Sample records for multi-timescale adaptive threshold

  1. Contributions of adaptation currents to dynamic spike threshold on slow timescales: Biophysical insights from conductance-based models

    NASA Astrophysics Data System (ADS)

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu

    2017-06-01

    Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.

  2. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  3. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    PubMed Central

    Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.

    2017-01-01

    Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288

  4. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  5. Interactions between rate processes with different timescales explain counterintuitive foraging patterns of arctic wintering eiders

    PubMed Central

    Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.

    2010-01-01

    To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814

  6. Error diffusion concept for multi-level quantization

    NASA Astrophysics Data System (ADS)

    Broja, Manfred; Michalowski, Kristina; Bryngdahl, Olof

    1990-11-01

    The error diffusion binarization procedure is adapted to multi-level quantization. The threshold parameters then available have a noticeable influence on the process. Characteristic features of the technique are shown together with experimental results.

  7. Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs

    NASA Astrophysics Data System (ADS)

    Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen

    2012-03-01

    The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.

  8. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

    PubMed Central

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-01-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  9. Adaptive compressed sensing of multi-view videos based on the sparsity estimation

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Li, Xilong; Chong, Xin

    2017-11-01

    The conventional compressive sensing for videos based on the non-adaptive linear projections, and the measurement times is usually set empirically. As a result, the quality of videos reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was described. Then an estimation method for the sparsity of multi-view videos was proposed based on the two dimensional discrete wavelet transform (2D DWT). With an energy threshold given beforehand, the DWT coefficients were processed with both energy normalization and sorting by descending order, and the sparsity of the multi-view video can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of video frame effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparsity estimated with the energy threshold provided, the proposed method can ensure the reconstruction quality of multi-view videos.

  10. Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons.

    PubMed

    Boulet, Jason; Bruce, Ian C

    2017-04-01

    Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  12. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales

    PubMed Central

    Boker, Steven M.

    2015-01-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197

  13. Adaptive dynamics on an environmental gradient that changes over a geological time-scale.

    PubMed

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko

    2015-07-07

    The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  15. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling

    DOE PAGES

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.; ...

    2016-12-19

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  16. Multi-time scale control of demand flexibility in smart distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  17. Multi-time scale control of demand flexibility in smart distribution networks

    DOE PAGES

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...

    2017-01-01

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  18. Excitable Neurons, Firing Threshold Manifolds and Canards

    PubMed Central

    2013-01-01

    We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674–1697, [2012]). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model. PMID:23945278

  19. The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments

    NASA Astrophysics Data System (ADS)

    Van Tiel, Marit; Teuling, Adriaan J.; Wanders, Niko; Vis, Marc J. P.; Stahl, Kerstin; Van Loon, Anne F.

    2018-01-01

    Glaciers are essential hydrological reservoirs, storing and releasing water at various timescales. Short-term variability in glacier melt is one of the causes of streamflow droughts, here defined as deficiencies from the flow regime. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long timescales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and streamflow drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the Hydrologiska Byråns Vattenbalansavdelning (HBV-light) model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamic glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975-2004) and future (2071-2100) period. Two existing threshold approaches to define future droughts are employed: (1) the threshold from the historical period; (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamic glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historical periods are more similar when the transient threshold is used, for both glacier area conceptualisations. With the transient threshold, factors causing future droughts can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short-term climate variability on droughts and the dynamic glacier area to model more realistic future discharges under climate change.

  20. The importance of terrestrial weathering for climate system modelling on extended timescales: a study with the UVic ESCM

    NASA Astrophysics Data System (ADS)

    Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence

    2016-04-01

    The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the role of the weathering negative feedback mechanism on multi-millennial timescales.

  1. Non-diffusive ignition of a gaseous reactive mixture following time-resolved, spatially distributed energy deposition

    NASA Astrophysics Data System (ADS)

    Kassoy, D. R.

    2014-01-01

    Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.

  2. Multi-Timescale Complex Adaptation

    DTIC Science & Technology

    2006-03-01

    Hucka et al., 2001), Cluster/TreeView (Eisen et al., 1998), Pajek ( Batagelj & Mrvar , 1998) and Cytoscape (Ideker et al., 2002). These can be used in the...targets of MCM1 or FKH2 individually or the product of MCM1 and FKH2. STRE is bound by MSN2 and/or MSN4 (Schmitt and McEntee, 1996 ) and for this...Ghosh, Scale based clustering using a radial basis function network. IEEE Transactions on Neural Networks, 2(5):1250-1261, 1996 . Chen, K.C., Csikasz

  3. Statistical link between external climate forcings and modes of ocean variability

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan; Perona, Paolo

    2017-07-01

    In this study we investigate statistical link between external climate forcings and modes of ocean variability on inter-annual (3-year) to centennial (100-year) timescales using de-trended semi-partial-cross-correlation analysis technique. To investigate this link we employ observations (AD 1854-1999), climate proxies (AD 1600-1999), and coupled Atmosphere-Ocean-Chemistry Climate Model simulations with SOCOL-MPIOM (AD 1600-1999). We find robust statistical evidence that Atlantic multi-decadal oscillation (AMO) has intrinsic positive correlation with solar activity in all datasets employed. The strength of the relationship between AMO and solar activity is modulated by volcanic eruptions and complex interaction among modes of ocean variability. The observational dataset reveals that El Niño southern oscillation (ENSO) has statistically significant negative intrinsic correlation with solar activity on decadal to multi-decadal timescales (16-27-year) whereas there is no evidence of a link on a typical ENSO timescale (2-7-year). In the observational dataset, the volcanic eruptions do not have a link with AMO on a typical AMO timescale (55-80-year) however the long-term datasets (proxies and SOCOL-MPIOM output) show that volcanic eruptions have intrinsic negative correlation with AMO on inter-annual to multi-decadal timescales. The Pacific decadal oscillation has no link with solar activity, however, it has positive intrinsic correlation with volcanic eruptions on multi-decadal timescales (47-54-year) in reconstruction and decadal to multi-decadal timescales (16-32-year) in climate model simulations. We also find evidence of a link between volcanic eruptions and ENSO, however, the sign of relationship is not consistent between observations/proxies and climate model simulations.

  4. Application of Multi-Threshold NULL Convention Logic to Adaptive Beamforming Circuits for Ultra-Low Power

    DTIC Science & Technology

    2016-03-31

    Abstract: With the decrease of transistor feature sizes into the ultra-deep submicron range, leakage power becomes an important design challenge for...MTNCL design showed substantial improvements in terms of active energy and leakage power compared to the equivalent synchronous design. Keywords...switching could use a large portion of power. Additionally, leakage power has come to dominate power consumption as process sizes shrink. Adaptive

  5. Multiple time-scales and the developmental dynamics of social systems

    PubMed Central

    Flack, Jessica C.

    2012-01-01

    To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819

  6. Multiple time-scales and the developmental dynamics of social systems.

    PubMed

    Flack, Jessica C

    2012-07-05

    To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.

  7. Addressing uncertainty in adaptation planning for agriculture.

    PubMed

    Vermeulen, Sonja J; Challinor, Andrew J; Thornton, Philip K; Campbell, Bruce M; Eriyagama, Nishadi; Vervoort, Joost M; Kinyangi, James; Jarvis, Andy; Läderach, Peter; Ramirez-Villegas, Julian; Nicklin, Kathryn J; Hawkins, Ed; Smith, Daniel R

    2013-05-21

    We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop-climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.

  8. Addressing uncertainty in adaptation planning for agriculture

    PubMed Central

    Vermeulen, Sonja J.; Challinor, Andrew J.; Thornton, Philip K.; Campbell, Bruce M.; Eriyagama, Nishadi; Vervoort, Joost M.; Kinyangi, James; Jarvis, Andy; Läderach, Peter; Ramirez-Villegas, Julian; Nicklin, Kathryn J.; Hawkins, Ed; Smith, Daniel R.

    2013-01-01

    We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty. PMID:23674681

  9. Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm

    NASA Astrophysics Data System (ADS)

    Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie

    2018-02-01

    The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.

  10. An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.

    PubMed

    Dreher, Jean-Claude; Burnod, Yves

    2002-01-01

    This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.

  11. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    PubMed

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  12. Genomics of parallel adaptation at two timescales in Drosophila

    PubMed Central

    Begun, David J.

    2017-01-01

    Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and its sister species D. simulans have revealed that a substantial proportion of proteins and amino acid residues exhibit adaptive divergence on a roughly few million years long timescale. Here we use population genomic approaches to attack the problem of parallelism between D. melanogaster and a highly diverged conger, D. hydei, on two timescales. D. hydei, a member of the repleta group of Drosophila, is similar to D. melanogaster, in that it too appears to be a recently cosmopolitan species and recent colonizer of high latitude environments. We observed parallelism both for genes exhibiting latitudinal allele frequency differentiation within species and for genes exhibiting recurrent adaptive protein divergence between species. Greater parallelism was observed for long-term adaptive protein evolution and this parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences. Thus, despite the roughly 50 million years of time separating D. melanogaster and D. hydei, and despite their considerably divergent biology, they exhibit substantial parallelism, suggesting the existence of a fundamental predictability of adaptive evolution in the genus. PMID:28968391

  13. Image-adaptive and robust digital wavelet-domain watermarking for images

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Zhang, Liping

    2018-03-01

    We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.

  14. Shifting Thresholds: Rapid Evolution of Migratory Life Histories in Steelhead/Rainbow Trout, Oncorhynchus mykiss.

    PubMed

    Phillis, Corey C; Moore, Jonathan W; Buoro, Mathieu; Hayes, Sean A; Garza, John Carlos; Pearse, Devon E

    2016-01-01

    Expression of phenotypic plasticity depends on reaction norms adapted to historic selective regimes; anthropogenic changes in these selection regimes necessitate contemporary evolution or declines in productivity and possibly extinction. Adaptation of conditional strategies following a change in the selection regime requires evolution of either the environmentally influenced cue (e.g., size-at-age) or the state (e.g., size threshold) at which an individual switches between alternative tactics. Using a population of steelhead (Oncorhynchus mykiss) introduced above a barrier waterfall in 1910, we evaluate how the conditional strategy to migrate evolves in response to selection against migration. We created 9 families and 917 offspring from 14 parents collected from the above- and below-barrier populations. After 1 year of common garden-rearing above-barrier offspring were 11% smaller and 32% lighter than below-barrier offspring. Using a novel analytical approach, we estimate that the mean size at which above-barrier fish switch between the resident and migrant tactic is 43% larger than below-barrier fish. As a result, above-barrier fish were 26% less likely to express the migratory tactic. Our results demonstrate how rapid and opposing changes in size-at-age and threshold size contribute to the contemporary evolution of a conditional strategy and indicate that migratory barriers may elicit rapid evolution toward the resident life history on timescales relevant for conservation and management of conditionally migratory species. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.

    PubMed

    Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-10-01

    Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Numerical simulation on the adaptation of forms in trabecular bone to mechanical disuse and basic multi-cellular unit activation threshold at menopause

    NASA Astrophysics Data System (ADS)

    Gong, He; Fan, Yubo; Zhang, Ming

    2008-04-01

    The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.

  17. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.

  18. Multi-target drugs to address multiple checkpoints in complex inflammatory pathologies: evolutionary cues for novel "first-in-class" anti-inflammatory drug candidates: a reviewer's perspective.

    PubMed

    Mathew, Geetha; Unnikrishnan, M K

    2015-10-01

    Inflammation is a complex, metabolically expensive process involving multiple signaling pathways and regulatory mechanisms which have evolved over evolutionary timescale. Addressing multiple targets of inflammation holistically, in moderation, is probably a more evolutionarily viable strategy, as compared to current therapy which addresses drug targets in isolation. Polypharmacology, addressing multiple targets, is commonly used in complex ailments, suggesting the superior safety and efficacy profile of multi-target (MT) drugs. Phenotypic drug discovery, which generated successful MT and first-in-class drugs in the past, is now re-emerging. A multi-pronged approach, which modulates the evolutionarily conserved, robust and pervasive cellular mechanisms of tissue repair, with AMPK at the helm, regulating the complex metabolic/immune/redox pathways underlying inflammation, is perhaps a more viable strategy than addressing single targets in isolation. Molecules that modulate multiple molecular mechanisms of inflammation in moderation (modulating TH cells toward the anti-inflammatory phenotype, activating AMPK, stimulating Nrf2 and inhibiting NFκB) might serve as a model for a novel Darwinian "first-in-class" therapeutic category that holistically addresses immune, redox and metabolic processes associated with inflammatory repair. Such a multimodal biological activity is supported by the fact that several non-calorific pleiotropic natural products with anti-inflammatory action have been incorporated into diet (chiefly guided by the adaptive development of olfacto-gustatory preferences over evolutionary timescales) rendering such molecules, endowed with evolutionarily privileged molecular scaffolds, naturally oriented toward multiple targets.

  19. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    PubMed Central

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  20. Ultrafast Shock Compression Hugoniot Data of beta-CL-20 and TATB Thin Films

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Armstrong, Michael; Grivickas, Paulius; Tappan, Alexander; Kohl, Ian; Rodriguez, Mark; Knepper, Robert; Crowhurst, Jonathan; Stavrou, Elissaios; Bastea, Sorin

    2017-06-01

    The shock induced initiation threshold of two energetic materials, CL-20 and TATB are remarkably different; CL-20 is a relatively shock sensitive energetic material and TATB is considered an insensitive high explosive (IHE). Here we report ultrafast laser-based shockwave hydrodynamic data on the 100 ps timescale with 10 ps time resolution to further develop density dependent unreacted shock Hugoniot equations of state (UEOS) and to elucidate ultrafast timescale shock initiation processes for these two vastly different HEs. Thin film samples were made by vacuum thermal evaporation of the explosive on a deposited aluminum ablator layer. The deposited explosives were characterized by scanning electron microscopy, surface profilometry, and x-ray diffraction. Our preliminary UEOS results (up range of 1.3 - 1.8 km/s) from shock compressed beta-CL-20 agree reasonably well with extrapolated pseudo-velocities computed from epsilon-CL-20 isothermal diamond-anvil cell EOS measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporati.

  1. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite- and model-based products

    NASA Astrophysics Data System (ADS)

    Nogueira, Miguel

    2018-02-01

    Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.

  2. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    NASA Astrophysics Data System (ADS)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  3. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation

    PubMed Central

    Raubenheimer, David; Simpson, Stephen J.; Tait, Alice H.

    2012-01-01

    Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation. PMID:22566672

  4. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation.

    PubMed

    Raubenheimer, David; Simpson, Stephen J; Tait, Alice H

    2012-06-19

    Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation.

  5. Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales

    Treesearch

    B. Buma

    2014-01-01

    The Novus Network annual meeting was held at H. J. Andrews Experimental Forest in Oregon, USA, from 22 May to 24 May 2013. The topic was: ‘Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales’. The 2013 workshop brought together 28 researchers from 21 institutions spread across three continents. The participants – 17 faculty members,...

  6. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  7. Multi-field plasma sandpile model in tokamaks and applications

    NASA Astrophysics Data System (ADS)

    Peng, X. D.; Xu, J. Q.

    2016-08-01

    A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.

  8. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  9. Confronting Decision Cliffs: Diagnostic Assessment of Multi-Objective Evolutionary Algorithms' Performance for Addressing Uncertain Environmental Thresholds

    NASA Astrophysics Data System (ADS)

    Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.

    2014-12-01

    As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a useful and nontrivial benchmarking problem.

  10. A Harder Rain is Going to Fall: Challenges for Actionable Projections of Extremes

    NASA Astrophysics Data System (ADS)

    Collins, W.

    2014-12-01

    Hydrometeorological extremes are projected to increase in both severity and frequency as the Earth's surface continues to warm in response to anthropogenic emissions of greenhouse gases. These extremes will directly affect the availability and reliability of water and other critical resources. The most comprehensive suite of multi-model projections has been assembled under the Coupled Model Intercomparison Project version 5 (CMIP5) and assessed in the Fifth Assessment (AR5) of the Intergovernmental Panel on Climate Change (IPCC). In order for these projections to be actionable, the projections should exhibit consistency and fidelity down to the local length and timescales required for operational resource planning, for example the scales relevant for water allocations from a major watershed. In this presentation, we summarize the length and timescales relevant for resource planning and then use downscaled versions of the IPCC simulations over the contiguous United States to address three questions. First, over what range of scales is there quantitative agreement between the simulated historical extremes and in situ measurements? Second, does this range of scales in the historical and future simulations overlap with the scales relevant for resource management and adaptation? Third, does downscaling enhance the degree of multi-model consistency at scales smaller than the typical global model resolution? We conclude by using these results to highlight requirements for further model development to make the next generation of models more useful for planning purposes.

  11. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  12. The Sustained Influence of an Error on Future Decision-Making.

    PubMed

    Schiffler, Björn C; Bengtsson, Sara L; Lundqvist, Daniel

    2017-01-01

    Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants' response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters' role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  13. Designing adaptive operating rules for a large multi-purpose reservoir

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Rougé, Charles; Harou, Julien

    2017-04-01

    Reservoirs whose live storage capacity is large compared with annual inflow have "memory", i.e., their storage levels contain information about past inflows and reservoir operations. Such "long-memory" reservoirs can be found in basins in dry regions such as the Nile River Basin in Africa, the Colorado River Basin in the US, or river basins in Western and Central Asia. There the effects of a dry year have the potential to impact reservoir levels and downstream releases for several subsequent years, prompting tensions in transboundary basins. Yet, current reservoir operation rules in those reservoirs do not reflect this by integrating past climate history and release decisions among the factors that influence operating decisions. This work proposes and demonstrates an adaptive reservoir operating rule that explicitly accounts for the recent history of release decisions, and not only current storage level and near-term inflow forecasts. This implies adding long-term (e.g., multiyear) objectives to the existing short-term (e.g., annual) ones. We apply these operating rules to the Grand Ethiopian Renaissance Dam, a large reservoir under construction on the Blue Nile River. Energy generation has to be balanced with the imperative of releasing enough water in low flow years (e.g., the minimum 1, 2 or 3 year cumulative flow) to avoid tensions with downstream countries, Sudan and Egypt. Maximizing the minimum multi-year releases could be of interest for the Nile problem to minimize the impact on performance of the large High Aswan Dam in Egypt. Objectives include maximizing the average and minimum annual energy generation and maximizing the minimum annual, two year and three year cumulative releases. The system model is tested using 30 stochastically generated streamflow series. One can then derive adaptive release rules depending on the value of one- and two-year total releases with respect to thresholds. Then, there are 3 sets of release rules for the reservoir depending on whether one or both thresholds are not met, vs. only one with a non-adaptive rule. Multi-objective evolutionary algorithms (MOEAs) are used to obtain the Pareto front, i.e., non-dominated adaptive and non-adaptive operating rule sets. Implementing adaptive rules is found to improve the trade-offs between energy generation criteria and minimum release targets. Compared with non-adaptive operations, an adaptive operating policy shows an increase of around 3 and 10 Billion cubic meters in the minimum 1 and 3-year cumulative releases for a given value of the same average annual energy generation.

  14. Atomistic- and Meso-Scale Computational Simulations for Developing Multi-Timescale Theory for Radiation Degradation in Electronic and Optoelectronic Devices

    DTIC Science & Technology

    2017-02-13

    3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2016-0161 12. DISTRIBUTION / AVAILABILITY...RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy 22 Approved for public release; distribution is unlimited. ... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0161 TR-2016-0161 ATOMISTIC- AND MESO-SCALE COMPUTATIONAL SIMULATIONS FOR DEVELOPING MULTI-TIMESCALE THEORY FOR

  15. Atlantic multi-decadal oscillation covaries with Agulhas leakage

    PubMed Central

    Biastoch, Arne; Durgadoo, Jonathan V.; Morrison, Adele K.; van Sebille, Erik; Weijer, Wilbert; Griffies, Stephen M.

    2015-01-01

    The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, ‘Agulhas leakage', forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870–2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. This is relevant for climate in the North Atlantic. PMID:26656850

  16. Atlantic multi-decadal oscillation covaries with Agulhas leakage

    DOE PAGES

    Biastoch, Arne; Durgadoo, Jonathan V.; Morrison, Adele K.; ...

    2015-12-10

    The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, ‘Agulhas leakage’, forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870–2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. Lastly, this is relevant for climate in the North Atlantic.

  17. A chloroplast "wake up" mechanism: Illumination with weak light activates the photosynthetic antenna function in dark-adapted plants.

    PubMed

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Luchowski, Rafal; Mazur, Radoslaw; Sowinski, Karol; Grudzinski, Wojciech; Garstka, Maciej; Gruszecki, Wieslaw I

    2017-03-01

    The efficient and fluent operation of photosynthesis in plants relies on activity of pigment-protein complexes called antenna, absorbing light and transferring excitations toward the reaction centers. Here we show, based on the results of the fluorescence lifetime imaging analyses of single chloroplasts, that pigment-protein complexes, in dark-adapted plants, are not able to act effectively as photosynthetic antennas, due to pronounced, adverse excitation quenching. It appeared that the antenna function could be activated by a short (on a minute timescale) illumination with light of relatively low intensity, substantially below the photosynthesis saturation threshold. The low-light-induced activation of the antenna function was attributed to phosphorylation of the major accessory light-harvesting complex LHCII, based on the fact that such a mechanism was not observed in the stn7 Arabidopsis thaliana mutant, with impaired LHCII phosphorylation. It is proposed that the protein phosphorylation-controlled change in the LHCII clustering ability provides mechanistic background for this regulatory process. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Quantification of pulmonary vessel diameter in low-dose CT images

    NASA Astrophysics Data System (ADS)

    Rudyanto, Rina D.; Ortiz de Solórzano, Carlos; Muñoz-Barrutia, Arrate

    2015-03-01

    Accurate quantification of vessel diameter in low-dose Computer Tomography (CT) images is important to study pulmonary diseases, in particular for the diagnosis of vascular diseases and the characterization of morphological vascular remodeling in Chronic Obstructive Pulmonary Disease (COPD). In this study, we objectively compare several vessel diameter estimation methods using a physical phantom. Five solid tubes of differing diameters (from 0.898 to 3.980 mm) were embedded in foam, simulating vessels in the lungs. To measure the diameters, we first extracted the vessels using either of two approaches: vessel enhancement using multi-scale Hessian matrix computation, or explicitly segmenting them using intensity threshold. We implemented six methods to quantify the diameter: three estimating diameter as a function of scale used to calculate the Hessian matrix; two calculating equivalent diameter from the crosssection area obtained by thresholding the intensity and vesselness response, respectively; and finally, estimating the diameter of the object using the Full Width Half Maximum (FWHM). We find that the accuracy of frequently used methods estimating vessel diameter from the multi-scale vesselness filter depends on the range and the number of scales used. Moreover, these methods still yield a significant error margin on the challenging estimation of the smallest diameter (on the order or below the size of the CT point spread function). Obviously, the performance of the thresholding-based methods depends on the value of the threshold. Finally, we observe that a simple adaptive thresholding approach can achieve a robust and accurate estimation of the smallest vessels diameter.

  19. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    NASA Astrophysics Data System (ADS)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.

    2016-12-01

    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating sensitivity to tropical Pacific influence on warm pool convection.

  20. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    NASA Astrophysics Data System (ADS)

    David, S.; Visvikis, D.; Roux, C.; Hatt, M.

    2011-09-01

    In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.

  1. Towards a cell-based mechanostat theory of bone: the need to account for osteocyte desensitisation and osteocyte replacement.

    PubMed

    Lerebours, Chloé; Buenzli, Pascal R

    2016-09-06

    Bone׳s mechanostat theory describes the adaptation of bone tissues to their mechanical environment. Many experiments have investigated and observed such structural adaptation. However, there is still much uncertainty about how to define the reference mechanical state at which bone structure is adapted and stable. Clinical and experimental observations show that this reference state varies both in space and in time, over a wide range of timescales. We propose here an osteocyte-based mechanostat theory that encodes the mechanical reference state in osteocyte properties. This theory assumes that osteocytes are initially formed adapted to their current local mechanical environment through modulation of their properties. We distinguish two main types of physiological processes by which osteocytes subsequently modify the reference mechanical state at different timescales. One is cell desensitisation, which occurs rapidly and reversibly during an osteocyte׳s lifetime. The other is the replacement of osteocytes during bone remodelling, which occurs over the long timescales of bone turnover. The novelty of this theory is to propose that long-lasting morphological and genotypic osteocyte properties provide a material basis for a long-term mechanical memory of bone that is gradually reset by bone remodelling. We test this theory by simulating long-term mechanical disuse (modelling spinal cord injury), and short-term mechanical loadings (modelling daily exercises) with a mathematical model. The consideration of osteocyte desensitisation and of osteocyte replacement by remodelling is able to capture a number of phenomena and timescales observed during the mechanical adaptation of bone tissues, lending support to this theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Real-Time Adaptation of Decision Thresholds in Sensor Networks for Detection of Moving Targets (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of

  3. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical schemes. Depending on the application, we find that different time stepping methods are optimal. Several of the time integration schemes exploit the block-based granularity of the grid structure. The framework and the adaptive algorithms enable physics based space weather modeling and even forecasting.

  4. A Statistical Description of Neural Ensemble Dynamics

    PubMed Central

    Long, John D.; Carmena, Jose M.

    2011-01-01

    The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility. PMID:22319486

  5. Modelling airway smooth muscle passive length adaptation via thick filament length distributions

    PubMed Central

    Donovan, Graham M.

    2013-01-01

    We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway in the lung and thus plays a central role in the airway constriction associated with asthma. This new model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly incorporates the length distribution of thick sliding filaments to account for a phenomenon known as dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM force–length behaviour across multiple scales. Principally these are (nonlinear) force–length loops at short timescales (seconds), parabolic force–length curves at medium timescales (minutes) and length adaptation at longer timescales. This represents a significant improvement on the widely-used cross-bridge models which work so well in or near the isometric regime, and may have significant implications for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both airway and lung dynamics. PMID:23721681

  6. Linkages Between Multiscale Global Sea Surface Temperature Change and Precipitation Variabilities in the US

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Heng-Yi

    1999-01-01

    A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.

  7. Multi-scale correlations in different futures markets

    NASA Astrophysics Data System (ADS)

    Bartolozzi, M.; Mellen, C.; di Matteo, T.; Aste, T.

    2007-07-01

    In the present work we investigate the multiscale nature of the correlations for high frequency data (1 min) in different futures markets over a period of two years, starting on the 1st of January 2003 and ending on the 31st of December 2004. In particular, by using the concept of local Hurst exponent, we point out how the behaviour of this parameter, usually considered as a benchmark for persistency/antipersistency recognition in time series, is largely time-scale dependent in the market context. These findings are a direct consequence of the intrinsic complexity of a system where trading strategies are scale-adaptive. Moreover, our analysis points out different regimes in the dynamical behaviour of the market indices under consideration.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, A. G.; McDonald, M.; Muzzin, A.

    We present ALMA CO (2–1) detections in 11 gas-rich cluster galaxies at z ∼ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5 σ detections of the CO (2–1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ∼ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5–2 × 10{sup 11} M {sub ☉} in thesemore » objects, with high gas fractions ( f {sub gas}) and long depletion timescales ( τ ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ∼4 σ , but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.« less

  9. Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2014-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts

  10. The magnetic structure and palaeomagnetic recording fidelity of sub-micron greigite (Fe3S4)

    NASA Astrophysics Data System (ADS)

    Valdez-Grijalva, Miguel A.; Nagy, Lesleis; Muxworthy, Adrian R.; Williams, Wyn; Fabian, Karl

    2018-02-01

    We present the results of a finite-element micromagnetic model of 30nm to 300nm greigite (Fe3S4) grains with a variety of equant morphologies. This grain size range covers the magnetic single-domain (SD) to pseudo single-domain (PSD) transition, and possibly also the PSD to multi-domain (MD) transition. The SD-PSD threshold d0 is determined to be 50nm ≤d0 ≤ 56nm depending on grain shape. The nudged elastic-band method was used to determine the room temperature energy barriers between stable states and thus the blocking volumes. It is found that, in the absence of interparticle magnetostatic interactions, the magnetisation of equant SD greigite is not stable on a geological scale and only PSD grains ≥ 70nm can be expected to carry a stable magnetisation over billion-year timescales, i.e., all non-interacting SD particles are essentially superparamagnetic. We further identify a mechanism for the PSD to multi-domain (MD) transition, which is of a continuous nature from PSD nucleation up to 300nm, when structures typical of MD behaviour like closure domains begin to form.

  11. Identification of a self-paced hitting task in freely moving rats based on adaptive spike detection from multi-unit M1 cortical signals

    PubMed Central

    Hammad, Sofyan H. H.; Farina, Dario; Kamavuako, Ernest N.; Jensen, Winnie

    2013-01-01

    Invasive brain–computer interfaces (BCIs) may prove to be a useful rehabilitation tool for severely disabled patients. Although some systems have shown to work well in restricted laboratory settings, their usefulness must be tested in less controlled environments. Our objective was to investigate if a specific motor task could reliably be detected from multi-unit intra-cortical signals from freely moving animals. Four rats were trained to hit a retractable paddle (defined as a “hit”). Intra-cortical signals were obtained from electrodes placed in the primary motor cortex. First, the signal-to-noise ratio was increased by wavelet denoising. Action potentials were then detected using an adaptive threshold, counted in three consecutive time intervals and were used as features to classify either a “hit” or a “no-hit” (defined as an interval between two “hits”). We found that a “hit” could be detected with an accuracy of 75 ± 6% when wavelet denoising was applied whereas the accuracy dropped to 62 ± 5% without prior denoising. We compared our approach with the common daily practice in BCI that consists of using a fixed, manually selected threshold for spike detection without denoising. The results showed the feasibility of detecting a motor task in a less restricted environment than commonly applied within invasive BCI research. PMID:24298254

  12. ADAPTIVE THRESHOLD LOGIC.

    DTIC Science & Technology

    The design and construction of a 16 variable threshold logic gate with adaptable weights is described. The operating characteristics of tape wound...and sizes as well as for the 16 input adaptive threshold logic gate. (Author)

  13. Evidence of strategic periodicities in collective conflict dynamics.

    PubMed

    Dedeo, Simon; Krakauer, David; Flack, Jessica

    2011-09-07

    We analyse the timescales of conflict decision-making in a primate society. We present evidence for multiple, periodic timescales associated with social decision-making and behavioural patterns. We demonstrate the existence of periodicities that are not directly coupled to environmental cycles or known ultraridian mechanisms. Among specific biological and socially defined demographic classes, periodicities span timescales between hours and days. Our results indicate that these periodicities are not driven by exogenous or internal regularities but are instead driven by strategic responses to social interaction patterns. Analyses also reveal that a class of individuals, playing a critical functional role, policing, have a signature timescale of the order of 1 h. We propose a classification of behavioural timescales analogous to those of the nervous system, with high frequency, or α-scale, behaviour occurring on hour-long scales, through to multi-hour, or β-scale, behaviour, and, finally γ periodicities observed on a timescale of days.

  14. Timescale dependence of the relationship between the East Asian summer monsoon strength and precipitation over eastern China in the last millennium

    NASA Astrophysics Data System (ADS)

    Shi, Jian; Yan, Qing; Wang, Huijun

    2018-04-01

    Precipitation/humidity proxies are widely used to reconstruct the historical East Asian summer monsoon (EASM) variations based on the assumption that summer precipitation over eastern China is closely and stably linked to the strength of EASM. However, whether the observed EASM-precipitation relationship (e.g., increased precipitation with a stronger EASM) was stable throughout the past remains unclear. In this study, we used model outputs from the Paleoclimate Modelling Intercomparison Project Phase III and Community Earth System Model to investigate the stability of the EASM-precipitation relationship over the last millennium on different timescales. The model results indicate that the EASM strength (defined as the regionally averaged meridional wind) was enhanced in the Medieval Climate Anomaly (MCA; ˜ 950-1250 AD), during which there was increased precipitation over eastern China, and weakened during the Little Ice Age (LIA; ˜ 1500-1800 AD), during which there was decreased precipitation, consistent with precipitation/humidity proxies. However, the simulated EASM-precipitation relationship is only stable on a centennial and longer timescale and is unstable on a shorter timescale. The nonstationary short-timescale EASM-precipitation relationship broadly exhibits a multi-decadal periodicity, which may be attributed to the internal variability of the climate system and has no significant correlation to external forcings. Our results have implications for understanding the discrepancy among various EASM proxies on a multi-decadal timescale and highlight the need to rethink reconstructed decadal EASM variations based on precipitation/humidity proxies.

  15. An adaptive multi-level simulation algorithm for stochastic biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less

  16. Impact of the initialisation on the predictability of the Southern Ocean sea ice at interannual to multi-decadal timescales

    NASA Astrophysics Data System (ADS)

    Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana

    2015-04-01

    In this study, we assess systematically the impact of different initialisation procedures on the predictability of the sea ice in the Southern Ocean. These initialisation strategies are based on three data assimilation methods: the nudging, the particle filter with sequential importance resampling and the nudging proposal particle filter. An Earth system model of intermediate complexity is used to perform hindcast simulations in a perfect model approach. The predictability of the Antarctic sea ice at interannual to multi-decadal timescales is estimated through two aspects: the spread of the hindcast ensemble, indicating the uncertainty of the ensemble, and the correlation between the ensemble mean and the pseudo-observations, used to assess the accuracy of the prediction. Our results show that at decadal timescales more sophisticated data assimilation methods as well as denser pseudo-observations used to initialise the hindcasts decrease the spread of the ensemble. However, our experiments did not clearly demonstrate that one of the initialisation methods systematically provides with a more accurate prediction of the sea ice in the Southern Ocean than the others. Overall, the predictability at interannual timescales is limited to 3 years ahead at most. At multi-decadal timescales, the trends in sea ice extent computed over the time period just after the initialisation are clearly better correlated between the hindcasts and the pseudo-observations if the initialisation takes into account the pseudo-observations. The correlation reaches values larger than 0.5 in winter. This high correlation has likely its origin in the slow evolution of the ocean ensured by its strong thermal inertia, showing the importance of the quality of the initialisation below the sea ice.

  17. The timescales of global surface-ocean connectivity.

    PubMed

    Jönsson, Bror F; Watson, James R

    2016-04-19

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  18. Holocene Multi-Decadal to Millennial-Scale Hydrologic Variability on the South American Altiplano

    NASA Astrophysics Data System (ADS)

    Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Burns, S.

    2006-12-01

    On orbital timescales, lacustrine sediment records in the tropical central Andes show massive changes in lake level due to mechanisms related to global-scale drivers, varying at precessional timescales. Here we use stable isotopic and diatom records from two lakes in the Lake Titicaca drainage basin to reconstruct multi- decadal to millennial scale precipitation variability during the last 7000 to 8000 years. The records are tightly coupled at multi-decadal to millennial scales with each other and with lake-level fluctuations in Lake Titicaca, indicating that the lakes are recording a regional climate signal. A quantitative reconstruction of precipitation from stable isotopic data indicates that the central Andes underwent significant wet to dry alternations at multi- centennial frequencies with an amplitude of 30 to 40% of total precipitation. A strong millennial-scale component, similar in duration to periods of increased ice rafted debris flux in the North Atlantic, is observed in both lake records, suggesting that tropical North Atlantic sea-surface temperature (SST) variability may partly control regional precipitation. No clear relationship is evident between these records and the inferred ENSO history from Lago Pallcacocha in the northern tropical Andes. In the instrumental period, regional precipitation variability on inter-annual timescales is clearly influenced by Pacific modes; for example, most El Ninos produce dry and warm conditions in this part of the central Andes. However, on longer timescales, the control of tropical Pacific modes is less clear. Our reconstructions suggest that the cold intervals of the Holocene Bond events are periods of increased precipitation in the central Andes, thus indicating an anti-phasing of precipitation variation in the southern tropics of South America relative to the Northern Hemisphere monsoon region.

  19. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

    PubMed Central

    Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-01-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526

  20. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.

    PubMed

    Huang, Chao; Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-06-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.

  1. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  2. Evaluation of a multi-arm multi-stage Bayesian design for phase II drug selection trials - an example in hemato-oncology.

    PubMed

    Jacob, Louis; Uvarova, Maria; Boulet, Sandrine; Begaj, Inva; Chevret, Sylvie

    2016-06-02

    Multi-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in order to select or drop any treatment arm to move forward when such evidence already exists based on interim analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the comparison of multiple experimental drugs to a control on a binary criterion measure. We redesigned a phase II clinical trial that randomly allocates patients across three (one control and two experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a function of the decision thresholds. Our findings suggest that one experimental treatment was less efficient than the control and could have been dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively) with a false positive rate ranging from 3.6 to 0.6 % (rule 3). Adaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to predefined fixed error decision rates. ClinicalTrials.gov Identifier: NCT01342692 .

  3. Multi-timescale sediment responses across a human impacted river-estuary system

    NASA Astrophysics Data System (ADS)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  4. Epidemicity thresholds for water-borne and water-related diseases.

