidar remote sensing in coastal research and resource management
Brock, J.C.; Purkis, S.J.
2009-01-01
Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping. ?? 2009 Coastal Education and Research Foundation.
The emerging role of lidar remote sensing in coastal research and resource management
Brock, John C.; Purkis, Samuel J.
2009-01-01
Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping.
The CORSAGE Programme: Continuous Orbital Remote Sensing of Archipelagic Geochemical Effects
NASA Technical Reports Server (NTRS)
Acker, J. G.; Brown, C. W.; Hine, A. C.
1997-01-01
Current and pending oceanographic remote sensing technology allows the conceptualization of a programme designed to investigate ocean island interactions that could induce short-term nearshore fluxes of particulate organic carbon and biogenic calcium carbonate from pelagic island archipelagoes. These events will influence the geochemistry of adjacent waters, particularly the marine carbon system. Justification and design are provided for a study that would combine oceanographic satellite remote sensing (visible and infrared radiometry, altimetry and scatterometry) with shore-based facilities. A programme incorporating the methodology outlined here would seek to identify the mechanisms that cause such events, assess their geochemical significance, and provide both analytical and predictive capabilities for observations on greater temporal and spatial scales.
USDA-ARS?s Scientific Manuscript database
Radiance data recorded by remote sensors function as a unique source for monitoring the terrestrial biosphere and vegetation dynamics at a range of spatial and temporal scales. A key challenge is to relate the remote sensing signal to critical variables describing land surface vegetation canopies su...
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Integrated analysis of remote sensing products from basic geological surveys. [Brazil
NASA Technical Reports Server (NTRS)
Dasilvafagundesfilho, E. (Principal Investigator)
1984-01-01
Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.
NASA Technical Reports Server (NTRS)
Heydorn, R. D.
1984-01-01
The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.
2013-12-01
We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. In this test, we simulated satellite-observed radiances for a sub-domain consisting of 5 by 5 pixels by the Rstar code assuming wavelengths of 380, 674, 870 and 1600 [nm], atmospheric condition of the US standard atmosphere, and the several aerosol and ground surface conditions. The result of the experiment showed that AOTs of fine mode and dust particles, soot fraction and ground surface albedo at the wavelength of 674 [nm] are retrieved within absolute value differences of 0.04, 0.01, 0.06 and 0.006 from the true value, respectively, for the case of dark surface, and also, for the case of blight surface, 0.06, 0.03, 0.04 and 0.10 from the true value, respectively. We will conduct more tests to study the information contents of parameters needed for aerosol and land surface remote sensing with different boundary conditions among sub-domains.
Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework
Shen, Li; Xu, Huiping; Guo, Xulin
2012-01-01
Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-12-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
NASA Astrophysics Data System (ADS)
Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew
2013-04-01
Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of Vegetation Index. A temporal smoothing procedure based on Savitzky-Golay polynomial filter function was applied to the original 8-day composite VI data (EVI and NDVI) in order to eliminate spurious data which affect the time series and to produce an interpolated VI temporal profile. Finally within the area previously identify as rice by SAR analysis phenological estimation have been conducted. Crop growth minima and maxima, respectively indicator of rice transplanting and heading, have been identify from the derivative analysis time series. This procedure was tested in Bangladesh for the year 2011. Results showed that the combined use of both data typology represents the more suitable multisource framework to provide reliable information on rice crop growth. Preliminary maps analysis reveals how SAR rice detection was in agreement with local information and phenology extracted by MODIS data provided spatially distributed data comparable with local knowledge of crop calendar.
Carrea, Laura; Embury, Owen; Merchant, Christopher J
2015-11-01
Datasets containing information to locate and identify water bodies have been generated from data locating static-water-bodies with resolution of about 300 m (1/360 ∘ ) recently released by the Land Cover Climate Change Initiative (LC CCI) of the European Space Agency. The LC CCI water-bodies dataset has been obtained from multi-temporal metrics based on time series of the backscattered intensity recorded by ASAR on Envisat between 2005 and 2010. The new derived datasets provide coherently: distance to land, distance to water, water-body identifiers and lake-centre locations. The water-body identifier dataset locates the water bodies assigning the identifiers of the Global Lakes and Wetlands Database (GLWD), and lake centres are defined for in-land waters for which GLWD IDs were determined. The new datasets therefore link recent lake/reservoir/wetlands extent to the GLWD, together with a set of coordinates which locates unambiguously the water bodies in the database. Information on distance-to-land for each water cell and the distance-to-water for each land cell has many potential applications in remote sensing, where the applicability of geophysical retrieval algorithms may be affected by the presence of water or land within a satellite field of view (image pixel). During the generation and validation of the datasets some limitations of the GLWD database and of the LC CCI water-bodies mask have been found. Some examples of the inaccuracies/limitations are presented and discussed. Temporal change in water-body extent is common. Future versions of the LC CCI dataset are planned to represent temporal variation, and this will permit these derived datasets to be updated.
NASA Astrophysics Data System (ADS)
Buditama, Gilang; Damayanti, Astrid; Giok Pin, Tjiong
2017-12-01
Phytoplankton is a microscopic plant that has a function to produces oxygen and organic substances. It also plays a role as a main producer in the food chain of a marine ecosystem. Chlorophyll-a is a colour pigment most common in phytoplankton species, so that the concentration level of chlorophyll-a can be used as an indicator of the abundance of phytoplankton cells, and as a reference for predicting organic potency in the aquatic area. This research discusses about the spatial and temporal distribution of chlorophyll-a and its correlation with salinity and total suspended solid (TSS), in the seawaters of Cirebon, West Java. The goal of this research is to be a source of information for fishermen, and other stakeholders whose related subjects in the field of marine and fisheries to predict fertile water regions and can also be used as an indicator in discovering potential areas to catch pelagic fish in Cirebon seawaters. Chlorophyll-a concentration, salinity, and TSS are identified using remote sensing data such as Landsat-8 OLI multi temporal images according to dry and wet month parameters in the 2014-2015. The results of the processed image are then validated between in-situ measurements in the field and remote sensing imagery at the same time. This research utilizes descriptive analysis, and statistics with spatial approach. The results of the research show that temporally, chlorophyll-a levels have a tendency to be higher in wet months compared to dry months, while chlorophyll-a is higher in areas near the coastline compared to open sea areas. The distribution of chlorophyll-a concentration is affected by salinity and TSS distribution, where salinity has the negative relationship and TSS has the positive relationship with chlorophyll-a distribution.
Automated Landslides Detection for Mountain Cities Using Multi-Temporal Remote Sensing Imagery.
Chen, Zhong; Zhang, Yifei; Ouyang, Chao; Zhang, Feng; Ma, Jie
2018-03-09
Landslides that take place in mountain cities tend to cause huge casualties and economic losses, and a precise survey of landslide areas is a critical task for disaster emergency. However, because of the complicated appearance of the nature, it is difficult to find a spatial regularity that only relates to landslides, thus landslides detection based on only spatial information or artificial features usually performs poorly. In this paper, an automated landslides detection approach that is aiming at mountain cities has been proposed based on pre- and post-event remote sensing images, it mainly utilizes the knowledge of landslide-related surface covering changes, and makes full use of the temporal and spatial information. A change detection method using Deep Convolution Neural Network (DCNN) was introduced to extract the areas where drastic alterations have taken place; then, focusing on the changed areas, the Spatial Temporal Context Learning (STCL) was conducted to identify the landslides areas; finally, we use slope degree which is derived from digital elevation model (DEM) to make the result more reliable, and the change of DEM is used for making the detected areas more complete. The approach was applied to detecting the landslides in Shenzhen, Zhouqu County and Beichuan County in China, and a quantitative accuracy assessment has been taken. The assessment indicates that this approach can guarantee less commission error of landslide areal extent which is below 17.6% and achieves a quality percentage above 61.1%, and for landslide areas, the detection percentage is also competitive, the experimental results proves the feasibility and accuracy of the proposed approach for the detection landslides in mountain cities.
Consistency of vegetation index seasonality across the Amazon rainforest
NASA Astrophysics Data System (ADS)
Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jérôme; Mõttus, Matti; Aragão, Luiz E. O. C.; Shimabukuro, Yosio
2016-10-01
Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.
Consistency of Vegetation Index Seasonality Across the Amazon Rainforest
NASA Technical Reports Server (NTRS)
Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jerome; Mottus, Matti; Aragao, Luiz E.O.C.; Shimabukuro, Yosio
2016-01-01
Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.
