Science.gov

Sample records for multi-type network approach

  1. mEducator: A Best Practice Network for Repurposing and Sharing Medical Educational Multi-type Content

    NASA Astrophysics Data System (ADS)

    Bamidis, Panagiotis D.; Kaldoudi, Eleni; Pattichis, Costas

    Although there is an abundance of medical educational content available in individual EU academic institutions, this is not widely available or easy to discover and retrieve, due to lack of standardized content sharing mechanisms. The mEducator EU project will face this lack by implementing and experimenting between two different sharing mechanisms, namely, one based one mashup technologies, and one based on semantic web services. In addition, the mEducator best practice network will critically evaluate existing standards and reference models in the field of e-learning in order to enable specialized state-of-the-art medical educational content to be discovered, retrieved, shared, repurposed and re-used across European higher academic institutions. Educational content included in mEducator covers and represents the whole range of medical educational content, from traditional instructional teaching to active learning and experiential teaching/studying approaches. It spans the whole range of types, from text to exam sheets, algorithms, teaching files, computer programs (simulators or games) and interactive objects (like virtual patients and electronically traced anatomies), while it covers a variety of topics. In this paper, apart from introducing the relevant project concepts and strategies, emphasis is also placed on the notion of (dynamic) user-generated content, its advantages and peculiarities, as well as, gaps in current research and technology practice upon its embedding into existing standards.

  2. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  3. A Network Design Approach to Countering Terrorism

    DTIC Science & Technology

    2015-09-01

    disrupt dark networks, and social network analysis (SNA) has proven to be a useful tool for analyzing network structure and identifying weaknesses...conclusion is that design matters ; results depend on how well networks are configured for the specific environment, and the network design approach can be...LEFT BLANK v ABSTRACT Several recent terrorist attacks in Western countries have highlighted the need for strategies to disrupt dark networks

  4. A network approach based on cliques

    NASA Astrophysics Data System (ADS)

    Fadigas, I. S.; Pereira, H. B. B.

    2013-05-01

    The characterization of complex networks is a procedure that is currently found in several research studies. Nevertheless, few studies present a discussion on networks in which the basic element is a clique. In this paper, we propose an approach based on a network of cliques. This approach consists not only of a set of new indices to capture the properties of a network of cliques but also of a method to characterize complex networks of cliques (i.e., some of the parameters are proposed to characterize the small-world phenomenon in networks of cliques). The results obtained are consistent with results from classical methods used to characterize complex networks.

  5. A Network Approach to Curriculum Quality Assessment

    ERIC Educational Resources Information Center

    Jordens, J. Zoe; Zepke, Nick

    2009-01-01

    This paper argues for an alternative approach to quality assurance in New Zealand universities that locates evaluation not with external auditors but with members of the teaching team. In the process, aspects of network theories are introduced as the basis for an approach to quality assurance. From this, the concept of networks is extended to…

  6. Process-in-Network: A Comprehensive Network Processing Approach

    PubMed Central

    Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos

    2012-01-01

    A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network. PMID:22969390

  7. Process-in-Network: a comprehensive network processing approach.

    PubMed

    Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos

    2012-01-01

    A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network.

  8. Network Medicine: A Network-based Approach to Human Diseases

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  9. Qualitative networks: a symbolic approach to analyze biological signaling networks

    PubMed Central

    Schaub, Marc A; Henzinger, Thomas A; Fisher, Jasmin

    2007-01-01

    Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology. PMID:17408511

  10. Approaching human language with complex networks

    NASA Astrophysics Data System (ADS)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  11. Approaching human language with complex networks.

    PubMed

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  12. A Transfer Learning Approach for Network Modeling

    PubMed Central

    Huang, Shuai; Li, Jing; Chen, Kewei; Wu, Teresa; Ye, Jieping; Wu, Xia; Yao, Li

    2012-01-01

    Networks models have been widely used in many domains to characterize the interacting relationship between physical entities. A typical problem faced is to identify the networks of multiple related tasks that share some similarities. In this case, a transfer learning approach that can leverage the knowledge gained during the modeling of one task to help better model another task is highly desirable. In this paper, we propose a transfer learning approach, which adopts a Bayesian hierarchical model framework to characterize task relatedness and additionally uses the L1-regularization to ensure robust learning of the networks with limited sample sizes. A method based on the Expectation-Maximization (EM) algorithm is further developed to learn the networks from data. Simulation studies are performed, which demonstrate the superiority of the proposed transfer learning approach over single task learning that learns the network of each task in isolation. The proposed approach is also applied to identification of brain connectivity networks of Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The findings are consistent with the AD literature. PMID:24526804

  13. An approach to metering and network modeling

    SciTech Connect

    Adibi, M.M. ); Clements, K.A. ); Kafka, R.J. ); Stovall, J.P. )

    1992-01-01

    Estimation of the static state of an electric power network has become a standard function in real-time monitoring and control. Its purpose is to use the network model and process the metering data in order to determine an accurate and reliable estimate of the system state in the real-time environment. In the models usually used it is assumed that the network parameters and topology are free of errors and the measurement system provides unbiased data having a known distribution. The network and metering models however, contain errors which frequently result in either non-convergent behavior of the state estimator or exceedingly large residuals, reducing the level of confidence in the results. This paper describes an approach minimizing the above uncertainties by analyzing the data which are routinely collected at the power system control center. The approach will improve the reliability of the real-time data-base while reducing the state estimator installation and maintenance effort.

  14. Queuing network approach for building evacuation planning

    NASA Astrophysics Data System (ADS)

    Ishak, Nurhanis; Khalid, Ruzelan; Baten, Md. Azizul; Nawawi, Mohd. Kamal Mohd.