    PubMed

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Flood disturbance and regrowth of vegetation in ephemeral channels: conditions and interactions

    NASA Astrophysics Data System (ADS)

    Hooke, J.

    2012-04-01

    Flood flows disturb vegetation growing in ephemeral channels but more information is needed on the thresholds for damage and removal and on the regrowth processes and timescales after floods. Once vegetation is re-established then it has feedback effects on processes and may raise thresholds. Several sites in SE Spain have been monitored for the effects of flows and for the growth and responses of plants over a period of >15 years. Two major floods and many minor flows have occurred. Measurements on quadrats and in different zones of the valley floor have allowed quantification of the thresholds for damage of different species of plant. Position of the plants in the channel also has a marked influence on effect of flows; velocities and flow forces for different parts have been calculated. The threshold for removal or mortality of certain plants in these Mediterranean valleys is very high. Types and species of plants regrowing in different zones have been identified and rates of growth measured. The relationship to climatic and weather conditions between channel flows is analysed. Growth rates between floods are closely related to moisture availability, mainly influenced by inter-annual variability of rainfall but also varying with location in the channel. One site in which hydrological regime was altered by human actions has shown marked change in vegetation cover and in channel response. Feedback effects reduce erosion and increase sedimentation and these effects have been measured directly and by calculation of roughness and resistance effects. The results demonstrate the different degrees of adaptation of plants to disturbance, natural vegetation such as phreatophytes showing high resilience but crop trees such as olives and almonds on floodplains being vulnerable to high flows.

  6. ALMA Observations of Gas-rich Galaxies in z ˜ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.; Boone, K.; Cooper, M. C.; DeGroot, A.; Delahaye, A.; Demarco, R.; Foltz, R.; Hayden, B.; Lidman, C.; Manilla-Robles, A.; Perlmutter, S.

    2017-06-01

    We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z ˜ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5σ detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ˜ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2 × 1011 M ⊙ in these objects, with high gas fractions (f gas) and long depletion timescales (τ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ˜4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  7. Network Bursting Dynamics in Excitatory Cortical Neuron Cultures Results from the Combination of Different Adaptive Mechanism

    PubMed Central

    Masquelier, Timothée; Deco, Gustavo

    2013-01-01

    In the brain, synchronization among cells of an assembly is a common phenomenon, and thought to be functionally relevant. Here we used an in vitro experimental model of cell assemblies, cortical cultures, combined with numerical simulations of a spiking neural network (SNN) to investigate how and why spontaneous synchronization occurs. In order to deal with excitation only, we pharmacologically blocked GABAAergic transmission using bicuculline. Synchronous events in cortical cultures tend to involve almost every cell and to display relatively constant durations. We have thus named these “network spikes” (NS). The inter-NS-intervals (INSIs) proved to be a more interesting phenomenon. In most cortical cultures NSs typically come in series or bursts (“bursts of NSs”, BNS), with short (∼1 s) INSIs and separated by long silent intervals (tens of s), which leads to bimodal INSI distributions. This suggests that a facilitating mechanism is at work, presumably short-term synaptic facilitation, as well as two fatigue mechanisms: one with a short timescale, presumably short-term synaptic depression, and another one with a longer timescale, presumably cellular adaptation. We thus incorporated these three mechanisms into the SNN, which, indeed, produced realistic BNSs. Next, we systematically varied the recurrent excitation for various adaptation timescales. Strong excitability led to frequent, quasi-periodic BNSs (CV∼0), and weak excitability led to rare BNSs, approaching a Poisson process (CV∼1). Experimental cultures appear to operate within an intermediate weakly-synchronized regime (CV∼0.5), with an adaptation timescale in the 2–8 s range, and well described by a Poisson-with-refractory-period model. Taken together, our results demonstrate that the INSI statistics are indeed informative: they allowed us to infer the mechanisms at work, and many parameters that we cannot access experimentally. PMID:24146781

  8. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820

  9. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith D.; Jerolmack, Douglas J.

    2012-06-01

    River deltas and alluvial fans have channelization and deposition dynamics that are not entirely understood, but which dictate the evolution of landscapes of great social, economic, and ecologic value. Our lack of a process-based understanding of fan dynamics hampers our ability to construct accurate prediction and hazard models, leaving these regions vulnerable. Here we describe the growth of a series of experimental alluvial fans composed of a noncohesive grain mixture bimodal in size and density. We impose conditions that simulate a gravel/sand fan prograding into a static basin with constant water and sediment influx, and the resulting fans display realistic channelization and avulsion dynamics. We find that we can describe the dynamics of our fans in terms of a few processes: (1) an avulsion sequence with a timescale dictated by mass conservation between incoming flux and deposit volume; (2) a tendency for flow to reoccupy former channel paths; and (3) bistable slopes corresponding to separate entrainment and deposition conditions for grains. Several important observations related to these processes are: an avulsion timescale that increases with time and decreases with sediment feed rate; fan lobes that grow in a self-similar, quasi-radial pattern; and channel geometry that is adjusted to the threshold entrainment stress. We propose that the formation of well-defined channels in noncohesive fans is a transient phenomenon resulting from incision following avulsion, and can be directly described with dual transport thresholds. We present a fairly complete, process-based description of the mechanics of avulsion and its resulting timescale on our fans. Because the relevant dynamics depend only on threshold transport conditions and conservation of mass, we show how results may be directly applied to field-scale systems.

  10. The origin of Total Solar Irradiance variability on timescales less than a day

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin

    2016-07-01

    Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).

  11. Multi-scale streamflow variability responses to precipitation over the headwater catchments in southern China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie

    2017-08-01

    This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.

  12. Analytical model for atomic resonant attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Cariker, C.; Kjellson, T.; Lindroth, E.; Argenti, L.

    2017-04-01

    Recent advancements in ultrafast laser technology have made it possible to probe electron dynamics in highly excited atomic states that autoionize on a femtosecond timescale, thus giving insight into the dynamics of Auger decay and its interference with the continuum. These experiments provide a stringent test for time-resolved analytical models of autoionization. Here we present a finite-pulse, multi-photon perturbative model which is used in conjunction with ab-initio structure calculations to predict the attosecond transient absorption spectrum (ATAS) of an atom above the ionization threshold. We apply this model to compute the ATAS of argon in the vicinity of the 3s-1 4 p resonance as a function of the time delay between an extreme ultraviolet (XUV) and an infrared (IR) pulse, as well as of the angle between their polarization. We show that by modulating the parameters of the IR pulse it is possible to control the dipolar coupling between neighboring states and hence the lineshape of the 3s-1 4 p resonance. NSF Grant No. 1607588.

  13. Determining light stress responses for a tropical multi-species seagrass assemblage.

    PubMed

    Statton, John; McMahon, Kathryn; Lavery, Paul; Kendrick, Gary A

    2018-03-01

    Existing mitigations to address deterioration in water clarity associated with human activities are based on responses from single seagrass species but may not be appropriate for diverse seagrass assemblages common to tropical waters. We present findings from a light experiment designed to determine the effects of magnitude and duration of low light on a mixed tropical seagrass assemblage. Mixed assemblages of three commonly co-occurring Indo-West Pacific seagrasses, Cymodocea serrulata, Halodule uninervis and Halophila ovalis were grown in climate-controlled tanks, where replicate pots were subjected to a gradient in light availability (0.9-21.6 mols PAR m -2 day -1 ) for 12 weeks. Increased shading resulted in declines in growth and changes in cellular and photosynthesis responses for all species, although time-scale and magnitude of response were species-specific. Applying management criteria (e.g. thresholds) relevant to one species may under- or over-estimate potential for impact on other species and the meadow as a whole. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  15. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  16. Increasing climate whiplash in 21st century California

    NASA Astrophysics Data System (ADS)

    Swain, D. L.; Langenbrunner, B.; Neelin, J. D.; Hall, A. D.

    2017-12-01

    Temperate "Mediterranean" climate regimes across the globe are particularly susceptible to wide swings between drought and flood—of which California's rapid transition from record multi-year dryness between 2012-2016 to extreme wetness during 2016-2017 provides a dramatic example. The wide-ranging human and environmental impacts of this recent "climate whiplash" event in a highly-populated, economically critical, and biodiverse region highlight the importance of understanding weather and climate extremes at both ends of the hydroclimatic spectrum. Previous studies have examined the potential contribution of anthropogenic warming to recent California extremes, but findings to date have been mixed and primarily drought-focused. Here, we use specific historical California flood and drought events as thresholds for quantifying long-term changes in precipitation extremes using a large ensemble of multi-decadal climate model simulations (CESM-LENS). We find that greenhouse gas emissions are already responsible for a detectable increase in both wet and dry extremes across portions of California, and that increasing 21st century "climate whiplash" will likely yield large increases in the frequency of both rapid "dry-to-wet" transitions and severe flood events over a wide range of timescales. This projected intensification of California's hydrological cycle would seriously challenge the region's existing water storage, conveyance, and flood control infrastructure—even absent large changes in mean precipitation.

  17. The dominant role of Arctic surface buoyancy fluxes for AMOC slow-down on multi-decadal timescales

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Sevellec, F.

    2016-12-01

    One of the most dramatic consequences of the ongoing climate change is the reduction in the Arctic sea ice cover observed over the past few decades. This sea ice loss increases net heat flux into the ocean and at the same time exposes the ocean to additional freshwater flux from the atmosphere. These two effects imply positive anomalies in surface buoyancy fluxes over the Arctic ocean. In this study we estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to global changes in surface buoyancy forcing, especially in the context of changes in the Arctic. We find that, whereas on decadal timescale the subpolar region (especially east and south of Greenland) is the primarily driver of AMOC weakening due to positive buoyancy fluxes, on multidecadal timescales (longer than 20 years) it is the Arctic region that largely controls the AMOC slow-down. On timescales close to one century surface buoyancy fluxes over the Arctic ocean are nearly twice as effective for weakening the AMOC than those in the subpolar North Atlantic. We also find that the anomalous surface buoyancy fluxes in the Arctic can efficiently weaken poleward heat transport in the North Atlantic on a basin scale (i.e., between 25oN and 50oN). We conclude that such remote control of the AMOC intensity and heat transport by the Arctic ocean is a robust feature of climate change on multi-decadal timescales.

  18. The Limits to Adaptation; A Systems Approach

    EPA Science Inventory

    The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...

  19. A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory

    NASA Astrophysics Data System (ADS)

    Borland, L.

    We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.

  20. Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less

  1. Modulation frequency discrimination with single and multiple channels in cochlear implant users

    PubMed Central

    Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie

    2015-01-01

    Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914

  2. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Tietsche, S.; Collins, M.; Goessling, H. F.; Guemas, V.; Guillory, A.; Hurlin, W. J.; Ishii, M.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Sigmond, M.; Tatebe, H.; Hawkins, E.

    2015-10-01

    Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre) and an update of the project's results. Although designed to address Arctic predictability, this data set could also be used to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño Southern Oscillation.

  3. Excitation-based and informational masking of a tonal signal in a four-tone masker.

    PubMed

    Leibold, Lori J; Hitchens, Jack J; Buss, Emily; Neff, Donna L

    2010-04-01

    This study examined contributions of peripheral excitation and informational masking to the variability in masking effectiveness observed across samples of multi-tonal maskers. Detection thresholds were measured for a 1000-Hz signal presented simultaneously with each of 25, four-tone masker samples. Using a two-interval, forced-choice adaptive task, thresholds were measured with each sample fixed throughout trial blocks for ten listeners. Average thresholds differed by as much as 26 dB across samples. An excitation-based model of partial loudness [Moore, B. C. J. et al. (1997). J. Audio Eng. Soc. 45, 224-237] was used to predict thresholds. These predictions accounted for a significant portion of variance in the data of several listeners, but no relation between the model and data was observed for many listeners. Moreover, substantial individual differences, on the order of 41 dB, were observed for some maskers. The largest individual differences were found for maskers predicted to produce minimal excitation-based masking. In subsequent conditions, one of five maskers was randomly presented in each interval. The difference in performance for samples with low versus high predicted thresholds was reduced in random compared to fixed conditions. These findings are consistent with a trading relation whereby informational masking is largest for conditions in which excitation-based masking is smallest.

  4. Identifying multiple timescale rainfall controls on Mojave Desert ecohydrology using an integrated data and modeling approach for Larrea tridentata

    USGS Publications Warehouse

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2015-01-01

    The perennial shrub Larrea tridentata is widely successful in North American warm deserts but is also susceptible to climatic perturbations. Understanding its response to rainfall variability requires consideration of multiple timescales. We examine intra-annual to multi-year relationships using model simulations of soil moisture and vegetation growth over 50 years in the Mojave National Preserve in southeastern California (USA). Ecohydrological model parameters are conditioned on field and remote sensing data using an ensemble Kalman filter. Although no specific periodicities were detected in the rainfall record, simulated leaf-area-index exhibits multi-year dynamics that are driven by multi-year (∼3-years) rains, but with up to a 1-year delay in peak response. Within a multi-year period, Larrea tridentata is more sensitive to winter rains than summer. In the most active part of the root zone (above ∼80 cm), >1-year average soil moisture drives vegetation growth, but monthly average soil moisture is controlled by root uptake. Moisture inputs reach the lower part of the root zone (below ∼80 cm) infrequently, but once there they can persist over a year to help sustain plant growth. Parameter estimates highlight efficient plant physiological properties facilitating persistent growth and high soil hydraulic conductivity allowing deep soil moisture stores. We show that soil moisture as an ecological indicator is complicated by bidirectional interactions with vegetation that depend on timescale and depth. Under changing climate, Larrea tridentata will likely be relatively resilient to shorter-term moisture variability but will exhibit higher sensitivity to shifts in seasonal to multi-year moisture inputs.

  5. Adaptive threshold shearlet transform for surface microseismic data denoising

    NASA Astrophysics Data System (ADS)

    Tang, Na; Zhao, Xian; Li, Yue; Zhu, Dan

    2018-06-01

    Random noise suppression plays an important role in microseismic data processing. The microseismic data is often corrupted by strong random noise, which would directly influence identification and location of microseismic events. Shearlet transform is a new multiscale transform, which can effectively process the low magnitude of microseismic data. In shearlet domain, due to different distributions of valid signals and random noise, shearlet coefficients can be shrunk by threshold. Therefore, threshold is vital in suppressing random noise. The conventional threshold denoising algorithms usually use the same threshold to process all coefficients, which causes noise suppression inefficiency or valid signals loss. In order to solve above problems, we propose the adaptive threshold shearlet transform (ATST) for surface microseismic data denoising. In the new algorithm, we calculate the fundamental threshold for each direction subband firstly. In each direction subband, the adjustment factor is obtained according to each subband coefficient and its neighboring coefficients, in order to adaptively regulate the fundamental threshold for different shearlet coefficients. Finally we apply the adaptive threshold to deal with different shearlet coefficients. The experimental denoising results of synthetic records and field data illustrate that the proposed method exhibits better performance in suppressing random noise and preserving valid signal than the conventional shearlet denoising method.

  6. Rheological behavior of the crust and mantle in subduction zones in the time-scale range from earthquake (minute) to mln years inferred from thermomechanical model and geodetic observations

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan; Muldashev, Iskander

    2016-04-01

    The key achievement of the geodynamic modelling community greatly contributed by the work of Evgenii Burov and his students is application of "realistic" mineral-physics based non-linear rheological models to simulate deformation processes in crust and mantle. Subduction being a type example of such process is an essentially multi-scale phenomenon with the time-scales spanning from geological to earthquake scale with the seismic cycle in-between. In this study we test the possibility to simulate the entire subduction process from rupture (1 min) to geological time (Mln yr) with the single cross-scale thermomechanical model that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. First we generate a thermo-mechanical model of subduction zone at geological time-scale including a narrow subduction channel with "wet-quartz" visco-elasto-plastic rheology and low static friction. We next introduce in the same model classic rate-and state friction law in subduction channel, leading to stick-slip instability. This model generates spontaneous earthquake sequence. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We observe many interesting deformation patterns and demonstrate that contrary to the conventional ideas, this model predicts that postseismic deformation is controlled by visco-elastic relaxation in the mantle wedge already since hour to day after the great (M>9) earthquakes. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-4year time range.

  7. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound.

    PubMed

    Suo, Dingjie; Govind, Bala; Zhang, Shengqi; Jing, Yun

    2018-03-01

    Through the introduction of multi-frequency sonication in High Intensity Focused Ultrasound (HIFU), enhancement of efficiency has been noted in several applications including thrombolysis, tissue ablation, sonochemistry, and sonoluminescence. One key experimental observation is that multi-frequency ultrasound can help lower the inertial cavitation threshold, thereby improving the power efficiency. However, this has not been well corroborated by the theory. In this paper, a numerical investigation on the inertial cavitation threshold of microbubbles (MBs) under multi-frequency ultrasound irradiation is conducted. The relationships between the cavitation threshold and MB size at various frequencies and in different media are investigated. The results of single-, dual and triple frequency sonication show reduced inertial cavitation thresholds by introducing additional frequencies which is consistent with previous experimental work. In addition, no significant difference is observed between dual frequency sonication with various frequency differences. This study, not only reaffirms the benefit of using multi-frequency ultrasound for various applications, but also provides a possible route for optimizing ultrasound excitations for initiating inertial cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Limits to Adaptation: A Systems Approach

    EPA Science Inventory

    The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...

  9. Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves.

    PubMed

    Lee, Wen-Chung; Wu, Yun-Chun

    2016-01-01

    The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities.Based on decision theory, the authors propose an alternative index, the "average deviation about the probability threshold" (ADAPT).An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model.Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models.

  10. A multi-disciplinary approach for the integrated assessment of multiple risks in delta areas.

    NASA Astrophysics Data System (ADS)

    Sperotto, Anna; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2016-04-01

    The assessment of climate change related risks is notoriously difficult due to the complex and uncertain combinations of hazardous events that might happen, the multiplicity of physical processes involved, the continuous changes and interactions of environmental and socio-economic systems. One important challenge lies in predicting and modelling cascades of natural and man -made hazard events which can be triggered by climate change, encompassing different spatial and temporal scales. Another regard the potentially difficult integration of environmental, social and economic disciplines in the multi-risk concept. Finally, the effective interaction between scientists and stakeholders is essential to ensure that multi-risk knowledge is translated into efficient adaptation and management strategies. The assessment is even more complex at the scale of deltaic systems which are particularly vulnerable to global environmental changes, due to the fragile equilibrium between the presence of valuable natural ecosystems and relevant economic activities. Improving our capacity to assess the combined effects of multiple hazards (e.g. sea-level rise, storm surges, reduction in sediment load, local subsidence, saltwater intrusion) is therefore essential to identify timely opportunities for adaptation. A holistic multi-risk approach is here proposed to integrate terminology, metrics and methodologies from different research fields (i.e. environmental, social and economic sciences) thus creating shared knowledge areas to advance multi risk assessment and management in delta regions. A first testing of the approach, including the application of Bayesian network analysis for the assessment of impacts of climate change on key natural systems (e.g. wetlands, protected areas, beaches) and socio-economic activities (e.g. agriculture, tourism), is applied in the Po river delta in Northern Italy. The approach is based on a bottom-up process involving local stakeholders early in different stages of the multi-risk assessment process (i.e. identification of objectives, collection of data, definition of risk thresholds and indicators). The results of the assessment will allow the development of multi-risk scenarios enabling the evaluation and prioritization of risk management and adaptation options under changing climate conditions.

  11. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  12. The timescales of global surface-ocean connectivity

    PubMed Central

    Jönsson, Bror F.; Watson, James R.

    2016-01-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches—each randomly located anywhere in the surface ocean—is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change—increasing temperatures, ocean acidification and changes in stratification over decadal timescales—through the advection of resilient types. PMID:27093522

  13. Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders

    DTIC Science & Technology

    2012-09-30

    Adaptive Sampling using Gliders R. Kipp Shearman Jonathan D. Nash James N. Moum John A. Barth College of Oceanic & Atmospheric Sciences Oregon State...persistent on O (3 day) timescales, so are ideally suited to be adaptively sampled by autonomous gliders that actively report both turbulent and...plan to deploy 4 AUV gliders to perform intensive, adaptive surveys. Newly-enhanced to measure turbulent mixing, water-column currents and dye

  14. Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders

    DTIC Science & Technology

    2011-09-30

    Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders R. Kipp Shearman Jonathan D. Nash James N. Moum John A. Barth College of...These structures evolve yet are often persistent on O (3 day) timescales, so are ideally suited to be adaptively sampled by autonomous gliders that...processes driving lateral dispersion, we plan to deploy 4 AUV gliders to perform intensive, adaptive surveys. Newly-enhanced to measure turbulent mixing

  15. Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.

    2004-01-01

    Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.

  16. Edge enhancement and noise suppression for infrared image based on feature analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  17. Role of extrinsic noise in the sensitivity of the rod pathway: rapid dark adaptation of nocturnal vision in humans.

    PubMed

    Reeves, Adam; Grayhem, Rebecca

    2016-03-01

    Rod-mediated 500 nm test spots were flashed in Maxwellian view at 5 deg eccentricity, both on steady 10.4 deg fields of intensities (I) from 0.00001 to 1.0 scotopic troland (sc td) and from 0.2 s to 1 s after extinguishing the field. On dim fields, thresholds of tiny (5') tests were proportional to √I (Rose-DeVries law), while thresholds after extinction fell within 0.6 s to the fully dark-adapted absolute threshold. Thresholds of large (1.3 deg) tests were proportional to I (Weber law) and extinction thresholds, to √I. rod thresholds are elevated by photon-driven noise from dim fields that disappears at field extinction; large spot thresholds are additionally elevated by neural light adaptation proportional to √I. At night, recovery from dimly lit fields is fast, not slow.

  18. Robust Adaptive Thresholder For Document Scanning Applications

    NASA Astrophysics Data System (ADS)

    Hsing, To R.

    1982-12-01

    In document scanning applications, thresholding is used to obtain binary data from a scanner. However, due to: (1) a wide range of different color backgrounds; (2) density variations of printed text information; and (3) the shading effect caused by the optical systems, the use of adaptive thresholding to enhance the useful information is highly desired. This paper describes a new robust adaptive thresholder for obtaining valid binary images. It is basically a memory type algorithm which can dynamically update the black and white reference level to optimize a local adaptive threshold function. The results of high image quality from different types of simulate test patterns can be obtained by this algorithm. The software algorithm is described and experiment results are present to describe the procedures. Results also show that the techniques described here can be used for real-time signal processing in the varied applications.

  19. A spring forward for hominin evolution in East Africa.

    PubMed

    Cuthbert, Mark O; Ashley, Gail M

    2014-01-01

    Groundwater is essential to modern human survival during drought periods. There is also growing geological evidence of springs associated with stone tools and hominin fossils in the East African Rift System (EARS) during a critical period for hominin evolution (from 1.8 Ma). However it is not known how vulnerable these springs may have been to climate variability and whether groundwater availability may have played a part in human evolution. Recent interdisciplinary research at Olduvai Gorge, Tanzania, has documented climate fluctuations attributable to astronomic forcing and the presence of paleosprings directly associated with archaeological sites. Using palaeogeological reconstruction and groundwater modelling of the Olduvai Gorge paleo-catchment, we show how spring discharge was likely linked to East African climate variability of annual to Milankovitch cycle timescales. Under decadal to centennial timescales, spring flow would have been relatively invariant providing good water resource resilience through long droughts. For multi-millennial periods, modelled spring flows lag groundwater recharge by 100 s to 1000 years. The lag creates long buffer periods allowing hominins to adapt to new habitats as potable surface water from rivers or lakes became increasingly scarce. Localised groundwater systems are likely to have been widespread within the EARS providing refugia and intense competition during dry periods, thus being an important factor in natural selection and evolution, as well as a vital resource during hominin dispersal within and out of Africa.

  20. Synergy of adaptive thresholds and multiple transmitters in free-space optical communication.

    PubMed

    Louthain, James A; Schmidt, Jason D

    2010-04-26

    Laser propagation through extended turbulence causes severe beam spread and scintillation. Airborne laser communication systems require special considerations in size, complexity, power, and weight. Rather than using bulky, costly, adaptive optics systems, we reduce the variability of the received signal by integrating a two-transmitter system with an adaptive threshold receiver to average out the deleterious effects of turbulence. In contrast to adaptive optics approaches, systems employing multiple transmitters and adaptive thresholds exhibit performance improvements that are unaffected by turbulence strength. Simulations of this system with on-off-keying (OOK) showed that reducing the scintillation variations with multiple transmitters improves the performance of low-frequency adaptive threshold estimators by 1-3 dB. The combination of multiple transmitters and adaptive thresholding provided at least a 10 dB gain over implementing only transmitter pointing and receiver tilt correction for all three high-Rytov number scenarios. The scenario with a spherical-wave Rytov number R=0.20 enjoyed a 13 dB reduction in the required SNR for BER's between 10(-5) to 10(-3), consistent with the code gain metric. All five scenarios between 0.06 and 0.20 Rytov number improved to within 3 dB of the SNR of the lowest Rytov number scenario.

  1. An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification

    PubMed Central

    Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou

    2017-01-01

    In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference. PMID:29186075

  2. An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification.

    PubMed

    Li, Fangmin; Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou

    2017-11-29

    In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.

  3. Vibratory Adaptation of Cutaneous Mechanoreceptive Afferents

    PubMed Central

    Bensmaïa, S. J.; Leung, Y. Y.; Hsiao, S. S.; Johnson, K. O.

    2007-01-01

    The objective of this study was to investigate the effects of extended suprathreshold vibratory stimulation on the sensitivity of slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. To that end, an algorithm was developed to track afferent absolute (I0) and entrainment (I1) thresholds as they change over time. We recorded afferent responses to periliminal vibratory test stimuli, which were interleaved with intense vibratory conditioning stimuli during the adaptation period of each experimental run. From these measurements, the algorithm allowed us to infer changes in the afferents’ sensitivity. We investigated the stimulus parameters that affect adaptation by assessing the degree to which adaptation depends on the amplitude and frequency of the adapting stimulus. For all three afferent types, I0 and I1 increased with increasing adaptation frequency and amplitude. The degree of adaptation seems to be independent of the firing rate evoked in the afferent by the conditioning stimulus. In the analysis, we distinguished between additive adaptation (in which I0 and I1 shift equally) and multiplicative effects (in which the ratio I1/I0 remains constant). RA threshold shifts are almost perfectly additive. SA1 threshold shifts are close to additive and far from multiplicative (I1 threshold shifts are twice the shifts). PC shifts are more difficult to classify. We used an I0 integrate-and-fire model to study the possible neural mechanisms. A change in transducer gain predicts a multiplicative change in I0 and I1 and is thus ruled out as a mechanism underlying SA1 and RA adaptation. A change in the resting action potential threshold predicts equal, additive change in I0 and I1 and thus accounts well for RA adaptation. A change in the degree of refractoriness during the relative refractory period predicts an additional change in I1 such as that observed for SA1 fibers. We infer that adaptation is caused by an increase in spiking thresholds produced by ion flow through transducer channels in the receptor membrane. In a companion paper, we describe the time-course of vibratory adaptation and recovery for SA1, RA, and PC fibers. PMID:16014802

  4. Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image

    NASA Astrophysics Data System (ADS)

    Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.

    2017-12-01

    Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.

  5. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    NASA Astrophysics Data System (ADS)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  6. Using multi-resolution proxies to assess ENSO impacts on the mean state of the tropical Pacific.

    NASA Astrophysics Data System (ADS)

    Karamperidou, C.; Conroy, J. L.

    2016-12-01

    Observations and model simulations indicate that the relationship between ENSO and the mean state of the tropical Pacific is a two-way interaction. On one hand, a strong zonal SST gradient (dSST) in the Pacific (colder cold tongue) increases the potential intensity of upcoming ENSO events and may lead to increased ENSO variance. On the other hand, in a period of increased ENSO activity, large events can warm the cold tongue at decadal scales via residual heating, and thus lead to reduced zonal SST gradient (ENSO rectification mechanism). The short length of the observational record hinders our ability to confidently evaluate which mechanism dominates in each period, and whether it is sensitive to external climate forcing. This question is effectively a question of interaction between two timescales: interannual and decadal. Paleoclimate proxies of different resolutions can help elucidate this question, since they can be independent records of variability in these separate timescales. Here, we use coral proxies of ENSO variability from across the Pacific and multi-proxy records of dSST at longer timescales. Proxies, models, and observations indicate that in periods of increased ENSO activity, dSST is negatively correlated with ENSO variance at decadal timescales, indicating that strong ENSO events may affect the decadal mean state via warming the cold tongue. Using climate model simulations we attribute this effect to residual nonlinear dynamical heating, thus supporting the ENSO rectification mechanism. On the contrary, in periods without strong events, ENSO variance and dSST are positively correlated, which indicates that the primary mechanism at work is the effect of the mean state on ENSO. Our analysis also quantitatively identifies the regions where paleoclimate proxies are needed in order to reduce the existing uncertainties in ENSO-mean state interactions. Hence, this study is a synthesis of observations, model simulations and paleoclimate proxy evidence guided by the fundamental and open question of multi-scale interactions in the tropical Pacific, and illustrates the need for multi-resolution paleoclimate proxies and their potential uses.

  7. Utilizing Objective Drought Thresholds to Improve Drought Monitoring with the SPI

    NASA Astrophysics Data System (ADS)

    Leasor, Z. T.; Quiring, S. M.

    2017-12-01

    Drought is a prominent climatic hazard in the south-central United States. Droughts are frequently monitored using the severity categories determined by the U.S. Drought Monitor (USDM). This study uses the Standardized Precipitation Index (SPI) to conduct a drought frequency analysis across Texas, Oklahoma, and Kansas using PRISM precipitation data from 1900-2015. The SPI is shown to be spatiotemporally variant across the south-central United States. In particular, utilizing the default USDM severity thresholds may underestimate drought severity in arid regions. Objective drought thresholds were implemented by fitting a CDF to each location's SPI distribution. This approach results in a more homogeneous distribution of drought frequencies across each severity category. Results also indicate that it may be beneficial to develop objective drought thresholds for each season and SPI timescale. This research serves as a proof-of-concept and demonstrates how drought thresholds should be objectively developed so that they are appropriate for each climatic region.

  8. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  9. Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services

    DOE PAGES

    Tan, Jin; Zhang, Yingchen

    2017-02-02

    With increasing penetrations of wind generation on electric grids, wind power plants (WPPs) are encouraged to provide frequency ancillary services (FAS); however, it is a challenge to ensure that variable wind generation can reliably provide these ancillary services. This paper proposes using a battery energy storage system (BESS) to ensure the WPPs' commitment to FAS. This method also focuses on reducing the BESS's size and extending its lifetime. In this paper, a state-machine-based coordinated control strategy is developed to utilize a BESS to support the obliged FAS of a WPP (including both primary and secondary frequency control). This method takesmore » into account the operational constraints of the WPP (e.g., real-time reserve) and the BESS (e.g., state of charge [SOC], charge and discharge rate) to provide reliable FAS. Meanwhile, an adaptive SOC-feedback control is designed to maintain SOC at the optimal value as much as possible and thus reduce the size and extend the lifetime of the BESS. In conclusion, the effectiveness of the control strategy is validated with an innovative, multi-area, interconnected power system simulation platform that can mimic realistic power systems operation and control by simulating real-time economic dispatch, regulating reserve scheduling, multi-area automatic generation control, and generators' dynamic response.« less

  10. Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen

    With increasing penetrations of wind generation on electric grids, wind power plants (WPPs) are encouraged to provide frequency ancillary services (FAS); however, it is a challenge to ensure that variable wind generation can reliably provide these ancillary services. This paper proposes using a battery energy storage system (BESS) to ensure the WPPs' commitment to FAS. This method also focuses on reducing the BESS's size and extending its lifetime. In this paper, a state-machine-based coordinated control strategy is developed to utilize a BESS to support the obliged FAS of a WPP (including both primary and secondary frequency control). This method takesmore » into account the operational constraints of the WPP (e.g., real-time reserve) and the BESS (e.g., state of charge [SOC], charge and discharge rate) to provide reliable FAS. Meanwhile, an adaptive SOC-feedback control is designed to maintain SOC at the optimal value as much as possible and thus reduce the size and extend the lifetime of the BESS. In conclusion, the effectiveness of the control strategy is validated with an innovative, multi-area, interconnected power system simulation platform that can mimic realistic power systems operation and control by simulating real-time economic dispatch, regulating reserve scheduling, multi-area automatic generation control, and generators' dynamic response.« less

  11. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    NASA Astrophysics Data System (ADS)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  12. Ten-year optical monitoring of PKS 0735+178: historical comparison, multiband behavior, and variability timescales

    NASA Astrophysics Data System (ADS)

    Ciprini, S.; Takalo, L. O.; Tosti, G.; Raiteri, C. M.; Fiorucci, M.; Villata, M.; Nucciarelli, G.; Lanteri, L.; Nilsson, K.; Ros, J. A.

    2007-05-01

    Aims:New data and results on the optical behavior of the prominent blazar PKS 0735+178 (also known as OI 158, S3 0735+17, DA 237, 1ES 0735+178, 3EG J0737+1721) are presented, through the most continuous BVRI data available in the period 1994-2004 (about 500 nights of observations). In addition, the whole historical light curve, and a new photometric calibration of comparison stars in the field of this source are reported. Methods: Several methods for time series analysis of sparse data sets are developed, adapted, and applied to the reconstructed historical light curve and to each observing season of our unpublished optical database on PKS 0735+178. Optical spectral indexes are calculated from the multi-band observations and studied on long-term (years) durations as well. For the first time in this source, variability modes, characteristic timescales, and the signal power spectrum are explored and identified over 3 decades in time with sufficient statistics. The novel investigation of mid-term optical scales (days, weeks), could be also applied and compared to blazar gamma-ray light curves that will be provided, on the same timescales, by the forthcoming GLAST observatory. Results: In the last 10 years the optical emission of PKS 0735+178 exhibited a rather achromatic behavior and a variability mode resembling the shot-noise. The source was at an intermediate or low brightness level, showing a mild flaring activity and a superimposition/succession of rapid and slower flares, without extraordinary and isolated outbursts, but, at any rate, characterized by one major active phase in 2001. Several mid-term scales of variability were found, the more common falling into duration intervals of about 27-28 days, 50-56 days and 76-79 days. Rapid variability in the historical light curve appears to be modulated by a general, slower, and rather oscillating temporal trend, where typical amplitudes of about 4.5, 8.5, and 11-13 years can be identified. This spectral and temporal analysis, accompanying our data publication, suggests the occurrence of distinctive signatures at mid-term durations that can likely be of transitory nature. On the other hand the possible pseudo-cyclical or multi-component modulations at long times could be more stable, recurrent and correlated to the bimodal radio flux behavior and the twisted radio structure observed over several years in this blazar.

  13. An adaptive paradigm for human space settlement

    NASA Astrophysics Data System (ADS)

    Smith, Cameron M.

    2016-02-01

    Because permanent space settlement will be multigenerational it will have to be viable on ecological timescales so far unfamiliar to those planning space exploration. Long-term viability will require evolutionary and adaptive planning. Adaptations in the natural world provide many lessons for such planning, but implementing these lessons will require a new, evolutionary paradigm for envisioning and carrying out Earth-independent space settlement. I describe some of these adaptive lessons and propose some cognitive shifts required to implement them in a genuinely evolutionary approach to human space settlement.

  14. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.

    PubMed

    Bauer, Robert; Fels, Meike; Royter, Vladislav; Raco, Valerio; Gharabaghi, Alireza

    2016-09-01

    Considering self-rated mental effort during neurofeedback may improve training of brain self-regulation. Twenty-one healthy, right-handed subjects performed kinesthetic motor imagery of opening their left hand, while threshold-based classification of beta-band desynchronization resulted in proprioceptive robotic feedback. The experiment consisted of two blocks in a cross-over design. The participants rated their perceived mental effort nine times per block. In the adaptive block, the threshold was adjusted on the basis of these ratings whereas adjustments were carried out at random in the other block. Electroencephalography was used to examine the cortical activation patterns during the training sessions. The perceived mental effort was correlated with the difficulty threshold of neurofeedback training. Adaptive threshold-setting reduced mental effort and increased the classification accuracy and positive predictive value. This was paralleled by an inter-hemispheric cortical activation pattern in low frequency bands connecting the right frontal and left parietal areas. Optimal balance of mental effort was achieved at thresholds significantly higher than maximum classification accuracy. Rating of mental effort is a feasible approach for effective threshold-adaptation during neurofeedback training. Closed-loop adaptation of the neurofeedback difficulty level facilitates reinforcement learning of brain self-regulation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Prediction Study on Anti-Slide Control of Railway Vehicle Based on RBF Neural Networks

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Zhang, Jimin

    While railway vehicle braking, Anti-slide control system will detect operating status of each wheel-sets e.g. speed difference and deceleration etc. Once the detected value on some wheel-set is over pre-defined threshold, brake effort on such wheel-set will be adjusted automatically to avoid blocking. Such method takes effect on guarantee safety operation of vehicle and avoid wheel-set flatness, however it cannot adapt itself to the rail adhesion variation. While wheel-sets slide, the operating status is chaotic time series with certain law, and can be predicted with the law and experiment data in certain time. The predicted values can be used as the input reference signals of vehicle anti-slide control system, to judge and control the slide status of wheel-sets. In this article, the RBF neural networks is taken to predict wheel-set slide status in multi-step with weight vector adjusted based on online self-adaptive algorithm, and the center & normalizing parameters of active function of the hidden unit of RBF neural networks' hidden layer computed with K-means clustering algorithm. With multi-step prediction simulation, the predicted signal with appropriate precision can be used by anti-slide system to trace actively and adjust wheel-set slide tendency, so as to adapt to wheel-rail adhesion variation and reduce the risk of wheel-set blocking.