Automated Landslides Detection for Mountain Cities Using Multi-Temporal Remote Sensing Imagery
Chen, Zhong; Zhang, Yifei; Ouyang, Chao; Zhang, Feng; Ma, Jie
2018-01-01
Landslides that take place in mountain cities tend to cause huge casualties and economic losses, and a precise survey of landslide areas is a critical task for disaster emergency. However, because of the complicated appearance of the nature, it is difficult to find a spatial regularity that only relates to landslides, thus landslides detection based on only spatial information or artificial features usually performs poorly. In this paper, an automated landslides detection approach that is aiming at mountain cities has been proposed based on pre- and post-event remote sensing images, it mainly utilizes the knowledge of landslide-related surface covering changes, and makes full use of the temporal and spatial information. A change detection method using Deep Convolution Neural Network (DCNN) was introduced to extract the areas where drastic alterations have taken place; then, focusing on the changed areas, the Spatial Temporal Context Learning (STCL) was conducted to identify the landslides areas; finally, we use slope degree which is derived from digital elevation model (DEM) to make the result more reliable, and the change of DEM is used for making the detected areas more complete. The approach was applied to detecting the landslides in Shenzhen, Zhouqu County and Beichuan County in China, and a quantitative accuracy assessment has been taken. The assessment indicates that this approach can guarantee less commission error of landslide areal extent which is below 17.6% and achieves a quality percentage above 61.1%, and for landslide areas, the detection percentage is also competitive, the experimental results proves the feasibility and accuracy of the proposed approach for the detection landslides in mountain cities. PMID:29522424
Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany
NASA Astrophysics Data System (ADS)
Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.
Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.
Fusion of spatio-temporal UAV and proximal sensing data for an agricultural decision support system
NASA Astrophysics Data System (ADS)
Katsigiannis, P.; Galanis, G.; Dimitrakos, A.; Tsakiridis, N.; Kalopesas, C.; Alexandridis, T.; Chouzouri, A.; Patakas, A.; Zalidis, G.
2016-08-01
Over the last few years, multispectral and thermal remote sensing imagery from unmanned aerial vehicles (UAVs) has found application in agriculture and has been regarded as a means of field data collection and crop condition monitoring source. The integration of information derived from the analysis of these remotely sensed data into agricultural management applications facilitates and aids the stakeholder's decision making. Whereas agricultural decision support systems (DSS) have long been utilised in farming applications, there are still critical gaps to be addressed; as the current approach often neglects the plant's level information and lacks the robustness to account for the spatial and temporal variability of environmental parameters within agricultural systems. In this paper, we demonstrate the use of a custom built autonomous UAV platform in providing critical information for an agricultural DSS. This hexacopter UAV bears two cameras which can be triggered simultaneously and can capture both the visible, near-infrared (VNIR) and the thermal infrared (TIR) wavelengths. The platform was employed for the rapid extraction of the normalized difference vegetation index (NDVI) and the crop water stress index (CWSI) of three different plantations, namely a kiwi, a pomegranate, and a vine field. The simultaneous recording of these two complementary indices and the creation of maps was advantageous for the accurate assessment of the plantation's status. Fusion of UAV and soil scanner system products pinpointed the necessity for adjustment of the irrigation management applied. It is concluded that timely CWSI and NDVI measures retrieved for different crop growing stages can provide additional information and can serve as a tool to support the existing irrigation DSS that had so far been exclusively based on telemetry data from soil and agrometeorological sensors. Additionally, the use of the multi-sensor UAV was found to be beneficial in collecting timely, spatio-temporal information for the fusion with ground-based proximal sensing data. This research work was designed and deployed in the frame of the project "AGRO_LESS: Joint reference strategies for rural activities of reduced inputs".
J. McKean; D. Tonina; C. Bohn; C. W. Wright
2014-01-01
New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...
NASA Astrophysics Data System (ADS)
Tapete, Deodato; Cigna, Francesca
2016-08-01
Timely availability of images of suitable spatial resolution, temporal frequency and coverage is currently one of the major technical constraints on the application of satellite SAR remote sensing for the conservation of heritage assets in urban environments that are impacted by human-induced transformation. TerraSAR-X and Sentinel-1A, in this regard, are two different models of SAR data provision: very high resolution on-demand imagery with end user-selected acquisition parameters, on one side, and freely accessible GIS-ready products with intended regular temporal coverage, on the other. What this means for change detection analyses in urban areas is demonstrated in this paper via the experiment over Homs, the third largest city of Syria with an history of settlement since 2300 BCE, where the impacts of the recent civil war combine with pre- and post-conflict urban transformation . The potential performance of Sentinel-1A StripMap scenes acquired in an emergency context is simulated via the matching StripMap beam mode offered by TerraSAR-X. Benefits and limitations of the different radar frequency band, spatial resolution and single/multi-channel polarization are discussed, as a proof-of-concept of regular monitoring currently achievable with space-borne SAR in historic urban settings. Urban transformation observed across Homs in 2009, 2014 and 2015 shows the impact of the Syrian conflict on the cityscape and proves that operator-driven interpretation is required to understand the complexity of multiple and overlapping urban changes.
NASA Astrophysics Data System (ADS)
Enterkine, J.; Spaete, L.; Glenn, N. F.; Gallagher, M.
2017-12-01
Remote sensing and mapping of dryland ecosystem vegetation is notably problematic due to the low canopy cover and fugacious growing seasons. Recent improvements in available satellite imagery and machine learning techniques have enabled enhanced approaches to mapping and monitoring vegetation across dryland ecosystems. The Sentinel-2 satellites (launched June 2015 and March 2017) of ESA's Copernicus Programme offer promising developments from existing multispectral satellite systems such as Landsat. Freely-available, Sentinel-2 imagery offers a five-day revisit frequency, thirteen spectral bands (in the visible, near infrared, and shortwave infrared), and high spatial resolution (from 10m to 60m). Three narrow spectral bands located between the visible and the near infrared are designed to observe changes in photosynthesis. The high temporal, spatial, and spectral resolution of this imagery makes it ideal for monitoring vegetation in dryland ecosystems. In this study, we calculated a large number of vegetation and spectral indices from Sentinel-2 imagery spanning a growing season. This data was leveraged with robust field data of canopy cover at precise geolocations. We then used a Random Forests ensemble learning model to identify the most predictive variables for each landcover class, which were then used to impute landcover over the study area. The resulting vegetation map product will be used by land managers, and the mapping approaches will serve as a basis for future remote sensing projects using Sentinel-2 imagery and machine learning.
Wetland Feature Extraction in Poyang Lake from Muti-Sensor and Multi-Temporal Images
NASA Astrophysics Data System (ADS)
Zhang, Li; Desnos, Yves-Louis; Wang, Yeqiao; Chen, Xiaoling; Zmuda, Andy; Yesou, Herve
2016-08-01
Under the high dynamic hydrological variations and impacts from human activities, the nature wetlands of Poyang Lake face major challenges in biodiversity decline and wetland degradation. Variations of Poyang Lake wetlands are difficult to map by a single source or one time remote sensing imagery because the landscape is dominated by herbaceous vegetation and aquatic macrophytes which are altered and controlled by the water level. This study selected and combined time series NDVI, Green Ratio Vegetation Index (GRVI) and Modified Normalized Different Water Index (MNDWI), Backscattering coefficients(σ0) (VV&VH mode), Shannon Entropy (SE) and H/α wishart classification value derived from Sentinel 1A and Sentinel 2A to investigate the spatial-temporal variation of wetlands in autumn and spring growing season with discussions about the possibility of monitoring the wetland vegetation by C-band dual-pol datasets.
A combined field/remote sensing approach for characterizing landslide risk in coastal areas
NASA Astrophysics Data System (ADS)
Francioni, Mirko; Coggan, John; Eyre, Matthew; Stead, Doug
2018-05-01
Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data were interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability.
Development of a fusion approach selection tool
NASA Astrophysics Data System (ADS)
Pohl, C.; Zeng, Y.
2015-06-01
During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.
NASA Astrophysics Data System (ADS)
Yu, Le; Zhang, Dengrong; Holden, Eun-Jung
2008-07-01
Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
NASA Technical Reports Server (NTRS)
Estes, S.; Haynes, J.; Hamdan, M. Al; Estes, M.; Sprigg, W.
2009-01-01
Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss the Public Health Projects developed to work with Grantees and the CDC while providing them with information on opportunities for future collaborations with NASA for future research.
The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer
NASA Technical Reports Server (NTRS)
Davis, Anthony B.
2012-01-01
Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.
1979-12-01
vegetation shows on the imagery but emphasis has been placed on the detection of wooded and scrub areas and the differentiation between deciduous and...S. A., 1974b, Phenology and remote sensing, phenology and seasonality modeling: in Helmut Lieth, H. (ed.), Ecological Studies-Analysis and Synthesis...Remote Sensing of Ecology , University of d-eorgia Press, Athens, Georgia, p. 63-94. Phillipson, W. R. and T. Liang, 1975, Airphoto analysis in the
Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
2007-01-01
Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.
Raymond L. Czaplewski
2005-01-01
Forest Service Research and Development (R&D) and State and Private Forestry Deputy Areas, in partnership with the National Forest System Remote Sensing Applications Center (RSAC), built a 250-m resolution (6.25-ha pixel) dataset for the entire USA. It assembles multi-seasonal hyperspectral MODIS data and derivatives, Landsat derivatives (i.e., summary statistics...