    2014-12-01

    The complex behavior of pedestrians in a limited space layout can explicitly be modeled using an M/G/C/C state dependent queuing network. This paper implements the approach to study pedestrian flows through various corridors in a topological network. The best arrival rates and their impacts to the corridors' performances in terms of the throughput, blocking probability, expected number of occupants in the system and expected travel time were first measured using the M/G/C/C analytical model. These best arrival rates were then fed to its Network Flow Programming model to find the best arrival rates to source corridors and routes optimizing the network's total throughput. The analytical results were then validated using a simulation model. Various results of this study can be used to support the current Standard Operating Procedures (SOP) to efficiently and safely evacuate people in emergency cases.

  15. Neural network approaches for noisy language modeling.

    PubMed

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  16. An approach to metering and network modeling

    SciTech Connect

    Adibi, M.M.; Clements, K.A.; Kafka, R.J.; Stovall, J.P.

    1992-06-01

    Estimation of the static state of an electric power network has become a standard function in real-time monitoring and control. Its purpose is to use the network model and process the metering data in order to determine an accurate and reliable estimate of the system state in the real-time environment. In the models usually used it is assumed that the network parameters and topology are free of errors and the measurement system provides unbiased data having a known distribution. The network and metering models however, contain errors which frequently result in either non-convergent behavior of the state estimator or exceedingly large residual, reducing the level of confidence in the results. This paper describes an approach minimizing the above uncertainties by analyzing the data which are routinely collected at the power system control center. The approach while improve the reliability of the real-time data-base while reducing the state estimator installation and maintenance effort. 5 refs.

  17. An approach to metering and network modeling

    SciTech Connect

    Adibi, M.M. ); Clements, K.A. ); Kafka, R.J. ); Stovall, J.P. )

    1992-01-01

    Estimation of the static state of an electric power network has become a standard function in real-time monitoring and control. Its purpose is to use the network model and process the metering data in order to determine an accurate and reliable estimate of the system state in the real-time environment. In the models usually used it is assumed that the network parameters and topology are free of errors and the measurement system provides unbiased data having a known distribution. The network and metering models however, contain errors which frequently result in either non-convergent behavior of the state estimator or exceedingly large residual, reducing the level of confidence in the results. This paper describes an approach minimizing the above uncertainties by analyzing the data which are routinely collected at the power system control center. The approach while improve the reliability of the real-time data-base while reducing the state estimator installation and maintenance effort. 5 refs.

  18. Systems approaches to the networks of aging.

    PubMed

    Kriete, Andres; Sokhansanj, Bahrad A; Coppock, Donald L; West, Geoffrey B

    2006-11-01

    The aging of an organism is the result of complex changes in structure and function of molecules, cells, tissues, and whole body systems. To increase our understanding of how aging works, we have to analyze and integrate quantitative evidence from multiple levels of biological organization. Here, we define a broader conceptual framework for a quantitative, computational systems biology approach to aging. Initially, we consider fractal supply networks that give rise to scaling laws relating body mass, metabolism and lifespan. This approach provides a top-down view of constrained cellular processes. Concomitantly, multi-omics data generation build such a framework from the bottom-up, using modeling strategies to identify key pathways and their physiological capacity. Multiscale spatio-temporal representations finally connect molecular processes with structural organization. As aging manifests on a systems level, it emerges as a highly networked process regulated through feedback loops between levels of biological organization.

  19. A Network Approach to Rare Disease Modeling

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan; Rabello, Sabrina; Sharma, Amitabh; Wiest, Olaf; Barabasi, Albert-Laszlo

    2011-03-01

    Network approaches have been widely used to better understand different areas of natural and social sciences. Network Science had a particularly great impact on the study of biological systems. In this project, using biological networks, candidate drugs as a potential treatment of rare diseases were identified. Developing new drugs for more than 2000 rare diseases (as defined by ORPHANET) is too expensive and beyond expectation. Disease proteins do not function in isolation but in cooperation with other interacting proteins. Research on FDA approved drugs have shown that most of the drugs do not target the disease protein but a protein which is 2 or 3 steps away from the disease protein in the Protein-Protein Interaction (PPI) network. We identified the already known drug targets in the disease gene's PPI subnetwork (up to the 3rd neighborhood) and among them those in the same sub cellular compartment and higher coexpression coefficient with the disease gene are expected to be stronger candidates. Out of 2177 rare diseases, 1092 were found not to have any drug target. Using the above method, we have found the strongest candidates among the rest in order to further experimental validations.

  20. Insomnia and Personality—A Network Approach

    PubMed Central

    Dekker, Kim; Blanken, Tessa F.; Van Someren, Eus J. W.

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N = 2089) to obtain an integrated view on the associations of personality traits with both overall insomnia severity and different insomnia characteristics, while distinguishing direct from indirect associations. We first estimated a network describing the associations among the five factor model personality traits and overall insomnia severity. Overall insomnia severity was associated with neuroticism, agreeableness, and openness. Subsequently, we estimated a separate network describing the associations among the personality traits and each of the seven individual items of the Insomnia Severity Index. This revealed relatively separate clusters of daytime and nocturnal insomnia complaints, that both contributed to dissatisfaction with sleep, and were both most directly associated with neuroticism and conscientiousness. The approach revealed the strongest direct associations between personality traits and the severity of different insomnia characteristics and overall insomnia severity. Differentiating them from indirect associations identified the targets for improving Cognitive Behavioral Therapy for insomnia with the highest probability of effectively changing the network of associated complaints. PMID:28257084

  1. Differential Correlates of Multi-Type Maltreatment among Urban Youth

    ERIC Educational Resources Information Center

    Arata, Catalina M.; Langhinrichsen-Rohling, Jennifer; Bowers, David; O'Brien, Natalie

    2007-01-01

    Objective: The aim of this study was to examine the differential effects of multi-types of maltreatment in an adolescent sample. Different combinations of maltreatment (emotional, sexual, physical, neglect) were examined in relation to both negative affect and externalizing symptoms in male and female youth. Method: One thousand four hundred…