  16. Impact of the initialisation on the predictability of the Southern Ocean sea ice at interannual to multi-decadal timescales

    NASA Astrophysics Data System (ADS)

    Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana

    2014-05-01

    In this study, we assess systematically the impact of different initialisation procedures on the predictability of the sea ice in the Southern Ocean. These initialisation strategies are based on three data assimilation methods: the nudging, the particle filter with sequential resampling and the nudging proposal particle filter. An Earth-system model of intermediate complexity has been used to perform hindcast simulations in a perfect model approach. The predictability of the Southern Ocean sea ice is estimated through two aspects: the spread of the hindcast ensemble, indicating the uncertainty on the ensemble, and the correlation between the ensemble mean and the pseudo-observations, used to assess the accuracy of the prediction. Our results show that, at decadal timescales, more sophisticated data assimilation methods as well as denser pseudo-observations used to initialise the hindcasts decrease the spread of the ensemble but improve only slightly the accuracy of the prediction of the sea ice in the Southern Ocean. Overall, the predictability at interannual timescales is limited, at most, to three years ahead. At multi-decadal timescales, there is a clear improvement of the correlation of the trend in sea ice extent between the hindcasts and the pseudo-observations if the initialisation takes into account the pseudo-observations. The correlation reaches values larger than 0.5 and is due to the inertia of the ocean, showing the importance of the quality of the initialisation below the sea ice.

  17. Analysis Concerning the Inspection Threshold for Multi-Site Damage.

    DOT National Transportation Integrated Search

    1993-12-01

    Periodic inspections, at a prescribed interval, for Multi-Site Damage (MS) in longitudinal fuselage lap-joints start when the aircraft has accumulated a certain number of flights, the inspection threshold. The work reported here was an attempt to obt...

  18. Allowing variance may enlarge the safe operating space for exploited ecosystems.

    PubMed

    Carpenter, Stephen R; Brock, William A; Folke, Carl; van Nes, Egbert H; Scheffer, Marten

    2015-11-17

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.

  19. Allowing variance may enlarge the safe operating space for exploited ecosystems

    PubMed Central

    Carpenter, Stephen R.; Brock, William A.; Folke, Carl; van Nes, Egbert H.; Scheffer, Marten

    2015-01-01

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2–4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them. PMID:26438857

  20. A novel multi-scale adaptive sampling-based approach for energy saving in leak detection for WSN-based water pipelines

    NASA Astrophysics Data System (ADS)

    Saqib, Najam us; Faizan Mysorewala, Muhammad; Cheded, Lahouari

    2017-12-01

    In this paper, we propose a novel monitoring strategy for a wireless sensor networks (WSNs)-based water pipeline network. Our strategy uses a multi-pronged approach to reduce energy consumption based on the use of two types of vibration sensors and pressure sensors, all having different energy levels, and a hierarchical adaptive sampling mechanism to determine the sampling frequency. The sampling rate of the sensors is adjusted according to the bandwidth of the vibration signal being monitored by using a wavelet-based adaptive thresholding scheme that calculates the new sampling frequency for the following cycle. In this multimodal sensing scheme, the duty-cycling approach is used for all sensors to reduce the sampling instances, such that the high-energy, high-precision (HE-HP) vibration sensors have low duty cycles, and the low-energy, low-precision (LE-LP) vibration sensors have high duty cycles. The low duty-cycling (HE-HP) vibration sensor adjusts the sampling frequency of the high duty-cycling (LE-LP) vibration sensor. The simulated test bed considered here consists of a water pipeline network which uses pressure and vibration sensors, with the latter having different energy consumptions and precision levels, at various locations in the network. This is all the more useful for energy conservation for extended monitoring. It is shown that by using the novel features of our proposed scheme, a significant reduction in energy consumption is achieved and the leak is effectively detected by the sensor node that is closest to it. Finally, both the total energy consumed by monitoring as well as the time to detect the leak by a WSN node are computed, and show the superiority of our proposed hierarchical adaptive sampling algorithm over a non-adaptive sampling approach.

  1. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu

    2016-11-01

    Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.

  2. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    ... Image NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane ... especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane ...

  3. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    PubMed

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  4. DARK ADAPTATION IN DINEUTES

    PubMed Central

    Clark, Leonard B.

    1938-01-01

    The level of dark adaptation of the whirligig beetle can be measured in terms of the threshold intensity calling forth a response. The course of dark adaptation was determined at levels of light adaptation of 6.5, 91.6, and 6100 foot-candles. All data can be fitted by the same curve. This indicates that dark adaptation follows parts of the same course irrespective of the level of light adaptation. The intensity of the adapting light determines the level at which dark adaptation will begin. The relation between log aI 0 (instantaneous threshold) and log of adapting light intensity is linear over the range studied. PMID:19873056

  5. Revisiting the investor sentiment-stock returns relationship: A multi-scale perspective using wavelets

    NASA Astrophysics Data System (ADS)

    Lao, Jiashun; Nie, He; Jiang, Yonghong

    2018-06-01

    This paper employs SBW proposed by Baker and Wurgler (2006) to investigate the nonlinear asymmetric Granger causality between investor sentiment and stock returns for US economy while considering different time-scales. The wavelet method is utilized to decompose time series of investor sentiment and stock returns at different time-scales to focus on the local analysis of different time horizons of investors. The linear and nonlinear asymmetric Granger methods are employed to examine the Granger causal relationship on similar time-scales. We find evidence of strong bilateral linear and nonlinear asymmetric Granger causality between longer-term investor sentiment and stock returns. Furthermore, we observe the positive nonlinear causal relationship from stock returns to investor sentiment and the negative nonlinear causal relationship from investor sentiment to stock returns.

  6. Multi-rate, real time image compression for images dominated by point sources

    NASA Technical Reports Server (NTRS)

    Huber, A. Kris; Budge, Scott E.; Harris, Richard W.

    1993-01-01

    An image compression system recently developed for compression of digital images dominated by point sources is presented. Encoding consists of minimum-mean removal, vector quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations are presented showing that the peaks corresponding to point sources can be transmitted losslessly for low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced output bit rate. Encoding and decoding hardware has been built and tested which processes 552,960 12-bit pixels per second at compression rates of 10:1 and 4:1. Simulation results are presented for the 10:1 case only.

  7. AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques.

    PubMed

    Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert

    2018-05-08

    In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.

  8. An adaptive threshold detector and channel parameter estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Mukai, R.; Yan, T. -Y.

    2001-01-01

    This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.

  9. Unipolar Terminal-Attractor Based Neural Associative Memory with Adaptive Threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1996-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner-product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  10. Unipolar terminal-attractor based neural associative memory with adaptive threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1993-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  11. Adaptive spline autoregression threshold method in forecasting Mitsubishi car sales volume at PT Srikandi Diamond Motors

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Hartini, E.; Permana, A.

    2017-01-01

    Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.

  12. Multi-timescale data assimilation for atmosphere–ocean state estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiger, Nathan; Hakim, Gregory

    2016-06-24

    Paleoclimate proxy data span seasonal to millennial timescales, and Earth's climate system has both high- and low-frequency components. Yet it is currently unclear how best to incorporate multiple timescales of proxy data into a single reconstruction framework and to also capture both high- and low-frequency components of reconstructed variables. Here we present a data assimilation approach that can explicitly incorporate proxy data at arbitrary timescales. The principal advantage of using such an approach is that it allows much more proxy data to inform a climate reconstruction, though there can be additional benefits. Through a series of offline data-assimilation-based pseudoproxy experiments,more » we find that atmosphere–ocean states are most skillfully reconstructed by incorporating proxies across multiple timescales compared to using proxies at short (annual) or long (~ decadal) timescales alone. Additionally, reconstructions that incorporate long-timescale pseudoproxies improve the low-frequency components of the reconstructions relative to using only high-resolution pseudoproxies. We argue that this is because time averaging high-resolution observations improves their covariance relationship with the slowly varying components of the coupled-climate system, which the data assimilation algorithm can exploit. These results are consistent across the climate models considered, despite the model variables having very different spectral characteristics. Furthermore, our results also suggest that it may be possible to reconstruct features of the oceanic meridional overturning circulation based on atmospheric surface temperature proxies, though here we find such reconstructions lack spectral power over a broad range of frequencies.« less

  13. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) project: a summary

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; Day, Jonny; Tietsche, Steffen

    2016-04-01

    Recent years have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. We describe a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual TimEscales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we provide a summary and update of the project's results which include: (1) quantifying the predictability of Arctic climate, especially sea ice; (2) the state-dependence of this predictability, finding that extreme years are potentially more predictable than neutral years; (3) analysing a spring 'predictability barrier' to skillful forecasts; (4) initial sea ice thickness information provides much of the skill for summer forecasts; (5) quantifying the sources of error growth and uncertainty in Arctic predictions. The dataset is now publicly available.

  14. Accuracy of Cochlear Implant Recipients on Speech Reception in Background Music

    PubMed Central

    Gfeller, Kate; Turner, Christopher; Oleson, Jacob; Kliethermes, Stephanie; Driscoll, Virginia

    2012-01-01

    Objectives This study (a) examined speech recognition abilities of cochlear implant (CI) recipients in the spectrally complex listening condition of three contrasting types of background music, and (b) compared performance based upon listener groups: CI recipients using conventional long-electrode (LE) devices, Hybrid CI recipients (acoustic plus electric stimulation), and normal-hearing (NH) adults. Methods We tested 154 LE CI recipients using varied devices and strategies, 21 Hybrid CI recipients, and 49 NH adults on closed-set recognition of spondees presented in three contrasting forms of background music (piano solo, large symphony orchestra, vocal solo with small combo accompaniment) in an adaptive test. Outcomes Signal-to-noise thresholds for speech in music (SRTM) were examined in relation to measures of speech recognition in background noise and multi-talker babble, pitch perception, and music experience. Results SRTM thresholds varied as a function of category of background music, group membership (LE, Hybrid, NH), and age. Thresholds for speech in background music were significantly correlated with measures of pitch perception and speech in background noise thresholds; auditory status was an important predictor. Conclusions Evidence suggests that speech reception thresholds in background music change as a function of listener age (with more advanced age being detrimental), structural characteristics of different types of music, and hearing status (residual hearing). These findings have implications for everyday listening conditions such as communicating in social or commercial situations in which there is background music. PMID:23342550

  15. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging

    PubMed Central

    Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2014-01-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010

  16. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging.

    PubMed

    Muir, Ryan D; Pogranichney, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2014-09-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.

  17. Reaching multi-nanosecond timescales in combined QM/MM molecular dynamics simulations through parallel horsetail sampling.

    PubMed

    Martins-Costa, Marilia T C; Ruiz-López, Manuel F

    2017-04-15

    We report an enhanced sampling technique that allows to reach the multi-nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid-vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall-clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Multi-epoch Measurements of the Galactic Center 6667 MHz) and the Blazar 0716+714 (1 & 3 MHz) taken from the Allen Telescope Array at Hat Creek Radio Observatory in 2013

    NASA Astrophysics Data System (ADS)

    Castellanos, Aaron; Harp, G.

    2014-01-01

    The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.

  19. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  20. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    PubMed

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  1. Subsurface characterization with localized ensemble Kalman filter employing adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Delijani, Ebrahim Biniaz; Pishvaie, Mahmoud Reza; Boozarjomehry, Ramin Bozorgmehry

    2014-07-01

    Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure leading to incorrect or probable divergence of updated realizations. In this paper, a universal/adaptive thresholding method is presented to remove and/or mitigate spurious correlation problem in the forecast covariance matrix. This method is, then, extended to regularize Kalman gain directly. Four different thresholding functions have been considered to threshold forecast covariance and gain matrices. These include hard, soft, lasso and Smoothly Clipped Absolute Deviation (SCAD) functions. Three benchmarks are used to evaluate the performances of these methods. These benchmarks include a small 1D linear model and two 2D water flooding (in petroleum reservoirs) cases whose levels of heterogeneity/nonlinearity are different. It should be noted that beside the adaptive thresholding, the standard distance dependant localization and bootstrap Kalman gain are also implemented for comparison purposes. We assessed each setup with different ensemble sets to investigate the sensitivity of each method on ensemble size. The results indicate that thresholding of forecast covariance yields more reliable performance than Kalman gain. Among thresholding function, SCAD is more robust for both covariance and gain estimation. Our analyses emphasize that not all assimilation cycles do require thresholding and it should be performed wisely during the early assimilation cycles. The proposed scheme of adaptive thresholding outperforms other methods for subsurface characterization of underlying benchmarks.

  2. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

  3. Lowering threshold energy for femtosecond laser pulse photodisruption through turbid media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Ripken, Tammo; Krueger, Ronald R.; Lubatschowski, Holger

    2011-03-01

    Focussed femtosecond laser pulses are applied in ophthalmic tissues to create an optical breakdown and therefore a tissue dissection through photodisruption. The threshold irradiance for the optical breakdown depends on the photon density in the focal volume which can be influenced by the pulse energy, the size of the irradiated area (focus), and the irradiation time. For an application in the posterior eye segment the aberrations of the anterior eye elements cause a distortion of the wavefront and therefore an increased focal volume which reduces the photon density and thus raises the required energy for surpassing the threshold irradiance. The influence of adaptive optics on lowering the pulse energy required for photodisruption by refining a distorted focus was investigated. A reduction of the threshold energy can be shown when using adaptive optics. The spatial confinement with adaptive optics furthermore raises the irradiance at constant pulse energy. The lowered threshold energy allows for tissue dissection with reduced peripheral damage. This offers the possibility for moving femtosecond laser surgery from corneal or lental applications in the anterior eye to vitreal or retinal applications in the posterior eye.

  4. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    NASA Astrophysics Data System (ADS)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded orogenic belts. Moreover, as the timescale of the duration of the process-response behavior and/or system age increase, additional aspects must be considered (e.g., significant tectonic regime change, rare but significant events, non-periodic global change, etc.). In this presentation we discuss several examples of sedimentary system analysis at different timescales with the goal of highlighting various approaches at one timescale and how they can (or cannot) be applied for questions at different timescales. Examples include: (1) brief review of decadal to centennial sediment budgets; (2) land-to-sea sediment budget reconstructions from southern California at millennial to multi-millennial timescales, and (3) sedimentary system response to climatic and tectonic forcings at ≥105 yr timescales.

  5. Self-Tuning Threshold Method for Real-Time Gait Phase Detection Based on Ground Contact Forces Using FSRs.

    PubMed

    Tang, Jing; Zheng, Jianbin; Wang, Yang; Yu, Lie; Zhan, Enqi; Song, Qiuzhi

    2018-02-06

    This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM) sets a threshold to divide the ground contact forces (GCFs) into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA) that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs) were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold) were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA), which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM) and Lopez-Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.

  6. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  7. Untangling Risk in Water Supply Systems: What Factors Drive Long-term Adaptation?

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Lin, L.; Band, L. E.; Reed, P. M.; Characklis, G. W.

    2016-12-01

    Deeply uncertain factors like climate change, the hydrologic impacts of urbanization, forest evolution, and long-term demand forecasts make water supply planning a `wicked' problem. The traditional technique of assessing risk based on historical observations can be inadequate in the face of environmental non-stationarity. However, competing models and limited observational data make it difficult for decision makers and experts to agree on how much uncertainty should be built into analyses of risk, particularly at the timescales relevant to long-term investments in water infrastructure. Further, the physical connectivity of these deeply uncertain processes create inter-related systems, amplifying the challenges of a `worst case scenario'. The development of adaptive systems and planning processes provide solutions that have been shown to meet technical, environmental, and social objectives at lower costs. Instead of developing plans with fixed targets for the timing of actions, adaptive plans develop risk metrics and thresholds that are able to integrate new information to determine when conditions reach a `tipping point' which necessitates action. It is an open question as to how new information can be best integrated into the decision-making process (i.e. how much weight do we give new observations relative to the historical record), but a better understanding of the way the relevant systems are expected to evolve and change over time could inform these decisions. In this study, we use linked, dynamic models of temperature and precipitation changes, forest evolution, urbanization, hydrology, and water demand to develop scenarios for an adaptive water management framework that uses risk-based metrics to make short- and long-term decisions. The impact of individual environmental processes on the adaptive capability of this management framework is evaluated through problem formulations that successively increase the complexity of the uncertainty scenarios. Although this work is focused on a group of water utilities in the Research Triangle of North Carolina, results provide insights into the conditions under which environmental changes could outpace our adaptive skill. In turn, risk measures can be designed to identify these conditions and better inform adaptive planning methods.

  8. Multi-scale enhancement of climate prediction over land by improving the model sensitivity to vegetation variability

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2017-12-01

    Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).

  9. A Purkinje shift in the spectral sensitivity of grey squirrels

    PubMed Central

    Silver, Priscilla H.

    1966-01-01

    1. The light-adapted spectral sensitivity of the grey squirrel has been determined by an automated training method at a level about 6 log units above the squirrel's absolute threshold. 2. The maximum sensitivity is near 555 nm, under light-adapted conditions, compared with the dark-adapted maximum near 500 nm found by a similar method. 3. Neither the light-adapted nor the dark-adapted behavioural threshold agrees with electrophysiological findings using single flash techniques, but there is agreement with e.r.g. results obtained with sinusoidal stimuli. PMID:5972118

  10. Threshold multi-secret sharing scheme based on phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Deng, Xiaopeng; Wen, Wei; Shi, Zhengang

    2017-03-01

    A threshold multi-secret sharing scheme is proposed based on phase-shifting interferometry. The K secret images to be shared are firstly encoded by using Fourier transformation, respectively. Then, these encoded images are shared into many shadow images based on recording principle of the phase-shifting interferometry. In the recovering stage, the secret images can be restored by combining any 2 K + 1 or more shadow images, while any 2 K or fewer shadow images cannot obtain any information about the secret images. As a result, a (2 K + 1 , N) threshold multi-secret sharing scheme can be implemented. Simulation results are presented to demonstrate the feasibility of the proposed method.

  11. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  12. Creation of residual flows in a partially stratified estuary

    USGS Publications Warehouse

    Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.

    2001-01-01

    The creation of residual flows in estuaries is examined using acoustic Doppler current profiler data sets from northern San Francisco Bay. The data sets are analyzed using principal component analysis to examine the temporal variability of the flows which create the residual circulation. It is seen that in this periodically and partially stratified estuary the residual flows are created through a series of pulses with strong variability at the 24-hour timescale, through the interaction of shear, stratification and mixing. This interaction is captured through the use of a dimensionless number, the horizontal Richardson number (Rix), which is developed to examine the local balance between the stratifying and destratifying forces at the tidal timescale. It is seen that Rix is a valuable parameter in predicting the onset of the residual-creating events, with a threshold value of ??? 3 on ebb tides. This critical value is argued to be a threshold, above which the stratification and shear flow create a feedback effect, each further intensifying the other. This feedback results in a highly variable exchange flow which creates the estuarine residual in intermittent pulses rather than as a steady flow. Although typically attributed to baroclinic forcing, an argument is made that these pulses of residual-creating exchange flow could be created by barotropic forcing in the presence of variable stratification which is asymmetric between flood and ebb tides. This result poses a great challenge for turbulence modeling, as the timing and magnitude of stratification and shear must be correctly simulated on the tidal timescale in order to reproduce the effects seen in the data sets presented. Copyright 2001 by the American Geophysical Union.

  13. ENSO related variability in the Southern Hemisphere, 1948-2000

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Mann, Michael E.

    2003-01-01

    The spatiotemporal evolution of Southern Hemisphere climate variability is diagnosed based on the use of the NCEP reanalysis (1948-2000) dataset. Using the MTM-SVD analysis method, significant narrowband variability is isolated from the multi-variate dataset. It is found that the ENSO signal exhibits statistically significant behavior at quasiquadrennial (3-6 yr) timescales for the full time-period. A significant quasibiennial (2-3 yr) timescales emerges only for the latter half of period. Analyses of the spatial evolution of the two reconstructed signals shed additional light on linkages between low and high-latitude Southern Hemisphere climate anomalies.

  14. When will trends in European mean and heavy daily precipitation emerge?

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-03-01

    A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only; the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby, the TOE becomes a fundamentally limiting timescale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus, minimum temporal and spatial scales for adaptation planning are also given. In northern Europe, positive winter trends in mean and heavy precipitation, and in southwestern and southeastern Europe, summer trends in mean precipitation already emerge within the next few decades. However, across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend, in general, emerges earlier.

  15. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

    PubMed Central

    Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.

    2015-01-01

    We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724

  16. The Condensate Database for Big Data Analysis

    NASA Astrophysics Data System (ADS)

    Gallaher, D. W.; Lv, Q.; Grant, G.; Campbell, G. G.; Liu, Q.

    2014-12-01

    Although massive amounts of cryospheric data have been and are being generated at an unprecedented rate, a vast majority of the otherwise valuable data have been ``sitting in the dark'', with very limited quality assurance or runtime access for higher-level data analytics such as anomaly detection. This has significantly hindered data-driven scientific discovery and advances in the polar research and Earth sciences community. In an effort to solve this problem we have investigated and developed innovative techniques for the construction of ``condensate database'', which is much smaller than the original data yet still captures the key characteristics (e.g., spatio-temporal norm and changes). In addition we are taking advantage of parallel databases that make use of low cost GPU processors. As a result, efficient anomaly detection and quality assurance can be achieved with in-memory data analysis or limited I/O requests. The challenges lie in the fact that cryospheric data are massive and diverse, with normal/abnomal patterns spanning a wide range of spatial and temporal scales. This project consists of investigations in three main areas: (1) adaptive neighborhood-based thresholding in both space and time; (2) compressive-domain pattern detection and change analysis; and (3) hybrid and adaptive condensation of multi-modal, multi-scale cryospheric data.

  17. Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates

    NASA Astrophysics Data System (ADS)

    Teneva, Lida; Karnauskas, Mandy; Logan, Cheryl A.; Bianucci, Laura; Currie, Jock C.; Kleypas, Joan A.

    2012-03-01

    Sea surface temperature fields (1870-2100) forced by CO2-induced climate change under the IPCC SRES A1B CO2 scenario, from three World Climate Research Programme Coupled Model Intercomparison Project Phase 3 (WCRP CMIP3) models (CCSM3, CSIRO MK 3.5, and GFDL CM 2.1), were used to examine how coral sensitivity to thermal stress and rates of adaption affect global projections of coral-reef bleaching. The focus of this study was two-fold, to: (1) assess how the impact of Degree-Heating-Month (DHM) thermal stress threshold choice affects potential bleaching predictions and (2) examine the effect of hypothetical adaptation rates of corals to rising temperature. DHM values were estimated using a conventional threshold of 1°C and a variability-based threshold of 2σ above the climatological maximum Coral adaptation rates were simulated as a function of historical 100-year exposure to maximum annual SSTs with a dynamic rather than static climatological maximum based on the previous 100 years, for a given reef cell. Within CCSM3 simulations, the 1°C threshold predicted later onset of mild bleaching every 5 years for the fraction of reef grid cells where 1°C > 2σ of the climatology time series of annual SST maxima (1961-1990). Alternatively, DHM values using both thresholds, with CSIRO MK 3.5 and GFDL CM 2.1 SSTs, did not produce drastically different onset timing for bleaching every 5 years. Across models, DHMs based on 1°C thermal stress threshold show the most threatened reefs by 2100 could be in the Central and Western Equatorial Pacific, whereas use of the variability-based threshold for DHMs yields the Coral Triangle and parts of Micronesia and Melanesia as bleaching hotspots. Simulations that allow corals to adapt to increases in maximum SST drastically reduce the rates of bleaching. These findings highlight the importance of considering the thermal stress threshold in DHM estimates as well as potential adaptation models in future coral bleaching projections.

  18. Mixed-Timescale Per-Group Hybrid Precoding for Multiuser Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Teng, Yinglei; Wei, Min; Liu, An; Lau, Vincent; Zhang, Yong

    2018-05-01

    Considering the expensive radio frequency (RF) chain, huge training overhead and feedback burden issues in massive MIMO, in this letter, we propose a mixed-timescale per-group hybrid precoding (MPHP) scheme under an adaptive partially-connected RF precoding structure (PRPS), where the RF precoder is implemented using an adaptive connection network (ACN) and M analog phase shifters (APSs), where M is the number of antennas at the base station (BS). Exploiting the mixed-time stage channel state information (CSI) structure, the joint-design of ACN and APSs is formulated as a statistical signal-to-leakage-and-noise ratio (SSLNR) maximization problem, and a heuristic group RF precoding (GRFP) algorithm is proposed to provide a near-optimal solution. Simulation results show that the proposed design advances at better energy efficiency (EE) and lower hardware cost, CSI signaling overhead and computational complexity than the conventional hybrid precoding (HP) schemes.

  19. Rapid temporal recalibration is unique to audiovisual stimuli.

    PubMed

    Van der Burg, Erik; Orchard-Mills, Emily; Alais, David

    2015-01-01

    Following prolonged exposure to asynchronous multisensory signals, the brain adapts to reduce the perceived asynchrony. Here, in three separate experiments, participants performed a synchrony judgment task on audiovisual, audiotactile or visuotactile stimuli and we used inter-trial analyses to examine whether temporal recalibration occurs rapidly on the basis of a single asynchronous trial. Even though all combinations used the same subjects, task and design, temporal recalibration occurred for audiovisual stimuli (i.e., the point of subjective simultaneity depended on the preceding trial's modality order), but none occurred when the same auditory or visual event was combined with a tactile event. Contrary to findings from prolonged adaptation studies showing recalibration for all three combinations, we show that rapid, inter-trial recalibration is unique to audiovisual stimuli. We conclude that recalibration occurs at two different timescales for audiovisual stimuli (fast and slow), but only on a slow timescale for audiotactile and visuotactile stimuli.

  20. On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram

    NASA Astrophysics Data System (ADS)

    Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han; Sun, Mou-Yuan; Zhang, Ji-Xian

    2018-06-01

    The reprocessing scenario is widely adopted in literature to explain the observed tight inter-band correlation and short lags in the UV/optical variations of active galactic nuclei (AGNs). In this work we look into the color variability of the famous Seyfert galaxy NGC 5548 with high-quality Swift multi-band UV/optical light curves. We find the color variation of NGC 5548 is clearly timescale-dependent, in a way that it is more prominent on shorter timescales. This is similar to that previously detected in quasar samples, but for the first time in an individual AGN. We show that while a reprocessing model with strict assumptions on the driving source and the disk size can apparently match the observed light curves and inter-band lags, it fails to reproduce the observed timescale dependency in the color variation. Such discrepancy raises a severe challenge to, and can hardly be reconciled under the widely accepted reprocessing diagram. It also demonstrates that the timescale dependency of the color variation is uniquely powerful in probing the physics behind AGN UV/optical variations.

  1. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.

    PubMed

    Laner, Monika; Horta, Bruno A C; Hünenberger, Philippe H

    2015-02-01

    The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  3. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  4. A multi-threshold sampling method for TOF-PET signal processing

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.; Zhou, L.; Tang, F.; Frisch, H.; Moses, W. W.; Choong, W. S.

    2009-04-01

    As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25×6.25×25 mm3 LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an ˜18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an ˜9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain ˜300 ps coincidence timing resolution, ˜14% energy resolution at 511 keV, and ˜5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.

  5. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems

    PubMed Central

    Sauterey, Boris; Ward, Ben A.; Follows, Michael J.; Bowler, Chris; Claessen, David

    2015-01-01

    The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that “Everything is everywhere, but the environment selects”, we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean. PMID:25852217

  6. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems.

    PubMed

    Sauterey, Boris; Ward, Ben A; Follows, Michael J; Bowler, Chris; Claessen, David

    2015-01-01

    The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that "Everything is everywhere, but the environment selects", we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean.

  7. Adjusting to a sudden “aging” of the lens

    PubMed Central

    Tregillus, Katherine E.M.; Werner, John S.; Webster, Michael A.

    2016-01-01

    Color perception is known to remain largely stable across the lifespan despite the pronounced changes in sensitivity from factors such as the progressive brunescence of the lens. However, the mechanisms and timescales controlling these compensatory adjustments are still poorly understood. In a series of experiments, we tracked adaptation in observers after introducing a sudden change in lens density by having observers wear glasses with yellow filters that approximated the average spectral transmittance of a 70-year-old lens. Individuals were young adults and wore the glasses for 5 days for 8 hours per day while engaged in their normal activities. Achromatic settings were measured on a CRT before and after each daily exposure with the lenses on and off, and were preceded by 5 minutes of dark adaptation to control for short-term chromatic adaptation. During each day, there was a large shift in the white settings consistent with a partial compensation for the added lens density. However, there was little to no evidence of an after-image at the end of each daily session, and participants’ perceptual nulls were roughly aligned with the nulls for short-term chromatic adaptation, suggesting a rapid renormalization when the lenses were removed. The long-term drift was also extinguished by brief exposure to a white adapting field. The results point to distinct timescales and potentially distinct mechanisms compensating for changes in the chromatic sensitivity of the observer. PMID:26924924

  8. Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming

    2008-11-01

    An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.

  9. A Multi-Anatomical Retinal Structure Segmentation System for Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    PubMed Central

    Elleithy, Khaled; Elleithy, Abdelrahman

    2018-01-01

    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue for detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc, and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This paper proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc, and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogeneous anatomical structures. PMID:29888146

  10. A segmentation method for lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise

    PubMed Central

    Zhang, Wei; Zhang, Xiaolong; Qiang, Yan; Tian, Qi; Tang, Xiaoxian

    2017-01-01

    The fast and accurate segmentation of lung nodule image sequences is the basis of subsequent processing and diagnostic analyses. However, previous research investigating nodule segmentation algorithms cannot entirely segment cavitary nodules, and the segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN). First, our method uses three-dimensional computed tomography image features of the average intensity projection combined with multi-scale dot enhancement for preprocessing. Hexagonal clustering and morphological optimized sequential linear iterative clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain superpixel blocks. The adaptive weight coefficient is then constructed to calculate the distance required between superpixels to achieve precise lung nodules positioning and to obtain the subsequent clustering starting block. Moreover, by fitting the distance and detecting the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule mask sequences. Finally, the lung nodule image sequences are obtained. The experimental results show that our method rapidly, completely and accurately segments various types of lung nodule image sequences. PMID:28880916

  11. Stochastic analysis of epidemics on adaptive time varying networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2013-06-01

    Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

  12. Efficiently sampling conformations and pathways using the concurrent adaptive sampling (CAS) algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.

    Molecular dynamics (MD) simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules but are limited by the timescale barrier, i.e., we may be unable to efficiently obtain properties because we need to run microseconds or longer simulations using femtoseconds time steps. While there are several existing methods to overcome this timescale barrier and efficiently sample thermodynamic and/or kinetic properties, problems remain in regard to being able to sample un- known systems, deal with high-dimensional space of collective variables, and focus the computational effort on slow timescales. Hence, a new sampling method, called the “Concurrent Adaptive Sampling (CAS) algorithm,”more » has been developed to tackle these three issues and efficiently obtain conformations and pathways. The method is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective vari- ables and uses macrostates (a partition of the collective variable space) to enhance the sampling. The exploration is done by running a large number of short simula- tions, and a clustering technique is used to accelerate the sampling. In this paper, we introduce the new methodology and show results from two-dimensional models and bio-molecules, such as penta-alanine and triazine polymer« less

  13. Characterization of Rod Function Phenotypes Across a Range of Age-Related Macular Degeneration Severities and Subretinal Drusenoid Deposits

    PubMed Central

    Flynn, Oliver J.; Cukras, Catherine A.; Jeffrey, Brett G.

    2018-01-01

    Purpose To examine spatial changes in rod-mediated function in relationship to local structural changes across the central retina in eyes with a spectrum of age-related macular degeneration (AMD) disease severity. Methods Participants were categorized into five AMD severity groups based on fundus features. Scotopic thresholds were measured at 14 loci spanning ±18° along the vertical meridian from one eye of each of 42 participants (mean = 71.7 ± 9.9 years). Following a 30% bleach, dark adaptation was measured at eight loci (±12°). Rod intercept time (RIT) was defined from the time to detect a −3.1 log cd/m2 stimulus. RITslope was defined from the linear fit of RIT with decreasing retinal eccentricity. The presence of subretinal drusenoid deposits (SDD), ellipsoid (EZ) band disruption, and drusen at the test loci was evaluated using optical coherence tomography. Results Scotopic thresholds indicated greater rod function loss in the macula, which correlated with increasing AMD group severity. RITslope, which captures the spatial change in the rate of dark adaptation, increased with AMD severity (P < 0.0001). Three rod function phenotypes emerged: RF1, normal rod function; RF2, normal scotopic thresholds but slowed dark adaptation; and RF3, elevated scotopic thresholds with slowed dark adaptation. Dark adaptation was slowed at all loci with SDD or EZ band disruption, and at 32% of loci with no local structural changes. Conclusions Three rod function phenotypes were defined from combined measurement of scotopic threshold and dark adaptation. Spatial changes in dark adaptation across the macula were captured with RITslope, which may be a useful outcome measure for functional studies of AMD. PMID:29847647

  14. Characterization of Rod Function Phenotypes Across a Range of Age-Related Macular Degeneration Severities and Subretinal Drusenoid Deposits.

    PubMed

    Flynn, Oliver J; Cukras, Catherine A; Jeffrey, Brett G

    2018-05-01

    To examine spatial changes in rod-mediated function in relationship to local structural changes across the central retina in eyes with a spectrum of age-related macular degeneration (AMD) disease severity. Participants were categorized into five AMD severity groups based on fundus features. Scotopic thresholds were measured at 14 loci spanning ±18° along the vertical meridian from one eye of each of 42 participants (mean = 71.7 ± 9.9 years). Following a 30% bleach, dark adaptation was measured at eight loci (±12°). Rod intercept time (RIT) was defined from the time to detect a -3.1 log cd/m2 stimulus. RITslope was defined from the linear fit of RIT with decreasing retinal eccentricity. The presence of subretinal drusenoid deposits (SDD), ellipsoid (EZ) band disruption, and drusen at the test loci was evaluated using optical coherence tomography. Scotopic thresholds indicated greater rod function loss in the macula, which correlated with increasing AMD group severity. RITslope, which captures the spatial change in the rate of dark adaptation, increased with AMD severity (P < 0.0001). Three rod function phenotypes emerged: RF1, normal rod function; RF2, normal scotopic thresholds but slowed dark adaptation; and RF3, elevated scotopic thresholds with slowed dark adaptation. Dark adaptation was slowed at all loci with SDD or EZ band disruption, and at 32% of loci with no local structural changes. Three rod function phenotypes were defined from combined measurement of scotopic threshold and dark adaptation. Spatial changes in dark adaptation across the macula were captured with RITslope, which may be a useful outcome measure for functional studies of AMD.

  15. Multi-mode ultrasonic welding control and optimization

    DOEpatents

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  16. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  17. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.

    2016-12-01

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.

  18. The Evolution of Quasar C IV and Si IV Broad Absorption Lines over Multi-year Timescales

    NASA Astrophysics Data System (ADS)

    Gibson, Robert R.; Brandt, W. N.; Gallagher, S. C.; Hewett, Paul C.; Schneider, Donald P.

    2010-04-01

    We investigate the variability of C IV λ1549 broad absorption line (BAL) troughs over rest-frame timescales of up to ≈7 yr in 14 quasars at redshifts z >~ 2.1. For nine sources at sufficiently high redshift, we also compare the C IV and Si IV λ1400 absorption variation. We compare shorter and longer term variability using spectra from up to four different epochs per source and find complex patterns of variation in the sample overall. The scatter in the change of absorption equivalent width (EW), ΔEW, increases with the time between observations. BALs do not, in general, strengthen or weaken monotonically, and variation observed over shorter (lsimmonths) timescales is not predictive of multi-year variation. We find no evidence for asymmetry in the distribution of ΔEW that would indicate that BALs form and decay on different timescales, and we constrain the typical BAL lifetime to be gsim30 yr. The BAL absorption for one source, LBQS 0022+0150, has weakened and may now be classified as a mini-BAL. Another source, 1235+1453, shows evidence of variable, blue continuum emission that is relatively unabsorbed by the BAL outflow. C IV and Si IV BAL shape changes are related in at least some sources. Given their high velocities, BAL outflows apparently traverse large spatial regions and may interact with parsec-scale structures such as an obscuring torus. Assuming BAL outflows are launched from a rotating accretion disk, notable azimuthal symmetry is required in the outflow to explain the relatively small changes observed in velocity structure over times up to 7 yr.