NASA Astrophysics Data System (ADS)
Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri
2016-07-01
Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.
2007-05-01
During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.
Practical applications of remote sensing technology
NASA Technical Reports Server (NTRS)
Whitmore, Roy A., Jr.
1990-01-01
Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.
NASA Astrophysics Data System (ADS)
Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei
2014-12-01
The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.
Multisource geological data mining and its utilization of uranium resources exploration
NASA Astrophysics Data System (ADS)
Zhang, Jie-lin
2009-10-01
Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.
Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users
Calera, Alfonso; Campos, Isidro; Osann, Anna; D’Urso, Guido; Menenti, Massimo
2017-01-01
The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools. PMID:28492515
Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.
2003-01-01
Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.
Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users.
Calera, Alfonso; Campos, Isidro; Osann, Anna; D'Urso, Guido; Menenti, Massimo
2017-05-11
The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.
Lim, Joongbin; Lee, Kyoo-Seock
2017-03-01
Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.
NASA Astrophysics Data System (ADS)
Appel, Marius; Lahn, Florian; Pebesma, Edzer; Buytaert, Wouter; Moulds, Simon
2016-04-01
Today's amount of freely available data requires scientists to spend large parts of their work on data management. This is especially true in environmental sciences when working with large remote sensing datasets, such as obtained from earth-observation satellites like the Sentinel fleet. Many frameworks like SpatialHadoop or Apache Spark address the scalability but target programmers rather than data analysts, and are not dedicated to imagery or array data. In this work, we use the open-source data management and analytics system SciDB to bring large earth-observation datasets closer to analysts. Its underlying data representation as multidimensional arrays fits naturally to earth-observation datasets, distributes storage and computational load over multiple instances by multidimensional chunking, and also enables efficient time-series based analyses, which is usually difficult using file- or tile-based approaches. Existing interfaces to R and Python furthermore allow for scalable analytics with relatively little learning effort. However, interfacing SciDB and file-based earth-observation datasets that come as tiled temporal snapshots requires a lot of manual bookkeeping during ingestion, and SciDB natively only supports loading data from CSV-like and custom binary formatted files, which currently limits its practical use in earth-observation analytics. To make it easier to work with large multi-temporal datasets in SciDB, we developed software tools that enrich SciDB with earth observation metadata and allow working with commonly used file formats: (i) the SciDB extension library scidb4geo simplifies working with spatiotemporal arrays by adding relevant metadata to the database and (ii) the Geospatial Data Abstraction Library (GDAL) driver implementation scidb4gdal allows to ingest and export remote sensing imagery from and to a large number of file formats. Using added metadata on temporal resolution and coverage, the GDAL driver supports time-based ingestion of imagery to existing multi-temporal SciDB arrays. While our SciDB plugin works directly in the database, the GDAL driver has been specifically developed using a minimum amount of external dependencies (i.e. CURL). Source code for both tools is available from github [1]. We present these tools in a case-study that demonstrates the ingestion of multi-temporal tiled earth-observation data to SciDB, followed by a time-series analysis using R and SciDBR. Through the exclusive use of open-source software, our approach supports reproducibility in scalable large-scale earth-observation analytics. In the future, these tools can be used in an automated way to let scientists only work on ready-to-use SciDB arrays to significantly reduce the data management workload for domain scientists. [1] https://github.com/mappl/scidb4geo} and \\url{https://github.com/mappl/scidb4gdal
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Huning, L. S.; Love, C. A.; Farahmand, A.
2017-12-01
This presentation surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. Satellite observations that are not currently used for operational drought monitoring, such as near-surface air relative humidity and water vapor, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. This presentation describes how different satellite observations can be combined for overall drought development and impact assessment. Finally, we provide an overview of the research gaps and challenges that are facing us ahead in the remote sensing of drought.
NASA Astrophysics Data System (ADS)
Rajib, A.; Evenson, G. R.; Golden, H. E.; Lane, C.
2017-12-01
Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. Accordingly, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate realistic ground conditions, particularly those involved with complex land-atmosphere feedbacks, vegetation growth, and energy balances. Uncertainty persists despite using high resolution topography and/or detailed land use data. Thus, a good hydrologic model can produce right answers for wrong reasons. In this study, we develop an efficient approach for multi-variable assimilation of remotely sensed earth observations (EOs) into a hydrologic model and apply it in the 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. Our goal is to employ EOs, specifically Leaf Area Index (LAI) and Potential Evapotranspiration (PET), as surrogates for the aforementioned processes without overruling the model's built-in physical/semi-empirical process conceptualizations. To do this, we modified the source code of an already-improved version of the Soil and Water Assessment Tool (SWAT) for wetland hydrology (Evenson et al. 2016 HP 30(22):4168) to directly assimilate remotely-sensed LAI and PET (obtained from the 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products, respectively) into each model Hydrologic Response Unit (HRU). Two configurations of the model, one with and one without EO assimilation, are calibrated against streamflow observations at the watershed outlet. Spatio-temporal changes in the HRU-level water balance, based on calibrated outputs, are evaluated using MODIS Actual Evapotranspiration (AET) as a reference. It is expected that the model configuration having remotely sensed LAI and PET, will simulate more realistic land-atmosphere feedbacks, vegetation growth and energy balance. As a result, this will decrease simulated water balance uncertainties compared to the default model configuration.
NASA Astrophysics Data System (ADS)
Pal, Manali; Suman, Mayank; Das, Sarit Kumar; Maity, Rajib
2017-04-01
Information on spatio-temporal distribution of surface Soil Moisture Content (SMC) is essential in several hydrological, meteorological and agricultural applications. There has been increasing importance of microwave active remote sensing data for large-scale estimation of surface SMC because of its ability to monitor spatial and temporal variation of surface SMC at regional, continental and global scale at a reasonably fine spatial and temporal resolution. The use of Synthetic Aperture Radar (SAR) is highly potential for catchment-scale applications due to high spatial resolution (˜10-20 m) both for vegetated and bare soil surface as well as because of its all-weather and day and night characteristics. However, one prime disadvantage of SAR is that their signal is subjective to SMC along with Land Use Land Cover (LULC) and surface roughness conditions, making the retrieval of SMC from SAR data an "ill-posed" problem. Moreover, the quantification of uncertainty due to inappropriate surface roughness characterization, soil texture, inversion techniques etc. even in the latest established retrieval methods, is little explored. This paper reports a recently developed method to estimate the surface SMC with probabilistic assessment of uncertainty associated with the estimation (Pal et al., 2016). Quad-polarized SAR data from Radar Imaging Satellite1 (RISAT1), launched in 2012 by Indian Space Research Organization (ISRO) and information on LULC regarding bareland and vegetated land (<30 cm height) are used in estimation using the potential of multivariate probabilistic assessment through copulas. The salient features of the study are: 1) development of a combined index to understand the role of all the quad-polarized backscattering coefficients and soil texture information in SMC estimation; 2) applicability of the model for different incidence angles using normalized incidence angle theory proposed by Zibri et al. (2005); and 3) assessment of uncertainty range of the estimated SMC. Supervised Principal Component Analysis (SPCA) is used for development of combined index and Frank copula is found to be the best-fit copula. The developed model is validated with the field soil moisture values over 334 monitoring points within the study area and used for development of a soil moisture map. While the performance is promising, the model is applicable only for bare and vegetated land. References: Pal, M., Maity, R., Suman, M., Das, S.K., Patel, P., and Srivastava, H.S., (2016). "Satellite-Based Probabilistic Assessment of Soil Moisture Using C-Band Quad-Polarized RISAT1 Data." IEEE Transactions on Geoscience and Remote Sensing, In Press, doi:10.1109/TGRS.2016.2623378. Zribi, M., Baghdadi, N., Holah, N., and Fafin, O., (2005)."New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion." Remote Sensing of Environment, vol. 96, nos. 3-4, pp. 485-496.
NASA Astrophysics Data System (ADS)
Kim, J.; Lin, C. W.; vanGasselt, S.; Lin, S.; Lan, C. W.
2017-12-01
Expanding deserts have been causing significant socio-economical threats by, e.g., hampering anthropogenic activities or causing decline of agricultural productivity. Countries in the Asian-Pacific regions in particular have been suffering from dust storms originating in the arid deserts of China, Mongolia and central Asia. In order to mitigate such environmental interferences by means of, e.g. combat desertification activities and early warning systems, the establishment of reliable desert monitoring schemes is needed. In this study, we report on a remote sensing data fusion approach to constantly and precisely monitor desert environments. We have applied this approach over a test site located in the Kubuqi desert located in Northeast China and which is considered to be a major contributor of dust storms today. In order to understand spatial and temporal trends of desertification, the planimetric distribution and 3D shape and size of sand dunes were reconstructed using Digital Terrain Models (DTM) derived from stereo observations made by Unmanned Aerial Vehicles (UAV). Based on this, the volumetric change of sand dunes was directly estimated through co-registered DTMs. We furthermore derived and investigated topographic parameters, such as the aerodynamic roughness length, the protrusion coefficient, the Normalized Difference Angular Index, and the phase coherence derived from spaceborne optical/synthetic aperture radar (SAR) remote sensing assets with the calibration index from UAV observation. Throughout such a multi-data approach, temporal changes of a target's environmental parameters can be traced, analyzed and correlated with weather conditions. An improved understanding of aeolian processes in sand deserts will be a valuable contribution for desertification combat activities and early warning systems for dust storm generation. Future research needs to be conducted over more extensive spatial and temporal domains, also by combining investigations on the hydrology which is known to regulate desertification. Acknowledgements: This study has been conducted with the support of the Korea Forest Service. Our research activities in the target area were kindly supported and co-conducted by the Future Forest organization and the Youth League of China.
Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region
NASA Astrophysics Data System (ADS)
Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.
2013-12-01
Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output fields to facilitate daily mapping of fluxes at sub-field scales. A complete processing infrastructure to automatically ingest and pre-process all required input data and to execute the integrated modeling system for near real-time agricultural monitoring purposes over targeted MENA sites is being developed, and initial results from this concerted effort will be discussed.
We used remotely sensed estimates of chlorophyll a and sea surface temperature, incorporated into the Chesapeake Bay Productivity Model (Harding et al., 2002), to estimate the spatial and temporal variation of phytoplankton net primary production and species size in the Narragans...
Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook.
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Raso, Giovanna; Utzinger, Jürg
2015-03-17
Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.
NASA Astrophysics Data System (ADS)
Gupta, Rajendra Kumar
The increase in lion and leopard population in the GIR wild life sanctuary and National Park (Gir Protected Area) demands periodic and precision monitoring of habitat at close intervals using space based remote sensing data. Besides characterizing the different forest classes, remote sensing needs to support for the assessment of thermal stress zones and identification of possible corridors for lion dispersion to new home ranges. The study focuses on assessing the thematic forest classification accuracies in percentage terms(CA) attainable using single date post-monsoon (CA=60, kappa = 0.514) as well as leaf shedding (CA=48.4, kappa = 0.372) season data in visible and Near-IR spectral bands of IRS/LISS-III at 23.5 m spatial resolution; and improvement of CA by using joint two date (multi-temporal) data sets (CA=87.2, kappa = 0.843) in the classification. The 188 m spatial resolution IRS/WiFS and 23.5 m spatial resolution LISS-III data were used to study the possible corridors for dispersion of Lions from GIR protected areas (PA). A relative thermal stress index (RTSI) for Gir PA has been developed using NOAA/ AVHRR data sets of post-monsoon, leaf shedded and summer seasons. The paper discusses the role of RTSI as a tool to work out forest management plans using leaf shedded season data to combat the thermal stress in the habitat, by identifying locations for artificial water holes during the ensuing summer season.
NASA Technical Reports Server (NTRS)
Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.
NASA Astrophysics Data System (ADS)
Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.
2018-06-01
Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.
Sizing up human health through remote sensing: uses and misuses.
Herbreteau, V; Salem, G; Souris, M; Hugot, J P; Gonzalez, J P
2005-03-01
Following the launch of new satellites, remote sensing (RS) has been increasingly implicated in human health research for thirty years, providing a growing availability of images with higher resolution and spectral ranges. However, the scope of applications, beyond theoretical large potentialities, appears limited both by their technical nature and the models developed. An exhaustive review of RS applications in human health highlights the real implication thus far regarding the diversity and range of health issues, remotely sensed data, processes and interpretations. The place of RS is far under its expected potential, revealing fundamental barriers in its implementation for health applications. The selection of images is done by practical considerations as trivial as price and availability, which are often not relevant to addressing health questions requiring suitable resolutions and spatio-temporal range. The relationships of environmental variables from RS, geospatial data from other sources for health investigations are poorly addressed and usually simplified. A discussion covering the potential of RS for human health is developed here to assist health scientists deal with spatial and temporal dynamics of health, by finding the most relevant data and analysis procedures.
Kim, Hae-Cheol; Son, Seunghyun; Kim, Yong Hoon; Khim, Jong Seong; Nam, Jungho; Chang, Won Keun; Lee, Jung-Ho; Lee, Chang-Hee; Ryu, Jongseong
2017-08-15
The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monitoring cover crops using radar remote sensing in southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Shang, J.; Huang, X.; Liu, J.; Wang, J.
2016-12-01
Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.
NASA Astrophysics Data System (ADS)
Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong
2017-01-01
In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
NASA Astrophysics Data System (ADS)
Ren, B.; Wen, Q.; Zhou, H.; Guan, F.; Li, L.; Yu, H.; Wang, Z.
2018-04-01
The purpose of this paper is to provide decision support for the adjustment and optimization of crop planting structure in Jingxian County. The object-oriented information extraction method is used to extract corn and cotton from Jingxian County of Hengshui City in Hebei Province, based on multi-period GF-1 16-meter images. The best time of data extraction was screened by analyzing the spectral characteristics of corn and cotton at different growth stages based on multi-period GF-116-meter images, phenological data, and field survey data. The results showed that the total classification accuracy of corn and cotton was up to 95.7 %, the producer accuracy was 96 % and 94 % respectively, and the user precision was 95.05 % and 95.9 % respectively, which satisfied the demand of crop monitoring application. Therefore, combined with multi-period high-resolution images and object-oriented classification can be a good extraction of large-scale distribution of crop information for crop monitoring to provide convenient and effective technical means.
Utilizing multisource remotely sensed data to dynamically monitor drought in China
NASA Astrophysics Data System (ADS)
Liu, Sanchao; Li, Wenbo
2011-12-01
Drought is one of major nature disaster in the world and China. China has a vast territory and very different spatio-temporal distribution weather condition. Therefore, drought disasters occur frequently throughout China, which may affect large areas and cause great economic loss every year. In this paper, geostationary meteorological remote sensing data, FY-2C/D/E VISSR and three quantitative remotely sensed models including Cloud Parameters Method (CPM), Vegetation Supply Water Index (VSWI), and Temperature Vegetation Dryness Index (TVDI) have been used to dynamically monitor severe drought in southwest China from 2009 to 2010. The results have effectively revealed the occurrence, development and disappearance of this drought event. The monitoring results can be used for the relevant disaster management departments' decision-making works.
NASA Astrophysics Data System (ADS)
Dash, Jonathan P.; Watt, Michael S.; Pearse, Grant D.; Heaphy, Marie; Dungey, Heidi S.
2017-09-01
Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic factors is critical for maintaining healthy and highly-productive plantation forests. Significant research has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft. Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by providing data with very high temporal and spatial resolutions. These platforms also pose unique challenges and methods for health assessments must be validated before use. In this research, we simulated a disease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective was to acquire a time-series simulated disease expression dataset to develop methods for monitoring physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health (density) and needle health (discolouration) were carried out simultaneously by experienced forest health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for identifying physiological stress in mature plantation trees even during the early stages of tree stress. We found that physiological stress could be detected earliest in data from the red edge and near infra-red bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress than the near infra-red data. A non-parametric approach was used to model physiological stress based on spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This model can be used to map physiological stress based on high-resolution multi-spectral data.
Satellite Remote Sensing of Cirrus: An Overview
NASA Technical Reports Server (NTRS)
Minnis, Patrick
1998-01-01
The determination of cirrus properties over relatively large spatial and temporal scales will, in most instances, require the use of satellite data. Global coverage, at resolutions as high as several meters are attainable with Landsat, while temporal coverage at 1-min intervals is now available with the latest Geostationary Operational Environmental Satellite (GOES) imagers. Cirrus can be analyzed via interpretation of the radiation that they reflect or emit over a wide range of the electromagnetic spectrum. Many of these spectra and high-resolution satellite data can be used to understand certain aspects of cirrus clouds in particular situations. Production of a global climatology of cirrus clouds, however, requires compromises in spatial, temporal, and spectral coverage. This paper summarizes the state of the art and the potential for future passive remote sensing systems for both understanding cirrus formation and acquiring sufficient statistics to constrain and refine weather and climate models.
Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements.
Menyuk, N; Killinger, D K; Menyuk, C R
1982-09-15
Laser remote sensing involves the measurement of laser-beam transmission through the atmosphere and is subject to uncertainties caused by strong fluctuations due primarily to speckle, glint, and atmospheric-turbulence effects. These uncertainties are generally reduced by taking average values of increasing numbers of measurements. An experiment was carried out to directly measure the effect of signal averaging on back-scattered laser return signals from a diffusely reflecting target using a direct-detection differential-absorption lidar (DIAL) system. The improvement in accuracy obtained by averaging over increasing numbers of data points was found to be smaller than that predicted for independent measurements. The experimental results are shown to be in excellent agreement with a theoretical analysis which considers the effect of temporal correlation. The analysis indicates that small but long-term temporal correlation severely limits the improvement available through signal averaging.