  2. Leveraging modeling approaches: reaction networks and rules.

    PubMed

    Blinov, Michael L; Moraru, Ion I

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

  3. An approach for modeling vulnerability of the network of networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Song, Bo; Zhang, Zhaojun; Liu, Haikuan

    2014-10-01

    In this paper, a framework is given to model the network of networks and to investigate the vulnerability of the network of networks subjected to failures. Because there are several redundant systems in infrastructure systems, the dependent intensity between two networks is introduced and adopted to discuss the vulnerability of the interdependent infrastructure networks subjected to failures. Shanghai electrified rail transit network is used to illustrate the feasibility and effectiveness of the proposed framework. Because the rail network is dependent on the power grid and communication network, the corresponding power grid and communication network are also included in this system. Meanwhile the failures to the power grid and communication network are utilized to investigate the vulnerability of the rail network. The results show that the rail network strongly depends on the power grid and weakly depends on the communication network, and the transport functionality loss of the rail network increases with the increase of dependent intensity. Meanwhile the highest betweenness node-based attack to the power grid and the largest degree node-based attack to the communication network can result in the most functionality losses to the rail network. Moreover, the functionality loss of the rail network has the smallest value when the tolerance parameter of the power grid equals 0.75 and the critical nodes of the power grid and communication network can be obtained by simulations.

  4. A Complex Network Approach to Stylometry.

    PubMed

    Amancio, Diego Raphael

    2015-01-01

    Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to represent texts with physical models, only a limited number of studies have shown how the properties of the underlying physical systems can be employed to improve the performance of natural language processing tasks. In this paper, I address this problem by devising complex networks methods that are able to improve the performance of current statistical methods. Using a fuzzy classification strategy, I show that the topological properties extracted from texts complement the traditional textual description. In several cases, the performance obtained with hybrid approaches outperformed the results obtained when only traditional or networked methods were used. Because the proposed model is generic, the framework devised here could be straightforwardly used to study similar textual applications where the topology plays a pivotal role in the description of the interacting agents.

  5. A Complex Network Approach to Stylometry

    PubMed Central

    Amancio, Diego Raphael

    2015-01-01

    Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to represent texts with physical models, only a limited number of studies have shown how the properties of the underlying physical systems can be employed to improve the performance of natural language processing tasks. In this paper, I address this problem by devising complex networks methods that are able to improve the performance of current statistical methods. Using a fuzzy classification strategy, I show that the topological properties extracted from texts complement the traditional textual description. In several cases, the performance obtained with hybrid approaches outperformed the results obtained when only traditional or networked methods were used. Because the proposed model is generic, the framework devised here could be straightforwardly used to study similar textual applications where the topology plays a pivotal role in the description of the interacting agents. PMID:26313921

  6. The NASA Science Internet: An integrated approach to networking

    NASA Technical Reports Server (NTRS)

    Rounds, Fred

    1991-01-01

    An integrated approach to building a networking infrastructure is an absolute necessity for meeting the multidisciplinary science networking requirements of the Office of Space Science and Applications (OSSA) science community. These networking requirements include communication connectivity between computational resources, databases, and library systems, as well as to other scientists and researchers around the world. A consolidated networking approach allows strategic use of the existing science networking within the Federal government, and it provides networking capability that takes into consideration national and international trends towards multivendor and multiprotocol service. It also offers a practical vehicle for optimizing costs and maximizing performance. Finally, and perhaps most important to the development of high speed computing is that an integrated network constitutes a focus for phasing to the National Research and Education Network (NREN). The NASA Science Internet (NSI) program, established in mid 1988, is structured to provide just such an integrated network. A description of the NSI is presented.

  7. A Sociospatial Approach to Understanding Terrorist Networks

    SciTech Connect

    Medina, Richard M; Hepner, George F.

    2011-01-01

    Terrorist networks operate in hybrid space where activities in social and geographic spaces are necessary for logistics and security. The Islamist terrorist network is analyzed as a sociospatial system using social network analysis, Geographic Information Science (GISc), and novel techniques designed for hybrid space analyses. This research focuses on identifying distance and sociospatial dependencies within the terrorist network. A methodology for analyzing sociospatial systems is developed and results lead to a greater understanding of terrorist network structures and activities. Distance and sociospatial dependencies are shown to exist for the Islamist terrorist network structure. These findings are discordant with recent literature that focuses on terrorist network tendencies toward decentralization in the information age. In this research, the Islamist terrorist network is theorized to use multiple structures of hierarchical and decentralized organization for effectiveness, efficiency, and resilience. Implications for counterterrorism policy and strategies are given.

  8. Input-state approach to Boolean networks.

    PubMed

    Cheng, Daizhan

    2009-03-01

    This paper investigates the structure of Boolean networks via input-state structure. Using the algebraic form proposed by the author, the logic-based input-state dynamics of Boolean networks, called the Boolean control networks, is converted into an algebraic discrete-time dynamic system. Then the structure of cycles of Boolean control systems is obtained as compounded cycles. Using the obtained input-state description, the structure of Boolean networks is investigated, and their attractors are revealed as nested compounded cycles, called rolling gears. This structure explains why small cycles mainly decide the behaviors of cellular networks. Some illustrative examples are presented.

  9. Structural factoring approach for analyzing stochastic networks

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  10. Implementing the Fussy Baby Network[R] Approach

    ERIC Educational Resources Information Center

    Gilkerson, Linda; Hofherr, Jennifer; Heffron, Mary Claire; Sims, Jennifer Murphy; Jalowiec, Barbara; Bromberg, Stacey R.; Paul, Jennifer J.