  19. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE PAGES

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; ...

    2016-12-02

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  20. The impact of manual threshold selection in medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Koivisto, Juha; Karhu, Kalle; Forouzanfar, Tymour; Wolff, Jan

    2017-04-01

    Medical additive manufacturing requires standard tessellation language (STL) models. Such models are commonly derived from computed tomography (CT) images using thresholding. Threshold selection can be performed manually or automatically. The aim of this study was to assess the impact of manual and default threshold selection on the reliability and accuracy of skull STL models using different CT technologies. One female and one male human cadaver head were imaged using multi-detector row CT, dual-energy CT, and two cone-beam CT scanners. Four medical engineers manually thresholded the bony structures on all CT images. The lowest and highest selected mean threshold values and the default threshold value were used to generate skull STL models. Geometric variations between all manually thresholded STL models were calculated. Furthermore, in order to calculate the accuracy of the manually and default thresholded STL models, all STL models were superimposed on an optical scan of the dry female and male skulls ("gold standard"). The intra- and inter-observer variability of the manual threshold selection was good (intra-class correlation coefficients >0.9). All engineers selected grey values closer to soft tissue to compensate for bone voids. Geometric variations between the manually thresholded STL models were 0.13 mm (multi-detector row CT), 0.59 mm (dual-energy CT), and 0.55 mm (cone-beam CT). All STL models demonstrated inaccuracies ranging from -0.8 to +1.1 mm (multi-detector row CT), -0.7 to +2.0 mm (dual-energy CT), and -2.3 to +4.8 mm (cone-beam CT). This study demonstrates that manual threshold selection results in better STL models than default thresholding. The use of dual-energy CT and cone-beam CT technology in its present form does not deliver reliable or accurate STL models for medical additive manufacturing. New approaches are required that are based on pattern recognition and machine learning algorithms.

  1. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  2. Analytical studies on the instabilities of heterogeneous intelligent traffic flow

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    It has been widely reported in literature that a small perturbation in traffic flow such as a sudden deceleration of a vehicle could lead to the formation of traffic jams without a clear bottleneck. These traffic jams are usually related to instabilities in traffic flow. The applications of intelligent traffic systems are a potential solution to reduce the amplitude or to eliminate the formation of such traffic instabilities. A lot of research has been conducted to theoretically study the effect of intelligent vehicles, for example adaptive cruise control vehicles, using either computer simulation or analytical method. However, most current analytical research has only applied to single class traffic flow. To this end, the main topic of this paper is to perform a linear stability analysis to find the stability threshold of heterogeneous traffic flow using microscopic models, particularly the effect of intelligent vehicles on heterogeneous (or multi-class) traffic flow instabilities. The analytical results will show how intelligent vehicle percentages affect the stability of multi-class traffic flow.

  3. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  4. Automatic co-registration of 3D multi-sensor point clouds

    NASA Astrophysics Data System (ADS)

    Persad, Ravi Ancil; Armenakis, Costas

    2017-08-01

    We propose an approach for the automatic coarse alignment of 3D point clouds which have been acquired from various platforms. The method is based on 2D keypoint matching performed on height map images of the point clouds. Initially, a multi-scale wavelet keypoint detector is applied, followed by adaptive non-maxima suppression. A scale, rotation and translation-invariant descriptor is then computed for all keypoints. The descriptor is built using the log-polar mapping of Gabor filter derivatives in combination with the so-called Rapid Transform. In the final step, source and target height map keypoint correspondences are determined using a bi-directional nearest neighbour similarity check, together with a threshold-free modified-RANSAC. Experiments with urban and non-urban scenes are presented and results show scale errors ranging from 0.01 to 0.03, 3D rotation errors in the order of 0.2° to 0.3° and 3D translation errors from 0.09 m to 1.1 m.

  5. Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems

    NASA Technical Reports Server (NTRS)

    Cao, Chengyu (Inventor); Hovakimyan, Naira (Inventor); Xargay, Enric (Inventor)

    2014-01-01

    Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation.

  6. Vision-Based Finger Detection, Tracking, and Event Identification Techniques for Multi-Touch Sensing and Display Systems

    PubMed Central

    Chen, Yen-Lin; Liang, Wen-Yew; Chiang, Chuan-Yen; Hsieh, Tung-Ju; Lee, Da-Cheng; Yuan, Shyan-Ming; Chang, Yang-Lang

    2011-01-01

    This study presents efficient vision-based finger detection, tracking, and event identification techniques and a low-cost hardware framework for multi-touch sensing and display applications. The proposed approach uses a fast bright-blob segmentation process based on automatic multilevel histogram thresholding to extract the pixels of touch blobs obtained from scattered infrared lights captured by a video camera. The advantage of this automatic multilevel thresholding approach is its robustness and adaptability when dealing with various ambient lighting conditions and spurious infrared noises. To extract the connected components of these touch blobs, a connected-component analysis procedure is applied to the bright pixels acquired by the previous stage. After extracting the touch blobs from each of the captured image frames, a blob tracking and event recognition process analyzes the spatial and temporal information of these touch blobs from consecutive frames to determine the possible touch events and actions performed by users. This process also refines the detection results and corrects for errors and occlusions caused by noise and errors during the blob extraction process. The proposed blob tracking and touch event recognition process includes two phases. First, the phase of blob tracking associates the motion correspondence of blobs in succeeding frames by analyzing their spatial and temporal features. The touch event recognition process can identify meaningful touch events based on the motion information of touch blobs, such as finger moving, rotating, pressing, hovering, and clicking actions. Experimental results demonstrate that the proposed vision-based finger detection, tracking, and event identification system is feasible and effective for multi-touch sensing applications in various operational environments and conditions. PMID:22163990

  7. Optical communication system performance with tracking error induced signal fading.

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.

    1973-01-01

    System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.

  8. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Tietsche, Steffen; Collins, Mat; Goessling, Helge F.; Guemas, Virginie; Guillory, Anabelle; Hurlin, William J.; Ishii, Masayoshi; Keeley, Sarah P. E.; Matei, Daniela; Msadek, Rym; Sigmond, Michael; Tatebe, Hiroaki; Hawkins, Ed

    2016-06-01

    Recent decades have seen significant developments in climate prediction capabilities at seasonal-to-interannual timescales. However, until recently the potential of such systems to predict Arctic climate had rarely been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to interannual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability estimates in these models, and an investigation into to what extent predictability is dependent on the initial state. The inclusion of additional models expands the range of sea ice volume and extent predictability estimates, demonstrating that there is model diversity in the potential to make seasonal-to-interannual timescale predictions. We also investigate whether sea ice forecasts started from extreme high and low sea ice initial states exhibit higher levels of potential predictability than forecasts started from close to the models' mean state, and find that the result depends on the metric. Although designed to address Arctic predictability, we describe the archived data here so that others can use this data set to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño-Southern Oscillation.

  9. Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone.

    PubMed

    Craig, Timothy J; Chanard, Kristel; Calais, Eric

    2017-12-15

    The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or 'stable' plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.

  10. Direct Measure of Radiative and Dynamical Properties of an Exoplanet Atmosphere

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Lewis, Nikole K.; Langton, Jonathan; Laughlin, Gregory; Deming, Drake; Batygin, Konstantin; Fortney, Jonathan J.

    2016-04-01

    Two decades after the discovery of 51 Peg b, the formation processes and atmospheres of short-period gas giants remain poorly understood. Observations of eccentric systems provide key insights on those topics as they can illuminate how a planet’s atmosphere responds to changes in incident flux. We report here the analysis of multi-day multi-channel photometry of the eccentric (e∼ 0.93) hot Jupiter HD 80606 b obtained with the Spitzer Space Telescope. The planet’s extreme eccentricity combined with the long coverage and exquisite precision of new periastron-passage observations allow us to break the degeneracy between the radiative and dynamical timescales of HD 80606 b’s atmosphere and constrain its global thermal response. Our analysis reveals that the atmospheric layers probed heat rapidly (∼4 hr radiative timescale) from \\lt 500 to 1400 K as they absorb ∼ 20% of the incoming stellar flux during the periastron passage, while the planet’s rotation period is {93}-35+85 hr, which exceeds the predicted pseudo-synchronous period (40 hr).

  11. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  12. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    NASA Technical Reports Server (NTRS)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  13. Thresholds for Coral Bleaching: Are Synergistic Factors and Shifting Thresholds Changing the Landscape for Management? (Invited)

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.

    2010-12-01

    As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean for identifying limits and taking management actions to adapt to climate change?

  14. Dynamical predictors of an imminent phenotypic switch in bacteria

    NASA Astrophysics Data System (ADS)

    Wang, Huijing; Ray, J. Christian J.

    2017-08-01

    Single cells can stochastically switch across thresholds imposed by regulatory networks. Such thresholds can act as a tipping point, drastically changing global phenotypic states. In ecology and economics, imminent transitions across such tipping points can be predicted using dynamical early warning indicators. A typical example is ‘flickering’ of a fast variable, predicting a longer-lasting switch from a low to a high state or vice versa. Considering the different timescales between metabolite and protein fluctuations in bacteria, we hypothesized that metabolic early warning indicators predict imminent transitions across a network threshold caused by enzyme saturation. We used stochastic simulations to determine if flickering predicts phenotypic transitions, accounting for a variety of molecular physiological parameters, including enzyme affinity, burstiness of enzyme gene expression, homeostatic feedback, and rates of metabolic precursor influx. In most cases, we found that metabolic flickering rates are robustly peaked near the enzyme saturation threshold. The degree of fluctuation was amplified by product inhibition of the enzyme. We conclude that sensitivity to flickering in fast variables may be a possible natural or synthetic strategy to prepare physiological states for an imminent transition.

  15. Differential Changes with Age in Multiscale Entropy of Electromyography Signals from Leg Muscles during Treadmill Walking

    PubMed Central

    Kang, Hyun Gu; Dingwell, Jonathan B.

    2016-01-01

    Age-related gait changes may be due to the loss of complexity in the neuromuscular system. This theory is disputed due to inconsistent results from single-scale analyses. Also, behavioral adaptations may confound these changes. We examined whether EMG dynamics during gait is less complex in older adults over a range of timescales using the multiscale entropy method, and whether slower walking attenuates this effect. Surface EMG was measured from the left vastus lateralis (VL), biceps femoris (BF), gastrocnemius (GA), and tibialis anterior (TA) in 17 young and 18 older adults as they walked on a treadmill for 5 minutes at 0.8x-1.2x of preferred speed. Sample entropy (SE) and the complexity index (CI) of the EMG signals were calculated after successive coarse-graining to extract dynamics at timescales of 27 to 270 Hz, with m = 2 and r = 0.15 SD. SE and CI were lower across the timescales in older adults in VL and BF, but higher in GA (all p<0.001); these results held for VL and GA even after accounting for longer EMG burst durations in older adults. CI was higher during slower walking speed in VL and BF (p<0.001). Results were mostly similar for m = 3 and r = 0.01–0.35. Smaller r was more sensitive to age-related differences. The decrease in complexity with aging in the timescales studied was limited to proximal muscles, particularly VL. The increase in GA may be driven by other factors. Walking slower may reflect a behavioral adaptation that allows the nervous system to function with greater complexity. PMID:27570974

  16. Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability

    NASA Astrophysics Data System (ADS)

    Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.

    2016-12-01

    Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.

  17. An adaptive embedded mesh procedure for leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Beer, Michael A.; Law, Glenn W.

    1989-01-01

    A procedure for solving the conical Euler equations on an adaptively refined mesh is presented, along with a method for determining which cells to refine. The solution procedure is a central-difference cell-vertex scheme. The adaptation procedure is made up of a parameter on which the refinement decision is based, and a method for choosing a threshold value of the parameter. The refinement parameter is a measure of mesh-convergence, constructed by comparison of locally coarse- and fine-grid solutions. The threshold for the refinement parameter is based on the curvature of the curve relating the number of cells flagged for refinement to the value of the refinement threshold. Results for three test cases are presented. The test problem is that of a delta wing at angle of attack in a supersonic free-stream. The resulting vortices and shocks are captured efficiently by the adaptive code.

  18. Identifying Decadal to Multi-decadal Variability in the Pacific by Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Sommers, L. A.; Hamlington, B.; Cheon, S. H.

    2016-12-01

    Large scale climate variability in the Pacific Ocean like that associated with ENSO and the Pacific Decadal Oscillation (PDO) has been shown to have a significant impact on climate and sea level across a range of timescales. The changes related to these climate signals have worldwide impacts on fisheries, weather, and precipitation patterns among others. Understanding these inter-annual to multi-decadal oscillations is imperative to longer term climate forecasts and understanding how climate will behave, and its effect on changes in sea level. With a 110-year reconstruction of sea level, we examine decadal to multi-decadal variability seen in the sea level fluctuations in the Pacific Ocean. Using empirical mode decomposition (EMD), we break down regional sea level into a series of intrinsic mode functions (IMFs) and attempt attribution of these IMFs to specific climate modes of variability. In particular, and not unexpectedly, we identify IMFs associated with the PDO, finding correlations between the PDO Index and IMFs in the Pacific Ocean upwards of 0.6-0.8 over the 110-year reconstructed record. Perhaps more significantly, we also find evidence of a longer multi-decadal signal ( 50-60 years) in the higher order IMFs. This lower frequency variability has been suggested in previous literature as influencing GMSL, but here we find a regional pattern associated with this multi-decadal signal. By identifying and separating these periodic climate signals, we can gain a better understanding of how the sea level variability associated with these modes can impact sea level on short timescales and serve to exacerbate the effects of long-term sea level change.

  19. Multi-Timescale Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints

    NASA Astrophysics Data System (ADS)

    Molero, B.; Leroux, D. J.; Richaume, P.; Kerr, Y. H.; Merlin, O.; Cosh, M. H.; Bindlish, R.

    2018-01-01

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial scales and timescales in surface soil moisture (SM) within the satellite footprint ( 50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings, and TC is suitable for week and month scales but not for other scales where data set cross-correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.

  20. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales

    PubMed Central

    Tian, Xing; Rowland, Jess; Poeppel, David

    2017-01-01

    Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4–7 Hz) and gamma band ranges (31–45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8–12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations. PMID:29095816

  1. Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants…

  2. Microscopy mineral image enhancement based on improved adaptive threshold in nonsubsampled shearlet transform domain

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Si, Yujuan; Jia, Zhenhong

    2018-03-01

    In this paper, a novel microscopy mineral image enhancement method based on adaptive threshold in non-subsampled shearlet transform (NSST) domain is proposed. First, the image is decomposed into one low-frequency sub-band and several high-frequency sub-bands. Second, the gamma correction is applied to process the low-frequency sub-band coefficients, and the improved adaptive threshold is adopted to suppress the noise of the high-frequency sub-bands coefficients. Third, the processed coefficients are reconstructed with the inverse NSST. Finally, the unsharp filter is used to enhance the details of the reconstructed image. Experimental results on various microscopy mineral images demonstrated that the proposed approach has a better enhancement effect in terms of objective metric and subjective metric.

  3. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    NASA Astrophysics Data System (ADS)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  4. Target matching based on multi-view tracking

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Zhou, Changsheng

    2011-01-01

    A feature matching method is proposed based on Maximally Stable Extremal Regions (MSER) and Scale Invariant Feature Transform (SIFT) to solve the problem of the same target matching in multiple cameras. Target foreground is extracted by using frame difference twice and bounding box which is regarded as target regions is calculated. Extremal regions are got by MSER. After fitted into elliptical regions, those regions will be normalized into unity circles and represented with SIFT descriptors. Initial matching is obtained from the ratio of the closest distance to second distance less than some threshold and outlier points are eliminated in terms of RANSAC. Experimental results indicate the method can reduce computational complexity effectively and is also adapt to affine transformation, rotation, scale and illumination.

  5. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi.

    PubMed

    Kosumi, Takuya; Takeda, Makio

    2017-08-08

    In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism.Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets.Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold (t 0 ) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0 , that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions.Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0 , and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t 0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0 , large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.

  6. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi

    NASA Astrophysics Data System (ADS)

    Kosumi, Takuya; Takeda, Makio

    2017-10-01

    In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism. Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets. Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold ( t 0) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0, that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions. Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0, and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0, large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.

  7. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  8. Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B

    2016-12-01

    A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.

  9. Learning, climate and the evolution of cultural capacity.

    PubMed

    Whitehead, Hal

    2007-03-21

    Patterns of environmental variation influence the utility, and thus evolution, of different learning strategies. I use stochastic, individual-based evolutionary models to assess the relative advantages of 15 different learning strategies (genetic determination, individual learning, vertical social learning, horizontal/oblique social learning, and contingent combinations of these) when competing in variable environments described by 1/f noise. When environmental variation has little effect on fitness, then genetic determinism persists. When environmental variation is large and equal over all time-scales ("white noise") then individual learning is adaptive. Social learning is advantageous in "red noise" environments when variation over long time-scales is large. Climatic variability increases with time-scale, so that short-lived organisms should be able to rely largely on genetic determination. Thermal climates usually are insufficiently red for social learning to be advantageous for species whose fitness is very determined by temperature. In contrast, population trajectories of many species, especially large mammals and aquatic carnivores, are sufficiently red to promote social learning in their predators. The ocean environment is generally redder than that on land. Thus, while individual learning should be adaptive for many longer-lived organisms, social learning will often be found in those dependent on the populations of other species, especially if they are marine. This provides a potential explanation for the evolution of a prevalence of social learning, and culture, in humans and cetaceans.

  10. Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software

    USGS Publications Warehouse

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Kumar, Sunil; Swallow, Aaron; Luizza, Matthew; Chignell, Steve

    2017-01-01

    Among the most pressing concerns of land managers in post-wildfire landscapes are the establishment and spread of invasive species. Land managers need accurate maps of invasive species cover for targeted management post-disturbance that are easily transferable across space and time. In this study, we sought to develop an iterative, replicable methodology based on limited invasive species occurrence data, freely available remotely sensed data, and open source software to predict the distribution of Bromus tectorum (cheatgrass) in a post-wildfire landscape. We developed four species distribution models using eight spectral indices derived from five months of Landsat 8 Operational Land Imager (OLI) data in 2014. These months corresponded to both cheatgrass growing period and time of field data collection in the study area. The four models were improved using an iterative approach in which a threshold for cover was established, and all models had high sensitivity values when tested on an independent dataset. We also quantified the area at highest risk for invasion in future seasons given 2014 distribution, topographic covariates, and seed dispersal limitations. These models demonstrate the effectiveness of using derived multi-date spectral indices as proxies for species occurrence on the landscape, the importance of selecting thresholds for invasive species cover to evaluate ecological risk in species distribution models, and the applicability of Landsat 8 OLI and the Software for Assisted Habitat Modeling for targeted invasive species management.

  11. Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software

    NASA Astrophysics Data System (ADS)

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Kumar, Sunil; Swallow, Aaron; Luizza, Matthew W.; Chignell, Stephen M.

    2017-07-01

    Among the most pressing concerns of land managers in post-wildfire landscapes are the establishment and spread of invasive species. Land managers need accurate maps of invasive species cover for targeted management post-disturbance that are easily transferable across space and time. In this study, we sought to develop an iterative, replicable methodology based on limited invasive species occurrence data, freely available remotely sensed data, and open source software to predict the distribution of Bromus tectorum (cheatgrass) in a post-wildfire landscape. We developed four species distribution models using eight spectral indices derived from five months of Landsat 8 Operational Land Imager (OLI) data in 2014. These months corresponded to both cheatgrass growing period and time of field data collection in the study area. The four models were improved using an iterative approach in which a threshold for cover was established, and all models had high sensitivity values when tested on an independent dataset. We also quantified the area at highest risk for invasion in future seasons given 2014 distribution, topographic covariates, and seed dispersal limitations. These models demonstrate the effectiveness of using derived multi-date spectral indices as proxies for species occurrence on the landscape, the importance of selecting thresholds for invasive species cover to evaluate ecological risk in species distribution models, and the applicability of Landsat 8 OLI and the Software for Assisted Habitat Modeling for targeted invasive species management.

  12. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    PubMed

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  13. Critical Thresholds in Earth-System Dynamics

    NASA Astrophysics Data System (ADS)

    Rothman, D.

    2017-12-01

    The history of the Earth system is a story of change. Some changesare gradual and benign, but others, especially those associated withcatastrophic mass extinction, are relatively abrupt and destructive.What sets one group apart from the other? Here I hypothesize thatperturbations of Earth's carbon cycle lead to mass extinction if theyexceed either a critical rate at long time scales or a critical sizeat short time scales. By analyzing 31 carbon-isotopic events duringthe last 542 million years, I identify the critical rate with a limitimposed by mass conservation. Further analysis identifies thecrossover timescale separating fast from slow events with thetimescale of the ocean's homeostatic response to a change in pH. Theproduct of the critical rate and the crossover timescale then yieldsthe critical size. The modern critical size for the marine carboncycle is roughly similar to the mass of carbon that human activitieswill likely have added to the oceans by the year 2100.

  14. Time Hierarchies and Model Reduction in Canonical Non-linear Models

    PubMed Central

    Löwe, Hannes; Kremling, Andreas; Marin-Sanguino, Alberto

    2016-01-01

    The time-scale hierarchies of a very general class of models in differential equations is analyzed. Classical methods for model reduction and time-scale analysis have been adapted to this formalism and a complementary method is proposed. A unified theoretical treatment shows how the structure of the system can be much better understood by inspection of two sets of singular values: one related to the stoichiometric structure of the system and another to its kinetics. The methods are exemplified first through a toy model, then a large synthetic network and finally with numeric simulations of three classical benchmark models of real biological systems. PMID:27708665

  15. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  16. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.« less

  17. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales

    DOE PAGES

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew; ...

    2016-09-19

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.« less

  18. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales.

    PubMed

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew; Restrepo-Coupe, Natalia; Wiedemann, Kenia T; Xu, Xiangtao; Wehr, Richard; Christoffersen, Bradley O; Miao, Guofang; da Silva, Rodrigo; de Araujo, Alessandro C; Oliviera, Raimundo C; Camargo, Plinio B; Monson, Russell K; Huete, Alfredo R; Saleska, Scott R

    2017-03-01

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R 2  = 0.77) to interannual (R 2  = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms. © 2016 John Wiley & Sons Ltd.

  19. THRESHOLD ELEMENTS AND THE DESIGN OF SEQUENTIAL SWITCHING NETWORKS.

    DTIC Science & Technology

    The report covers research performed from March 1966 to March 1967. The major topics treated are: (1) methods for finding weight- threshold vectors...that realize a given switching function in multi- threshold linear logic; (2) synthesis of sequential machines by means of shift registers and simple

  20. When do Indians feel hot? Internet searches indicate seasonality suppresses adaptation to heat

    NASA Astrophysics Data System (ADS)

    Singh, Tanya; Siderius, Christian; Van der Velde, Ype

    2018-05-01

    In a warming world an increasing number of people are being exposed to heat, making a comfortable thermal environment an important need. This study explores the potential of using Regional Internet Search Frequencies (RISF) for air conditioning devices as an indicator for thermal discomfort (i.e. dissatisfaction with the thermal environment) with the aim to quantify the adaptation potential of individuals living across different climate zones and at the high end of the temperature range, in India, where access to health data is limited. We related RISF for the years 2011–2015 to daily daytime outdoor temperature in 17 states and determined at which temperature RISF for air conditioning starts to peak, i.e. crosses a ‘heat threshold’, in each state. Using the spatial variation in heat thresholds, we explored whether people continuously exposed to higher temperatures show a lower response to heat extremes through adaptation (e.g. physiological, behavioural or psychological). State-level heat thresholds ranged from 25.9 °C in Madhya Pradesh to 31.0 °C in Orissa. Local adaptation was found to occur at state level: the higher the average temperature in a state, the higher the heat threshold; and the higher the intra-annual temperature range (warmest minus coldest month) the lower the heat threshold. These results indicate there is potential within India to adapt to warmer temperatures, but that a large intra-annual temperature variability attenuates this potential to adapt to extreme heat. This winter ‘reset’ mechanism should be taken into account when assessing the impact of global warming, with changes in minimum temperatures being an important factor in addition to the change in maximum temperatures itself. Our findings contribute to a better understanding of local heat thresholds and people’s adaptive capacity, which can support the design of local thermal comfort standards and early heat warning systems.

  1. Psychophysical Measurement of Rod and Cone Thresholds in Stargardt Disease with Full-Field Stimuli

    PubMed Central

    Collison, Frederick T.; Fishman, Gerald A.; McAnany, J. Jason; Zernant, Jana; Allikmets, Rando

    2014-01-01

    Purpose To investigate psychophysical thresholds in Stargardt disease with the full-field stimulus test (FST). Methods Visual acuity (VA), spectral-domain optical coherence tomography (SD-OCT), full-field electroretinogram (ERG), and FST measurements were made in one eye of 24 patients with Stargardt disease. Dark-adapted rod FST thresholds were measured with short-wavelength stimuli, and cone FST thresholds were obtained from the cone plateau phase of dark adaptation using long-wavelength stimuli. Correlation coefficients were calculated for FST thresholds versus macular thickness, VA and ERG amplitudes. Results Stargardt patient FST cone thresholds correlated significantly with VA, macular thickness, and ERG cone-response amplitudes (all P<0.01). The patients’ FST rod thresholds correlated with ERG rod-response amplitudes (P<0.01), but not macular thickness (P=0.05). All Stargardt disease patients with flecks confined to the macula and most of the patients with flecks extending outside of the macula had normal FST thresholds. All patients with extramacular atrophic changes had elevated FST cone thresholds and most had elevated FST rod thresholds. Conclusion FST rod and cone threshold elevation in Stargardt disease patients correlated well with measures of structure and function, as well as ophthalmoscopic retinal appearance. FST appears to be a useful tool for assessing rod and cone function in Stargardt disease. PMID:24695063

  2. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  3. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  4. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review

    PubMed Central

    Aoi, Shinya; Manoonpong, Poramate; Ambe, Yuichi; Matsuno, Fumitoshi; Wörgötter, Florentin

    2017-01-01

    Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots. PMID:28878645

  5. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  6. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  7. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  8. Asynchronously Coupled Models of Ice Loss from Airless Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Schorghofer, N.

    2016-12-01

    Ice is found near the surface of dwarf planet Ceres, in some main belt asteroids, and perhaps in NEOs that will be explored or even mined in future. The simple but important question of how fast ice is lost from airless bodies can present computational challenges. The thermal cycle on the surface repeats on much shorter time-scales than ice retreats; one process acts on the time-scale of hours, the other over billions of years. This multi-scale situation is addressed with asynchronous coupling, where models with different time steps are woven together. The sharp contrast at the retreating ice table is dealt with with explicit interface tracking. For Ceres, which is covered with a thermally insulating dust mantle, desiccation rates are orders of magnitude slower than had been calculated with simpler models. More model challenges remain: The role of impact devolatization and the time-scale for complete desiccation of an asteroid. I will also share my experience with code distribution using GitHub and Zenodo.

  9. Uncoordinated MAC for Adaptive Multi Beam Directional Networks: Analysis and Evaluation

    DTIC Science & Technology

    2016-08-01

    control (MAC) policies for emerging systems that are equipped with fully digital antenna arrays which are capable of adaptive multi-beam directional...Adaptive Beam- forming, Multibeam, Directional Networking, Random Access, Smart Antennas I. INTRODUCTION Fully digital beamforming antenna arrays that...are capable of adaptive multi-beam communications are quickly becoming a reality. These antenna arrays allow users to form multiple simultaneous

  10. Estimation of ultrashort laser irradiation effect over thin transparent biopolymer films morphology

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, C.; Bliznakova, I.; Slavov, D.; Husinsky, W.

    2015-01-01

    The collagen - elastin biopolymer thin films treated by CPA Ti:Sapphire laser (Femtopower - Compact Pro) at 800nm central wavelength with 30fs and 1kHz repetition rate are investigated. A process of surface modifications and microporous scaffold creation after ultrashort laser irradiation has been observed. The single-shot (N=1) and multi-shot (N<1) ablation threshold values were estimated by studying the linear relationship between the square of the crater diameter D2 and the logarithm of the laser fluence F for determination of the threshold fluences for N=1, 2, 5, 10, 15 and 30 number of laser pulses. The incubation analysis by calculation of the incubation coefficient ξ for multi - shot fluence threshold for selected materials by power - law relationship form Fth(N)=Fth(1)Nξ-1 was also obtained. In this paper, we have also shown another consideration of the multi - shot ablation threshold calculation by logarithmic dependence of the ablation rate d on the laser fluence. The morphological surface changes of the modified regions were characterized by scanning electron microscopy to estimate the generated variations after the laser treatment.

  11. Decadal to centennial oscillations in the upper and lower boundaries of the San Diego, California margin Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Myhre, S. E.; Hill, T. M.; Frieder, C.; Grupe, B.

    2016-02-01

    Here we present two new marine sediment archives from the continental margin of San Diego, California, USA, which record decadal to centennial oscillations in the hydrographic structure of the Eastern Pacific Oxygen Minimum Zone (OMZ). The two cores, located at 528 and 1,180 m water depth, record oceanographic history across overlapping timescales. Biotic communities, including Foraminifera, Echinodermata, Brachiopoda, Mollusca and Ostrocoda, were examined in subsurface (>10 cm sediment core depth) samples. Chronologies for both cores were developed with reservoir-corrected 14C dates of mixed planktonic Foraminifera and linearly interpolated sedimentation rates. Sediment ages for the cores range from 400-1,800 years before present. Indices of foraminiferal community density, diversity and evenness are applied as biotic proxies to track the intensification of the continental margin OMZ. Biotic communities at the shallower site reveal multi-decadal to centennial timescales of OMZ intensification, whereas the deeper site exhibits decadal to multi-decadal scales of hydrographic variability. Hypoxia-associated foraminiferal genera Uvigerina and Bolivina were compositionally dominant during intervals of peak foraminiferal density. Invertebrate assemblages often co-occurred across taxa groups, and thereby provide a broad trophic context for interpreting changes in the margin seafloor. Variability in the advection of Pacific Equatorial Water may mechanistically contribute to this described hydrographic variability. This investigation reconstructs historical timescales of OMZ intensification, seafloor ecological variability, and synchrony between open-ocean processes and regional climate.

  12. Quasi-Periodic Pulsations During the Impulsive and Decay Phases of an X-Class Flare

    NASA Technical Reports Server (NTRS)

    Hays, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.

    2016-01-01

    Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of 20 s is observed in all channels and a second timescale of 55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from 40 s up to 70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.

  13. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  14. Centennial-scale human alterations, unintended natural-system responses, and event-driven mitigation within a coupled fluvial-coastal system: Lessons for collective management and long-term coastal change planning

    NASA Astrophysics Data System (ADS)

    Hein, C. J.; Hoagland, P.; Huang, J. C.; Canuel, E. A.; Fitzsimons, G.; Rosen, P.; Shi, W.; Fallon, A. R.; Shawler, J. L.

    2017-12-01

    On decadal to millennial timescales, human modifications of linked riparian and coastal landscapes have altered the natural transport of sediments to the coast, causing time-varying sediment fluxes to estuaries, wetlands, and beaches. This study explored the role of historical changes in land use and river/coastal engineering on patterns of coastal erosion in the coupled system comprising the Merrimack River and the Plum Island barrier beach (northern Massachusetts, USA). Recreational values of the beach, attendant impacts on the local housing market, human perceptions of future beach utilization, and collective management options were investigated. Key historical changes included the installation of dams to benefit industry and control flooding in the early 19th century; river-mouth jetties to maintain navigation and allow for the residential development of a more stable barrier in the early 20th century; and the progressive hardening of the shoreline in response to multi-decadal cyclical erosion and house losses throughout the latter 20th and 21st centuries. The tools of sedimentology, shoreline-change analysis, historic documentation, population surveys, and economic modeling were used to examine these changes and the dynamic linked responses of the natural system and human populations. We found cascading effects of human alterations to the river that changed sediment fluxes to the coastal zone, driving a need for mitigation over centennial timescales. More recently, multidecadal erosion-accretion cycles of the beach have had little impact on the housing market, which is instead more responsive to public shoreline stabilization efforts in response to short-term (< 5 years) erosion threats. General perceptions about the need to plan for long-term coastal changes are associated with sea-level rise and enhanced storminess, but real-time mitigation, such as shoreline hardening, has been reactive, lacking a collective consensus for best management and a longer-term perspective for adaptation. Together, these findings suggest that approaches which consider a range of timescales and balance the natural processes of barrier islands, associated ecosystems, and local communities are needed for sustainable management of coupled fluvial-coastal systems.

  15. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  16. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  17. Method for Assessing Contrast Performance under Lighting Conditions such as Entering a Tunnel on Sunny Day.

    PubMed

    Huang, Y; Menozzi, M

    2015-04-01

    Clinical assessment of dark adaptation is time consuming and requires a specialised instrumentation such as a nyktometer. It is therefore not surprising that dark adaptation is rarely tested in practice. As for the case of testing fitness of a driver, demands on adaptation in daily driving tasks mostly depart from settings in a nyktometer. In daily driving, adaptation is stressed by high and fast transitions of light levels, and the period of time which is relevant to safe driving starts right after a transition and ends several seconds later. In the nyktometer dark adaptation is tested after completion of the adaptation process. RESULTS of a nyktometer test may therefore deliver little information about adaptation shortly after light transitions. In an attempt to develop a clinical test aiming to fulfill both a short measurement time and offering test conditions comparable to conditions in driving, we conducted a preliminary study in which contrast sensitivity thresholds were recorded for light transitions as found in daily driving tasks and for various times after transition onsets. Contrast sensitivity performance is compared to dark adaptation performance as assessed by a myktometer. Contrast sensitivity thresholds were recorded in 17 participants by means of a twin projection apparatus. The apparatus enabled the projection of an adapting field and of a Landolt ring both with a variable luminance. Five different stepwise transitions in levels of adapting luminance were tested. All transitions occurred from bright to dark. The Landolt ring was flashed 100 or 500 ms after the transition had occurred. Participants were instructed to report the orientation of the Landolt ring. A Rodenstock Nyktometer, Plate 501, was used to record dark adaptation threshold. Experimental data from the proposed test revealed a noticeably increasing contrast detection threshold measured in dark adaptation in the stronger transition from 14 000 to 8 cd/m2 than in the weaker transition from 2000 to 8 cd/m2. By raising the dark adaption luminance level from 8 to 60 cd/m2 in the stronger transition case, the contrast detection threshold was then improved by a factor of four. Another main finding showed that for the adaptation process from strong glare stimuli to the dark adaptation, a peak deterioration in contrast sensitivity occurred at the light adaptation level of 6000 cd/m2. Comparing the contrast performance assessed by the proposed test with that of the nyktometer test, there was no clear correlation between the two methods. Our suggested method to assess dark adaptation performance proved to be practical in use and, since the patient does not have to spend a long time to attain complete dark adaptation, the method required a short time for measurement. Our negative experience in the use of the myktometer was in agreement with reported experience in the literature. Georg Thieme Verlag KG Stuttgart · New York.

  18. Adaptive time-sequential binary sensing for high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chenhui; Lu, Yue M.

    2012-06-01

    We present a novel image sensor for high dynamic range imaging. The sensor performs an adaptive one-bit quantization at each pixel, with the pixel output switched from 0 to 1 only if the number of photons reaching that pixel is greater than or equal to a quantization threshold. With an oracle knowledge of the incident light intensity, one can pick an optimal threshold (for that light intensity) and the corresponding Fisher information contained in the output sequence follows closely that of an ideal unquantized sensor over a wide range of intensity values. This observation suggests the potential gains one may achieve by adaptively updating the quantization thresholds. As the main contribution of this work, we propose a time-sequential threshold-updating rule that asymptotically approaches the performance of the oracle scheme. With every threshold mapped to a number of ordered states, the dynamics of the proposed scheme can be modeled as a parametric Markov chain. We show that the frequencies of different thresholds converge to a steady-state distribution that is concentrated around the optimal choice. Moreover, numerical experiments show that the theoretical performance measures (Fisher information and Craḿer-Rao bounds) can be achieved by a maximum likelihood estimator, which is guaranteed to find globally optimal solution due to the concavity of the log-likelihood functions. Compared with conventional image sensors and the strategy that utilizes a constant single-photon threshold considered in previous work, the proposed scheme attains orders of magnitude improvement in terms of sensor dynamic ranges.

  19. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0: Climate variability of sea salt aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Pierce, David W.; Russell, Lynn M.