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
2012-01-01
Background Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together. Methods A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data. Results At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found. Conclusions Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models. PMID:22830528
NASA Technical Reports Server (NTRS)
Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)
2001-01-01
Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.
2017-12-01
We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.
NASA Astrophysics Data System (ADS)
Kustas, William P.; Alfieri, Joseph G.; Anderson, Martha C.; Colaizzi, Paul D.; Prueger, John H.; Evett, Steven R.; Neale, Christopher M. U.; French, Andrew N.; Hipps, Lawrence E.; Chávez, José L.; Copeland, Karen S.; Howell, Terry A.
2012-12-01
Application and validation of many thermal remote sensing-based energy balance models involve the use of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as accurate land surface temperature (LST), vegetation cover and surface flux measurements. For operational applications at large scales, such local information is not routinely available. In addition, the uncertainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal remote sensing observations have been developed to reduce errors associated with deriving the surface-air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference (DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Norman et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard synoptic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment conducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model output of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with DTD and TSEB using local and remote meteorological observations are compared with EC and LY observations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB using the remote meteorological observations. However, discrepancies between model and measured fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and the representativeness of the remote sensing observations with the local flux measurement footprint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
A multi-sensor remote sensing-based deep learning approach was developed for generating high-resolution (5~m) vegetation maps for the western Alaskan Arctic on the Seward Peninsula, Alaska. This data was developed using the fusion of hyperspectral, multispectral, and terrain datasets. The current data is located in the Kougarok watershed but we plan to expand this over the Seward Peninsula.
NASA Astrophysics Data System (ADS)
Peterson, K. T.; Wulamu, A.
2017-12-01
Water, essential to all living organisms, is one of the Earth's most precious resources. Remote sensing offers an ideal approach to monitor water quality over traditional in-situ techniques that are highly time and resource consuming. Utilizing a multi-scale approach, incorporating data from handheld spectroscopy, UAS based hyperspectal, and satellite multispectral images were collected in coordination with in-situ water quality samples for the two midwestern watersheds. The remote sensing data was modeled and correlated to the in-situ water quality variables including chlorophyll content (Chl), turbidity, and total dissolved solids (TDS) using Normalized Difference Spectral Indices (NDSI) and Partial Least Squares Regression (PLSR). The results of the study supported the original hypothesis that correlating water quality variables with remotely sensed data benefits greatly from the use of more complex modeling and regression techniques such as PLSR. The final results generated from the PLSR analysis resulted in much higher R2 values for all variables when compared to NDSI. The combination of NDSI and PLSR analysis also identified key wavelengths for identification that aligned with previous study's findings. This research displays the advantages and future for complex modeling and machine learning techniques to improve water quality variable estimation from spectral data.
High Data Rate Satellite Communications for Environmental Remote Sensing
NASA Astrophysics Data System (ADS)
Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.
2014-12-01
Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.
Advancing the capabilities of reservoir remote sensing by leveraging multi-source satellite data
NASA Astrophysics Data System (ADS)
Gao, H.; Zhang, S.; Zhao, G.; Li, Y.
2017-12-01
With a total global capacity of more than 6000 km3, reservoirs play a key role in the hydrological cycle and in water resources management. However, essential reservoir data (e.g., elevation, storage, and evaporation loss) are usually not shared at a large scale. While satellite remote sensing offers a unique opportunity for monitoring large reservoirs from space, the commonly used radar altimeters can only detect storage variations of about 15% of global lakes at a repeat period of 10 days or longer. To advance the capabilities of reservoir sensing, we developed a series of algorithms geared towards generating long term reservoir records at improved spatial coverage, and at improved temporal resolution. To this goal, observations are leveraged from multiple satellite sensors, which include radar/laser altimeters, imagers, and passive microwave radiometers. In South Asia, we demonstrate that reservoir storage can be estimated under all-weather conditions at a 4 day time step, with the total capacity of monitored reservoirs increased to 45%. Within the Continuous United States, a first Landsat based evaporation loss dataset was developed (containing 204 reservoirs) from 1984 to 2011. The evaporation trends of these reservoirs are identified and the causes are analyzed. All of these algorithms and products were validated with gauge observations. Future satellite missions, which will make significant contributions to monitoring global reservoirs, are also discussed.
Research Status and Development Trend of Remote Sensing in China Using Bibliometric Analysis
NASA Astrophysics Data System (ADS)
Zeng, Y.; Zhang, J.; Niu, R.
2015-06-01
Remote sensing was introduced into China in 1970s and then began to flourish. At present, China has developed into a big remote sensing country, and remote sensing is increasingly playing an important role in various fields of national economic construction and social development. Based on China Academic Journals Full-text Database and China Citation Database published by China National Knowledge Infrastructure, this paper analyzed academic characteristics of 963 highly cited papers published by 16 professional and academic journals in the field of surveying and mapping from January 2010 to December 2014 in China, which include hot topics, literature authors, research institutions, and fundations. At the same time, it studied a total of 51,149 keywords published by these 16 journals during the same period. Firstly by keyword selection, keyword normalization, keyword consistency and keyword incorporation, and then by analysis of high frequency keywords, the progress and prospect of China's remote sensing technology in data acquisition, data processing and applications during the past five years were further explored and revealed. It can be seen that: highly cited paper analysis and word frequency analysis is complementary on subject progress analysis; in data acquisition phase, research focus is new civilian remote sensing satellite systems and UAV remote sensing system; research focus of data processing and analysis is multi-source information extraction and classification, laser point cloud data processing, objectoriented high resolution image analysis, SAR data and hyper-spectral image processing, etc.; development trend of remote sensing data processing is quantitative, intelligent, automated, and real-time, and the breadth and depth of remote sensing application is gradually increased; parallel computing, cloud computing and geographic conditions monitoring and census are the new research focuses to be paid attention to.
HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori
2018-01-01
Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022
Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data
NASA Astrophysics Data System (ADS)
Han, X.; Wu, J.
2018-04-01
The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.
Landslide inventory maps: New tools for an old problem
NASA Astrophysics Data System (ADS)
Guzzetti, Fausto; Mondini, Alessandro Cesare; Cardinali, Mauro; Fiorucci, Federica; Santangelo, Michele; Chang, Kang-Tsung
2012-04-01
Landslides are present in all continents, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, we estimate that landslide maps cover less than 1% of the slopes in the landmasses, and systematic information on the type, abundance, and distribution of landslides is lacking. Preparing landslide maps is important to document the extent of landslide phenomena in a region, to investigate the distribution, types, pattern, recurrence and statistics of slope failures, to determine landslide susceptibility, hazard, vulnerability and risk, and to study the evolution of landscapes dominated by mass-wasting processes. Conventional methods for the production of landslide maps rely chiefly on the visual interpretation of stereoscopic aerial photography, aided by field surveys. These methods are time consuming and resource intensive. New and emerging techniques based on satellite, airborne, and terrestrial remote sensing technologies, promise to facilitate the production of landslide maps, reducing the time and resources required for their compilation and systematic update. In this work, we first outline the principles for landslide mapping, and we review the conventional methods for the preparation of landslide maps, including geomorphological, event, seasonal, and multi-temporal inventories. Next, we examine recent and new technologies for landslide mapping, considering (i) the exploitation of very-high resolution digital elevation models to analyze surface morphology, (ii) the visual interpretation and semi-automatic analysis of different types of satellite images, including panchromatic, multispectral, and synthetic aperture radar images, and (iii) tools that facilitate landslide field mapping. Next, we discuss the advantages and the limitations of the new remote sensing data and technology for the production of geomorphological, event, seasonal, and multi-temporal inventory maps. We conclude by arguing that the new tools will help to improve the quality of landslide maps, with positive effects on all derivative products and analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluations.
NASA Astrophysics Data System (ADS)
Xu, Baodong; Li, Jing; Liu, Qinhuo; Zeng, Yelu; Yin, Gaofei
2014-11-01
Leaf Area Index (LAI) is known as a key vegetation biophysical variable. To effectively use remote sensing LAI products in various disciplines, it is critical to understand the accuracy of them. The common method for the validation of LAI products is firstly establish the empirical relationship between the field data and high-resolution imagery, to derive LAI maps, then aggregate high-resolution LAI maps to match moderate-resolution LAI products. This method is just suited for the small region, and its frequencies of measurement are limited. Therefore, the continuous observing LAI datasets from ground station network are important for the validation of multi-temporal LAI products. However, due to the scale mismatch between the point observation in the ground station and the pixel observation, the direct comparison will bring the scale error. Thus it is needed to evaluate the representativeness of ground station measurement within pixel scale of products for the reasonable validation. In this paper, a case study with Chinese Ecosystem Research Network (CERN) in situ data was taken to introduce a methodology to estimate representativeness of LAI station observation for validating LAI products. We first analyzed the indicators to evaluate the observation representativeness, and then graded the station measurement data. Finally, the LAI measurement data which can represent the pixel scale was used to validate the MODIS, GLASS and GEOV1 LAI products. The result shows that the best agreement is reached between the GLASS and GEOV1, while the lowest uncertainty is achieved by GEOV1 followed by GLASS and MODIS. We conclude that the ground station measurement data can validate multi-temporal LAI products objectively based on the evaluation indicators of station observation representativeness, which can also improve the reliability for the validation of remote sensing products.