    2012-01-01

    Erikson Institute Fussy Baby Network[R] (FBN) developed an approach to engaging parents around their urgent concerns about their baby's crying, sleeping, or feeding in a way which builds their longer-term capacities as parents. This approach, called the FAN, is now in place in new Fussy Baby Network programs around the country and is being infused…

  11. Algebraic Approach for Recovering Topology in Distributed Camera Networks

    DTIC Science & Technology

    2009-01-14

    Algebraic Approach for Recovering Topology in Distributed Camera Networks Edgar J. Lobaton Parvez Ahammad S. Shankar Sastry Electrical Engineering...Topology in Distributed Camera Networks Edgar J. Lobaton , Parvez Ahammad, S. Shankar Sastry ∗† January 14, 2009 Abstract Camera networks are widely used...well as a real-world experimental set-up. Our proposed approach ∗E.J. Lobaton and S.S. Sastry are with the Electrical Engineering and Computer

  12. Unification of theoretical approaches for epidemic spreading on complex networks.

    PubMed

    Wang, Wei; Tang, Ming; Eugene Stanley, H; Braunstein, Lidia A

    2017-03-01

    Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.

  13. Unification of theoretical approaches for epidemic spreading on complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Tang, Ming; Stanley, H. Eugene; Braunstein, Lidia A.

    2017-03-01

    Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.

  14. Overlapping community detection in weighted networks via a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  15. Considerations for Software Defined Networking (SDN): Approaches and use cases

    NASA Astrophysics Data System (ADS)

    Bakshi, K.

    Software Defined Networking (SDN) is an evolutionary approach to network design and functionality based on the ability to programmatically modify the behavior of network devices. SDN uses user-customizable and configurable software that's independent of hardware to enable networked systems to expand data flow control. SDN is in large part about understanding and managing a network as a unified abstraction. It will make networks more flexible, dynamic, and cost-efficient, while greatly simplifying operational complexity. And this advanced solution provides several benefits including network and service customizability, configurability, improved operations, and increased performance. There are several approaches to SDN and its practical implementation. Among them, two have risen to prominence with differences in pedigree and implementation. This paper's main focus will be to define, review, and evaluate salient approaches and use cases of the OpenFlow and Virtual Network Overlay approaches to SDN. OpenFlow is a communication protocol that gives access to the forwarding plane of a network's switches and routers. The Virtual Network Overlay relies on a completely virtualized network infrastructure and services to abstract the underlying physical network, which allows the overlay to be mobile to other physical networks. This is an important requirement for cloud computing, where applications and associated network services are migrated to cloud service providers and remote data centers on the fly as resource demands dictate. The paper will discuss how and where SDN can be applied and implemented, including research and academia, virtual multitenant data center, and cloud computing applications. Specific attention will be given to the cloud computing use case, where automated provisioning and programmable overlay for scalable multi-tenancy is leveraged via the SDN approach.

  16. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  17. Social Networks and Mourning: A Comparative Approach.

    ERIC Educational Resources Information Center

    Rubin, Nissan

    1990-01-01

    Suggests using social network theory to explain varieties of mourning behavior in different societies. Compares participation in funeral ceremonies of members of different social circles in American society and Israeli kibbutz. Concludes that results demonstrated validity of concepts deriving from social network analysis in study of bereavement,…

  18. Control of tree water networks: A geometric programming approach

    NASA Astrophysics Data System (ADS)

    Sela Perelman, L.; Amin, S.

    2015-10-01

    This paper presents a modeling and operation approach for tree water supply systems. The network control problem is approximated as a geometric programming (GP) problem. The original nonlinear nonconvex network control problem is transformed into a convex optimization problem. The optimization model can be efficiently solved to optimality using state-of-the-art solvers. Two control schemes are presented: (1) operation of network actuators (pumps and valves) and (2) controlled demand shedding allocation between network consumers with limited resources. The dual of the network control problem is formulated and is used to perform sensitivity analysis with respect to hydraulic constraints. The approach is demonstrated on a small branched-topology network and later extended to a medium-size irrigation network. The results demonstrate an intrinsic trade-off between energy costs and demand shedding policy, providing an efficient decision support tool for active management of water systems.

  19. Damage detection in bridge structures under moving loads with phase trajectory change of multi-type vibration measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Li, Jun; Hao, Hong; Ma, Hongwei

    2017-03-01

    This paper presents a non-model based damage detection approach for bridge structures under moving loads based on the phase trajectory change of multi-type vibration measurements. A brief theoretical background on the vibration of a simply-supported bridge with a crack under moving load is described. The phase trajectories of multi-type dynamic responses are obtained and a damage index is defined as the separated distance between the trajectories of undamaged and damaged structures to indicate the damage location. Numerical studies on a simply-supported beam structure are conducted to investigate the sensitivity and robustness of the proposed approach to accurately identify the damage location. Experimental studies demonstrate that the proposed approach can be used to successfully identify the shear connection failure in a composite bridge model subjected to moving loads.

  20. Insider Threat Mitigation Project: A Dynamic Network Approach (Poster)

    DTIC Science & Technology

    2014-10-23

    OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Insider Threat Mitigation Project: A Dynamic Network Approach 5a...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Insider Threat Mitigation Project A Dynamic Network Approach Approach: • Semi-automated coding...to- external communication • Remove suspected distribution lists • Identify “normal behavior” using Enron • Develop pattern for “ insiders ” in

  1. Efficient network meta-analysis: a confidence distribution approach*

    PubMed Central

    Yang, Guang; Liu, Dungang; Liu, Regina Y.; Xie, Minge; Hoaglin, David C.