    This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less

  20. Predicting Instability Timescales in Closely-Packed Planetary Systems

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Hadden, Samuel; Hussain, Naireen; Silburt, Ari; Gilbertson, Christian; Rein, Hanno; Menou, Kristen

    2018-04-01

    Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. A central challenge in such efforts is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will present our recent successes in training machine learning models capable of reliably predicting orbital stability a million times faster than N-body simulations. By engineering dynamically relevant features that we feed to a gradient-boosted decision tree algorithm (XGBoost), we are able to achieve a precision and recall of 90% on a holdout test set of N-body simulations. This opens a wide discovery space for characterizing new exoplanet discoveries and for elucidating how orbital architectures evolve through time as the next generation of spaceborne exoplanet surveys prepare for launch this year.

  1. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  2. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul

    2016-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  3. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2016-12-01

    The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  4. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.

    2017-08-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  5. Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.

    2017-04-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.

  6. Image denoising in mixed Poisson-Gaussian noise.

    PubMed

    Luisier, Florian; Blu, Thierry; Unser, Michael

    2011-03-01

    We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.

  7. Multi-Modalities Sensor Science

    DTIC Science & Technology

    2015-02-28

    enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance

  8. Evidence Accumulator or Decision Threshold – Which Cortical Mechanism are We Observing?

    PubMed Central

    Simen, Patrick

    2012-01-01

    Most psychological models of perceptual decision making are of the accumulation-to-threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms have received less attention, and their neural basis has usually been sought in subcortical structures. Here I analyze a model of a decision threshold that can be implemented in the same cortical areas as evidence accumulators, and whose behavior bears on two open questions in decision neuroscience: (1) When ramping activity is observed in a brain region during decision making, does it reflect evidence accumulation? (2) Are changes in speed-accuracy tradeoffs and response biases more likely to be achieved by changes in thresholds, or in accumulation rates and starting points? The analysis suggests that task-modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence accumulation as opposed to threshold readout; and that signs of modulated accumulation are as likely to indicate threshold adaptation as adaptation of starting points and accumulation rates. These conclusions imply that how thresholds are modeled can dramatically impact accumulator-based interpretations of this data. PMID:22737136

  9. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  10. Multi-year predictability in a coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Power, Scott; Colman, Rob

    2006-02-01

    Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “ wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15-20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.

  11. Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers.

    PubMed

    Dell' Anna, Francesco; Dong, Tao; Li, Ping; Wen, Yumei; Azadmehr, Mehdi; Casu, Mario; Berg, Yngvar

    2018-04-17

    This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.

  12. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  13. Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest

    NASA Astrophysics Data System (ADS)

    Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.

    2015-07-01

    The vegetation-atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heatwave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.

  14. The Lifecycles of Drought: Informing Responses Across Timescales

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.; Schubert, S. D.

    2014-12-01

    Drought is a slow-onset hazard that is a normal part of climate. Drought onset and demise are difficult to determine. Impacts are mostly nonstructural, spread over large geographical areas, and can persist long after precipitation deficits end. These factors hinder development of accurate, timely estimates of drought severity and resultant responses. Drivers of drought range from SST anomalies and global scale atmospheric response, through regional forcing and local land-surface feedbacks. Key climatological questions related to drought risk assessment, perception and management include, "Does a drought end by a return to normal precipitation; how much moisture is required and over what period; can the end of a drought be defined by the diminishing impacts e.g. soil moisture, reservoir volumes; will precipitation patterns on which management systems rely, change in the future?" Effective early warning systems inform strategic responses that anticipate crises and crisis evolution across climate timescales. While such "early information" is critical for defining event onset, it is even more critical for identifying the potential for increases in severity. Many social and economic systems have buffers in place to respond to onset (storage, transfers and purchase of grain) but lack response capabilities as drought intensifies, as buffers are depleted. Throughout the drought lifecycle (and between events), monitoring, research and risk assessments are required to: Map decision-making processes and resource capabilities including degradation of water and ecosystems Place multiple climate and land surface indicators within a consistent triggering framework (e.g. climate and vegetation mapping) before critical thresholds are reached Identify policies and practices that impede or enable the flow of information, through policy gaming and other exercises The presentation will outline the capabilities and framework needed to ensure improved scientific inputs to preparedness and adaptation. Lessons will be drawn from recent and ongoing events in California, the Midwest, and globally.

  15. Time-dependent permeability evolution in compacting volcanic fracture systems and implications for gas overpressure

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie I.; Wadsworth, Fabian B.; Heap, Michael J.; Baud, Patrick

    2017-06-01

    Volcanic eruptions are driven by the ascent of volatile-laden magma. The capacity of a volcano system to outgas these volatiles-its permeability-controls the explosive potential, and fractures at volcanic conduit margins play a crucial role in tempering eruption explosivity by acting as outgassing pathways. However, these fractures are often filled with hot volcanic debris that welds and compacts over time, meaning that these permeable pathways have a finite lifetime. While numerous studies emphasize that permeability evolution is important for regulating pressure in shallow volcanic systems, how and when this occurs remains an outstanding question in volcanology. In this contribution, we show that different pressure evolution regimes can be expected across a range of silicic systems as a function of the width and distribution of fractures in the system, the timescales over which they can outgas (a function of depth and temperature), and the permeability of the host material. We define outgassing, diffusive relaxation, and pressure increase regimes, which are distinguished by comparing the characteristic timescales over which they operate. Moreover, we define a critical permeability threshold, which determines (in concert with characteristic timescales of diffusive mass exchange between the pore and melt phases) whether systems fracture and outgas efficiently, or if a volcano will be prone to pressure increases, incomplete healing, and explosive failure.

  16. Estimating glacier response times and disequilibrium in a changing climate

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Koutnik, M.; Roe, G.

    2017-12-01

    Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.

  17. Fuzzy entropy thresholding and multi-scale morphological approach for microscopic image enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Jiancan; Li, Yuexiang; Shen, Linlin

    2017-07-01

    Microscopic images provide lots of useful information for modern diagnosis and biological research. However, due to the unstable lighting condition during image capturing, two main problems, i.e., high-level noises and low image contrast, occurred in the generated cell images. In this paper, a simple but efficient enhancement framework is proposed to address the problems. The framework removes image noises using a hybrid method based on wavelet transform and fuzzy-entropy, and enhances the image contrast with an adaptive morphological approach. Experiments on real cell dataset were made to assess the performance of proposed framework. The experimental results demonstrate that our proposed enhancement framework increases the cell tracking accuracy to an average of 74.49%, which outperforms the benchmark algorithm, i.e., 46.18%.

  18. Research on AHP decision algorithms based on BP algorithm

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Guan, Jianhe

    2017-10-01

    Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.

  19. A Novel Zero Velocity Interval Detection Algorithm for Self-Contained Pedestrian Navigation System with Inertial Sensors

    PubMed Central

    Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan

    2016-01-01

    Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266

  20. Climate Change Adaptation: Putting Principles into Practice

    NASA Astrophysics Data System (ADS)

    Ausden, Malcolm

    2014-10-01

    Carrying out wildlife conservation in a changing climate requires planning on long timescales at both a site and network level, while also having the flexibility to adapt actions at sites over short timescales in response to changing conditions and new information. The Royal Society for the Protection of Birds (RSPB), a land-owning wildlife conservation charity in the UK, achieves this on its nature reserves through its system of management planning. This involves setting network-wide objectives which inform the 25-year vision and 5-year conservation objectives for each site. Progress toward achieving each site's conservation objectives is reviewed annually, to identify any adjustments which might be needed to the site's management. The conservation objectives and 25-year vision of each site are reviewed every 5 years. Significant long-term impacts of climate change most frequently identified at RSPB reserves are: loss of intertidal habitat through coastal squeeze, loss of low-lying islands due to higher sea levels and coastal erosion, loss of coastal freshwater and brackish wetlands due to increased coastal flooding, and changes in the hydrology of wetlands. The main types of adaptation measures in place on RSPB reserves to address climate change-related impacts are: re-creation of intertidal habitat, re-creation and restoration of freshwater wetlands away from vulnerable coastal areas, blocking artificial drainage on peatlands, and addressing pressures on freshwater supply for lowland wet grasslands in eastern and southeastern England. Developing partnerships between organizations has been crucial in delivering large-scale adaptation projects.

  1. Multi-band optical variability studies of Blazars

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditi

    2018-04-01

    To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of a dozen blazars. CCD magnitudes in B, V, R and I pass-bands were determined for > 10,000f new optical observations from 300 nights made during 2011 – 2016, with an average length of 4 h each, using seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Blazar variability studies helped us in understanding their nature and extreme conditions within the emission region. To explain possible physical causes of the observed spectral variability, we also investigated spectral energy distributions using B, V, R, I, J and K pass-band data.

  2. A coupled physical and economic model of the response of coastal real estate to climate risk

    NASA Astrophysics Data System (ADS)

    McNamara, Dylan E.; Keeler, Andrew

    2013-06-01

    Barring an unprecedented large-scale effort to raise island elevation, barrier-island communities common along the US East Coast are likely to eventually face inundation of the existing built environment on a timescale that depends on uncertain climatic forcing. Between the present and when a combination of sea-level rise and erosion renders these areas uninhabitable, communities must choose levels of defensive expenditures to reduce risks and individual residents must assess whether and when risk levels are unacceptably high to justify investment in housing. We model the dynamics of coastal adaptation as the interplay of underlying climatic risks, collective actions to mitigate those risks, and individual risk assessments based on beliefs in model predictions and processing of past climate events. Efforts linking physical and behavioural models to explore shoreline dynamics have not yet brought together this set of essential factors. We couple a barrier-island model with an agent-based model of real-estate markets to show that, relative to people with low belief in model predictions about climate change, informed property owners invest heavily in defensive expenditures in the near term and then abandon coastal real estate at some critical risk threshold that presages a period of significant price volatility.

  3. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  4. Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: firing rate and correlations.

    PubMed

    Moreno-Bote, Rubén; Parga, Néstor

    2010-06-01

    Delivery of neurotransmitter produces on a synapse a current that flows through the membrane and gets transmitted into the soma of the neuron, where it is integrated. The decay time of the current depends on the synaptic receptor's type and ranges from a few (e.g., AMPA receptors) to a few hundred milliseconds (e.g., NMDA receptors). The role of the variety of synaptic timescales, several of them coexisting in the same neuron, is at present not understood. A prime question to answer is which is the effect of temporal filtering at different timescales of the incoming spike trains on the neuron's response. Here, based on our previous work on linear synaptic filtering, we build a general theory for the stationary firing response of integrate-and-fire (IF) neurons receiving stochastic inputs filtered by one, two, or multiple synaptic channels, each characterized by an arbitrary timescale. The formalism applies to arbitrary IF model neurons and arbitrary forms of input noise (i.e., not required to be gaussian or to have small amplitude), as well as to any form of synaptic filtering (linear or nonlinear). The theory determines with exact analytical expressions the firing rate of an IF neuron for long synaptic time constants using the adiabatic approach. The correlated spiking (cross-correlations function) of two neurons receiving common as well as independent sources of noise is also described. The theory is illustrated using leaky, quadratic, and noise-thresholded IF neurons. Although the adiabatic approach is exact when at least one of the synaptic timescales is long, it provides a good prediction of the firing rate even when the timescales of the synapses are comparable to that of the leak of the neuron; it is not required that the synaptic time constants are longer than the mean interspike intervals or that the noise has small variance. The distribution of the potential for general IF neurons is also characterized. Our results provide powerful analytical tools that can allow a quantitative description of the dynamics of neuronal networks with realistic synaptic dynamics.

  5. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  6. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  7. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  8. Satellite rainfall monitoring over Africa using multi-spectral MSG data in an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Grimes, David

    2010-05-01

    Rainfall monitoring over Africa is crucial for a variety of humanitarian and agricultural purposes, and satellites have been used for some time to provide real-time rainfall estimates over the region. Several recent applications of satellite rainfall estimates, such as flash-flood warning systems and crop-yield models, require accurate rainfall totals at daily timescales or below. Multi-spectral Meteosat Second Generation (MSG) data provide information on cloud properties such as optical depth and cloud particle size and phase. These parameters are all relevant to the probability of rainfall occurring from a cloud and the likely intensity of that rainfall, so the use of MSG data should lead to improved satellite rainfall estimates. An artificial neural network (ANN) using multi-spectral inputs from MSG has been trained to provide daily rainfall estimates over Ethiopia, using daily rain-gauge data for calibration. Although ANN methods have previously been applied to the problem of producing rainfall estimates from multi-spectral satellite data, in general precipitation radar data have been used for calibration. The advantage of using rain-gauge data is that gauges are far more widespread over Africa than radar networks, so this method can be easily transferred and if necessary re-calibrated in different climatological regions of the continent. The ANN estimates have been validated against independent Ethiopian gauge data at a variety of time and space scales. The ANN shows an improvement in accuracy at daily timescale when compared to rainfall estimates from the TAMSAT algorithm, which uses only single channel MSG data.

  9. Timing magma migration through the Icelandic Crust: from the Moho to the surface

    NASA Astrophysics Data System (ADS)

    Mutch, E. J. F.; Maclennan, J.; Edmonds, M.

    2017-12-01

    The rate of magma transfer throughout the crust, particularly the amount of time it takes for melt to travel from the upper mantle to the surface, is largely unknown. Only one previous study has investigated the timescales of transport of crystals that were in equilibrium with mantle melts [1]. Despite estimating timescales on the order of months to years, the depths from which these crystals were entrained is poorly constrained. Borgarhraun is an exceptionally well-characterised picrite lava flow in the Theistareykir Volcanic System of Northern Iceland. The crystal-cargo of this lava includes macrocrysts of olivine (Fo86-90), plagioclase (An84-90), clinopyroxene and spinel with much rarer wehrlitic nodules. Crystallisation has been estimated to have taken place in deep sub-Moho magma chambers ( 24 km). Melt inclusions in primitive olivine macrocrysts (Fo88-90) are the result of mixing a suite of geochemically distinct mantle melts that were CO2 undersaturated [2-3]. Zoning in the macrocrysts holds a record of concurrent crystallisation and mixing of these variable mantle melts, as well as ascent through the crust prior to eruption [4]. We have conducted a multi-phase, multi-element approach by applying finite-element diffusion models to wehrlite olivines and plagioclase macrocrysts to constrain the timescales of crystal residence and magma ascent prior to eruption. Model results suggest that at 1250 °C the timescale of final ascent was on the order of 20-50 days, whilst longer-term crystal residence times can exceed 700 years. This analysis shows that magma can ascend from the base of the crust to the surface in under a couple of months, suggesting picrites such as Borgarhraun are the result of high speed conduits to sub-Moho magma chambers. These rapid ascent timescales have important implications for the physical modelling of primitive magmas as well as for understanding the architecture of magma-plumbing systems in the temporal domain. References [1] Ruprecht, P., & Plank, T. (2013). Nature, 500(7460), 68-72. [2] Maclennan et al. (2003) Geochemistry, Geophysics, Geosystems, 4(11). [3] Hauri, E. et al. In AGU Spring Meeting Abstracts (Vol. 1, p. 03). [4] Winpenny & Maclennan (2011). Journal of Petrology, 52(9), 1791-1812.

  10. 3D SAPIV particle field reconstruction method based on adaptive threshold.

    PubMed

    Qu, Xiangju; Song, Yang; Jin, Ying; Li, Zhenhua; Wang, Xuezhen; Guo, ZhenYan; Ji, Yunjing; He, Anzhi

    2018-03-01

    Particle image velocimetry (PIV) is a necessary flow field diagnostic technique that provides instantaneous velocimetry information non-intrusively. Three-dimensional (3D) PIV methods can supply the full understanding of a 3D structure, the complete stress tensor, and the vorticity vector in the complex flows. In synthetic aperture particle image velocimetry (SAPIV), the flow field can be measured with large particle intensities from the same direction by different cameras. During SAPIV particle reconstruction, particles are commonly reconstructed by manually setting a threshold to filter out unfocused particles in the refocused images. In this paper, the particle intensity distribution in refocused images is analyzed, and a SAPIV particle field reconstruction method based on an adaptive threshold is presented. By using the adaptive threshold to filter the 3D measurement volume integrally, the three-dimensional location information of the focused particles can be reconstructed. The cross correlations between images captured from cameras and images projected by the reconstructed particle field are calculated for different threshold values. The optimal threshold is determined by cubic curve fitting and is defined as the threshold value that causes the correlation coefficient to reach its maximum. The numerical simulation of a 16-camera array and a particle field at two adjacent time events quantitatively evaluates the performance of the proposed method. An experimental system consisting of a camera array of 16 cameras was used to reconstruct the four adjacent frames in a vortex flow field. The results show that the proposed reconstruction method can effectively reconstruct the 3D particle fields.

  11. Epidemic spreading on preferred degree adaptive networks.

    PubMed

    Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P

    2012-01-01

    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = <κ>/<κ2> and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.

  12. Spatial storage effect promotes biodiversity during adaptive radiation.

    PubMed

    Tan, Jiaqi; Rattray, Jennifer B; Yang, Xian; Jiang, Lin

    2017-07-12

    Many ecological communities are enormously diverse. Variation in environmental conditions over time and space provides opportunities for temporal and spatial storage effects to operate, potentially promoting species coexistence and biodiversity. While several studies have provided empirical evidence supporting the significance of the temporal storage effect for coexistence, empirical tests of the role of the spatial storage effect are rare. In particular, we know little about how the spatial storage effect contributes to biodiversity over evolutionary timescales. Here, we report the first experimental study on the role of the spatial storage effect in the maintenance of biodiversity in evolving metacommunities, using the bacterium Pseudomonas fluorescens SBW25 as a laboratory model of adaptive radiation. We found that intercommunity spatial heterogeneity promoted phenotypic diversity of P. fluorescens in the presence of dispersal among local communities, by allowing the spatial storage effect to operate. Mechanistically, greater niche differences among P. fluorescens phenotypes arose in metacommunities with intercommunity spatial heterogeneity, facilitating negative frequency-dependent selection, and thus, the coexistence among P. fluorescens phenotypes. These results highlight the importance of the spatial storage effect for biodiversity over evolutionary timescales. © 2017 The Author(s).

  13. Wet disc contraction to galactic blue nuggets and quenching to red nuggets

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Burkert, A.

    2014-02-01

    We study the origin of high-redshift, compact, quenched spheroids (red nuggets) through the dissipative shrinkage of gaseous discs into compact star-forming systems (blue nuggets). The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers). The inflow is dissipative when its time-scale is shorter than the star formation time-scale. This implies a threshold of ˜0.28 in the cold-to-total mass ratio within the disc radius. For the typical gas fraction ˜0.5 at z ˜ 2, this threshold is traced back to a maximum spin parameter of ˜0.05, implying that ˜half the star-forming galaxies contract to blue nuggets, while the rest form extended stellar discs. Thus, the surface density of blue galaxies is expected to be bimodal about ˜109 M⊙ kpc-2, slightly increasing with mass. The blue nuggets are expected to be rare at low z when the gas fraction is low. The blue nuggets quench to red nuggets by complementary internal and external mechanisms. Internal quenching by a compact bulge, in a fast mode and especially at high z, may involve starbursts, stellar and active galactic nucleus feedback, or Q-quenching. Quenching due to hot-medium haloes above 1012 M⊙ provides maintenance and a slower mode at low redshift. These predictions are confirmed in simulations and are consistent with observations at z = 0-3.

  14. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    NASA Astrophysics Data System (ADS)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  15. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests.

    PubMed

    Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W

    2015-10-01

    Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.

  16. Psychophysical measurements in children: challenges, pitfalls, and considerations.

    PubMed

    Witton, Caroline; Talcott, Joel B; Henning, G Bruce

    2017-01-01

    Measuring sensory sensitivity is important in studying development and developmental disorders. However, with children, there is a need to balance reliable but lengthy sensory tasks with the child's ability to maintain motivation and vigilance. We used simulations to explore the problems associated with shortening adaptive psychophysical procedures, and suggest how these problems might be addressed. We quantify how adaptive procedures with too few reversals can over-estimate thresholds, introduce substantial measurement error, and make estimates of individual thresholds less reliable. The associated measurement error also obscures group differences. Adaptive procedures with children should therefore use as many reversals as possible, to reduce the effects of both Type 1 and Type 2 errors. Differences in response consistency, resulting from lapses in attention, further increase the over-estimation of threshold. Comparisons between data from individuals who may differ in lapse rate are therefore problematic, but measures to estimate and account for lapse rates in analyses may mitigate this problem.

  17. The Purpose of Generating Fatigue Crack Growth Threshold Data

    NASA Technical Reports Server (NTRS)

    Forth, Scott

    2006-01-01

    Test data shows that different width and thickness C(T), M(T) and ESE(T) specimens generate different thresholds Structures designed for "infinite life" are being re-evaluated: a) Threshold changes from 6 to 3 ksi in(sup 1/2); b) Computational life changes from infinite to 4 missions. Multi-million dollar test programs required to substantiate operation. Using ASTM E647 as standard guidance to generate threshold data is not practical. A threshold test approach needs to be standardized that will provide positive margin for high cycle fatigue applications.

  18. Population Heterogeneity in Mutation Rate Increases the Frequency of Higher-Order Mutants and Reduces Long-Term Mutational Load

    PubMed Central

    Alexander, Helen K.; Mayer, Stephanie I.; Bonhoeffer, Sebastian

    2017-01-01

    Abstract Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified. PMID:27836985

  19. Cost and threshold analysis of an HIV/STI/hepatitis prevention intervention for young men leaving prison: Project START.

    PubMed

    Johnson, A P; Macgowan, R J; Eldridge, G D; Morrow, K M; Sosman, J; Zack, B; Margolis, A

    2013-10-01

    The objectives of this study were to: (a) estimate the costs of providing a single-session HIV prevention intervention and a multi-session intervention, and (b) estimate the number of HIV transmissions that would need to be prevented for the intervention to be cost-saving or cost-effective (threshold analysis). Project START was evaluated with 522 young men aged 18-29 years released from eight prisons located in California, Mississippi, Rhode Island, and Wisconsin. Cost data were collected prospectively. Costs per participant were $689 for the single-session comparison intervention, and ranged from $1,823 to 1,836 for the Project START multi-session intervention. From the incremental threshold analysis, the multi-session intervention would be cost-effective if it prevented one HIV transmission for every 753 participants compared to the single-session intervention. Costs are comparable with other HIV prevention programs. Program managers can use these data to gauge costs of initiating these HIV prevention programs in correctional facilities.

  20. Epidemic spreading with activity-driven awareness diffusion on multiplex network.

    PubMed

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  1. Epidemic spreading with activity-driven awareness diffusion on multiplex network

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  2. Effect of eccentricity and light level on the timing of light adaptation mechanisms.

    PubMed

    Barrionuevo, Pablo A; Matesanz, Beatriz M; Gloriani, Alejandro H; Arranz, Isabel; Issolio, Luis; Mar, Santiago; Aparicio, Juan A

    2018-04-01

    We explored the complexity of the light adaptation process, assessing adaptation recovery (Ar) at different eccentricities and light levels. Luminance thresholds were obtained with transient background fields at mesopic and photopic light levels for temporal retinal eccentricities (0°-15°) with test/background stimulus size of 0.5°/1° using a staircase procedure in a two-channel Maxwellian view optical system. Ar was obtained in comparison with steady data [Vis. Res.125, 12 (2016)VISRAM0042-698910.1016/j.visres.2016.04.008]. Light level proportionally affects Ar only at fovea. Photopic extrafoveal thresholds were one log unit higher for transient conditions. Adaptation was equally fast at low light levels for different retinal locations with variations mainly affected by noise. These results evidence different timing in the mechanisms of adaptation involved.

  3. Resilience thinking: integrating resilience, adaptability and transformability

    Treesearch

    Carl Folke; Stephen R. Carpenter; Brian Walker; Marten Scheffer; Terry Chapin; Johan Rockstrom

    2010-01-01

    Resilience thinking addresses the dynamics and development of complex social-ecological systems (SES). Three aspects are central: resilience, adaptability and transformability. These aspects interrelate across multiple scales. Resilience in this context is the capacity of a SES to continually change and adapt yet remain within critical thresholds. Adaptability is part...

  4. Electron Injections: A Study of Electron Acceleration by Multiple Dipolarizing Flux Bundles Using an Analytical Model

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Angelopoulos, V.; Artemyev, A.; Runov, A.; Harris, C.

    2016-12-01

    We study energetic electron injections using an analytical model that self-consistently describes electric and magnetic field perturbations of transient, localized dipolarizing flux bundles (DFBs). Previous studies using THEMIS, Van Allen Probes, and the Magnetospheric Multiscale Mission have shown that injections can occur on short (minutes) or long (10s of minutes) timescales. These studies suggest that the short timescale injections correspond to a single DFB, whereas long timescale injections are likely caused by an aggregate of multiple DFBs, each incrementally heating the particle population. We therefore model the effects of multiple DFBs on the electron population using multi-spacecraft observations of the fields and particle fluxes to constrain the model parameters. The analytical model is the first of its kind to model multiple dipolarization fronts in order to better understand the transport and acceleration process throughout the plasma sheet. It can reproduce most injection signatures at multiple locations simultaneously, reaffirming earlier findings that multiple earthward-traveling DFBs can both transport and accelerate electrons to suprathermal energies, and can thus be considered the injections' primary driver.

  5. Variable Circumstellar Disks of Classical Be Stars in Clusters

    NASA Astrophysics Data System (ADS)

    Gerhartz, C.; Bjorkman, K. S.; Bjorkman, J. E.; Wisniewski, J. P.

    2016-11-01

    Circumstellar disks are common among many stars, at most spectral types, and at different stages of their lifetimes. Among the near-main-sequence classical Be stars, there is growing evidence that these disks form, dissipate, and reform on timescales that differ from star to star. Using data obtained with the Large Monolithic Imager (LMI) at the Lowell Observatory Discovery Channel Telescope (DCT), along with additional complementary data obtained at the University of Toledo Ritter Observatory (RO), we have begun a long-term monitoring project of a well-studied set of galactic star clusters that are known to contain Be stars. Our goal is to develop a statistically significant sample of variable circumstellar disk systems over multiple timescales. With a robust multi-epoch study we can determine the relative fraction of Be stars that exhibit disk-loss or disk-renewal phases, and investigate the range of timescales over which these events occur. A larger sample will improve our understanding of the prevalence and nature of the disk variability, and may provide insight about underlying physical mechanisms.

  6. Tropical Cyclones within the Sedimentary Record: Analyzing Overwash Deposition from Event to Millennial Timescales

    DTIC Science & Technology

    2009-02-01

    101. Matsuyama, M., and Moon, S. M. (1998). A bloom of low-light- adapted Chromatium sp. Lake Kaiike. Jpn J Limnol 59, 79-85. Matsuyama, M., and...debris 4 OS-56742 LPG4 2810 +30 2502-2618 2621-2651 (∆R=0) -2.03 224-225 Gastropods shells (Heleobops sp.) 5 OS-41361 LPG4 3320 +30 3481-3541 -17.22...Dashed grey lines indicate depths of equal age base on the presented chronological constraints. Figure adapted from Donnelly and Woodruff (2007

  7. Multi-host model and threshold of intermediate host Oncomelania snail density for eliminating schistosomiasis transmission in China.

    PubMed

    Zhou, Yi-Biao; Chen, Yue; Liang, Song; Song, Xiu-Xia; Chen, Geng-Xin; He, Zhong; Cai, Bin; Yihuo, Wu-Li; He, Zong-Gui; Jiang, Qing-Wu

    2016-08-18

    Schistosomiasis remains a serious public health issue in many tropical countries, with more than 700 million people at risk of infection. In China, a national integrated control strategy, aiming at blocking its transmission, has been carried out throughout endemic areas since 2005. A longitudinal study was conducted to determine the effects of different intervention measures on the transmission dynamics of S. japonicum in three study areas and the data were analyzed using a multi-host model. The multi-host model was also used to estimate the threshold of Oncomelania snail density for interrupting schistosomiasis transmission based on the longitudinal data as well as data from the national surveillance system for schistosomiasis. The data showed a continuous decline in the risk of human infection and the multi-host model fit the data well. The 25th, 50th and 75th percentiles, and the mean of estimated thresholds of Oncomelania snail density below which the schistosomiasis transmission cannot be sustained were 0.006, 0.009, 0.028 and 0.020 snails/0.11 m(2), respectively. The study results could help develop specific strategies of schistosomiasis control and elimination tailored to the local situation for each endemic area.

  8. The origin of the eccentricity of the hot Jupiter in CI Tau

    NASA Astrophysics Data System (ADS)

    Rosotti, G. P.; Booth, R. A.; Clarke, C. J.; Teyssandier, J.; Facchini, S.; Mustill, A. J.

    2017-01-01

    Following the recent discovery of the first radial velocity planet in a star still possessing a protoplanetary disc (CI Tau), we examine the origin of the planet's eccentricity (e ˜0.3). We show through long time-scale (105 orbits) simulations that the planetary eccentricity can be pumped by the disc, even when its local surface density is well below the threshold previously derived from short time-scale integrations. We show that the disc may be able to excite the planet's orbital eccentricity in <1 Myr for the system parameters of CI Tau. We also perform two-planet scattering experiments and show that alternatively the observed planet may plausibly have acquired its eccentricity through dynamical scattering of a migrating lower mass planet, which has either been ejected from the system or swallowed by the central star. In the latter case the present location and eccentricity of the observed planet can be recovered if it was previously stalled within the disc's magnetospheric cavity.

  9. a New Multi-Spectral Threshold Normalized Difference Water Index Mst-Ndwi Water Extraction Method - a Case Study in Yanhe Watershed

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhao, H.; Hao, H.; Wang, C.

    2018-05-01

    Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI). A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI) water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5) based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI), Enhanced Water Index (EWI), and Automated Water Extraction Index (AWEI). The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  10. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning.

    PubMed

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S

    2016-09-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning

    PubMed Central

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.

    2016-01-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224

  12. Relationships Between Vestibular Measures as Potential Predictors for Spaceflight Sensorimotor Adaptation

    NASA Technical Reports Server (NTRS)

    Clark, T. K.; Peters, B.; Gadd, N. E.; De Dios, Y. E.; Wood, S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Introduction: During space exploration missions astronauts are exposed to a series of novel sensorimotor environments, requiring sensorimotor adaptation. Until adaptation is complete, sensorimotor decrements occur, affecting critical tasks such as piloted landing or docking. Of particularly interest are locomotion tasks such as emergency vehicle egress or extra-vehicular activity. While nearly all astronauts eventually adapt sufficiently, it appears there are substantial individual differences in how quickly and effectively this adaptation occurs. These individual differences in capacity for sensorimotor adaptation are poorly understood. Broadly, we aim to identify measures that may serve as pre-flight predictors of and individual's adaptation capacity to spaceflight-induced sensorimotor changes. As a first step, since spaceflight is thought to involve a reinterpretation of graviceptor cues (e.g. otolith cues from the vestibular system) we investigate the relationships between various measures of vestibular function in humans. Methods: In a set of 15 ground-based control subjects, we quantified individual differences in vestibular function using three measures: 1) ocular vestibular evoked myogenic potential (oVEMP), 2) computerized dynamic posturography and 3) vestibular perceptual thresholds. oVEMP responses are elicited using a mechanical stimuli approach. Computerized dynamic posturography was used to quantify Sensory Organization Tests (SOTs), including SOT5M which involved performing pitching head movements while balancing on a sway-reference support surface with eyes closed. We implemented a vestibular perceptual threshold task using the tilt capabilities of the Tilt-Translation Sled (TTS) at JSC. On each trial, the subject was passively roll-tilted left ear down or right ear down in the dark and verbally provided a forced-choice response regarding which direction they felt tilted. The motion profile was a single-cycle sinusoid of angular acceleration with a duration of 5 seconds (frequency of 0.2 Hz), which was selected as it requires sensory integration of otolith and semicircular canal cues. Stimuli direction was randomized and magnitude was determined using an adaptive sampling procedure. One hundred trials were provided and each subject's responses were fit with a psychometric curve to estimate the subject's threshold. Results: Roll tilt perceptual thresholds at 0.2 Hz ranged from 0.5 degrees to 1.82 degrees across the 15 subjects (geometric mean of 1.04 degrees), consistent with previous studies. The inter-individual variability in thresholds may be able to help explain individual differences observed in sensorimotor adaptation to spaceflight. Analysis is ongoing for the oVEMPS and computerized dynamic posturography to identify relationships between the various vestibular measures. Discussion: Predicting individual differences in sensorimotor adaptation is critical both for the development of personalized countermeasures and mission planning. Here we aim to develop a basis of vestibular tests and parameters which may serve as predictors of individual differences in sensorimotor adaptability through studying the relationship between these measures.

  13. Automatic selection of optimal Savitzky-Golay filter parameters for Coronary Wave Intensity Analysis.

    PubMed

    Rivolo, Simone; Nagel, Eike; Smith, Nicolas P; Lee, Jack

    2014-01-01

    Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. The cWIA ability to establish a mechanistic link between coronary haemodynamics measurements and the underlying pathophysiology has been widely demonstrated. Moreover, the prognostic value of a cWIA-derived metric has been recently proved. However, the clinical application of cWIA has been hindered due to the strong dependence on the practitioners, mainly ascribable to the cWIA-derived indices sensitivity to the pre-processing parameters. Specifically, as recently demonstrated, the cWIA-derived metrics are strongly sensitive to the Savitzky-Golay (S-G) filter, typically used to smooth the acquired traces. This is mainly due to the inability of the S-G filter to deal with the different timescale features present in the measured waveforms. Therefore, we propose to apply an adaptive S-G algorithm that automatically selects pointwise the optimal filter parameters. The newly proposed algorithm accuracy is assessed against a cWIA gold standard, provided by a newly developed in-silico cWIA modelling framework, when physiological noise is added to the simulated traces. The adaptive S-G algorithm, when used to automatically select the polynomial degree of the S-G filter, provides satisfactory results with ≤ 10% error for all the metrics through all the levels of noise tested. Therefore, the newly proposed method makes cWIA fully automatic and independent from the practitioners, opening the possibility to multi-centre trials.

  14. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses.

    PubMed

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L

    2013-01-01

    Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45-87.96% forest cover for persistence and 50.82-91.02% for extinction dynamics. Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation.

  15. The across frequency independence of equalization of interaural time delay in the equalization-cancellation model of binaural unmasking.

    PubMed

    Akeroyd, Michael A

    2004-08-01

    The equalization stage in the equalization-cancellation model of binaural unmasking compensates for the interaural time delay (ITD) of a masking noise by introducing an opposite, internal delay [N. I. Durlach, in Foundations of Modern Auditory Theory, Vol. II., edited by J. V. Tobias (Academic, New York, 1972)]. Culling and Summerfield [J. Acoust. Soc. Am. 98, 785-797 (1995)] developed a multi-channel version of this model in which equalization was "free" to use the optimal delay in each channel. Two experiments were conducted to test if equalization was indeed free or if it was "restricted" to the same delay in all channels. One experiment measured binaural detection thresholds, using an adaptive procedure, for 1-, 5-, or 17-component tones against a broadband masking noise, in three binaural configurations (N0S180, N180S0, and N90S270). The thresholds for the 1-component stimuli were used to normalize the levels of each of the 5- and 17-component stimuli so that they were equally detectable. If equalization was restricted, then, for the 5- and 17-component stimuli, the N90S270 and N180S0 configurations would yield a greater threshold than the N0S180 configurations. No such difference was found. A subsequent experiment measured binaural detection thresholds, via psychometric functions, for a 2-component complex tone in the same three binaural configurations. Again, no differential effect of configuration was observed. An analytic model of the detection of a complex tone showed that the results were more consistent with free equalization than restricted equalization, although the size of the differences was found to depend on the shape of the psychometric function for detection.

  16. Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent Reactive Mixtures

    DTIC Science & Technology

    2012-03-27

    pulse- detonation engines ( PDE ), stage separation, supersonic cav- ity oscillations, hypersonic aerodynamics, detonation induced structural...ADAPTIVE UNSTRUCTURED CARTESIAN METHOD FOR LARGE-EDDY SIMULATION OF DETONATION IN MULTI-PHASE TURBULENT REACTIVE MIXTURES 5b. GRANT NUMBER FA9550...CCL Report TR-2012-03-03 Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent

  17. Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less

  18. The Random-Threshold Generalized Unfolding Model and Its Application of Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Liu, Chen-Wei; Wu, Shiu-Lien

    2013-01-01

    The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs…

  19. Global Precipitation at One-Degree Daily Resolution From Multi-Satellite Observations

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Morrissey, Mark M.; Curtis, Scott; Joyce, Robert; McGavock, Brad; Susskind, Joel

    2000-01-01

    The One-Degree Daily (1DD) technique is described for producing globally complete daily estimates of precipitation on a 1 deg x 1 deg lat/long grid from currently available observational data. Where possible (40 deg N-40 deg S), the Threshold-Matched Precipitation Index (TMPI) provides precipitation estimates in which the 3-hourly infrared brightness temperatures (IR T(sub b)) are thresholded and all "cold" pixels are given a single precipitation rate. This approach is an adaptation of the Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI), but for the TMPI the IR Tb threshold and conditional rain rate are set locally by month from Special Sensor Microwave/Imager (SSM/I)-based precipitation frequency and the Global Precipitation Climatology Project (GPCP) satellite-gauge (SG) combined monthly precipitation estimate, respectively. At higher latitudes the 1DD features a rescaled daily Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) precipitation. The frequency of rain days in the TOVS is scaled down to match that in the TMPI at the data boundaries, and the resulting non-zero TOVS values are scaled locally to sum to the SG (which is a globally complete monthly product). The time series of the daily 1DD global images shows good continuity in time and across the data boundaries. Various examples are shown to illustrate uses. Validation for individual grid -box values shows a very high root-mean-square error but, it improves quickly when users perform time/space averaging according to their own requirements.