Application of Remote Sensing for the Analysis of Environmental Changes in Albania
NASA Astrophysics Data System (ADS)
Frasheri, N.; Beqiraj, G.; Bushati, S.; Frasheri, A.
2016-08-01
In the paper there is presented a review of remote sensing studies carried out for investigation of environmental changes in Albania. Using, often simple methodologies and general purpose image processing software, and exploiting free Internet archives of satellite imagery, significant results were obtained for hot areas of environmental changes. Such areas include sea coasts experiencing sea transgression, temporal variations of vegetation and aerosols, lakes, landslides and regional tectonics. Internet archives of European Space Agency ESA and USA Geological Service USGS are used.
Water resources by orbital remote sensing: Examples of applications
NASA Technical Reports Server (NTRS)
Martini, P. R. (Principal Investigator)
1984-01-01
Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.
NASA Technical Reports Server (NTRS)
Tsang, Leung; Hwang, Jenq-Neng
1996-01-01
A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2018-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.
1985-01-01
It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.
A stochastic atmospheric model for remote sensing applications
NASA Technical Reports Server (NTRS)
Turner, R. E.
1983-01-01
There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.
Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D
2017-04-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
NASA Technical Reports Server (NTRS)
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2017-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.
Integration of Multi-sensor Data for Desertification Monitoring
NASA Astrophysics Data System (ADS)
Lin, S.; Kim, J.
2010-12-01
The desert area has been rapidly expanding globally due to reasons such as climate change, uninhibited human activities, etc. The continuous desertification has seriously affected in (and near) desert area all over the world. As sand dune activity has been recognised as an essential indicator of desertification (it is the signature and the consequence of desertification), an accurate monitoring of desert dune movement hence becomes crucial for understanding and modelling the progress of desertification. In order to determine dune’s moving speed and tendency, also to understand the propagation occurring in transition region between desert and soil rich area, a monitoring system applying multi-temporal and multi-sensor remote sensed data are proposed and implemented. Remote sensed data involved in the monitoring scheme include space-borne optical image, Synthetic Aperture Radar (SAR) data, multi- and hyper-spectral image, and terrestrial close range image. In order to determine the movement of dunes, a reference terrain surface is required. To this end, a digital terrain model (DTM) covering the test site is firstly produced using high resolution optical stereo satellite images. Subsequently, ERS-1/2 SAR imagery are employed as another resource for dune field observation. Through the interferometric SAR (InSAR) technique combining with image-based stereo DTM, the surface displacements are obtained. From which the movement and speed of the dunes can be determined. To understand the effect of desertification combating activities, the correlation between dune activities and the landcover change is also an important issue to be covered in the monitoring scheme. The task is accomplished by tracing soil and vegetation canopy variation with the multi and hyper spectral image analysis using Hyperion and Ali imagery derived from Earth Observation Mission 1 (EO-1). As a result, the correlation between the soil restorations, expanding of vegetation canopy and the ceasing of dune activities can be clearly revealed. For the very detailed measurement, a terrestrial system applying close range photogrammetry will be set up in the test sites to acquire sequential images and used to generate 4D model of the dunes in future. Finally, all the outputs from the multi-sensor data will be crossly verified and compiled to model the desertification process and the consequences. A desertification combating activity which is performed by Korea-China NGO alliance has been conducted in Qubuqi desert in Nei Mongol, China. The method and system proposed above will be established and applied to monitor the dune mobility occurring in this area. The results are expected to be of great value to demonstrate the first case of remote sensing monitoring over the combat desertification activities.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.
2012-12-01
In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance and remote sensing-based methods. Here we present an overview of the experiment and a summary of preliminary findings described in this special issue of AWR. Our understanding of the role of advection in the measurement and modeling of ET is advanced by these papers integrating measurements and model estimates.
Cubesats and drones: bridging the spatio-temporal divide for enhanced earth observation
NASA Astrophysics Data System (ADS)
McCabe, M. F.; Aragon, B.; Parkes, S. D.; Mascaro, J.; Houborg, R.
2017-12-01
In just the last few years, a range of advances in remote sensing technologies have enabled an unprecedented opportunity in earth observation. Parallel developments in cubesats and unmanned aerial vehicles (UAVs) have overcome one of the outstanding challenges in observing the land surface: the provision of timely retrievals at a spatial resolution that is sufficiently detailed to make field-level decisions. Planet cubesats have revolutionized observing capacity through their objective of near daily global retrieval. These nano-satellite systems provide high resolution (approx. 3 m) retrievals in red-green-blue and near-infrared wavelengths, offering capacity to develop vegetation metrics for both hydrological and precision agricultural applications. Apart from satellite based advances, nearer to earth technology is being exploited for a range of observation needs. UAVs provide an adaptable platform from which a variety of sensing systems can be deployed. Combinations of optical, thermal, multi- and hyper-spectral systems allow for the estimation of a range of land surface variables, including vegetation structure, vegetation health, land surface temperature and evaporation. Here we explore some of these exciting developments in the context of agricultural hydrology, providing examples of cubesat and UAV imagery that has been used to inform upon crop health and water use. An investigation of the spatial and temporal advantage of these complementary systems is undertaken, with examples of multi-day high-resolution vegetation dynamics from cubesats presented alongside diurnal-cycle responses derived from multiple within-day UAV flights.
[Effect of different snow depth and area on the snow cover retrieval using remote sensing data].
Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao
2011-12-01
For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.
Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei
2008-02-19
In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were distributed simultaneously to other agents using geographymarkup language. Real-time information allows successive platforms (agents) to work withlocal geospatial data for disaster management. Furthermore, the proposed is suitable fordetecting landslides in various regions on continental, regional, and local scales usingremotely sensed data in various resolutions derived from SPOT HRV, IKONOS, andQuickBird multispectral images.
Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui
2016-01-01
With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote sensing could yet be regarded as an optimal plan. Therefore, in the case of more and more available remote sensing information sources, agricultural UAV remote sensing could become an important information resource for guiding field-scale crop management and provide more scientific and accurate information for precision agriculture research.
Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection
NASA Astrophysics Data System (ADS)
Wang, Jinjin; Ma, Yi; Zhang, Jingyu
2018-03-01
Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.
The spatial and temporal variability of terrestrial water storage and snowpack in the Pacific Northwest (PNW) was analyzed for water years 2001–2010 using measurements from the Gravity Recovery and Climate Experiment (GRACE) instrument. GRACE provides remotely-sensed measurements...
The error structure of the SMAP single and dual channel soil moisture retrievals
USDA-ARS?s Scientific Manuscript database
Knowledge of the temporal error structure for remotely-sensed surface soil moisture retrievals can improve our ability to exploit them for hydrology and climate studies. This study employs a triple collocation type analysis to investigate both the total variance and temporal auto-correlation of erro...
NASA Astrophysics Data System (ADS)
Watson, K. A.; Masarik, M. T.; Flores, A. N.
2016-12-01
Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.
Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea
NASA Astrophysics Data System (ADS)
Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.
2018-04-01
Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.
Space-Based Remote Sensing of Atmospheric Aerosols: The Multi-Angle Spectro-Polarimetric Frontier
NASA Technical Reports Server (NTRS)
Kokhanovsky, A. A.; Davis, A. B.; Cairns, B.; Dubovik, O.; Hasekamp, O. P.; Sano, I.; Mukai, S.; Rozanov, V. V.; Litvinov, P.; Lapyonok, T.;
2015-01-01
The review of optical instrumentation, forward modeling, and inverse problem solution for the polarimetric aerosol remote sensing from space is presented. The special emphasis is given to the description of current airborne and satellite imaging polarimeters and also to modern satellite aerosol retrieval algorithms based on the measurements of the Stokes vector of reflected solar light as detected on a satellite. Various underlying surface reflectance models are discussed and evaluated.
NASA Astrophysics Data System (ADS)
Zhu, X.
2016-12-01
Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.
Registration of Laser Scanning Point Clouds: A Review.
Cheng, Liang; Chen, Song; Liu, Xiaoqiang; Xu, Hao; Wu, Yang; Li, Manchun; Chen, Yanming
2018-05-21
The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles.