    2014-01-01

    Summary Network meta-analysis synthesizes several studies of multiple treatment comparisons to simultaneously provide inference for all treatments in the network. It can often strengthen inference on pairwise comparisons by borrowing evidence from other comparisons in the network. Current network meta-analysis approaches are derived from either conventional pairwise meta-analysis or hierarchical Bayesian methods. This paper introduces a new approach for network meta-analysis by combining confidence distributions (CDs). Instead of combining point estimators from individual studies in the conventional approach, the new approach combines CDs which contain richer information than point estimators and thus achieves greater efficiency in its inference. The proposed CD approach can e ciently integrate all studies in the network and provide inference for all treatments even when individual studies contain only comparisons of subsets of the treatments. Through numerical studies with real and simulated data sets, the proposed approach is shown to outperform or at least equal the traditional pairwise meta-analysis and a commonly used Bayesian hierarchical model. Although the Bayesian approach may yield comparable results with a suitably chosen prior, it is highly sensitive to the choice of priors (especially the prior of the between-trial covariance structure), which is often subjective. The CD approach is a general frequentist approach and is prior-free. Moreover, it can always provide a proper inference for all the treatment effects regardless of the between-trial covariance structure. PMID:25067933

  2. Power grid vulnerability: a complex network approach.

    PubMed

    Arianos, S; Bompard, E; Carbone, A; Xue, F

    2009-03-01

    Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.

  3. Power grid vulnerability: A complex network approach

    NASA Astrophysics Data System (ADS)

    Arianos, S.; Bompard, E.; Carbone, A.; Xue, F.

    2009-03-01

    Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.

  4. Scalable Approaches to Control Network Dynamics: Prospects for City Networks

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Gray, Kimberly A.

    2014-07-01

    A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...

  5. Community Structures in Bipartite Networks: A Dual-Projection Approach

    PubMed Central

    Melamed, David

    2014-01-01

    Identifying communities or clusters in networked systems has received much attention across the physical and social sciences. Most of this work focuses on single layer or one-mode networks, including social networks between people or hyperlinks between websites. Multilayer or multi-mode networks, such as affiliation networks linking people to organizations, receive much less attention in this literature. Common strategies for discovering the community structure of multi-mode networks identify the communities of each mode simultaneously. Here I show that this combined approach is ineffective at discovering community structures when there are an unequal number of communities between the modes of a multi-mode network. I propose a dual-projection alternative for detecting communities in multi-mode networks that overcomes this shortcoming. The evaluation of synthetic networks with known community structures reveals that the dual-projection approach outperforms the combined approach when there are a different number of communities in the various modes. At the same time, results show that the dual-projection approach is as effective as the combined strategy when the number of communities is the same between the modes. PMID:24836376

  6. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  7. Sampling of Complex Networks: A Datamining Approach

    NASA Astrophysics Data System (ADS)

    Loecher, Markus; Dohrmann, Jakob; Bauer, Gernot

    2007-03-01

    Efficient and accurate sampling of big complex networks is still an unsolved problem. As the degree distribution is one of the most commonly used attributes to characterize a network, there have been many attempts in recent papers to derive the original degree distribution from the data obtained during a traceroute- like sampling process. This talk describes a strategy for predicting the original degree of a node using the data obtained from a network by traceroute-like sampling making use of datamining techniques. Only local quantities (the sampled degree k, the redundancy of node detection r, the time of the first discovery of a node t and the distance to the sampling source d) are used as input for the datamining models. Global properties like the betweenness centrality are ignored. These local quantities are examined theoretically and in simulations to increase their value for the predictions. The accuracy of the models is discussed as a function of the number of sources used in the sampling process and the underlying topology of the network. The purpose of this work is to introduce the techniques of the relatively young field of datamining to the discussion on network sampling.

  8. A psychological approach to learning causal networks.

    PubMed

    Zargoush, Manaf; Alemi, Farrokh; Esposito Vinzi, Vinzenzo; Vang, Jee; Kheirbek, Raya

    2014-06-01

    We examine the role of a common cognitive heuristic in unsupervised learning of Bayesian probability networks from data. Human beings perceive a larger association between causal than diagnostic relationships. This psychological principal can be used to orient the arcs within Bayesian networks by prohibiting the direction that is less predictive. The heuristic increased predictive accuracy by an average of 0.51 % percent, a small amount. It also increased total agreement between different network learning algorithms (Max Spanning Tree, Taboo, EQ, SopLeq, and Taboo Order) by 25 %. Prior to use of the heuristic, the multiple raters Kappa between the algorithms was 0.60 (95 % confidence interval, CI, from 0.53 to 0.67) indicating moderate agreement among the networks learned through different algorithms. After the use of the heuristic, the multiple raters Kappa was 0.85 (95 % CI from 0.78 to 0.92). There was a statistically significant increase in agreement between the five algorithms (alpha < 0.05). These data suggest that the heuristic increased agreement between networks learned through use of different algorithms, without loss of predictive accuracy. Additional research is needed to see if findings persist in other data sets and to explain why a heuristic used by humans could improve construct validity of mathematical algorithms.

  9. Network Medicine: A Network-based Approach to Human Disease

    PubMed Central

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  10. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  11. A Gaussian graphical model approach to climate networks

    SciTech Connect

    Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  12. A Holistic Approach to Networked Information Systems Design and Analysis

    DTIC Science & Technology

    2016-04-15

    Supply in Systems with Solar Panels and Storage”, Industrial & Systems Engineering Research Conference, Nashville, TN. (Presenter: Gautam), 2015 P4...AFRL-AFOSR-VA-TR-2016-0159 A Holistic Approach to Networked Information Systems Design and Analysis P.R. Kumar TEXAS ENGINEERING EXPERIMENT STATION...necessary if the abstract is to be limited. DISTRIBUTION A: Distribution approved for public release A Holistic Approach to Networked Information Systems

  13. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  14. Approach of Complex Networks for the Determination of Brain Death

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Gang; Cao, Jian-Ting; Wang, Ru-Bin

    2011-06-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death.

  15. Social network approaches to leadership: an integrative conceptual review.

    PubMed

    Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S

    2015-05-01

    Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness.

  16. Complex network approach to fractional time series

    SciTech Connect

    Manshour, Pouya

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  17. Chemical approaches to study metabolic networks.

    PubMed

    Medina-Cleghorn, Daniel; Nomura, Daniel K

    2013-03-01

    One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways.