  20. Effects of fire frequency on long-term development of an oak-hickory forest in Missouri, U.S.A.

    Treesearch

    Benjamin O. Knapp; Michael A. Hullinger; John M. Kabrick

    2017-01-01

    Repeated prescribed burning over long timescales has some predictable effects on forest structure and composition, but multi-decadal patterns of stand dynamics and successional change with different fire frequencies have rarely been described. We used longitudinal data from a prescribed burning study conducted over a 63-year period to quantify stand structure (stem...

  1. Identifying Differential Item Functioning in Multi-Stage Computer Adaptive Testing

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis; Li, Johnson

    2013-01-01

    The purpose of this study is to evaluate the performance of CATSIB (Computer Adaptive Testing-Simultaneous Item Bias Test) for detecting differential item functioning (DIF) when items in the matching and studied subtest are administered adaptively in the context of a realistic multi-stage adaptive test (MST). MST was simulated using a 4-item…

  2. High quality adaptive optics zoom with adaptive lenses

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Santiago, F.; Bonora, S.; Restaino, S.

    2018-02-01

    We present the combined use of large aperture adaptive lens with large optical power modulation with a multi actuator adaptive lens. The Multi-actuator Adaptive Lens (M-AL) can correct up to the 4th radial order of Zernike polynomials, without any obstructions (electrodes and actuators) placed inside its clear aperture. We demonstrated that the use of both lenses together can lead to better image quality and to the correction of aberrations of adaptive optics optical systems.

  3. Genomes of 11 rice relatives unveil genetic conservation, turnover and innovation across the genus Oryza

    USDA-ARS?s Scientific Manuscript database

    The genus Oryza, with cultivated Asian and African rice and 22 wild species, is a model system for the study of molecular evolution over time-scales ranging from a few thousand to 15 million years. Over this period, species radiation, adaptation, and domestication all left their footprints in rice g...

  4. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.

    2004-12-01

    The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  5. An Artificial Intelligence Approach to Automatic Left Ventricular Border Detection in 2-D Echocardiography

    PubMed Central

    Buchan, Iris; Covvey, H. Dominic; Rakowski, Harry

    1985-01-01

    A program has been developed for left ventricular (LV) border tracking on ultrasound images. For each frame, forty border points at equally-spaced angles around the LV center are found gradually during three passes. Pass 1 uses adaptive thresholding to find the most obvious border points. Pass 2 then uses an artificial intelligence technique of finding possible border path segments, associating a score with each, and, from paths with superior scores, obtaining more of the border points. Pass 3 closes any remaining gaps by interpolation. The program tracks the LV border quite well in spite of dropout and interference from intracardiac structures, except during end-systole. Multi-level passes provide a very useful structure for border tracking, with increasingly slow but more sophisticated algorithms possible at higher levels for use when earlier passes recognise failure.

  6. [Evaluation of signal noise ratio on analysis of clear cell renal cell carcinoma using DWI with multi-b values].

    PubMed

    Ding, Jiule; Xing, Wei; Chen, Jie; Dai, Yongming; Sun, Jun; Li, Dengfa

    2014-01-21

    To explore the influence of signal noise ratio (SNR) on analysis of clear cell renal cell carcinoma (CCRCC) using DWI with multi-b values. The images of 17 cases with CCRCC were analyzed, including 17 masses and 9 pure cysts. The signal intensity of the cysts and masses was measured separately on DWI for each b value. The minimal SNR, as the threshold, was recorded when the signal curve manifest as the single exponential line. The SNR of the CCRCC was calculated on DWI for each b value, and compared with the threshold by independent Two-sample t Test. The signal decreased on DWI with increased b factors for both pure cysts and CCRCC. The threshold is 1.29 ± 0.17, and the signal intensity of the cysts on DWI with multi-b values shown as a single exponential line when b ≤ 800 s/mm(2). For the CCRCC, the SNR is similar to the threshold when b = 1 000 s/mm(2) (t = 0.40, P = 0.69), and is lower when b = 1 200 s/mm(2) (t = -2.38, P = 0.03). The SNR should be sufficient for quantitative analysis of DWI, and the maximal b value is 1000 s/mm(2) for CCRCC.

  7. A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer

    NASA Astrophysics Data System (ADS)

    Zheng, G.; Cheng, Y.; He, K.; Duan, F.; Ma, Y.

    2014-01-01

    Sunset Semi-Continuous Carbon Analyzer (SCCA) is an instrument widely used for carbonaceous aerosol measurement. Despite previous validation work, here we identified a new type of SCCA calculation discrepancy caused by the default multi-point baseline correction method. When exceeding a certain threshold carbon load, multi-point correction could cause significant Total Carbon (TC) underestimation. This calculation discrepancy was characterized for both sucrose and ambient samples with three temperature protocols. For ambient samples, 22%, 36% and 12% TC was underestimated by the three protocols, respectively, with corresponding threshold being ~0, 20 and 25 μg C. For sucrose, however, such discrepancy was observed with only one of these protocols, indicating the need of more refractory SCCA calibration substance. The discrepancy was less significant for the NIOSH (National Institute for Occupational Safety and Health)-like protocol compared with the other two protocols based on IMPROVE (Interagency Monitoring of PROtected Visual Environments). Although the calculation discrepancy could be largely reduced by the single-point baseline correction method, the instrumental blanks of single-point method were higher. Proposed correction method was to use multi-point corrected data when below the determined threshold, while use single-point results when beyond that threshold. The effectiveness of this correction method was supported by correlation with optical data.

  8. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  9. Impairment of retinal increment thresholds in Huntington's disease.

    PubMed

    Paulus, W; Schwarz, G; Werner, A; Lange, H; Bayer, A; Hofschuster, M; Müller, N; Zrenner, E

    1993-10-01

    We have investigated detection thresholds for a foveal blue test light using a Maxwellian view system in 61 normal subjects, 19 patients with Huntington's chorea, 14 patients with Tourette's syndrome, and 20 patients with schizophrenia. Ten measurements were made: The blue test light (1 degree diameter, 500 msec duration) was presented either superimposed on a yellow adaptation field (5 degree diameter) or 500 msec after switching off this field (transient tritanopia effect). In both cases five different background intensities were presented. The only abnormality found was in patients with Huntington's chorea. During adaptation these patients' thresholds are significantly higher than normal (p < 0.005). No change was found in the transient tritanopia effect. Huntington's disease causes degeneration of several different transmitter systems in the brain. Increment threshold testing allows for noninvasive investigation of patients and confirms the involvement of the retina in the degenerative process in Huntington's chorea.

  10. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  11. Development of a Voice Activity Controlled Noise Canceller

    PubMed Central

    Abid Noor, Ali O.; Samad, Salina Abdul; Hussain, Aini

    2012-01-01

    In this paper, a variable threshold voice activity detector (VAD) is developed to control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE) convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods. PMID:22778667

  12. Calibrations for a MCAO Imaging System

    NASA Astrophysics Data System (ADS)

    Hibon, Pascale; B. Neichel; V. Garrel; R. Carrasco

    2017-09-01

    "GeMS, the Gemini Multi conjugate adaptive optics System installed at the Gemini South telescope (Cerro Pachon, Chile) started to deliver science since the beginning of 2013. GeMS is using the Multi Conjugate AdaptiveOptics (MCAO) technique allowing to dramatically increase the corrected field of view (FOV) compared to classical Single Conjugated Adaptive Optics (SCAO) systems. It is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It has been designed to feed two science instruments: GSAOI, a 4k×4k NIR imager covering 85"×85" with 0.02" pixel scale, and Flamingos-2, a NIR multi-object spectrograph. We present here an overview of the calibrations necessary for reducing and analysing the science datasets obtained with GeMS+GSAOI."

  13. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi-Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post-landing segment of the Flight Software (FSW). An in-depth trade study was completed to determine optimal characteristics of the touchdown detection method resulting in an algorithm monitoring filtered, lever-arm corrected, 200 Hz Inertial Measurement Unit (IMU) vehicle acceleration magnitude data against a tunable threshold using persistence counter logic. Following the design of the algorithm, high fidelity environment and vehicle simulations, coupled with the actual vehicle FSW, were used to tune the acceleration threshold and persistence counter value to result in adequate performance in detecting touchdown and sufficient safety margin against early detection while descending under parachutes. An analytical approach including Kriging and adaptive sampling allowed for a sufficient number of finite element analysis (FEA) impact simulations to be completed using minimal computation time. The combination of a persistence counter of 10 and an acceleration threshold of approximately 57.3 ft/s2 resulted in an impact performance factor of safety (FOS) of 1.0 and a safety FOS of approximately 2.6 for touchdown declaration. An RCS termination acceleration threshold of approximately 53.1 ft/s(exp)2 with a persistence counter of 10 resulted in an increased impact performance FOS of 1.2 at the expense of a lowered under-parachutes safety factor of 2.2. The resulting tuned algorithm was then tested on data from eight Capsule Parachute Assembly System (CPAS) flight tests, showing an experimental minimum safety FOS of 6.1. The formulated touchdown detection algorithm will be flown on the Orion MPCV FSW during the Exploration Flight Test 1 (EFT-1) mission in the second half of 2014.

  14. Analytical Computation of the Epidemic Threshold on Temporal Networks

    NASA Astrophysics Data System (ADS)

    Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria

    2015-04-01

    The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.

  15. Analysis of timescale to consensus in voting dynamics with more than two options

    NASA Astrophysics Data System (ADS)

    Wu, Degang; Szeto, Kwok Yip

    2018-04-01

    We generalize a binary majority-vote model on adaptive networks to its plurality-vote counterpart and analyze the timescale to consensus when voters are given more than two options. When opinions are uniformly distributed in the population of voters in the initial state, we find that the timescale to consensus is shorter than the binary vote model from both numerical simulations and mathematical analysis using the master equation for the three-state plurality-vote model. When intervention such as opinion conversion is allowed, as in the case of sudden change of mind of voter for any reason, the effort needed to push the fragmented three-opinion population in the thermodynamic limit to the consensus state, measured in minimal intervention cost, is less than that needed to push a polarized two-opinion population to the consensus state, when the degree (p ) of homophily is less than 0.8. For a finite system, the fragmented three-opinion population will spontaneously reach the consensus state, with faster time to consensus, compared to polarized two-opinion population, for a broad range of p .

  16. Disturbances of rod threshold forced by briefly exposed luminous lines, edges, disks and annuli

    PubMed Central

    Hallett, P. E.

    1971-01-01

    1. When the dark-adapted eye is exposed to a brief duration (2 msec) luminous line the resulting threshold disturbance is much sharper (decay constant of ca. 10 min arc) than would be expected in a system which is known to integrate the effects of light quanta over a distance of 1 deg or so. 2. When the forcing input is a pair of brief duration parallel luminous lines the threshold disturbance falls off sharply at the outsides of the pattern but on the inside a considerable spread of threshold-raising effects may occur unless the lines are sufficiently far apart. 3. The threshold disturbance due to a briefly exposed edge shows an overshoot reminiscent of `lateral inhibition'. 4. If the threshold is measured at the centre of a black disk presented in a briefly lit surround then (a) the dependence of threshold on time interval between test and surround suggests that the threshold elevation is due to a non-optical effect which is not `metacontrast'; (b) the dependence of threshold on black disk diameter is consistent with the notion that the spatial threshold disturbance is progressively sharpened as the separation of luminous edges increases. 5. If the threshold is measured at the centre of briefly exposed luminous disks of various diameters one obtains the same evidence for an `antagonistic centre-surround' system as that produced by other workers (e.g. Westheimer, 1965) for the steadily light-adapted eye. 6. The previous paper (Hallett, 1971) showed that brief illumination of the otherwise dark-adapted eye can rapidly and substantially change the extent of spatial integration. The present paper shows that brief illumination leads to substantial `inhibitory' effects. 7. Earlier approaches are reviewed: (a) the linear system signal/noise theory of the time course of threshold disturbances (Hallett, 1969b) is illustrated by the case of a small subtense flash superimposed on a large oscillatory background; (b) the spatial weighting functions of some other authors are given. 8. A possible non-linear model is briefly described: the line weighting function for the receptive field centre is taken to be a single Gaussian, as is customary, but the line weighting function for the inhibitory surround is bimodal. PMID:5145728

  17. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.; Marino, J. T., Jr.

    1974-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated.

  18. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.

    1975-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.

  19. Addressing the limits to adaptation across four damage--response systems

    EPA Science Inventory

    Our ability to adapt to climate change is not boundless, and previous modeling shows that capacity limited adaptation will play a policy-significant role in future decisions about climate change. These limits are delineated by capacity thresholds, after which climate damages beg...

  20. Investigation of Adaptive-threshold Approaches for Determining Area-Time Integrals from Satellite Infrared Data to Estimate Convective Rain Volumes

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.; VonderHaar, Thomas H.

    1996-01-01

    The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.

  1. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  2. What Deters Students from Studying Abroad? Evidence from Four European Countries and Its Implications for Higher Education Policy

    ERIC Educational Resources Information Center

    Netz, Nicolai

    2015-01-01

    This study examines factors that deter students in Austria, Germany, Switzerland and the Netherlands from studying abroad. Using an adaptation of the Rubicon model of action phases, the path to gaining study abroad experience is conceptualised as a process involving two thresholds: the decision threshold and the realisation threshold. Theoretical…

  3. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  4. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.

    2015-05-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.

  5. Association of Plages with Sunspots: A Multi-Wavelength Study Using Kodaikanal Ca ii K and Greenwich Sunspot Area Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in

    Plages are the magnetically active chromospheric structures prominently visible in the Ca ii K line (3933.67 Å). A plage may or may not be associated with a sunspot, which is a magnetic structure visible in the solar photosphere. In this study we explore this aspect of association of plages with sunspots using the newly digitized Kodaikanal Ca ii K plage data and the Greenwich sunspot area data. Instead of using the plage index or fractional plage area and its comparison with the sunspot number, we use, to our knowledge for the first time, the individual plage areas and compare themmore » with the sunspot area time series. Our analysis shows that these two structures, formed in two different layers, are highly correlated with each other on a timescale comparable to the solar cycle. The area and the latitudinal distributions of plages are also similar to those of sunspots. Different area thresholdings on the “butterfly diagram” reveal that plages of area ≥4 arcmin{sup 2} are mostly associated with a sunspot in the photosphere. Apart from this, we found that the cyclic properties change when plages of different sizes are considered separately. These results may help us to better understand the generation and evolution of the magnetic structures in different layers of the solar atmosphere.« less

  6. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    NASA Astrophysics Data System (ADS)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  7. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  8. Positive-negative corresponding normalized ghost imaging based on an adaptive threshold

    NASA Astrophysics Data System (ADS)

    Li, G. L.; Zhao, Y.; Yang, Z. H.; Liu, X.

    2016-11-01

    Ghost imaging (GI) technology has attracted increasing attention as a new imaging technique in recent years. However, the signal-to-noise ratio (SNR) of GI with pseudo-thermal light needs to be improved before it meets engineering application demands. We therefore propose a new scheme called positive-negative correspondence normalized GI based on an adaptive threshold (PCNGI-AT) to achieve a good performance with less amount of data. In this work, we use both the advantages of normalized GI (NGI) and positive-negative correspondence GI (P-NCGI). The correctness and feasibility of the scheme were proved in theory before we designed an adaptive threshold selection method, in which the parameter of object signal selection conditions is replaced by the normalizing value. The simulation and experimental results reveal that the SNR of the proposed scheme is better than that of time-correspondence differential GI (TCDGI), avoiding the calculation of the matrix of correlation and reducing the amount of data used. The method proposed will make GI far more practical in engineering applications.

  9. Why do shape aftereffects increase with eccentricity?

    PubMed

    Gheorghiu, Elena; Kingdom, Frederick A A; Bell, Jason; Gurnsey, Rick

    2011-12-20

    Studies have shown that spatial aftereffects increase with eccentricity. Here, we demonstrate that the shape-frequency and shape-amplitude aftereffects, which describe the perceived shifts in the shape of a sinusoidal-shaped contour following adaptation to a slightly different sinusoidal-shaped contour, also increase with eccentricity. Why does this happen? We first demonstrate that the perceptual shift increases with eccentricity for stimuli of fixed sizes. These shifts are not attenuated by variations in stimulus size; in fact, at each eccentricity the degree of perceptual shift is scale-independent. This scale independence is specific to the aftereffect because basic discrimination thresholds (in the absence of adaptation) decrease as size increases. Structural aspects of the displays were found to have a modest effect on the degree of perceptual shift; the degree of adaptation depends modestly on distance between stimuli during adaptation and post-adaptation testing. There were similar temporal rates of decline of adaptation across the visual field and higher post-adaptation discrimination thresholds in the periphery than in the center. The observed results are consistent with greater sensitivity reduction in adapted mechanisms following adaptation in the periphery or an eccentricity-dependent increase in the bandwidth of the shape-frequency- and shape-amplitude-selective mechanisms.

  10. Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration

    PubMed Central

    Platkiewicz, Jonathan; Brette, Romain

    2011-01-01

    Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200

  11. Merging a Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    When galaxies merge, the supermassive black holes (SMBHs) at the galaxies centers are thought to coalesce, forming a new, larger black hole. But can this merger process take place on timescales short enough that we could actually observe it? Results from a new simulation suggests that it can!When Galaxies CollideThese stills demonstrate the time evolution of the galaxy merger after the beginning of the authors simulation (starting from z=3.6). The red and blue dots mark the positions of the SMBHs. [Adapted from Khan et al. 2016]At present, its not well understood how the merger of two SMBHs proceeds from the merger of their host galaxies. Whats more, there are concerns about whether the SMBHs can coalesce on reasonable timescales; in many simulations and models, the inspiral of these behemoths stalls out when they are about a parsec apart, in whats known as the final parsec problem.Why are these mergers poorly understood? Modeling them from the initial interactions of the host galaxies all the way down to the final coalescence of their SMBHs in a burst of gravitational waves is notoriously complicated, due to the enormous range of scales and different processes that must be accounted for.But in a recent study, a team of scientists led by Fazeel Khan (Institute of Space Technology in Pakistan) has presented a simulation that successfully manages to track the entire merger making it the first multi-scale simulation to model the complete evolution of an SMBH binary that forms within a cosmological galaxy merger.Stages of aSimulationKhan and collaborators tackled the challenges of this simulation by using a multi-tiered approach.Beginning with the output of a cosmological hydrodynamical simulation, the authors select a merger of two typical massive galaxies at z=3.6 and use this as the starting point for their simulation. They increase the resolution and add in two supermassive black holes, one at the center of each galaxy.They then continue to evolve the galaxies hydrodynamically, simulating the final stages of the galaxy merger.When the separation of the two SMBHs is small enough, the authors extract a spherical region of 5 kpc from around the pair and evolve this as an N-body simulation.Finally, the separation of the SMBHs becomes so small (0.01 pc) that gravitational-wave emission is the dominant loss of energy driving the inspiral. The authors add post-Newtonian terms into the N-body simulation to account for this.Time evolution of the separation between the SMBHs, beginning with the hydrodynamical simulation (blue), then transitioning to the direct N-body calculation (red), and ending with the introduction of post-Newtonian terms (green) to account for gravitational-wave emission. [Adapted from Khan et al. 2016]Successful CoalescenceKhan and collaborators complex approach allows them to simulate the entire process of the merger and SMBH coalescence, resulting in several key determinations.First, they demonstrate that the SMBHs can coalesce on timescales of only tens of Myr, which is roughly two orders of magnitude smaller than what was typically estimated before. They find that gas dissipation before the merger is instrumental in creating the conditions that allow for this rapid orbital decay.The authors also demonstrate that the gravitational potential of the galaxy merger remnant is triaxial throughout the merger. Khan and collaborators simulations confirm that this non-spherical potential solves the final parsec problem by sending stars on plunging orbits around the SMBHs. These more distant stars cause the SMBHs to lose angular momentum through dynamical friction and continue their inspiral, even when the stars immediately surrounding the SMBHs have been depleted.This simulation isan important step toward a better understanding of SMBH mergers. Its outcomes are especially promising for future gravitational-wave campaigns, as the short SMBH coalescence timescales indicate that these mergers could indeed be observable!CitationFazeel Mahmood Khan et al 2016 ApJ 828 73. doi:10.3847/0004-637X/828/2/73

  12. ISM simulations: an overview of models

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Breitschwerdt, D.; Asgekar, A.; Spitoni, E.

    2015-03-01

    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.

  13. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  14. FOREWORD: Modern Applications of Timescales Modern Applications of Timescales

    NASA Astrophysics Data System (ADS)

    Arias, E. F.; Lewandowski, W.

    2011-08-01

    The development of the first atomic frequency standard by Louis Essen in the 1950s is at the origin of the adoption of the atomic definition of the SI second by the 13th General Conference on Weights and Measures in 1967 and the consequent adoption of the atomic timescale. After the short reign of ephemeris time as the world's reference timescale from 1954 until 1967, Coordinated Universal Time (UTC), synchronized to universal time UT1, appeared as the best compromise for satisfying the requests of all users. At the moment of the discussion on the adoption of an atomic timescale to replace ephemeris time, the possibility of having both an astronomical time and an atomic time to serve different purposes was discussed. In the words of Essen [1], this 'would cause endless confusion as well as involving duplication of equipment'. Forty years after the adoption of the definition of Coordinated Universal Time at the International Telecommunication Union (ITU), we are close to the moment of making a decision on whether or not to decouple UTC from its tight link to the rotation of the Earth embodied in UT1. It has been a ten-year process of discussion, mainly at the ITU with the input of the International Astronomical Union, the BIPM, the Consultative Committee for Time and Frequency and other organizations. The majority opinion supported the change based on developers and users of systems that need time synchronization to a stable and continuous reference timescale; others insist on the necessity of keeping the leap-second strategy for serving some applications or just for tradition. It is our hope that, as happened in the seventies, the most appropriate definition to serve all modern applications will be adopted with the consensus of the different sectors. The redirection of international timekeeping from astronomy to metrology can be considered the benchmark that started the era of modern timescales, all based on atomic properties. The aim of this special issue of Metrologia is to review timescales in use today, either the internationally recognized references or those adapted to some specific applications, to discuss new and future developments and to present the sometimes complex procedures for making international recommendations. We are grateful to our colleagues who, without exception, accepted our invitation to contribute to this special issue. Reference Henderson D 2005 Metrologia 42 S4-29 The pdf file contains an appendix: "Glossary of acronyms related to timescales used in this issue".

  15. Automatic segmentation of the liver using multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images

    NASA Astrophysics Data System (ADS)

    Jang, Yujin; Hong, Helen; Chung, Jin Wook; Yoon, Young Ho

    2012-02-01

    We propose an effective technique for the extraction of liver boundary based on multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images. Our method is composed of four main steps. First, for extracting an optimal volume circumscribing a liver, lower and side boundaries are defined by positional information of pelvis and rib. An upper boundary is defined by separating the lungs and heart from CT images. Second, for extracting an initial liver volume, optimal liver volume is smoothed by anisotropic diffusion filtering and is segmented using adaptively selected threshold value. Third, for removing neighbor organs from initial liver volume, morphological opening and connected component labeling are applied to multiple planes. Finally, for refining the liver boundaries, deformable surface model is applied to a posterior liver surface and missing left robe in previous step. Then, probability summation map is generated by calculating regional information of the segmented liver in coronal plane, which is used for restoring the inaccurate liver boundaries. Experimental results show that our segmentation method can accurately extract liver boundaries without leakage to neighbor organs in spite of various liver shape and ambiguous boundary.

  16. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats

    PubMed Central

    Wohlgemuth, Melville J.

    2016-01-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat’s adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  17. Targeting circuits

    PubMed Central

    Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl

    2017-01-01

    Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976

  18. How multi-partner endosymbioses function.

    PubMed

    Douglas, Angela E

    2016-12-01

    Various animals are associated with specific endosymbiotic microorganisms that provide the host with essential nutrients or confer protection against natural enemies. Genomic analyses of the many endosymbioses that are found in plant sap-feeding hemipteran insects have revealed independent acquisitions - and occasional replacements - of endosymbionts, such that many of these endosymbioses involve two or more microbial partners. In this Review, I discuss how partitioning of the genetic capacity for metabolic function between different endosymbionts has sustained nutritional function in multi-partner endosymbioses, and how the phenotypic traits of these endosymbionts can be shaped by co-evolutionary interactions with both co-occurring microbial taxa and the host, which often operate over long evolutionary timescales.

  19. Adaptive controller for a strength testbed for aircraft structures

    NASA Astrophysics Data System (ADS)

    Laperdin, A. I.; Yurkevich, V. D.

    2017-07-01

    The problem of control system design for a strength testbed of aircraft structures is considered. A method for calculating the parameters of a proportional-integral controller (control algorithm) using the time-scale separation method for the testbed taking into account the dead time effect in the control loop is presented. An adaptive control algorithm structure is proposed which limits the amplitude of high-frequency oscillations in the control system with a change in the direction of motion of the rod of the hydraulic cylinders and provides the desired accuracy and quality of transients at all stages of structural loading history. The results of tests of the developed control system with the adaptive control algorithm on an experimental strength testbed for aircraft structures are given.

  20. Can adaptive threshold-based metabolic tumor volume (MTV) and lean body mass corrected standard uptake value (SUL) predict prognosis in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy?

    PubMed

    Akagunduz, Ozlem Ozkaya; Savas, Recep; Yalman, Deniz; Kocacelebi, Kenan; Esassolak, Mustafa

    2015-11-01

    To evaluate the predictive value of adaptive threshold-based metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax) and maximum lean body mass corrected SUV (SULmax) measured on pretreatment positron emission tomography and computed tomography (PET/CT) imaging in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy. Pretreatment PET/CT of the 62 patients with locally advanced head and neck cancer who were treated consecutively between May 2010 and February 2013 were reviewed retrospectively. The maximum FDG uptake of the primary tumor was defined according to SUVmax and SULmax. Multiple threshold levels between 60% and 10% of the SUVmax and SULmax were tested with intervals of 5% to 10% in order to define the most suitable threshold value for the metabolic activity of each patient's tumor (adaptive threshold). MTV was calculated according to this value. We evaluated the relationship of mean values of MTV, SUVmax and SULmax with treatment response, local recurrence, distant metastasis and disease-related death. Receiver-operating characteristic (ROC) curve analysis was done to obtain optimal predictive cut-off values for MTV and SULmax which were found to have a predictive value. Local recurrence-free (LRFS), disease-free (DFS) and overall survival (OS) were examined according to these cut-offs. Forty six patients had complete response, 15 had partial response, and 1 had stable disease 6 weeks after the completion of treatment. Median follow-up of the entire cohort was 18 months. Of 46 complete responders 10 had local recurrence, and of 16 partial or no responders 10 had local progression. Eighteen patients died. Adaptive threshold-based MTV had significant predictive value for treatment response (p=0.011), local recurrence/progression (p=0.050), and disease-related death (p=0.024). SULmax had a predictive value for local recurrence/progression (p=0.030). ROC curves analysis revealed a cut-off value of 14.00 mL for MTV and 10.15 for SULmax. Three-year LRFS and DFS rates were significantly lower in patients with MTV ≥ 14.00 mL (p=0.026, p=0.018 respectively), and SULmax≥10.15 (p=0.017, p=0.022 respectively). SULmax did not have a significant predictive value for OS whereas MTV had (p=0.025). Adaptive threshold-based MTV and SULmax could have a role in predicting local control and survival in head and neck cancer patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin

    Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less

  2. Integrated segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo

    2011-03-01

    Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.

  3. Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.; Szymanski, David W.

    2013-01-01

    Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north-central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass-balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi-year weekly to biweekly stream-water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock.At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone.Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon-balance calculations, atmospheric-derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would produce a shallower groundwater table and reduced chemical weathering rates.

  4. On Multi-Dimensional Unstructured Mesh Adaption

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1999-01-01

    Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.

  5. Real-Time Load-Side Control of Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Changhong

    Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

  6. Extraction of Extended Small-Scale Objects in Digital Images

    NASA Astrophysics Data System (ADS)

    Volkov, V. Y.

    2015-05-01

    Detection and localization problem of extended small-scale objects with different shapes appears in radio observation systems which use SAR, infra-red, lidar and television camera. Intensive non-stationary background is the main difficulty for processing. Other challenge is low quality of images, blobs, blurred boundaries; in addition SAR images suffer from a serious intrinsic speckle noise. Statistics of background is not normal, it has evident skewness and heavy tails in probability density, so it is hard to identify it. The problem of extraction small-scale objects is solved here on the basis of directional filtering, adaptive thresholding and morthological analysis. New kind of masks is used which are open-ended at one side so it is possible to extract ends of line segments with unknown length. An advanced method of dynamical adaptive threshold setting is investigated which is based on isolated fragments extraction after thresholding. Hierarchy of isolated fragments on binary image is proposed for the analysis of segmentation results. It includes small-scale objects with different shape, size and orientation. The method uses extraction of isolated fragments in binary image and counting points in these fragments. Number of points in extracted fragments is normalized to the total number of points for given threshold and is used as effectiveness of extraction for these fragments. New method for adaptive threshold setting and control maximises effectiveness of extraction. It has optimality properties for objects extraction in normal noise field and shows effective results for real SAR images.

  7. Seamless Modeling for Research & Predictability of Severe Tropical Storms from Weather-to-Climate Timescales

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.

    2017-12-01

    Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.

  8. Carpet: Adaptive Mesh Refinement for the Cactus Framework

    NASA Astrophysics Data System (ADS)

    Schnetter, Erik; Hawley, Scott; Hawke, Ian

    2016-11-01

    Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.

  9. Assessing Regional and Interspecific Variation in Threshold Responses of Forest Breeding Birds through Broad Scale Analyses

    PubMed Central

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L.

    2013-01-01

    Background Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. Methodology/Principal Findings We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45–87.96% forest cover for persistence and 50.82–91.02% for extinction dynamics. Conclusions/Significance Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation. PMID:23409106

  10. Robust crop and weed segmentation under uncontrolled outdoor illumination

    USDA-ARS?s Scientific Manuscript database

    A new machine vision for weed detection was developed from RGB color model images. Processes included in the algorithm for the detection were excessive green conversion, threshold value computation by statistical analysis, adaptive image segmentation by adjusting the threshold value, median filter, ...

  11. Imaging extracellular calcium in endolymph

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2018-05-01

    Hair cell mechanoelectrical transduction and adaptation are believed to be regulated by extracellular calcium. However, the majority of experiments addressing calcium's role have been performed on reduced preparations in conditions that do not mimic those present in vivo. We used confocal microscopy and a low affinity (kd ˜11 µM) ratiometric fluorescent indicator to measure the extracellular calcium concentration in scala media in an in vitro preparation of the guinea pig cochlea. Microelectrodes were used to measure the cochlear microphonic potential during acoustic stimulation. The mean calcium concentration is significantly higher in the tectorial membrane (TM) than the surrounding endolymph, suggesting that the membrane acts as a calcium sink. We also observe calcium hot spots along the underside of the TM, near the outer hair cell bundles and near Hensens stripe close to the inner hair cell bundle. This suggests that the local calcium concentration near the hair bundles exceeds 100 µM, significantly higher than the bulk endolymph. These results were corroborated with fluorescence correlation spectroscopy using a second calcium sensitive dye, Oregon Green 488-BAPTA. Following a brief exposure to loud sound, TM calcium drops dramatically and shows recovery on a similar timescale as the microphonic potential. Our results suggest that the extracellular calcium concentration near the hair bundles is much higher than previously believed and may also serve as a partial control parameter for temporary threshold shifts.

  12. Quantifying Intrinsic Variability of Sagittarius A* Using Closure Phase Measurements of the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Roelofs, Freek; Johnson, Michael D.; Shiokawa, Hotaka; Doeleman, Sheperd S.; Falcke, Heino

    2017-09-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accretion disks and jets associated with supermassive black holes show variability on a wide range of timescales. On timescales comparable to or longer than the gravitational timescale {t}G={GM}/{c}3, variation may be dominated by orbital dynamics of the inhomogeneous accretion flow. Turbulent evolution within the accretion disk is expected on timescales comparable to the orbital period, typically an order of magnitude larger than t G . For Sgr A*, t G is much shorter than the typical duration of a VLBI experiment, enabling us to study this variability within a single observation. Closure phases, the sum of interferometric visibility phases on a triangle of baselines, are particularly useful for studying this variability. In addition to a changing source structure, variations in observed closure phase can also be due to interstellar scattering, thermal noise, and the changing geometry of projected baselines over time due to Earth rotation. We present a metric that is able to distinguish the latter two from intrinsic or scattering variability. This metric is validated using synthetic observations of GRMHD simulations of Sgr A*. When applied to existing multi-epoch EHT data of Sgr A*, this metric shows that the data are most consistent with source models containing intrinsic variability from source dynamics, interstellar scattering, or a combination of those. The effects of black hole inclination, orientation, spin, and morphology (disk or jet) on the expected closure phase variability are also discussed.

  13. An adaptive detector and channel estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Mukai, R.; Arabshahi, P.; Yan, T. Y.

    2001-01-01

    This paper will discuss the design and testing of both the channel parameter identification system, and the adaptive threshold system, and illustrate their advantages and performance under simulated channel degradation conditions.

  14. Self-adaptive multi-objective harmony search for optimal design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Choi, Young Hwan; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    2017-11-01

    In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.

  15. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Changhui; Wei, Kai

    2008-07-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.

  16. Multi-decadal trend and space-time variability of sea level over the Indian Ocean since the 1950s: impact of decadal climate modes

    NASA Astrophysics Data System (ADS)

    Han, W.; Stammer, D.; Meehl, G. A.; Hu, A.; Sienz, F.

    2016-12-01

    Sea level varies on decadal and multi-decadal timescales over the Indian Ocean. The variations are not spatially uniform, and can deviate considerably from the global mean sea level rise (SLR) due to various geophysical processes. One of these processes is the change of ocean circulation, which can be partly attributed to natural internal modes of climate variability. Over the Indian Ocean, the most influential climate modes on decadal and multi-decadal timescales are the Interdecadal Pacific Oscillation (IPO) and decadal variability of the Indian Ocean dipole (IOD). Here, we first analyze observational datasets to investigate the impacts of IPO and IOD on spatial patterns of decadal and interdecadal (hereafter decal) sea level variability & multi-decadal trend over the Indian Ocean since the 1950s, using a new statistical approach of Bayesian Dynamical Linear regression Model (DLM). The Bayesian DLM overcomes the limitation of "time-constant (static)" regression coefficients in conventional multiple linear regression model, by allowing the coefficients to vary with time and therefore measuring "time-evolving (dynamical)" relationship between climate modes and sea level. For the multi-decadal sea level trend since the 1950s, our results show that climate modes and non-climate modes (the part that cannot be explained by climate modes) have comparable contributions in magnitudes but with different spatial patterns, with each dominating different regions of the Indian Ocean. For decadal variability, climate modes are the major contributors for sea level variations over most region of the tropical Indian Ocean. The relative importance of IPO and decadal variability of IOD, however, varies spatially. For example, while IOD decadal variability dominates IPO in the eastern equatorial basin (85E-100E, 5S-5N), IPO dominates IOD in causing sea level variations in the tropical southwest Indian Ocean (45E-65E, 12S-2S). To help decipher the possible contribution of external forcing to the multi-decadal sea level trend and decadal variability, we also analyze the model outputs from NCAR's Community Earth System Model (CESM) Large Ensemble Experiments, and compare the results with our observational analyses.

  17. multi-dice: r package for comparative population genomic inference under hierarchical co-demographic models of independent single-population size changes.