Registration of Laser Scanning Point Clouds: A Review
Cheng, Liang; Chen, Song; Xu, Hao; Wu, Yang; Li, Manchun
2018-01-01
The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles. PMID:29883397
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
NASA Astrophysics Data System (ADS)
Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas
2014-05-01
In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for adding value and information to the whole monitoring survey. The test sites are currently observed by an original integrated methodology specifically developed within the aim of the project. The integrated monitoring design includes reference targets for the different monitoring systems placed together on the same point or rigid foundation, to facilitate the comparison of the data and, in the operational use, to be able to switch consistently from one to the other system. The principal goal of the project is to define a shared procedure to select scalable technologies, best practices and institutional action plans more adequate to deal with different sort of hazard related to ground displacement, in densely populated mountain areas containing recreational and critical infrastructures. Keywords: integrated monitoring, multi-temporal interferometry, artificial reflectors; mass movement, SloMove.eu
Multi-angle Imaging Spectro Radiometer (MISR) Design Issues Influened by Performance Requirements
NASA Technical Reports Server (NTRS)
Bruegge, C. J.; White, M. L.; Chrien, N. C. L.; Villegas, E. B.; Raouf, N.
1993-01-01
The design of an Earth Remote Sensing Sensor, such as the Multi-angle Imaging SpectroRadiometer (MISR), begins with a set of science requirements and is quickly followed by a set of instrument specifications.
Remote sensing of water and nitrogen stress in broccoli
NASA Astrophysics Data System (ADS)
Elsheikha, Diael-Deen Mohamed
Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.
NASA Technical Reports Server (NTRS)
Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)
1989-01-01
Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.
Cluster Method Analysis of K. S. C. Image
NASA Technical Reports Server (NTRS)
Rodriguez, Joe, Jr.; Desai, M.
1997-01-01
Information obtained from satellite-based systems has moved to the forefront as a method in the identification of many land cover types. Identification of different land features through remote sensing is an effective tool for regional and global assessment of geometric characteristics. Classification data acquired from remote sensing images have a wide variety of applications. In particular, analysis of remote sensing images have special applications in the classification of various types of vegetation. Results obtained from classification studies of a particular area or region serve towards a greater understanding of what parameters (ecological, temporal, etc.) affect the region being analyzed. In this paper, we make a distinction between both types of classification approaches although, focus is given to the unsupervised classification method using 1987 Thematic Mapped (TM) images of Kennedy Space Center.
NASA Astrophysics Data System (ADS)
Barker, J. Burdette
Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in 2015 were attributed to random error. Soybean yield was lowest for the remote-sensing-based treatment and greatest for rainfed, possibly because of overwatering and lodging. The model performed well considering that it did not include soil water content measurements during the season. Future work should improve the soil evaporation and drainage formulations, because of excessive precipitation and include aerial remote sensing imagery and soil water content measurement as model inputs.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2018-02-01
Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.
NASA Astrophysics Data System (ADS)
Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego
2015-04-01
Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna, woody savanna, needleleaf forest, deciduous forest and mixed forest) are evaluated at the tower-scale in 24 pre-selected study regions on three continents (Europe, North America, and Australia). References: Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17, 3707-3720. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.
Swetnam, Tyson L.; Gillan, Jeffrey K.; Sankey, Temuulen T.; McClaran, Mitchel P.; Nichols, Mary H.; Heilman, Philip; McVay, Jason
2018-01-01
Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft. PMID:29379511
Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason
2017-01-01
Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft.
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Kumar, J.; Maddalena, D. M.; Langford, Z.; Hargrove, W. W.
2014-12-01
Disparate in situ and remote sensing time series data are being collected to understand the structure and function of ecosystems and how they may be affected by climate change. However, resource and logistical constraints limit the frequency and extent of observations, particularly in the harsh environments of the arctic and the tropics, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent variability at desired scales. These regions host large areas of potentially vulnerable ecosystems that are poorly represented in Earth system models (ESMs), motivating two new field campaigns, called Next Generation Ecosystem Experiments (NGEE) for the Arctic and Tropics, funded by the U.S. Department of Energy. Multivariate Spatio-Temporal Clustering (MSTC) provides a quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks. We applied MSTC to down-scaled general circulation model results and data for the State of Alaska at a 4 km2 resolution to define maps of ecoregions for the present (2000-2009) and future (2090-2099), showing how combinations of 37 bioclimatic characteristics are distributed and how they may shift in the future. Optimal representative sampling locations were identified on present and future ecoregion maps, and representativeness maps for candidate sampling locations were produced. We also applied MSTC to remotely sensed LiDAR measurements and multi-spectral imagery from the WorldView-2 satellite at a resolution of about 5 m2 within the Barrow Environmental Observatory (BEO) in Alaska. At this resolution, polygonal ground features—such as centers, edges, rims, and troughs—can be distinguished. Using these remote sensing data, we up-scaled vegetation distribution data collected on these polygonal ground features to a large area of the BEO to provide distributions of plant functional types that can be used to parameterize ESMs. In addition, we applied MSTC to 4 km2 global bioclimate data to define global ecoregions and understand the representativeness of CTFS-ForestGEO, Fluxnet, and RAINFOR sampling networks. These maps identify tropical forests underrepresented in existing observations of individual and combined networks.
NASA Astrophysics Data System (ADS)
Freeman, Mary Pyott
ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.
Radar remote sensing for archaeology in Hangu Frontier Pass in Xin’an, China
NASA Astrophysics Data System (ADS)
Jiang, A. H.; Chen, F. L.; Tang, P. P.; Liu, G. L.; Liu, W. K.; Wang, H. C.; Lu, X.; Zhao, X. L.
2017-02-01
As a non-invasive tool, remote sensing can be applied to archaeology taking the advantage of large scale covering, in-time acquisition, high spatial-temporal resolution and etc. In archaeological research, optical approaches have been widely used. However, the capability of Synthetic Aperture Radar (SAR) for archaeological detection has not been fully exploded so far. In this study, we chose Hangu Frontier Pass of Han Dynasty located in Henan Province as the experimental site (included into the cluster of Silk Roads World Heritage sites). An exploratory study to detect the historical remains was conducted. Firstly, TanDEM-X SAR data were applied to generate high resolution DEM of Hangu Frontier Pass; and then the relationship between the pass and derived ridge lines was analyzed. Second, the temporal-averaged amplitude SAR images highlighted archaeological traces owing to the depressed speckle noise. For instance, the processing of 20-scene PALSAR data (spanning from 2007 to 2011) enabled us to detect unknown archaeological features. Finally, the heritage remains detected by SAR data were verified by Ground Penetrating Radar (GPR) prospecting, implying the potential of the space-to-ground radar remote sensing for archaeological applications.
VoPham, Trang; Wilson, John P; Ruddell, Darren; Rashed, Tarek; Brooks, Maria M; Yuan, Jian-Min; Talbott, Evelyn O; Chang, Chung-Chou H; Weissfeld, Joel L
2015-08-01
Accurate pesticide exposure estimation is integral to epidemiologic studies elucidating the role of pesticides in human health. Humans can be exposed to pesticides via residential proximity to agricultural pesticide applications (drift). We present an improved geographic information system (GIS) and remote sensing method, the Landsat method, to estimate agricultural pesticide exposure through matching pesticide applications to crops classified from temporally concurrent Landsat satellite remote sensing images in California. The image classification method utilizes Normalized Difference Vegetation Index (NDVI) values in a combined maximum likelihood classification and per-field (using segments) approach. Pesticide exposure is estimated according to pesticide-treated crop fields intersecting 500 m buffers around geocoded locations (e.g., residences) in a GIS. Study results demonstrate that the Landsat method can improve GIS-based pesticide exposure estimation by matching more pesticide applications to crops (especially temporary crops) classified using temporally concurrent Landsat images compared to the standard method that relies on infrequently updated land use survey (LUS) crop data. The Landsat method can be used in epidemiologic studies to reconstruct past individual-level exposure to specific pesticides according to where individuals are located.
Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith
2011-01-01
We examined spatial patterns of changes in forest area and nonsoil carbon (C) dynamics affected by land use/cover change (LUC) and harvests in 24 northern states of the United States using an integrated methodology combining remote sensing and ground inventory data between 1992 and 2001. We used the Retrofit Change Product from the Multi-Resolution Land Characteristics...
Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil
NASA Astrophysics Data System (ADS)
Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long
2017-10-01
Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.
USDA-ARS?s Scientific Manuscript database
In-situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment and turbidity. The objective of this research was to develop and e...
USDA-ARS?s Scientific Manuscript database
Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...
NASA Astrophysics Data System (ADS)
Hu, Wenmin; Wang, Zhongcheng; Li, Chunhua; Zhao, Jin; Li, Yi
2018-02-01
Multi-source remote sensing data is rarely used for the comprehensive assessment of land ecologic environment quality. In this study, a digital environmental model was proposed with the inversion algorithm of land and environmental factors based on the multi-source remote sensing data, and a comprehensive index (Ecoindex) was applied to reconstruct and predict the land environment quality of the Dongting Lake Area to assess the effect of human activities on the environment. The main finding was that with the decrease of Grade I and Grade II quality had a decreasing tendency in the lake area, mostly in suburbs and wetlands. Atmospheric water vapour, land use intensity, surface temperature, vegetation coverage, and soil water content were the main driving factors. The cause of degradation was the interference of multi-factor combinations, which led to positive and negative environmental agglomeration effects. Positive agglomeration, such as increased rainfall and vegetation coverage and reduced land use intensity, could increase environmental quality, while negative agglomeration resulted in the opposite. Therefore, reasonable ecological restoration measures should be beneficial to limit the negative effects and decreasing tendency, improve the land ecological environment quality and provide references for macroscopic planning by the government.