  18. A Full Bayesian Approach for Boolean Genetic Network Inference

    PubMed Central

    Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan

    2014-01-01

    Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820

  19. Electricity distribution networks: Changing regulatory approaches

    NASA Astrophysics Data System (ADS)

    Cambini, Carlo

    2016-09-01

    Increasing the penetration of distributed generation and smart grid technologies requires substantial investments. A study proposes an innovative approach that combines four regulatory tools to provide economic incentives for distribution system operators to facilitate these innovative practices.

  20. A Constructive Neural-Network Approach to Modeling Psychological Development

    ERIC Educational Resources Information Center

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  1. Automatic Distribution Network Reconfiguration: An Event-Driven Approach

    SciTech Connect

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    2016-11-14

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observable and detectable.

  2. Reduction of streamflow monitoring networks by a reference point approach

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Cem P.; Harmancioglu, Nilgun B.

    2014-05-01

    Adoption of an integrated approach to water management strongly forces policy and decision-makers to focus on hydrometric monitoring systems as well. Existing hydrometric networks need to be assessed and revised against the requirements on water quantity data to support integrated management. One of the questions that a network assessment study should resolve is whether a current monitoring system can be consolidated in view of the increased expenditures in time, money and effort imposed on the monitoring activity. Within the last decade, governmental monitoring agencies in Turkey have foreseen an audit on all their basin networks in view of prevailing economic pressures. In particular, they question how they can decide whether monitoring should be continued or terminated at a particular site in a network. The presented study is initiated to address this question by examining the applicability of a method called “reference point approach” (RPA) for network assessment and reduction purposes. The main objective of the study is to develop an easily applicable and flexible network reduction methodology, focusing mainly on the assessment of the “performance” of existing streamflow monitoring networks in view of variable operational purposes. The methodology is applied to 13 hydrometric stations in the Gediz Basin, along the Aegean coast of Turkey. The results have shown that the simplicity of the method, in contrast to more complicated computational techniques, is an asset that facilitates the involvement of decision makers in application of the methodology for a more interactive assessment procedure between the monitoring agency and the network designer. The method permits ranking of hydrometric stations with regard to multiple objectives of monitoring and the desired attributes of the basin network. Another distinctive feature of the approach is that it also assists decision making in cases with limited data and metadata. These features of the RPA approach

  3. Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach**

    PubMed Central

    Haynie, Dana L.; Doogan, Nathan J.; Soller, Brian

    2014-01-01

    Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties. PMID:26097241

  4. An Overview of Data Routing Approaches for Wireless Sensor Networks

    PubMed Central

    Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri

    2012-01-01

    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:22666013

  5. Network Reverse Engineering Approach in Synthetic Biology

    NASA Astrophysics Data System (ADS)

    Zhang, Haoqian; Liu, Ao; Lu, Yuheng; Sheng, Ying; Wu, Qianzhu; Yin, Zhenzhen; Chen, Yiwei; Liu, Zairan; Pan, Heng; Ouyang, Qi

    2013-12-01

    Synthetic biology is a new branch of interdisciplinary science that has been developed in recent years. The main purpose of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to develop basic biological functional modules, and through rational design, develop man-made biological systems that have predicted useful functions. Here, we discuss an important principle in rational design of functional biological circuits: the reverse engineering design. We will use a research project that was conducted at Peking University for the International Genetic Engineering Machine Competition (iGEM) to illustrate the principle: synthesis a cell which has a semi-log dose-response to the environment. Through this work we try to demonstrate the potential application of network engineering in synthetic biology.

  6. Computational inference of gene regulatory networks: Approaches, limitations and opportunities.

    PubMed

    Banf, Michael; Rhee, Seung Y

    2017-01-01

    Gene regulatory networks lie at the core of cell function control. In E. coli and S. cerevisiae, the study of gene regulatory networks has led to the discovery of regulatory mechanisms responsible for the control of cell growth, differentiation and responses to environmental stimuli. In plants, computational rendering of gene regulatory networks is gaining momentum, thanks to the recent availability of high-quality genomes and transcriptomes and development of computational network inference approaches. Here, we review current techniques, challenges and trends in gene regulatory network inference and highlight challenges and opportunities for plant science. We provide plant-specific application examples to guide researchers in selecting methodologies that suit their particular research questions. Given the interdisciplinary nature of gene regulatory network inference, we tried to cater to both biologists and computer scientists to help them engage in a dialogue about concepts and caveats in network inference. Specifically, we discuss problems and opportunities in heterogeneous data integration for eukaryotic organisms and common caveats to be considered during network model evaluation. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  7. Systems Approaches to Identifying Gene Regulatory Networks in Plants

    PubMed Central

    Long, Terri A.; Brady, Siobhan M.; Benfey, Philip N.

    2009-01-01

    Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed. PMID:18616425

  8. Space Network Control Conference on Resource Allocation Concepts and Approaches

    NASA Technical Reports Server (NTRS)

    Moe, Karen L. (Editor)

    1991-01-01

    The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.

  9. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks

    NASA Astrophysics Data System (ADS)

    Zañudo, Jorge G. T.; Albert, Réka

    2013-06-01

    Discrete dynamic models are a powerful tool for the understanding and modeling of large biological networks. Although a lot of progress has been made in developing analysis tools for these models, there is still a need to find approaches that can directly relate the network structure to its dynamics. Of special interest is identifying the stable patterns of activity, i.e., the attractors of the system. This is a problem for large networks, because the state space of the system increases exponentially with network size. In this work, we present a novel network reduction approach that is based on finding network motifs that stabilize in a fixed state. Notably, we use a topological criterion to identify these motifs. Specifically, we find certain types of strongly connected components in a suitably expanded representation of the network. To test our method, we apply it to a dynamic network model for a type of cytotoxic T cell cancer and to an ensemble of random Boolean networks of size up to 200. Our results show that our method goes beyond reducing the network and in most cases can actually predict the dynamical repertoire of the nodes (fixed states or oscillations) in the attractors of the system.