    PubMed

    Xue, Alexander T; Hickerson, Michael J

    2017-11-01

    Population genetic data from multiple taxa can address comparative phylogeographic questions about community-scale response to environmental shifts, and a useful strategy to this end is to employ hierarchical co-demographic models that directly test multi-taxa hypotheses within a single, unified analysis. This approach has been applied to classical phylogeographic data sets such as mitochondrial barcodes as well as reduced-genome polymorphism data sets that can yield 10,000s of SNPs, produced by emergent technologies such as RAD-seq and GBS. A strategy for the latter had been accomplished by adapting the site frequency spectrum to a novel summarization of population genomic data across multiple taxa called the aggregate site frequency spectrum (aSFS), which potentially can be deployed under various inferential frameworks including approximate Bayesian computation, random forest and composite likelihood optimization. Here, we introduce the r package multi-dice, a wrapper program that exploits existing simulation software for flexible execution of hierarchical model-based inference using the aSFS, which is derived from reduced genome data, as well as mitochondrial data. We validate several novel software features such as applying alternative inferential frameworks, enforcing a minimal threshold of time surrounding co-demographic pulses and specifying flexible hyperprior distributions. In sum, multi-dice provides comparative analysis within the familiar R environment while allowing a high degree of user customization, and will thus serve as a tool for comparative phylogeography and population genomics. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  18. Star-formation and stellar feedback recipes in galaxy evolution models

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Recchi, Simone; Ploeckinger, Sylvia; Kuehtreiber, Matthias; Steyrleithner, Patrick; Liu, Lei

    2015-08-01

    Modeling galaxy formation and evolution is critically depending on star formation (SF). Since cosmological and galaxy-scale simulations cannot resolve the spatial and density scales on which SF acts, a large variety of methods are developed and applied over the last decades. Nonetheless, we are still in the test phase how the choice of parameters affects the models and how they agree with observations.As a simple ansatz, recipes are based on power-law SF dependences on gas density as justified by gas cooling and collapse timescales. In order to prevent SF spread throughout the gas, temperature and density thresholds are also used, although gas dynamical effects, like e.g. gas infall, seem to trigger SF significantly.The formed stars influence their environment immediately by energetic and materialistic feedback. It has been experienced in numerical models that supernova typeII explosions act with a too long time delay to regulate the SF, but that winds and ionizing radiation by massive stars must be included. The implementation of feedback processes, their efficiencies and timescales, is still in an experimental state, because they depend also on the physical state of the surrounding interstellar medium (ISM).Combining a SF-gas density relation with stellar heating vs. gas cooling and taking the temperature dependence into account, we have derived an analytical expression of self-regulated SF which is free of arbitrary parameters. We have performed numerical models to study this recipe and different widely used SF criteria in both, particle and grid codes. Moreover, we compare the SF behavior between single-gas phase and multi-phase treatments of the ISM.Since dwarf galaxies (DGs) are most sensitive to environmental influences and contain only low SF rates, we explore two main affects on their models: 1. For external effects we compare SF rates of isolated and ram-pressure suffering DGs. Moreover, we find a SF enhancement in tidal-tail DGs by the compressive tidal field. 2. Because of locally low SF rates we compare the stellar feedback of a mostly assumed but only fractionally occupied stellar initial mass function with a bottom-heavy one.

  19. Automatic segmentation of lung parenchyma based on curvature of ribs using HRCT images in scleroderma studies

    NASA Astrophysics Data System (ADS)

    Prasad, M. N.; Brown, M. S.; Ahmad, S.; Abtin, F.; Allen, J.; da Costa, I.; Kim, H. J.; McNitt-Gray, M. F.; Goldin, J. G.

    2008-03-01

    Segmentation of lungs in the setting of scleroderma is a major challenge in medical image analysis. Threshold based techniques tend to leave out lung regions that have increased attenuation, for example in the presence of interstitial lung disease or in noisy low dose CT scans. The purpose of this work is to perform segmentation of the lungs using a technique that selects an optimal threshold for a given scleroderma patient by comparing the curvature of the lung boundary to that of the ribs. Our approach is based on adaptive thresholding and it tries to exploit the fact that the curvature of the ribs and the curvature of the lung boundary are closely matched. At first, the ribs are segmented and a polynomial is used to represent the ribs' curvature. A threshold value to segment the lungs is selected iteratively such that the deviation of the lung boundary from the polynomial is minimized. A Naive Bayes classifier is used to build the model for selection of the best fitting lung boundary. The performance of the new technique was compared against a standard approach using a simple fixed threshold of -400HU followed by regiongrowing. The two techniques were evaluated against manual reference segmentations using a volumetric overlap fraction (VOF) and the adaptive threshold technique was found to be significantly better than the fixed threshold technique.

  20. Design of multi-view stereoscopic HD video transmission system based on MPEG-21 digital item adaptation

    NASA Astrophysics Data System (ADS)

    Lee, Seokhee; Lee, Kiyoung; Kim, Man Bae; Kim, JongWon

    2005-11-01

    In this paper, we propose a design of multi-view stereoscopic HD video transmission system based on MPEG-21 Digital Item Adaptation (DIA). It focuses on the compatibility and scalability to meet various user preferences and terminal capabilities. There exist a large variety of multi-view 3D HD video types according to the methods for acquisition, display, and processing. By following the MPEG-21 DIA framework, the multi-view stereoscopic HD video is adapted according to user feedback. A user can be served multi-view stereoscopic video which corresponds with his or her preferences and terminal capabilities. In our preliminary prototype, we verify that the proposed design can support two deferent types of display device (stereoscopic and auto-stereoscopic) and switching viewpoints between two available viewpoints.

  1. THE EFFECTS OF VARIATIONS IN THE CONCENTRATION OF OXYGEN AND OF GLUCOSE ON DARK ADAPTATION

    PubMed Central

    McFarland, R. A.; Forbes, W. H.

    1940-01-01

    In this study we have analyzed the effects of variations in the concentrations of oxygen and of blood sugar on light sensitivity; i.e. dark adaptation. The experiments were carried out in an air-conditioned light-proof chamber where the concentrations of oxygen could be changed by dilution with nitrogen or by inhaling oxygen from a cylinder. The blood sugar was lowered by the injection of insulin and raised by the ingestion of glucose. The dark adaptation curves were plotted from data secured with an apparatus built according to specifications outlined by Hecht and Shlaer. During each experiment, observations were first made in normal air with the subject under basal conditions followed by one, and in most instances two, periods under the desired experimental conditions involving either anoxia or hyper- or hypoglycemia or variations in both the oxygen tension and blood sugar at the same time. 1. Dark adaptation curves were plotted (threshold against time) in normal air and compared with those obtained while inhaling lowered concentrations of oxygen. A decrease in sensitivity was observed with lowered oxygen tensions. Both the rod and cone portions of the curves were influenced in a similar way. These effects were counteracted by inhaling oxygen, the final rod thresholds returning to about the level of the normal base line in air or even below it within 2 to 3 minutes. The impairment was greatest for those with a poorer tolerance for low O2. Both the inter- and intra-individual variability in thresholds increased significantly at the highest altitude. 2. In a second series of tests control curves were obtained in normal air. Then while each subject remained dark adapted, the concentrations of oxygen were gradually decreased. The regeneration of visual purple was apparently complete during the 40 minutes of dark adaptation, yet in each case the thresholds continued to rise in direct proportion to the degree of anoxia. The inhalation of oxygen from a cylinder quickly counteracted the effects for the thresholds returned to the original control level within 2 to 3 minutes. 3. In experiments where the blood sugar was raised by the ingestion of glucose in normal air, no significant changes in the thresholds were observed except when the blood sugar was rapidly falling toward the end of the glucose tolerance tests. However, when glucose was ingested at the end of an experiment in low oxygen, while the subject remained dark adapted, the effects of the anoxia were largely counteracted within 6 to 8 minutes. 4. The influence of low blood sugar on light sensitivity was then studied by injecting insulin. The thresholds were raised as soon as the effects of the insulin produced a fall in the blood sugar. When the subjects inhaled oxygen the thresholds were lowered. Then when the oxygen was withdrawn so that the subject was breathing normal air, the thresholds rose again within 1 to 2 minutes. Finally, if the blood sugar was raised by ingesting glucose, the average threshold fell to the original control level or even below it. 5. The combined effects of low oxygen and low blood sugar on light sensitivity were studied in one subject (W. F.). These effects appeared to be greater than when a similar degree of anoxia or hypoglycemia was brought about separately. 6. In a series of experiments on ten subjects the dark adaptation curves were obtained both in the basal state and after a normal breakfast. In nine of the ten subjects, the food increased the sensitivity of the subjects to light. 7. The experiments reported above lend support to the hypothesis that both anoxia and hypoglycemia produce their effects on light sensitivity in essentially the same way; namely, by slowing the oxidative processes. Consequently the effects of anoxia may be ameliorated by giving glucose and the effects of hypoglycemia by inhaling oxygen. In our opinion, the changes may be attributed directly to the effects on the nervous tissue of the visual mechanism and the brain rather than on the photochemical processes of the retina. PMID:19873200

  2. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition

    PubMed Central

    2016-01-01

    The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech recognition performance. PMID:27798658

  3. Elastic, not plastic species: frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms.

    PubMed

    Flegr, Jaroslav

    2010-01-13

    Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns) in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Frozen plasticity theory, which includes the Darwinian model of evolution as a special case--the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell).

  4. Assessment of body fat based on potential function clustering segmentation of computed tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong

    2005-01-01

    In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.

  5. QUEST+: A general multidimensional Bayesian adaptive psychometric method.

    PubMed

    Watson, Andrew B

    2017-03-01

    QUEST+ is a Bayesian adaptive psychometric testing method that allows an arbitrary number of stimulus dimensions, psychometric function parameters, and trial outcomes. It is a generalization and extension of the original QUEST procedure and incorporates many subsequent developments in the area of parametric adaptive testing. With a single procedure, it is possible to implement a wide variety of experimental designs, including conventional threshold measurement; measurement of psychometric function parameters, such as slope and lapse; estimation of the contrast sensitivity function; measurement of increment threshold functions; measurement of noise-masking functions; Thurstone scale estimation using pair comparisons; and categorical ratings on linear and circular stimulus dimensions. QUEST+ provides a general method to accelerate data collection in many areas of cognitive and perceptual science.

  6. Method and apparatus for detection of catalyst failure on-board a motor vehicle using a dual oxygen sensor and an algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemmens, W.B.; Koupal, J.W.; Sabourin, M.A.

    1993-07-20

    Apparatus is described for detecting motor vehicle exhaust gas catalytic converter deterioration comprising a first exhaust gas oxygen sensor adapted for communication with an exhaust stream before passage of the exhaust stream through a catalytic converter and a second exhaust gas oxygen sensor adapted for communication with the exhaust stream after passage of the exhaust stream through the catalytic converter, an on-board vehicle computational means, said computational means adapted to accept oxygen content signals from the before and after catalytic converter oxygen sensors and adapted to generate signal threshold values, said computational means adapted to compare over repeated time intervalsmore » the oxygen content signals to the signal threshold values and to store the output of the compared oxygen content signals, and in response after a specified number of time intervals for a specified mode of motor vehicle operation to determine and indicate a level of catalyst deterioration.« less

  7. Threshold-adaptive canny operator based on cross-zero points

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu

    2018-03-01

    Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.

  8. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change.

    PubMed

    Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J

    2013-09-10

    Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.

  9. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    PubMed Central

    Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938

  10. Contagion Shocks in One Dimension

    NASA Astrophysics Data System (ADS)

    Bertozzi, Andrea L.; Rosado, Jesus; Short, Martin B.; Wang, Li

    2015-02-01

    We consider an agent-based model of emotional contagion coupled with motion in one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a "fear" variable that undergoes a temporal consensus averaging based on distance to other agents. We study the effect of Riemann initial data for this problem, leading to shock dynamics that are studied both within the agent-based model as well as in a continuum limit. We examine the behavior of the model under distinguished limits as the characteristic contagion interaction distance and the interaction timescale both approach zero. The limiting behavior is related to a classical model for pressureless gas dynamics with "sticky" particles. In comparison, we observe a threshold for the interaction distance vs. interaction timescale that produce qualitatively different behavior for the system - in one case particle paths do not cross and there is a natural Eulerian limit involving nonlocal interactions and in the other case particle paths can cross and one may consider only a kinetic model in the continuum limit.

  11. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical

  12. The secular evolution of discrete quasi-Keplerian systems. II. Application to a multi-mass axisymmetric disc around a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.

    2018-01-01

    A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.

  13. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  14. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  15. A threshold model of investor psychology

    NASA Astrophysics Data System (ADS)

    Cross, Rod; Grinfeld, Michael; Lamba, Harbir; Seaman, Tim

    2005-08-01

    We introduce a class of agent-based market models founded upon simple descriptions of investor psychology. Agents are subject to various psychological tensions induced by market conditions and endowed with a minimal ‘personality’. This personality consists of a threshold level for each of the tensions being modeled, and the agent reacts whenever a tension threshold is reached. This paper considers an elementary model including just two such tensions. The first is ‘cowardice’, which is the stress caused by remaining in a minority position with respect to overall market sentiment and leads to herding-type behavior. The second is ‘inaction’, which is the increasing desire to act or re-evaluate one's investment position. There is no inductive learning by agents and they are only coupled via the global market price and overall market sentiment. Even incorporating just these two psychological tensions, important stylized facts of real market data, including fat-tails, excess kurtosis, uncorrelated price returns and clustered volatility over the timescale of a few days are reproduced. By then introducing an additional parameter that amplifies the effect of externally generated market noise during times of extreme market sentiment, long-time volatility correlations can also be recovered.

  16. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  17. A data centred method to estimate and map changes in the full distribution of daily surface temperature

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nicholas

    2016-04-01

    Characterizing how our climate is changing includes local information which can inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily surface temperature. Here we focus on these local changes and on a model independent method to transform daily observations into patterns of local climate change. Our method [1] is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of the distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. For temperature, changes in the distribution itself can yield robust results [2]. We demonstrate how the fundamental timescales of anthropogenic climate change limit the identification of societally relevant aspects of changes. We show that it is nevertheless possible to extract, solely from observations, some confident quantified assessments of change at certain thresholds and locations [3]. We demonstrate this approach using E-OBS gridded data [4] timeseries of local daily surface temperature from specific locations across Europe over the last 60 years. [1] Chapman, S. C., D. A. Stainforth, N. W. Watkins, On estimating long term local climate trends, Phil. Trans. Royal Soc., A,371 20120287 (2013) [2] Stainforth, D. A. S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, ERL 8, 034031 (2013) [3] Chapman, S. C., Stainforth, D. A., Watkins, N. W. Limits to the quantification of local climate change, ERL 10, 094018 (2015) [4] Haylock M. R. et al ., A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, (2008)

  18. Contrast adaptation induced by defocus - a possible error signal for emmetropization?

    PubMed

    Ohlendorf, Arne; Schaeffel, Frank

    2009-01-01

    To describe some features of contrast adaptation as induced by imposed positive or negative defocus. To study its time course and selectivity for the sign of the imposed defocus. Contrast adaptation, CA (here referred to as any change in supra-threshold contrast sensitivity) was induced by presenting a movie to the subjects on a computer screen at 1m distance for 10min, while the right eye was defocused by a trial lens (+4D (n=25); -4D (n=10); -2D (n=11 subjects). The PowerRefractor was used to track accommodation binocularly. Contrast sensitivity at threshold was measured by a method of adjustment with a Gabor patch of 1deg angular subtense, filled with 3.22cyc/deg sine wave grating presented on a computer screen at 1m distance on gray background (33cd/m(2)). Supra-threshold contrast sensitivity was quantified by an interocular contrast matching task, in which the subject had to match the contrast of the sine wave grating seen with the right eye with the contrast of a grating with fixed contrast of 0.1. (1) Contrast sensitivity thresholds were not lowered by previous viewing of defocused movies. (2) By wearing positive lenses, the supra-threshold contrast sensitivity in the right eye was raised by about 30% and remained elevated for at least 2min until baseline was reached after about 5min. (3) CA was induced only by positive, but not by negative lenses, even after the distance of the computer screen was taken into account (1m, equivalent to +1D). In five subjects, binocular accommodation was tracked over the full adaptation period. Accommodation appeared to focus the eye not wearing a lens, but short transient switches in focus to the lens wearing eye could not be entirely excluded. Transient contrast adaptation was found at 3.22cyc/deg when positive lenses were worn but not with negative lenses. This asymmetry is intriguing. While it may represent an epiphenomenon of physiological optics, further experiments are necessary to determine whether it could also trace back to differences in CA with defocus of different sign.

  19. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities.

    PubMed

    Sharifi, Ehsan; Boland, John

    2018-06-18

    Outdoor thermal comfort is influenced by people's climate expectations, perceptions and adaptation capacity. Varied individual response to comfortable or stressful thermal environments results in a deviation between actual outdoor thermal activity choices and those predicted by thermal comfort indices. This paper presents a passive activity observation (PAO) method for estimating contextual limits of outdoor thermal adaptation. The PAO method determines which thermal environment result in statistically meaningful changes may occur in outdoor activity patterns, and it estimates thresholds of outdoor thermal neutrality and limits of thermal adaptation in public space based on activity observation and microclimate field measurement. Applications of the PAO method have been demonstrated in Adelaide, Melbourne and Sydney, where outdoor activities were analysed against outdoor thermal comfort indices between 2013 and 2014. Adjusted apparent temperature (aAT), adaptive predicted mean vote (aPMV), outdoor standard effective temperature (OUT_SET), physiological equivalent temperature (PET) and universal thermal comfort index (UTCI) are calculated from the PAO data. Using the PAO method, the high threshold of outdoor thermal neutrality was observed between 24 °C for optional activities and 34 °C for necessary activities (UTCI scale). Meanwhile, the ultimate limit of thermal adaptation in uncontrolled public spaces is estimated to be between 28 °C for social activities and 48 °C for necessary activities. Normalised results indicate that city-wide high thresholds for outdoor thermal neutrality vary from 25 °C in Melbourne to 26 °C in Sydney and 30 °C in Adelaide. The PAO method is a relatively fast and localised method for measuring limits of outdoor thermal adaptation and effectively informs urban design and policy making in the context of climate change.

  20. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  1. Validation of satellite based precipitation over diverse topography of Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Farooq; Athar, H.

    2018-03-01

    This study evaluates the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product data with 0.25° × 0.25° spatial and post-real-time 3 h temporal resolution using point-based Surface Precipitation Gauge (SPG) data from 40 stations, for the period 1998-2013, and using gridded Asian Precipitation ˗ Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) data abbreviated as APH data with 0.25° × 0.25° spatial and daily temporal resolution for the period 1998-2007, over vulnerable and data sparse regions of Pakistan (24-37° N and 62-75° E). To evaluate the performance of TMPA relative to SPG and APH, four commonly used statistical indicator metrics including Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC) are employed on daily, monthly, seasonal as well as on annual timescales. The TMPA slightly overestimated both SPG and APH at daily, monthly, and annual timescales, however close results were obtained between TMPA and SPG as compared to those between TMPA and APH, on the same timescale. The TMPA overestimated both SPG and APH during the Pre-Monsoon and Monsoon seasons, whereas it underestimated during the Post-Monsoon and Winter seasons, with different magnitudes. Agreement between TMPA and SPG was good in plain and medium elevation regions, whereas TMPA overestimated APH in 31 stations. The magnitudes of MAE and RMSE were high at daily timescale as compared to monthly and annual timescales. Relatively large MAE was observed in stations located over high elevation regions, whereas minor MAE was recorded in plain area stations at daily, monthly, and annual timescales. A strong positive linear relationship between TMPA and SPG was established at monthly (0.98), seasonal (0.93 to 0.98) and annual (0.97) timescales. Precipitation increased with the increase of elevation, and not only elevation but latitude also affected the intensity and amount of precipitation in Pakistan. It is evident that TMPA overestimates SPG in some regions and seasons and underestimates in other regions and seasons. It is thus determined from the current study that TMPA gives better results on annual, seasonal, and monthly timescales as compared to daily timescale. The TMPA might be used in all the four seasons including Winter, Pre-Monsoon, Monsoon, and Post-Monsoon. The TMPA mostly underestimates both SPG and APH in high elevation regions, whereas in plain and medium elevation regions it gives better results. This study concludes that TMPA can be a good substitute of SPG for water resource management in plain and medium elevation regions in central and northern parts of Pakistan, during all four seasons.

  2. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  3. Automatic threshold selection for multi-class open set recognition

    NASA Astrophysics Data System (ADS)

    Scherreik, Matthew; Rigling, Brian

    2017-05-01

    Multi-class open set recognition is the problem of supervised classification with additional unknown classes encountered after a model has been trained. An open set classifer often has two core components. The first component is a base classifier which estimates the most likely class of a given example. The second component consists of open set logic which estimates if the example is truly a member of the candidate class. Such a system is operated in a feed-forward fashion. That is, a candidate label is first estimated by the base classifier, and the true membership of the example to the candidate class is estimated afterward. Previous works have developed an iterative threshold selection algorithm for rejecting examples from classes which were not present at training time. In those studies, a Platt-calibrated SVM was used as the base classifier, and the thresholds were applied to class posterior probabilities for rejection. In this work, we investigate the effectiveness of other base classifiers when paired with the threshold selection algorithm and compare their performance with the original SVM solution.

  4. On the Location of the gamma-Ray Outburst Emission in the BL Lacertae Object AO 0235 + 164 Through Observations Across the Electromagnetic Spectrum

    NASA Technical Reports Server (NTRS)

    Agudo, Ivan; Marscher, Alan P.; Jorstad, Svetlana G.; Larionov, Valeri M.; Gomez, Jose L.; Laehteenmaeki, Anne; Smith, Paul S.; Nilsson, Kari; Readhead, Anthony C. S.; Aller, Margo F.; hide

    2011-01-01

    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array images at A = 7 mm with approx.0.15 milliarcsec resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary "core" and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long timescales (months/ years), but the correspondence is poorer on shorter timescales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.

  5. [Attaching importance to study on acute health risk assessment and adaptation of air pollution and climate change].

    PubMed

    Shi, X M

    2017-03-10

    Air pollution and climate change have become key environmental and public health problems around the world, which poses serious threat to human health. How to assess and mitigate the health risks and increase the adaptation of the public have become an urgent topic of research in this area. The six papers in this issue will provide important and rich information on design, analysis method, indicator selection and setting about acute health risk assessment and adaptation study of air pollution and climate change in China, reflecting the advanced conceptions of multi-center and area-specific study and multi-pollutant causing acute effect study. However, the number and type of the cities included in these studies were still limited. In future, researchers should further expand detailed multi-center and multi-area study coverage, conduct area specific predicting and early warning study and strengthen adaptation study.

  6. A STATISTICAL MODELING METHODOLOGY FOR THE DETECTION, QUANTIFICATION, AND PREDICTION OF ECOLOGICAL THRESHOLDS

    EPA Science Inventory

    This study will provide a general methodology for integrating threshold information from multiple species ecological metrics, allow for prediction of changes of alternative stable states, and provide a risk assessment tool that can be applied to adaptive management. The integr...

  7. Incorporating adaptive responses into future projections of coral bleaching.

    PubMed

    Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D

    2014-01-01

    Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress.

  8. Ocellar adaptations for dim light vision in a nocturnal bee.

    PubMed

    Berry, Richard P; Wcislo, William T; Warrant, Eric J

    2011-04-15

    Growing evidence indicates that insect ocelli are strongly adapted to meet the specific functional requirements in the environment in which that insect lives. We investigated how the ocelli of the nocturnal bee Megalopta genalis are adapted to life in the dim understory of a tropical rainforest. Using a combination of light microscopy and three-dimensional reconstruction, we found that the retinae contain bar-shaped rhabdoms loosely arranged in a radial pattern around multi-layered lenses, and that both lenses and retinae form complex non-spherical shapes reminiscent of those described in other ocelli. Intracellular electrophysiology revealed that the photoreceptors have high absolute sensitivity, but that the threshold location varied widely between 10(9) and 10(11) photons cm(-2) s(-1). Higher sensitivity and greater visual reliability may be obtained at the expense of temporal resolution: the corner frequencies of dark-adapted ocellar photoreceptors were just 4-11 Hz. Spectral sensitivity profiles consistently peaked at 500 nm. Unlike the ocelli of other flying insects, we did not detect UV-sensitive visual pigments in M. genalis, which may be attributable to a scarcity of UV photons under the rainforest canopy at night. In contrast to earlier predictions based on anatomy, the photoreceptors are not sensitive to the e-vector of polarised light. Megalopta genalis ocellar photoreceptors possess a number of unusual properties, including inherently high response variability and the ability to produce spike-like potentials. These properties bear similarities to photoreceptors in the compound eye of the cockroach, and we suggest that the two insects share physiological characteristics optimised for vision in dim light.

  9. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  10. OWL representation of the geologic timescale implementing stratigraphic best practice

    NASA Astrophysics Data System (ADS)

    Cox, S. J.

    2011-12-01

    The geologic timescale is a cornerstone of the earth sciences. Versions are available from many sources, with the following being of particular interest: (i) The official International Stratigraphic Chart (ISC) is maintained by the International Commission for Stratigraphy (ICS), following principles developed over the last 40 years. ICS provides the data underlying the chart as part of a specialized software package, and the chart itself as a PDF using the standard colours; (ii) ITC Enschede has developed a representation of the timescale as a thesaurus in SKOS, used in a Web Map Service delivery system; (iii) JPL's SWEET ontology includes a geologic timescale. This takes full advantage of the capabilities of OWL. However, each of these has limitations - The ISC falls down because of incompatibility with web technologies; - While SKOS supports multilingual labelling, SKOS does not adequately support timescale semantics, in particular since it does not include ordering relationships; - The SWEET version (as of version 2) is not fully aligned to the model used by ICS, in particular not recognizing the role of the Global Boundary Stratotype Sections and Point (GSSP). Furthermore, it is distributed as static documents, rather than through a dynamic API using SPARQL. The representation presented in this paper overcomes all of these limitations as follows: - the timescale model is formulated as an OWL ontology - the ontology is directly derived from the UML representation of the ICS best practice proposed by Cox & Richard [2005], and subsequently included as the Geologic Timescale package in GeoSciML (http://www.geosciml.org); this includes links to GSSPs as per the ICS process - key properties in the ontology are also asserted to be subProperties of SKOS properties (topConcept and broader/narrower relations) in order to support SKOS-based queries; SKOS labelling is used to support multi-lingual naming and synonyms - the International Stratigraphic Chart is implemented as a set of instances of classes from the ontology, and published through a SPARQL end-point - the elements of the Stratigraphic chart are linked to the corresponding elements in SWEET (Raskin et al., 2011) and DBpedia to support traceability between different commonly accessed representations. The ontology builds on standard geospatial information models, including the Observations and Measurements model (ISO 19156), and GeoSciML. This allows the ages given in the chart to be linked to the evidence basis found in the associated GeoSciML features.

  11. Method of Improved Fuzzy Contrast Combined Adaptive Threshold in NSCT for Medical Image Enhancement

    PubMed Central

    Yang, Jie; Kasabov, Nikola

    2017-01-01

    Noises and artifacts are introduced to medical images due to acquisition techniques and systems. This interference leads to low contrast and distortion in images, which not only impacts the effectiveness of the medical image but also seriously affects the clinical diagnoses. This paper proposes an algorithm for medical image enhancement based on the nonsubsampled contourlet transform (NSCT), which combines adaptive threshold and an improved fuzzy set. First, the original image is decomposed into the NSCT domain with a low-frequency subband and several high-frequency subbands. Then, a linear transformation is adopted for the coefficients of the low-frequency component. An adaptive threshold method is used for the removal of high-frequency image noise. Finally, the improved fuzzy set is used to enhance the global contrast and the Laplace operator is used to enhance the details of the medical images. Experiments and simulation results show that the proposed method is superior to existing methods of image noise removal, improves the contrast of the image significantly, and obtains a better visual effect. PMID:28744464

  12. Free testosterone as marker of adaptation to medium-intensive exercise.

    PubMed

    Shkurnikov, M U; Donnikov, A E; Akimov, E B; Sakharov, D A; Tonevitsky, A G

    2008-09-01

    A 4-week study of adaptation reserves of the body was carried out during medium intensive exercise (medium intensive training: 60-80% threshold anaerobic metabolism). Two groups of athletes were singled out by the results of pulsometry analysis: with less than 20% work duration at the level above the 80% threshold anaerobic metabolism and with more than 20% work duration at the level above 80% threshold anaerobic metabolism. No appreciable differences between the concentrations of total testosterone, growth hormone, and cortisol before and after exercise in the groups with different percentage of anaerobic work duration were detected. In group 1 the concentrations of free testosterone did not change throughout the period of observation in comparison with the levels before training. In group 2, the level of free testosterone increased in comparison with the basal level: from 0.61+/-0.12 nmol/liter at the end of week 1 to 0.98+/-0.11 nmol/liter at the end of week 4 (p<0.01). The results indicate that the level of free testosterone can be used for evaluating the degree of athlete's adaptation to medium intensive exercise.

  13. Environmental Complexity and Biodiversity: The Multi-Layered Evolutionary History of a Log-Dwelling Velvet Worm in Montane Temperate Australia

    PubMed Central

    Garrick, Ryan C.; Gardner, Michael G.; Tait, Noel N.; Briscoe, David A.; Rowell, David M.; Sunnucks, Paul

    2013-01-01

    Phylogeographic studies provide a framework for understanding the importance of intrinsic versus extrinsic factors in shaping patterns of biodiversity through identifying past and present microevolutionary processes that contributed to lineage divergence. Here we investigate population structure and diversity of the Onychophoran (velvet worm) Euperipatoides rowelli in southeastern Australian montane forests that were not subject to Pleistocene glaciations, and thus likely retained more forest cover than systems under glaciation. Over a ~100 km transect of structurally-connected forest, we found marked nuclear and mitochondrial (mt) DNA genetic structuring, with spatially-localised groups. Patterns from mtDNA and nuclear data broadly corresponded with previously defined geographic regions, consistent with repeated isolation in refuges during Pleistocene climatic cycling. Nevertheless, some E. rowelli genetic contact zones were displaced relative to hypothesized influential landscape structures, implying more recent processes overlying impacts of past environmental history. Major impacts at different timescales were seen in the phylogenetic relationships among mtDNA sequences, which matched geographic relationships and nuclear data only at recent timescales, indicating historical gene flow and/or incomplete lineage sorting. Five major E. rowelli phylogeographic groups were identified, showing substantial but incomplete reproductive isolation despite continuous habitat. Regional distinctiveness, in the face of lineages abutting within forest habitat, could indicate pre- and/or postzygotic gene flow limitation. A potentially functional phenotypic character, colour pattern variation, reflected the geographic patterns in the molecular data. Spatial-genetic patterns broadly match those in previously-studied, co-occurring low-mobility organisms, despite a variety of life histories. We suggest that for E. rowelli, the complex topography and history of the region has led to interplay among limited dispersal ability, historical responses to environmental change, local adaptation, and some resistance to free admixture at geographic secondary contact, leading to strong genetic structuring at fine spatial scale. PMID:24358365

  14. A new disaster victim identification management strategy targeting "near identification-threshold" cases: Experiences from the Boxing Day tsunami.

    PubMed

    Wright, Kirsty; Mundorff, Amy; Chaseling, Janet; Forrest, Alexander; Maguire, Christopher; Crane, Denis I

    2015-05-01

    The international disaster victim identification (DVI) response to the Boxing Day tsunami, led by the Royal Thai Police in Phuket, Thailand, was one of the largest and most complex in DVI history. Referred to as the Thai Tsunami Victim Identification operation, the group comprised a multi-national, multi-agency, and multi-disciplinary team. The traditional DVI approach proved successful in identifying a large number of victims quickly. However, the team struggled to identify certain victims due to incomplete or poor quality ante-mortem and post-mortem data. In response to these challenges, a new 'near-threshold' DVI management strategy was implemented to target presumptive identifications and improve operational efficiency. The strategy was implemented by the DNA Team, therefore DNA kinship matches that just failed to reach the reporting threshold of 99.9% were prioritized, however the same approach could be taken by targeting, for example, cases with partial fingerprint matches. The presumptive DNA identifications were progressively filtered through the Investigation, Dental and Fingerprint Teams to add additional information necessary to either strengthen or conclusively exclude the identification. Over a five-month period 111 victims from ten countries were identified using this targeted approach. The new identifications comprised 87 adults, 24 children and included 97 Thai locals. New data from the Fingerprint Team established nearly 60% of the total near-threshold identifications and the combined DNA/Physical method was responsible for over 30%. Implementing the new strategy, targeting near-threshold cases, had positive management implications. The process initiated additional ante-mortem information collections, and established a much-needed, distinct "end-point" for unresolved cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Population genetics and demography unite ecology and evolution

    USGS Publications Warehouse

    Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.

    2017-01-01

    The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.

  16. Development and test of photon counting lidar

    NASA Astrophysics Data System (ADS)

    Wang, Chun-hui; Wang, Ao-you; Tao, Yu-liang; Li, Xu; Peng, Huan; Meng, Pei-bei

    2018-02-01

    In order to satisfy the application requirements of spaceborne three dimensional imaging lidar , a prototype of nonscanning multi-channel lidar based on receiver field of view segmentation was designed and developed. High repetition frequency micro-pulse lasers, optics fiber array and Geiger-mode APD, combination with time-correlated single photon counting technology, were adopted to achieve multi-channel detection. Ranging experiments were carried out outdoors. In low echo photon condition, target photon counting showed time correlated and noise photon counting were random. Detection probability and range precision versus threshold were described and range precision increased from 0.44 to 0.11 when threshold increased from 4 to 8.

  17. Assessment of multi-pulse laser-induced damage threshold of metallic mirrors for Thomson scattering system.

    PubMed

    Sato, Masaya; Kajita, Shin; Yasuhara, Ryo; Ohno, Noriyasu; Tokitani, Masayuki; Yoshida, Naoaki; Tawara, Yuzuru

    2013-04-22

    Multi-pulse laser-induced damage threshold (LIDT) was experimentally investigated up to ~10(6) pulses for Cu, Ag mirrors. The surface roughness and the hardness dependence on the LIDT were also examined. The LIDT of OFHC-Cu decreased with the pulse number and was 1.0 J/cm(2) at 1.8 × 10(6) pulses. The expected LIDT of cutting Ag at 10(7) pulses was the highest; Ag mirror would be one of the best choices for ITER Thomson scattering system. For the roughness and hardness, material dependences of LIDT are discussed with experimental results.

  18. Reducing Threshold of Multi Quantum Wells InGaN Laser Diode by Using InGaN/GaN Waveguide

    NASA Astrophysics Data System (ADS)

    Abdullah, Rafid A.; Ibrahim, Kamarulazizi

    2010-07-01

    ISE TCAD (Integrated System Engineering Technology Computer Aided Design) software simulation program has been utilized to help study the effect of using InGaN/GaN as a waveguide instead of conventional GaN waveguide for multi quantum wells violet InGaN laser diode (LD). Simulation results indicate that the threshold of the LD has been reduced by using InGaN/GaN waveguide where InGaN/GaN waveguide increases the optical confinement factor which leads to increase the confinement carriers at the active region of the LD.

  19. Is the sky the limit? On the expansion threshold of a species' range.

    PubMed

    Polechová, Jitka

    2018-06-15

    More than 100 years after Grigg's influential analysis of species' borders, the causes of limits to species' ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species' ranges to shift in response to climate change-and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal-a measure of environmental heterogeneity-and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an 'expansion threshold': adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species' range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter-the strength of genetic drift-is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with 'neighbourhood size'-the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species' range.

  20. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists.

    PubMed

    Neal, Craig M; Hunter, Angus M; Brennan, Lorraine; O'Sullivan, Aifric; Hamilton, D Lee; De Vito, Giuseppe; Galloway, Stuart D R

    2013-02-15

    This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.

  1. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.; Liu, Wei

    2017-08-01

    The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study, we use an optimal flux perturbation framework and comprehensive climate model simulations to estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally to sea-ice decline. It is found that on decadal timescales, flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC, while on multi-decadal timescales (longer than 20 years), flux anomalies in the Arctic become more important. These positive buoyancy anomalies spread to the North Atlantic, weakening the AMOC and its poleward heat transport. Therefore, the Arctic sea-ice decline may explain the suggested slow-down of the AMOC and the `Warming Hole’ persisting in the subpolar North Atlantic.

  2. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-12-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.

  3. Exploring RNA structure and dynamics through enhanced sampling simulations.

    PubMed

    Mlýnský, Vojtěch; Bussi, Giovanni

    2018-04-01

    RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Simplification of femtosecond transient absorption microscopy data from CH3NH3PbI3 perovskite thin films into decay associated amplitude maps

    NASA Astrophysics Data System (ADS)

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong

    2016-03-01

    This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.

  5. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national agriculture adaptation strategy decisions.

  6. Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline C.; Kulüke, Marco; Tierney, Jessica E.