Airplane detection in remote sensing images using convolutional neural networks
NASA Astrophysics Data System (ADS)
Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei
2018-03-01
Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.
An airborne remote sensing platform of the Helsinki University of Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulainen, M.; Hallikainen, M.; Kemppinen, M.
1996-10-01
In 1994 Helsinki University of Technology acquired a Short SC7 Skyvan turboprop aircraft to be modified to carry remote sensing instruments. As the aircraft is originally designed to carry heavy and space consuming cargo, a modification program was implemented to make the aircraft feasible for remote sensing operations. The twelve-month long modification program had three design objectives: flexibility, accessibility and cost efficiency. The aircraft interior and electrical system were modified. Furthermore, the aircraft is equipped with DGPS-navigation system, multi-channel radiometer system and side looking airborne radar. Future projects include installation of local area network, attitude GPS system, imaging spectrometer andmore » 1.4 GHz radiometer. 6 refs., 5 figs., 1 tab.« less
Mascorro, Vanessa S; Coops, Nicholas C; Kurz, Werner A; Olguín, Marcela
2015-12-01
Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO 2e ) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Kaivosoja, J.; Hakala, T.; Pandžić, M.; Markelin, L.; Honkavaara, E.
2017-10-01
Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear regression models were better than 90 % for the drone based datasets. The results showed that the use of spectral and 3D features together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the commercial users and farmers.
Digital spatial soil and land information for agriculture development
NASA Astrophysics Data System (ADS)
Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath
2006-12-01
Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.
The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument
NASA Astrophysics Data System (ADS)
Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.
2015-12-01
Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.
NASA Astrophysics Data System (ADS)
Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun
2018-06-01
The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.
Using endmembers in AVIRIS images to estimate changes in vegetative biomass
NASA Technical Reports Server (NTRS)
Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.
1992-01-01
Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.
NASA Astrophysics Data System (ADS)
Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.
2017-12-01
Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.
NASA Astrophysics Data System (ADS)
Esteban Bedoya-Velásquez, Andrés; Navas-Guzmán, Francisco; José Granados-Muñoz, María; Titos, Gloria; Román, Roberto; Andrés Casquero-Vera, Juan; Ortiz-Amezcua, Pablo; Benavent-Oltra, Jose Antonio; de Arruda Moreira, Gregori; Montilla-Rosero, Elena; Hoyos, Carlos David; Artiñano, Begoña; Coz, Esther; José Olmo-Reyes, Francisco; Alados-Arboledas, Lucas; Guerrero-Rascado, Juan Luis
2018-05-01
This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS). To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and relative humidity (RH) profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (r) profiles from RL and continuous temperature profiles from a microwave radiometer (MWR) for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS) measurements, obtaining differences in the hygroscopic growth parameter (γ) lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %), but also a decrease in the backscatter-related Ångström exponent (AE) and particle linear depolarization ratio (PLDR), indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for both stations, and we found good agreement on γ measured with remote sensing (γ532 = 0.48 ± 0.01 and γ355 = 0.40 ± 0.01) with respect to the values calculated using Mie theory (γ532 = 0.53 ± 0.02 and γ355 = 0.45 ± 0.02), with relative differences between measurements and simulations lower than 9 % at 532 nm and 11 % at 355 nm.
SMALT - Soil Moisture from Altimetry project
NASA Astrophysics Data System (ADS)
Smith, Richard; Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel; Berry, Philippa; Wagner, Wolfgang; Hahn, Sebastian; Egido, Alejandro
Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth’s land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter’s high frequency content alongtrack and a multi-looked 6” gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed with comparison between Metop ASCAT and altimeter sigma0 over Saharan Africa. Geographical correlated areas of agreement and disagreement corresponding to underlying terrain are identified. SMALT products provide a first order estimation of soil moisture in areas of very dry terrain, where other datasets are limited. Potential to improve and expand the technique has been found, although further work is required to produce products with the same accuracy confidence as more established techniques. The data are made freely available to the scientific community through the website http://tethys.eaprs.cse.dmu.ac.uk/SMALT
SMALT - Soil Moisture from Altimetry
NASA Astrophysics Data System (ADS)
Smith, Richard; Salloway, Mark; Berry, Philippa; Hahn, Sebastian; Wagner, Wolfgang; Egido, Alejandro; Dinardo, Salvatore; Lucas, Bruno Manuel; Benveniste, Jerome
2014-05-01
Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth's land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter's high frequency content alongtrack and a multi-looked 6" gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed with comparison between Metop ASCAT and altimeter sigma0 over Saharan Africa. Geographical correlated areas of agreement and disagreement corresponding to underlying terrain are identified. SMALT products provide a first order estimation of soil moisture in areas of very dry terrain, where other datasets are limited. Potential to improve and expand the technique has been found, although further work is required to produce products with the same accuracy confidence as more established techniques. The data are made freely available to the scientific community through the website http://tethys.eaprs.cse.dmu.ac.uk/SMALT
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
[Review of estimation on oceanic primary productivity by using remote sensing methods.
Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian
2016-09-01
Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.
Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.
2018-04-01
High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.
NASA Astrophysics Data System (ADS)
Girgin, T.; Ozdogan, M.
2015-12-01
Until recently, agricultural production in Syria has been an important source of revenue and food security for the country. At its peak, agriculture in Syria accounted for 25 percent of the country's GDP. In 2014, Syrian agriculture accounted for less than 5 percent of the GDP. This decline in agricultural productivity is the cause of a 3-year long drought that started in 2007, followed by a still-ongoing conflict that started in mid-2011. Using remote sensing tools, this paper focuses on the impact that the 2007-2010 drought had on agricultural production, as well as the impact that the ongoing conflict had on the agricultural production in northern Syria. Remote sensing is a powerful and great solution to study regions of the world that are hard-to-reach due to conflict and/or other limitations. It is particularly useful when studying a region that inaccessible due to an ongoing conflict, such as in northern Syria. Using multi-temporal Landsat 5 and Landsat 8 images from August 2006, 2010 and 2014 and utilizing the neural networks algorithm, we assessed for agricultural output change in northern Syria. We conclude that the ongoing Syrian conflict has had a bigger impact on the agricultural output in northern Syria than the 3-year long drought.
Renosh, P R; Schmitt, Francois G; Loisel, Hubert
2015-01-01
Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.
NASA Astrophysics Data System (ADS)
Zheng, Zongsheng; Zhou, Yunxuan; Jiang, Xuezhong
2007-06-01
Ground survey is restricted by the difficulty of access to wide-range and dynamic salt marsh. Waterline method and hydrodynamic model were investigated to construct Digital Elevation Model (DEM) at Jiudunasha Shoals. A series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of 2000-2004. The assignment of an elevation to each waterline at the satellite overpass was performed according to hydrodynamic model. The corrected waterlines labeled elevations were used to construct Triangulated Irregular Networks (TINs). Then an interpolation for each grid elevation was performed in accordance with the associated triangle. This initial DEM, produced using the corrected waterline set, was then used to refine the topography in the intertidal zone, and the model was re-run to produce improved water levels and a new DEM. This procedure was iterated by comparing modeled and actual waterlines until no further improvement occurred. Three DEMs of different intervals were built by this approach and were compared to evaluate the effect of Deep Water Channel Project (DWCP) at the north of Jiuduansha Island. Waterline method combined with numerical model, is an effective tool for constructing digital elevation model of mudflats. The result can provide invaluable information for coastal land use and engineer construction.
Advances in satellite remote sensing of environmental variables for epidemiological applications.
Goetz, S J; Prince, S D; Small, J
2000-01-01
Earth-observing satellites have provided an unprecedented view of the land surface but have been exploited relatively little for the measurement of environmental variables of particular relevance to epidemiology. Recent advances in techniques to recover continuous fields of air temperature, humidity, and vapour pressure deficit from remotely sensed observations have significant potential for disease vector monitoring and related epidemiological applications. We report on the development of techniques to map environmental variables with relevance to the prediction of the relative abundance of disease vectors and intermediate hosts. Improvements to current methods of obtaining information on vegetation properties, canopy and surface temperature and soil moisture over large areas are also discussed. Algorithms used to measure these variables incorporate visible, near-infrared and thermal infrared radiation observations derived from time series of satellite-based sensors, focused here primarily but not exclusively on the Advanced Very High Resolution Radiometer (AVHRR) instruments. The variables compare favourably with surface measurements over a broad array of conditions at several study sites, and maps of retrieved variables captured patterns of spatial variability comparable to, and locally more accurate than, spatially interpolated meteorological observations. Application of multi-temporal maps of these variables are discussed in relation to current epidemiological research on the distribution and abundance of some common disease vectors.