  10. Next generation of network medicine: interdisciplinary signaling approaches.

    PubMed

    Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio

    2017-02-20

    In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.

  11. Custodial Multicast in Delay Tolerant Networks: Challenges and Approaches

    DTIC Science & Technology

    2006-01-01

    Custodial Multicast in Delay Tolerant Networks Challenges and Approaches Susan Symington, Robert C. Durst , and Keith Scott The MITRE Corporation...McLean, Virginia susan@mitre.org, durst @mitre.org, kscott@mitre.org Abstract— Although custodial transmission of multicast bundles would be...Specification", draft-irtf- dtnrg-bundle-spec-05.txt , July 2005. [3] Symington, S., Durst , R., and Scott, K., “Delay-Tolerant Networking Custodial

  12. A thermostatistical approach to scale-free networks

    NASA Astrophysics Data System (ADS)

    da Cruz, João P.; Araújo, Nuno A. M.; Raischel, Frank; Lind, Pedro G.

    2015-11-01

    We describe an ensemble of growing scale-free networks in an equilibrium framework, providing insight into why the exponent of empirical scale-free networks in nature is typically robust. In an analogy to thermostatistics, to describe the canonical and microcanonical ensembles, we introduce a functional, whose maximum corresponds to a scale-free configuration. We then identify the equivalents to energy, Zeroth-law, entropy and heat capacity for scale-free networks. Discussing the merging of scale-free networks, we also establish an exact relation to predict their final "equilibrium" degree exponent. All analytic results are complemented with Monte Carlo simulations. Our approach illustrates the possibility to apply the tools of equilibrium statistical physics to study the properties of growing networks, and it also supports the recent arguments on the complementarity between equilibrium and nonequilibrium systems.

  13. Energy Efficient Approach in RFID Network

    NASA Astrophysics Data System (ADS)

    Mahdin, Hairulnizam; Abawajy, Jemal; Salwani Yaacob, Siti

    2016-11-01

    Radio Frequency Identification (RFID) technology is among the key technology of Internet of Things (IOT). It is a sensor device that can monitor, identify, locate and tracking physical objects via its tag. The energy in RFID is commonly being used unwisely because they do repeated readings on the same tag as long it resides in the reader vicinity. Repeated readings are unnecessary because it only generate duplicate data that does not contain new information. The reading process need to be schedule accordingly to minimize the chances of repeated readings to save the energy. This will reduce operational cost and can prolong the tag's battery lifetime that cannot be replaced. In this paper, we propose an approach named SELECT to minimize energy spent during reading processes. Experiments conducted shows that proposed algorithm contribute towards significant energy savings in RFID compared to other approaches.

  14. Probabilistic Network Approach to Decision-Making

    NASA Astrophysics Data System (ADS)

    Nicolis, Grégoire; Nicolis, Stamatios C.

    2015-06-01

    A probabilistic approach to decision-making is developed in which the states of the underlying stochastic process, assumed to be of the Markov type, represent the competing options. The principal parameters determining the dominance of a particular option versus the others are identified and the transduction of information associated to the transitions between states is quantified using a set of entropy-like quantities.

  15. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    SciTech Connect

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  16. NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration

    PubMed Central

    Xia, Jianguo; Benner, Maia J.; Hancock, Robert E. W.

    2014-01-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required - identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. PMID:24861621

  17. Intelligent Resource Management for Local Area Networks: Approach and Evolution

    NASA Technical Reports Server (NTRS)

    Meike, Roger

    1988-01-01

    The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

  18. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  19. Systems psychopharmacology: A network approach to developing novel therapies

    PubMed Central

    Gebicke-Haerter, Peter J

    2016-01-01

    The multifactorial origin of most chronic disorders of the brain, including schizophrenia, has been well accepted. Consequently, pharmacotherapy would require multi-targeted strategies. This contrasts to the majority of drug therapies used until now, addressing more or less specifically only one target molecule. Nevertheless, quite some searches for multiple molecular targets specific for mental disorders have been undertaken. For example, genome-wide association studies have been conducted to discover new target genes of disease. Unfortunately, these attempts have not fulfilled the great hopes they have started with. Polypharmacology and network pharmacology approaches of drug treatment endeavor to abandon the one-drug one-target thinking. To this end, most approaches set out to investigate network topologies searching for modules, endowed with “important” nodes, such as “hubs” or “bottlenecks”, encompassing features of disease networks, and being useful as tentative targets of drug therapies. This kind of research appears to be very promising. However, blocking or inhibiting “important” targets may easily result in destruction of network integrity. Therefore, it is suggested here to study functions of nodes with lower centrality for more subtle impact on network behavior. Targeting multiple nodes with low impact on network integrity by drugs with multiple activities (“dirty drugs”) or by several drugs, simultaneously, avoids to disrupt network integrity and may reset deviant dynamics of disease. Natural products typically display multi target functions and therefore could help to identify useful biological targets. Hence, future efforts should consider to combine drug-target networks with target-disease networks using mathematical (graph theoretical) tools, which could help to develop new therapeutic strategies in long-term psychiatric disorders. PMID:27014599

  20. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    PubMed

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle.

  1. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    PubMed

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  2. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  3. Jamming in Mobile Networks: A Game-Theoretic Approach

    DTIC Science & Technology

    2013-03-01

    general treatment of multiplayer differential games was presented by Starr and Ho [16], Leitmann [36], Vaisbord and Zhukovskiy [65], Zhukovskiy and...REPORT Jamming in mobile networks: A game -theoretic approach. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this paper, we address the problem of...model the intrusion as a pursuit-evasion game between a mobile jammer and a team of agents. First, we consider a differential game -theoretic approach

  4. Speech transmission index from running speech: A neural network approach

    NASA Astrophysics Data System (ADS)

    Li, F. F.; Cox, T. J.