    2018-04-01

    East African hydroclimate exhibits considerable variability across a range of timescales, with implications for its population that depends on the region's two rainy seasons. Recent work demonstrated that current state-of-the-art climate models consistently underestimate the long rains in boreal spring over the Horn of Africa while overestimating the short rains in autumn. This inability to represent the seasonal cycle makes it problematic for climate models to project changes in East African precipitation. Here we consider whether this bias also has implications for understanding interannual and decadal variability in the East African long and short rains. Using a consistent framework with an unforced multi-century global coupled climate model simulation, the role of Indo-Pacific variability for East African rainfall is compared across timescales and related to observations. The dominant driver of East African rainfall anomalies critically depends on the timescale under consideration: Interannual variations in East African hydroclimate coincide with significant sea surface temperature (SST) anomalies across the Indo-Pacific, including those associated with the El Niño-Southern Oscillation (ENSO) in the eastern Pacific, and are linked to changes in the Walker circulation, regional winds and vertical velocities over East Africa. Prolonged drought/pluvial periods in contrast exhibit anomalous SST predominantly in the Indian Ocean and Indo-Pacific warm pool (IPWP) region, while eastern Pacific anomalies are insignificant. We assessed dominant frequencies in Indo-Pacific SST and found the eastern equatorial Pacific dominated by higher-frequency variability in the ENSO band, while the tropical Indian Ocean and IPWP exhibit lower-frequency variability beyond 10 years. This is consistent with the different contribution to regional precipitation anomalies for the eastern Pacific versus Indian Ocean and IPWP on interannual and decadal timescales, respectively. In the model, the dominant low-frequency signal seen in the observations in the Indo-Pacific is not well-represented as it instead exhibits overly strong variability on subdecadal timescales. The overly strong ENSO-teleconnection likely contributes to the overestimated role of the short rains in the seasonal cycle in the model compared to observations.

  7. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  8. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  9. Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images.

    PubMed

    Basset, Antoine; Boulanger, Jérôme; Salamero, Jean; Bouthemy, Patrick; Kervrann, Charles

    2015-11-01

    Accurately detecting subcellular particles in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking, or classification. Our primary goal is to segment vesicles likely to share nearly the same size in fluorescence microscopy images. Our method termed adaptive thresholding of Laplacian of Gaussian (LoG) images with autoselected scale (ATLAS) automatically selects the optimal scale corresponding to the most frequent spot size in the image. Four criteria are proposed and compared to determine the optimal scale in a scale-space framework. Then, the segmentation stage amounts to thresholding the LoG of the intensity image. In contrast to other methods, the threshold is locally adapted given a probability of false alarm (PFA) specified by the user for the whole set of images to be processed. The local threshold is automatically derived from the PFA value and local image statistics estimated in a window whose size is not a critical parameter. We also propose a new data set for benchmarking, consisting of six collections of one hundred images each, which exploits backgrounds extracted from real microscopy images. We have carried out an extensive comparative evaluation on several data sets with ground-truth, which demonstrates that ATLAS outperforms existing methods. ATLAS does not need any fine parameter tuning and requires very low computation time. Convincing results are also reported on real total internal reflection fluorescence microscopy images.

  10. Automatic multi-label annotation of abdominal CT images using CBIR

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2017-03-01

    We present a technique to annotate multiple organs shown in 2-D abdominal/pelvic CT images using CBIR. This annotation task is motivated by our research interests in visual question-answering (VQA). We aim to apply results from this effort in Open-iSM, a multimodal biomedical search engine developed by the National Library of Medicine (NLM). Understanding visual content of biomedical images is a necessary step for VQA. Though sufficient annotational information about an image may be available in related textual metadata, not all may be useful as descriptive tags, particularly for anatomy on the image. In this paper, we develop and evaluate a multi-label image annotation method using CBIR. We evaluate our method on two 2-D CT image datasets we generated from 3-D volumetric data obtained from a multi-organ segmentation challenge hosted in MICCAI 2015. Shape and spatial layout information is used to encode visual characteristics of the anatomy. We adapt a weighted voting scheme to assign multiple labels to the query image by combining the labels of the images identified as similar by the method. Key parameters that may affect the annotation performance, such as the number of images used in the label voting and the threshold for excluding labels that have low weights, are studied. The method proposes a coarse-to-fine retrieval strategy which integrates the classification with the nearest-neighbor search. Results from our evaluation (using the MICCAI CT image datasets as well as figures from Open-i) are presented.

  11. Multi-scale curvature for automated identification of glaciated mountain landscapes

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar

    2014-03-01

    Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes.

  12. An adaptive evolutionary multi-objective approach based on simulated annealing.

    PubMed

    Li, H; Landa-Silva, D

    2011-01-01

    A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.

  13. Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li

    2017-12-01

    In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.

  14. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    DOE PAGES

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; ...

    2016-12-16

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  15. A queueing theory description of fat-tailed price returns in imperfect financial markets

    NASA Astrophysics Data System (ADS)

    Lamba, H.

    2010-09-01

    In a financial market, for agents with long investment horizons or at times of severe market stress, it is often changes in the asset price that act as the trigger for transactions or shifts in investment position. This suggests the use of price thresholds to simulate agent behavior over much longer timescales than are currently used in models of order-books. We show that many phenomena, routinely ignored in efficient market theory, can be systematically introduced into an otherwise efficient market, resulting in models that robustly replicate the most important stylized facts. We then demonstrate a close link between such threshold models and queueing theory, with large price changes corresponding to the busy periods of a single-server queue. The distribution of the busy periods is known to have excess kurtosis and non-exponential decay under various assumptions on the queue parameters. Such an approach may prove useful in the development of mathematical models for rapid deleveraging and panics in financial markets, and the stress-testing of financial institutions.

  16. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    PubMed Central

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-01-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium. PMID:27982066

  17. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-12-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

  18. Environmental statistics and optimal regulation

    NASA Astrophysics Data System (ADS)

    Sivak, David; Thomson, Matt

    2015-03-01

    The precision with which an organism can detect its environment, and the timescale for and statistics of environmental change, will affect the suitability of different strategies for regulating protein levels in response to environmental inputs. We propose a general framework--here applied to the enzymatic regulation of metabolism in response to changing nutrient concentrations--to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, and the costs associated with enzyme production. We find: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  20. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  1. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    PubMed

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  2. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u}more » is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.« less

  3. A comparative review of multi-risk modelling methodologies for climate change adaptation in mountain regions

    NASA Astrophysics Data System (ADS)

    Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan

    2017-04-01

    Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.

  4. Interleaved diffusion-weighted EPI improved by adaptive partial-Fourier and multi-band multiplexed sensitivity-encoding reconstruction

    PubMed Central

    Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei

    2014-01-01

    Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000

  5. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A climate change assessment is performed for climate change scenarios based on the SRES emission scenarios A1B, B1 and A2 for a set of statistically downscaled meteorological data. The future performance of the multi-purpose multi-reservoir system is quantified and possible intensifications of trade-offs between management goals or reservoir utilizations are shown.

  6. Multi-Algorithm Particle Simulations with Spatiocyte.

    PubMed

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  7. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually decreased following an initial increase after the onset of support surface motion. DISCUSSION: Resu lts confirmed that walking in discordant conditions not only compromises locomotor stability and the ability to multi-task, but comes at a quantifiable metabolic cost. Importantly, like locomotor stability and multi-tasking ability, metabolic expenditure while walking in discordant sensory conditions improved during adaptation. This confirms that sensorimotor adaptability training can benefit multiple performance parameters central to the successful completion of critical mission tasks.

  8. Constraints on methane emissions in North America from future geostationary remote-sensing measurements

    DOE PAGES

    Bousserez, Nicolas; Henze, Daven K.; Rooney, Brigitte; ...

    2016-05-20

    The success of future geostationary (GEO) satellite observation missions depends on our ability to design instruments that address their key scientific objectives. Here, an Observation System Simulation Experiment (OSSE) is performed to quantify the constraints on methane (CH 4) emissions in North America obtained from shortwave infrared (SWIR), thermal infrared (TIR), and multi-spectral (SWIR+TIR) measurements in geostationary orbit and from future SWIR low-Earth orbit (LEO) measurements. Furthermore, we used an efficient stochastic algorithm to compute the information content of the inverted emissions at high spatial resolution (0.5° × 0.7°) in a variational framework using the GEOS-Chem chemistry-transport model and itsmore » adjoint. Our results show that at sub-weekly timescales, SWIR measurements in GEO orbit can constrain about twice as many independent flux patterns than in LEO orbit, with a degree of freedom for signal (DOF) for the inversion of 266 and 115, respectively. Comparisons between TIR GEO and SWIR LEO configurations reveal that poor boundary layer sensitivities for the TIR measurements cannot be compensated for by the high spatiotemporal sampling of a GEO orbit. The benefit of a multi-spectral instrument compared to current SWIR products in a GEO context is shown for sub-weekly timescale constraints, with an increase in the DOF of about 50 % for a 3-day inversion. Our results further suggest that both the SWIR and multi-spectral measurements on GEO orbits could almost fully resolve CH 4 fluxes at a spatial resolution of at least 100 km × 100 km over source hotspots (emissions > 4 × 10 5 kg day -1). The sensitivity of the optimized emission scaling factors to typical errors in boundary and initial conditions can reach 30 and 50 % for the SWIR GEO or SWIR LEO configurations, respectively, while it is smaller than 5 % in the case of a multi-spectral GEO system. Our results demonstrate that multi-spectral measurements from a geostationary satellite platform would address the need for higher spatiotemporal constraints on CH 4 emissions while greatly mitigating the impact of inherent uncertainties in source inversion methods on the inferred fluxes.« less

  9. Constraints on methane emissions in North America from future geostationary remote-sensing measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousserez, Nicolas; Henze, Daven K.; Rooney, Brigitte

    The success of future geostationary (GEO) satellite observation missions depends on our ability to design instruments that address their key scientific objectives. Here, an Observation System Simulation Experiment (OSSE) is performed to quantify the constraints on methane (CH 4) emissions in North America obtained from shortwave infrared (SWIR), thermal infrared (TIR), and multi-spectral (SWIR+TIR) measurements in geostationary orbit and from future SWIR low-Earth orbit (LEO) measurements. Furthermore, we used an efficient stochastic algorithm to compute the information content of the inverted emissions at high spatial resolution (0.5° × 0.7°) in a variational framework using the GEOS-Chem chemistry-transport model and itsmore » adjoint. Our results show that at sub-weekly timescales, SWIR measurements in GEO orbit can constrain about twice as many independent flux patterns than in LEO orbit, with a degree of freedom for signal (DOF) for the inversion of 266 and 115, respectively. Comparisons between TIR GEO and SWIR LEO configurations reveal that poor boundary layer sensitivities for the TIR measurements cannot be compensated for by the high spatiotemporal sampling of a GEO orbit. The benefit of a multi-spectral instrument compared to current SWIR products in a GEO context is shown for sub-weekly timescale constraints, with an increase in the DOF of about 50 % for a 3-day inversion. Our results further suggest that both the SWIR and multi-spectral measurements on GEO orbits could almost fully resolve CH 4 fluxes at a spatial resolution of at least 100 km × 100 km over source hotspots (emissions > 4 × 10 5 kg day -1). The sensitivity of the optimized emission scaling factors to typical errors in boundary and initial conditions can reach 30 and 50 % for the SWIR GEO or SWIR LEO configurations, respectively, while it is smaller than 5 % in the case of a multi-spectral GEO system. Our results demonstrate that multi-spectral measurements from a geostationary satellite platform would address the need for higher spatiotemporal constraints on CH 4 emissions while greatly mitigating the impact of inherent uncertainties in source inversion methods on the inferred fluxes.« less

  10. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century.

    PubMed

    Franks, Peter J; Adams, Mark A; Amthor, Jeffrey S; Barbour, Margaret M; Berry, Joseph A; Ellsworth, David S; Farquhar, Graham D; Ghannoum, Oula; Lloyd, Jon; McDowell, Nate; Norby, Richard J; Tissue, David T; von Caemmerer, Susanne

    2013-03-01

    The rate of CO(2) assimilation by plants is directly influenced by the concentration of CO(2) in the atmosphere, c(a). As an environmental variable, c(a) also has a unique global and historic significance. Although relatively stable and uniform in the short term, global c(a) has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive datasets and models to develop an integrated, multi-scale assessment of the impact of changing c(a) on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling c(a) is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that tends to maintain 1 - c(i)/c(a), the relative gradient for CO(2) diffusion into the leaf, relatively constant. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing c(a) can be described by simple equations rooted in the formulation of more commonly studied short-term responses. © 2013 The Author. New Phytologist © 2012 New Phytologist Trust.

  11. Complex Dynamics of Equatorial Scintillation

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio

    2017-04-01

    Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.

  12. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  13. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.

    PubMed

    Sadeghi-Tehran, Pouria; Virlet, Nicolas; Sabermanesh, Kasra; Hawkesford, Malcolm J

    2017-01-01

    Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1) comparison with ground-truth images, (2) variation along a day with changes in ambient illumination, (3) comparison with manual measurements and (4) an estimation of performance along the full life cycle of a wheat canopy. The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  14. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  15. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2014-11-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  16. A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follum, James D.; Tuffner, Francis K.

    2016-11-14

    Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpartmore » and is suitable for real-world applications.« less

  17. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  18. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  19. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6

    DOE PAGES

    Boer, George J.; Smith, Douglas M.; Cassou, Christophe; ...

    2016-01-01

    The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less

  20. Regulation of sand transport in the Colorado River by changes in the surface grain size of eddy sandbars over multi-year timescales

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Schmidt, J.C.

    2005-01-01

    In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is 'grain-size regulated'. Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now approximately equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the bed of the channel (driven by changes in the upstream supply of sand owing to both tributary floods and high dam releases) are important in regulating sand transport over timescales of days to months. In this study, suspended-sand data are analysed in conjunction with bed grain-size data to determine whether changes in the grain size of sand on the bed of the channel or changes in the grain size of sand on the surface of eddy sandbars have been more important in regulating sand transport in the post-dam Colorado River over longer, multi-year timescales. The results of this study show that this combined theory- and field-based approach can be used to deduce which environments in a complicated setting are the most important environments for regulating sediment transport. In the case of the regulated Colorado River in Marble and Upper Grand Canyons, suspended-sand transport has been regulated mostly by changes in the surface grain size of eddy sandbars. ?? 2005 International Association of Sedimentologists.

  1. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity - Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.

    2015-04-01

    The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for example, tide gauge records), calling for a careful application of time series analysis tools when studying such data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, George J.; Smith, Douglas M.; Cassou, Christophe

    The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less

  3. The Physics of Protoplanetary Dust Agglomerates. X. High-velocity Collisions between Small and Large Dust Agglomerates as a Growth Barrier

    NASA Astrophysics Data System (ADS)

    Schräpler, Rainer; Blum, Jürgen; Krijt, Sebastiaan; Raabe, Jan-Hendrik

    2018-01-01

    In a protoplanetary disk, dust aggregates in the μm to mm size range possess mean collision velocities of 10–60 m s‑1 with respect to dm- to m-sized bodies. We performed laboratory collision experiments to explore this parameter regime and found a size- and velocity-dependent threshold between erosion and growth. By using a local Monte Carlo coagulation calculation and along with a simple semi-analytical timescale approach, we show that erosion considerably limits particle growth in protoplanetary disks and leads to a steady-state dust-size distribution from μm- to dm-sized particles.

  4. Is there any pristine gas in nearby starburst galaxies?

    NASA Astrophysics Data System (ADS)

    Lebouteiller, Vianney; Kunth, Daniel

    2008-12-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H ii regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50 Z⊙ for extremely-metal poor galaxies.

  5. Metal enrichment in the neutral gas of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Kunth, D.; Désert, J.-M.; Thuan, T. X.

    2009-05-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H II regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50Zsolar for extremely-metal poor galaxies.

  6. Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.

  7. Population Genetics and Demography Unite Ecology and Evolution.

    PubMed

    Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W

    2017-02-01

    The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators

    PubMed Central

    Lin, Yan-You; Evans, Randall D.; Welch, Erin; Hsu, Bang-Ning; Madison, Andrew C.; Fair, Richard B.

    2010-01-01

    A low voltage, two-level-metal, and multi-layer insulator electrowetting-on-dielectric (EWD) platform is presented. Dispensing 300pl droplets from 140nl closed on-chip reservoirs was accomplished with as little as 11.4V solely through EWD forces, and the actuation threshold voltage was 7.2V with a 1Hz voltage switching rate between electrodes. EWD devices were fabricated with a multilayer insulator consisting of 135nm sputtered tantalum pentoxide (Ta2O5) and 180nm parylene C coated with 70nm of CYTOP. Furthermore, the minimum actuation threshold voltage followed a previously published scaling model for the threshold voltage, VT, which is proportional to (t/εr)1/2, where t and εr are the insulator thickness and dielectric constant respectively. Device threshold voltages are compared for several insulator thicknesses (200nm, 500nm, and 1µm), different dielectric materials (parylene C and tantalum pentoxide), and homogeneous versus heterogeneous compositions. Additionally, we used a two-level-metal fabrication process, which enables the fabrication of smaller and denser electrodes with high interconnect routing flexibility. We also have achieved low dispensing and actuation voltages for scaled devices with 30pl droplets. PMID:20953362

  9. Multiple Fingers - One Gestalt.

    PubMed

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.

  10. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.

    PubMed

    Almenoff, June S; LaCroix, Karol K; Yuen, Nancy A; Fram, David; DuMouchel, William

    2006-01-01

    There is increasing interest in using disproportionality-based signal detection methods to support postmarketing safety surveillance activities. Two commonly used methods, empirical Bayes multi-item gamma Poisson shrinker (MGPS) and proportional reporting ratio (PRR), perform differently with respect to the number and types of signals detected. The goal of this study was to compare and analyse the performance characteristics of these two methods, to understand why they differ and to consider the practical implications of these differences for a large, industry-based pharmacovigilance department. We compared the numbers and types of signals of disproportionate reporting (SDRs) obtained with MGPS and PRR using two postmarketing safety databases and a simulated database. We recorded signal counts and performed a qualitative comparison of the drug-event combinations signalled by the two methods as well as a sensitivity analysis to better understand how the thresholds commonly used for these methods impact their performance. PRR detected more SDRs than MGPS. We observed that MGPS is less subject to confounding by demographic factors because it employs stratification and is more stable than PRR when report counts are low. Simulation experiments performed using published empirical thresholds demonstrated that PRR detected false-positive signals at a rate of 1.1%, while MGPS did not detect any statistical false positives. In an attempt to separate the effect of choice of signal threshold from more fundamental methodological differences, we performed a series of experiments in which we modified the conventional threshold values for each method so that each method detected the same number of SDRs for the example drugs studied. This analysis, which provided quantitative examples of the relationship between the published thresholds for the two methods, demonstrates that the signalling criterion published for PRR has a higher signalling frequency than that published for MGPS. The performance differences between the PRR and MGPS methods are related to (i) greater confounding by demographic factors with PRR; (ii) a higher tendency of PRR to detect false-positive signals when the number of reports is small; and (iii) the conventional thresholds that have been adapted for each method. PRR tends to be more 'sensitive' and less 'specific' than MGPS. A high-specificity disproportionality method, when used in conjunction with medical triage and investigation of critical medical events, may provide an efficient and robust approach to applying quantitative methods in routine postmarketing pharmacovigilance.

  11. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  12. Climate change in Lagos state, Nigeria: what really changed?

    PubMed

    Sojobi, Adebayo Olatunbosun; Balogun, Isaac Idowu; Salami, Adebayo Wahab

    2015-10-01

    Our study revealed periodicities of 2.3 and 2.25 years in wet and dry seasons and periodicities of 2 to 5 years on seasonal and annual timescales. Minimum temperature (Tmin), maximum temperature (Tmax) and evaporation recorded increases of 2.47, 1.37 and 28.37 %, respectively, but a reduction of 19.58 % in rainfall on decadal timescale. Periodicity of 8 to 12 years was also observed in annual Tmax. Cramer's test indicated a warming trend with significant Tmax increase in February, April, July, August, October and November during 2000-2009 on decadal monthly timescale, a significant decline in Summer rainfall but significant Tmax increase in Spring, Autumn and Winter on decadal seasonal timescale. The low correlation of rainfall with temperature parameters and evaporation indicates that advection of moisture into Lagos State seems to be the dominant mechanism controlling rainfall within the State alongside other tropical and extra-tropical factors. In addition, our study revealed that the persistent state of minimum temperature often precedes the arrival and reversal of the phase of maximum temperature. Furthermore, our study also revealed that extreme and high variable rainfalls, which are associated with the increased warming trend, had periodicities of 1 to 3 years with a probability of 86.45 % of occurring every 3 years between April and September. It is recommended that government and private sector should give financial and technical supports to climate researches in order to appropriately inform policy making to improve the adaptive capacity and resilience of Lagos State against climate change impacts and guard against maladaptation.

  13. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  14. Real-time adaptive ramp metering : phase I, MILOS proof of concept (multi-objective, integrated, large-scale, optimized system).

    DOT National Transportation Integrated Search

    2006-12-01

    Over the last several years, researchers at the University of Arizonas ATLAS Center have developed an adaptive ramp : metering system referred to as MILOS (Multi-Objective, Integrated, Large-Scale, Optimized System). The goal of this project : is ...

  15. Is the bitter rejection response always adaptive?

    PubMed

    Glendinning, J I

    1994-12-01

    The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially toxic compounds constitute a small portion of their diet. Since the low bitter threshold would reduce substantially the risk of ingesting anything poisonous, carnivores were also expected to have a relatively low tolerance to dietary poisons. This hypothesis was supported by a comparison involving 30 mammal species, in which a suggestive relationship was found between quinine hydrochloride sensitivity and trophic group, with carnivores > omnivores > grazers > browsers. Further support for the hypothesis was provided by a comparison across browsers and grazers in terms of the production of tannin-binding salivary proteins, which probably represent an adaptation for reducing the bitterness and astringency of tannins.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. A TIGHT CONNECTION BETWEEN GAMMA-RAY OUTBURSTS AND PARSEC-SCALE JET ACTIVITY IN THE QUASAR 3C 454.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorstad, Svetlana G.; Marscher, Alan P.; Agudo, Ivan

    2013-08-20

    We analyze the multi-frequency behavior of the quasar 3C 454.3 during three prominent {gamma}-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each {gamma}-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the {gamma}-ray outbursts, although the {gamma}-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly overmore » the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the {gamma}-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the {gamma}-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that {gamma}-ray outbursts with variability timescales as short as {approx}3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.« less

  17. Conformational dynamics and ligand binding in the multi-domain protein PDC109.

    PubMed

    Kim, Hyun Jin; Choi, Moo Young; Kim, Hyung J; Llinás, Miguel

    2010-02-18

    PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2) repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs), a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD) simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1), estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.

  18. Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, Christa

    2015-12-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.

  19. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.

  20. Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images

    NASA Astrophysics Data System (ADS)

    Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis

    2018-01-01

    Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.

  1. Multiratio fusion change detection with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Hytla, Patrick C.; Balster, Eric J.; Vasquez, Juan R.; Neuroth, Robert M.

    2017-04-01

    A ratio-based change detection method known as multiratio fusion (MRF) is proposed and tested. The MRF framework builds on other change detection components proposed in this work: dual ratio (DR) and multiratio (MR). The DR method involves two ratios coupled with adaptive thresholds to maximize detected changes and minimize false alarms. The use of two ratios is shown to outperform the single ratio case when the means of the image pairs are not equal. MR change detection builds on the DR method by including negative imagery to produce four total ratios with adaptive thresholds. Inclusion of negative imagery is shown to improve detection sensitivity and to boost detection performance in certain target and background cases. MRF further expands this concept by fusing together the ratio outputs using a routine in which detections must be verified by two or more ratios to be classified as a true changed pixel. The proposed method is tested with synthetically generated test imagery and real datasets with results compared to other methods found in the literature. DR is shown to significantly outperform the standard single ratio method. MRF produces excellent change detection results that exhibit up to a 22% performance improvement over other methods from the literature at low false-alarm rates.

  2. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less

  3. Spreaders and Sponges define metastasis in lung cancer: A Markov chain Monte Carlo Mathematical Model

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Norton, Larry; Kuhn, Peter

    2013-01-01

    The classic view of metastatic cancer progression is that it is a unidirectional process initiated at the primary tumor site, progressing to variably distant metastatic sites in a fairly predictable, though not perfectly understood, fashion. A Markov chain Monte Carlo mathematical approach can determine a pathway diagram that classifies metastatic tumors as ‘spreaders’ or ‘sponges’ and orders the timescales of progression from site to site. In light of recent experimental evidence highlighting the potential significance of self-seeding of primary tumors, we use a Markov chain Monte Carlo (MCMC) approach, based on large autopsy data sets, to quantify the stochastic, systemic, and often multi-directional aspects of cancer progression. We quantify three types of multi-directional mechanisms of progression: (i) self-seeding of the primary tumor; (ii) re-seeding of the primary tumor from a metastatic site (primary re-seeding); and (iii) re-seeding of metastatic tumors (metastasis re-seeding). The model shows that the combined characteristics of the primary and the first metastatic site to which it spreads largely determine the future pathways and timescales of systemic disease. For lung cancer, the main ‘spreaders’ of systemic disease are the adrenal gland and kidney, whereas the main ‘sponges’ are regional lymph nodes, liver, and bone. Lung is a significant self-seeder, although it is a ‘sponge’ site with respect to progression characteristics. PMID:23447576

  4. Improving Magnitude Detection Thresholds Using Multi-Station Multi-Event, and Multi-Phase Methods

    DTIC Science & Technology

    2008-07-31

    applied to different tectonic settings and for what percentage of the seismicity. 111 million correlations were performed on Lg-waves for the events in...x xi Acknowledgments We’d like to thank the operators of the Chinese Digital Seismograph Network, the U.S. Geological Survey, and...applicable correlation methods can be applied to different tectonic settings and for what percentage of the seismicity. 111 million correlations were

  5. Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory

    NASA Astrophysics Data System (ADS)

    Lanir, Yoram

    2017-10-01

    Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.

  6. Convection and mass loss through the chromosphere of Betelgeuse

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen

    2011-10-01

    Betelgeuse is well suited for detailed study of the mass loss process in a massive red supergiant. We have engaged in a multi-scale, multi-color study to trace the ejected material from the photosphere to the interstellar medium, and understand its chemical evolution {formation of molecules and dust}. Infrared interferometry already gave us a detailed image of the photosphere, compatible with large convective cells. Adaptive optics spectro-imaging {1.0-2.2 microns} allowed us to detect the presence of the CN molecule and mass loss plume structures up to at least 6 R*. At larger distances, we observed silicate-rich dust in thermal IR {8-20 microns}. From the surface to 100 R*, we therefore have a continuous coverage with multicolor imagery. The chromosphere lies at a key location, between the photosphere and the molecular envelope. As shown by STIS spatially resolved spectroscopy {Lobel & Dupree 2001}, it contains rising and falling gases. Such structure is supported by our 3D modeling of the convection. In order to probe the dynamics of the envelope and its relation to photospheric spots and mass loss plumes, we propose to obtain UV imaging with STIS at 3 epochs to complement our coordinated ground-based effort as well as the earlier HST UV snapshots. We will use this imagery to correlate structures at different radii and temperatures, and to explore the time-scales of evolution. With the support of our 3D models, this information will answer specific questions including deciding between convective and polar explanations for bright spots and plumes. Our infrared imaging observations will be repeated contemporaneously with the requested HST/STIS images.

  7. Psychophysical chromatic mechanisms in macaque monkey.

    PubMed

    Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R

    2012-10-24

    Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.

  8. Dark adaptation and the retinoid cycle of vision.

    PubMed

    Lamb, T D; Pugh, E N

    2004-05-01

    Following exposure of our eye to very intense illumination, we experience a greatly elevated visual threshold, that takes tens of minutes to return completely to normal. The slowness of this phenomenon of "dark adaptation" has been studied for many decades, yet is still not fully understood. Here we review the biochemical and physical processes involved in eliminating the products of light absorption from the photoreceptor outer segment, in recycling the released retinoid to its original isomeric form as 11-cis retinal, and in regenerating the visual pigment rhodopsin. Then we analyse the time-course of three aspects of human dark adaptation: the recovery of psychophysical threshold, the recovery of rod photoreceptor circulating current, and the regeneration of rhodopsin. We begin with normal human subjects, and then analyse the recovery in several retinal disorders, including Oguchi disease, vitamin A deficiency, fundus albipunctatus, Bothnia dystrophy and Stargardt disease. We review a large body of evidence showing that the time-course of human dark adaptation and pigment regeneration is determined by the local concentration of 11-cis retinal, and that after a large bleach the recovery is limited by the rate at which 11-cis retinal is delivered to opsin in the bleached rod outer segments. We present a mathematical model that successfully describes a wide range of results in human and other mammals. The theoretical analysis provides a simple means of estimating the relative concentration of free 11-cis retinal in the retina/RPE, in disorders exhibiting slowed dark adaptation, from analysis of psychophysical measurements of threshold recovery or from analysis of pigment regeneration kinetics.

  9. The Rapid Ice Sheet Change Observatory (RISCO)

    NASA Astrophysics Data System (ADS)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images and image animations from the ice sheet scale down to scales of meters, (2) maps of ice flow velocity and acceleration and (3) digital elevation models and elevation change maps. These products are created both from user-tasked data acquisitions and from a decade of archived data. An online user interface will allow browsing of the data catalog, product ordering and requests for sensor tasking. Over the next few years, RISCO will develop into a long-term observational system, with an adaptable infrastructure to accommodate new sensors and currently unforeseeable demands. RISCO has the potential to greatly enhance observation of ice sheets, moving from ad hoc studies of past changes using whatever data happens to be available, to scalable, targeted, near-real time monitoring of events as they occur.

  10. Carbon recycling in deltaic sediments: variations at different timescales in the Rhone River delta

    NASA Astrophysics Data System (ADS)

    Rabouille, C.; Rassmann, J.; Toussaint, F.; Cathalot, C.; Tisnerat-Laborde, N.; Lansard, B.

    2016-02-01

    Terrestrial aquatic environments and the land-sea connection are a major contributors to the Earth carbon cycle, as these act as a source to the atmosphere of about 1 Gt/yr for rivers and up to 0.4 Gt/yr for estuarine/detaic systems. These estimates are largely uncertain because of the large temporal variability of these systems. In estuarine and deltaic sediments, variability combines hydrological variation from the river (floods and drought) and the hydrology of the coastal seas (storms, current surge, wind induced circulation, upwelling) wich are both influencial on biogeochemistry. This hydrological variability interacts with the seasonal variation of in situ production and with thermal activation of bacterial recycling due to seasonal warming of shallow waters. The combination of these processes gives rise to a range of timescales: typically hours to days for resuspension during storms to interannual variations for particulate discharge modulations. Using in situ oxygen microprofiling devices, we have collected a new dataset on organic matter recycling in the Rhone delta and shelf sediments (Northwestern Mediterranean Sea) which covers a wide range of timescales: from hours to a decade. The hourly variation is collected using a new benthic station deployed on the sediments and specially adapted to monitor short-term variations of sediment oxygen micro-profiles during flood or storms. The seasonal to decadal timescale is constituted by a set of oxygen micro-profiles measured on an array of stations in the Rhône prodelta and shelf by an in situ microprofiler during seasonal cruises over 10 year. The results show that Diffusive Oxygen Fluxes which are related to organic matter recycling vary at all timescales, driven mostly by deposition of river material during floods. Resuspension during storms plays a role over short time scales, and its long-term effect could raise the overall oxygen demand of the sediment by 20-30%.

  11. Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser assisted by multiple four-wave mixing processes in a ring cavity

    NASA Astrophysics Data System (ADS)

    Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.

    2015-03-01

    Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.

  12. Vacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery

    NASA Astrophysics Data System (ADS)

    Jain, Madhu; Meena, Rakesh Kumar

    2018-03-01

    Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (second) repairman turns on only when the work load of N1 (N2) failed machines is accumulated in the system. The both servers may go for vacation in case when all the machines are in good condition and there are no pending repair jobs for the repairmen. Runge-Kutta method is implemented to solve the set of governing equations used to formulate the Markov model. Various system metrics including the mean queue length, machine availability, throughput, etc., are derived to determine the performance of the machining system. To provide the computational tractability of the present investigation, a numerical illustration is provided. A cost function is also constructed to determine the optimal repair rate of the server by minimizing the expected cost incurred on the system. The hybrid soft computing method is considered to develop the adaptive neuro-fuzzy inference system (ANFIS). The validation of the numerical results obtained by Runge-Kutta approach is also facilitated by computational results generated by ANFIS.

  13. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes

    DTIC Science & Technology

    2013-06-01

    08-1-0358 TITLE: Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes PRINCIPAL...AND SUBTITLE Multi-Adaptive Plan (MAP) IMRT to Accommodate Independent 5a. CONTRACT NUMBER W81XWH-08-1-0358 Movement of the Prostate and...multi-adaptive plan (MAP) IMRT to accommodate independent movement of the two targeted tumor volumes. In this project, we evaluated two adaptive

  14. Large-field-of-view imaging by multi-pupil adaptive optics.

    PubMed

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  15. Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience

    PubMed Central

    Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.

    2014-01-01

    Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch-adapting or matched-pitch patterns tended to have better low-frequency thresholds than subjects in the latter categories. Changes in electrode discrimination over time were not associated with changes in pitch differences between electrodes. Reductions in speech perception scores over time showed a weak but nonsignificant association with dropping-pitch patterns. Conclusions Bimodal CI users with more residual hearing may have somewhat greater similarity to Hybrid CI users and be more likely to adapt pitch perception to reduce mismatch with the frequencies allocated to the electrodes and the acoustic hearing. In contrast, bimodal CI users with less residual hearing exhibit either no adaptation, or surprisingly, a third pattern in which the pitches of the basal electrodes drop to match the frequency range allocated to the most apical electrode. The lack of association of electrode discrimination changes with pitch changes suggests that electrode discrimination does not depend on perceived pitch differences between electrodes, but rather on some other characteristics such as timbre. In contrast, speech perception may depend more on pitch perception and the ability to distinguish pitch between electrodes, especially since during multi-electrode stimulation, cues such as timbre may be less useful for discrimination. PMID:25319401

  16. A robust definition of South Asian monsoon onset and retreat

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Bordoni, S.

    2017-12-01

    In this study, we revisit one of the major outstanding problems in the monsoon literature: defining the onset and retreat of the South Asian summer monsoon (SASM). The SASM rainy season, which provides essential water resources to densely populated and rapidly growing countries in South Asia, begins with a dramatic increase in rainfall and an abrupt reversal in near-surface winds, and concludes with a more gradual transition at season's end. Many different measures of SASM onset and retreat have been developed for specific applications, but there is no widely accepted and broadly applicable objective definition. Existing definitions generally rely upon thresholds, posing challenges such as sensitivity to threshold selection and susceptibility to false onsets due to transient weather conditions. In this study, we use the large-scale atmospheric moisture budget to define an SASM onset and retreat index that captures the seasonal transitions in both precipitation and circulation. Our use of change point detection eliminates the need for thresholds, provides a precise characterization of the timescales and stages of the SASM, and allows straightforward comparison across different datasets and climate models. This robust and flexible methodology is ideal for studying variability and trends in monsoon timing, as well as comparing model performance and assessing future SASM changes in climate simulations.

  17. Exciton recombination in lasing contributing an opposite abrupt change of the electrical behavior near threshold between GaN- and GaAs- multi-quantum-well laser diodes

    NASA Astrophysics Data System (ADS)

    Feng, Liefeng; Wang, Shupeng; Li, Yang; Li, Ding; Wang, Cunda

    2018-03-01

    The opposite sudden change of electrical characteristics between narrow and wide bang-gap multi-quantum-well (MQW) laser diodes (LDs) in the threshold region (which is defined as a current region between two kinks of IdV/dI-I curve) shows an interesting phenomenon that the slope changes of IdV/dI-I or V j -I curve between two adjacent regions (‘below’ and ‘in’, or ‘in’ and ‘above’ threshold region) display an approximate e-exponential relationship with the wavelengths of LDs. After comparing the exciton binding energy in different MQW LDs, and analyzing the temperature dependence of V j -I and IdV/dI-I of GaN MQW LDs, we suggested that the fraction of exciton recombination into lasing is a reason causing the relationship of sudden changes of the electrical characteristics with wavelengths of LDs.

  18. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    NASA Astrophysics Data System (ADS)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in the north-west Weddell Sea. The lag observed between the two time series is due to the difference in water mass paths to the observation points in Drake Passage. We discuss the role of atmospheric modes of variability such as ENSO and SAM, as well as climate trends, on this relationship and their potential impact on future LWSDW export.

  19. Evaluation and Application of Enhancements to the Performance of the ASDE-3 Radar in Heavy Rain

    DOT National Transportation Integrated Search

    1982-03-01

    This report presents the results of a study performed by the Transportation Systems Center (TSC) to evaluate two proposed enhancements to the performance of the ASDE-3 Radar in heavy rain: Adaptive gain and adaptive clutter thresholding, (operating w...

  20. Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less

Top