    2003-04-01

    Speech transmission index (STI) is an important objective parameter concerning speech intelligibility for sound transmission channels. It is normally measured with specific test signals to ensure high accuracy and good repeatability. Measurement with running speech was previously proposed, but accuracy is compromised and hence applications limited. A new approach that uses artificial neural networks to accurately extract the STI from received running speech is developed in this paper. Neural networks are trained on a large set of transmitted speech examples with prior knowledge of the transmission channels' STIs. The networks perform complicated nonlinear function mappings and spectral feature memorization to enable accurate objective parameter extraction from transmitted speech. Validations via simulations demonstrate the feasibility of this new method on a one-net-one-speech extract basis. In this case, accuracy is comparable with normal measurement methods. This provides an alternative to standard measurement techniques, and it is intended that the neural network method can facilitate occupied room acoustic measurements.

  5. A novel modulation classification approach using Gabor filter network.

    PubMed

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel.

  6. A Novel Modulation Classification Approach Using Gabor Filter Network

    PubMed Central

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603

  7. Bayesian network approach to spatial data mining: a case study

    NASA Astrophysics Data System (ADS)

    Huang, Jiejun; Wan, Youchuan

    2006-10-01

    Spatial data mining is a process of discovering interesting, novel, and potentially useful information or knowledge hidden in spatial data sets. It involves different techniques and different methods from various areas of research. A Bayesian network is a graphical model that encodes causal probabilistic relationships among variables of interest, which has a powerful ability for representing and reasoning and provides an effective way to spatial data mining. In this paper we give an introduction to Bayesian networks, and discuss using Bayesian networks for spatial data mining. We propose a framework of spatial data mining based on Bayesian networks. Then we show a case study and use the experimental results to validate the practical viability of the proposed approach to spatial data mining. Finally, the paper gives a summary and some remarks.

  8. Evaluating Action Learning: A Critical Realist Complex Network Theory Approach

    ERIC Educational Resources Information Center

    Burgoyne, John G.

    2010-01-01

    This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…

  9. The Eigenfactor Metrics™: A Network Approach to Assessing Scholarly Journals

    ERIC Educational Resources Information Center

    West, Jevin D.; Bergstrom, Theodore C.; Bergstrom, Carl T.

    2010-01-01

    Limited time and budgets have created a legitimate need for quantitative measures of scholarly work. The well-known journal impact factor is the leading measure of this sort; here we describe an alternative approach based on the full structure of the scholarly citation network. The Eigenfactor Metrics--Eigenfactor Score and Article Influence…

  10. Neural network for graphs: a contextual constructive approach.

    PubMed

    Micheli, Alessio

    2009-03-01

    This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.

  11. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (less than 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory (MSL) is presented.

  12. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (< 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory is presented.

  13. Neural network approaches to dynamic collision-free trajectory generation.

    PubMed

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  14. Natural and anthropogenic multi-type hazards for loess territories

    NASA Astrophysics Data System (ADS)

    Mavlyanova, Nadira; Zakirova, Zulfiya

    2013-04-01

    developing of mining manufactures and their waste located in the foothill areas with high seismic risk and where manifested of dangerous geological processes as landslide, collapse, mud stream, rock falls and toxic contamination; 3) development of urbanization with manifestation of difference engineering geological processes in loess soil on the based of constructions in cities (collapse, liquefaction). That example of cascade effects when natural and anthropogenic multi type hazards in loess was the Gissar earthquake (1989) in Tajikistan when the earthquake of rather moderate intensity (M=5.2; H=5-7 km; I=7 - MSK scale) was triggered several landslides and mudslides connected with liquefaction of wetted loess and can cause a large number of human victims. In the pre 20 years steady irrigation of the slope area occurred for cotton field. This moistening has increase and the water content of the soil to wet 24-28%, up to a depth of 20-30 m that increased the vulnerability of this territory. The interactions between different natural hazards, include triggered, especially earthquakes, landslides, collapses, liquefaction in loess soil with taking account of anthropogenic hazard influence was investigate.

  15. Multiple neural network approaches to clinical expert systems

    NASA Astrophysics Data System (ADS)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  16. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    SciTech Connect

    Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.

    2009-08-13

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  17. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    PubMed

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  18. A neural network approach to complete coverage path planning.

    PubMed

    Yang, Simon X; Luo, Chaomin

    2004-02-01

    Complete coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots, painter robots, land mine detectors, lawn mowers, automated harvesters, and window cleaners. In this paper, a novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's (1952) membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location. The proposed model algorithm is computationally simple. Simulation results show that the proposed model is capable of planning collision-free complete coverage robot paths.

  19. Fire detection from hyperspectral data using neural network approach

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Amici, Stefania

    2015-10-01

    This study describes an application of artificial neural networks for the recognition of flaming areas using hyper- spectral remote sensed data. Satellite remote sensing is considered an effective and safe way to monitor active fires for environmental and people safeguarding. Neural networks are an effective and consolidated technique for the classification of satellite images. Moreover, once well trained, they prove to be very fast in the application stage for a rapid response. At flaming temperature, thanks to its low excitation energy (about 4.34 eV), potassium (K) ionize with a unique doublet emission features. This emission features can be detected remotely providing a detection map of active fire which allows in principle to separate flaming from smouldering areas of vegetation even in presence of smoke. For this study a normalised Advanced K Band Difference (AKBD) has been applied to airborne hyper spectral sensor covering a range of 400-970 nm with resolution 2.9 nm. A back propagation neural network was used for the recognition of active fires affecting the hyperspectral image. The network was trained using all channels of sensor as inputs, and the corresponding AKBD indexes as target output. In order to evaluate its generalization capabilities, the neural network was validated on two independent data sets of hyperspectral images, not used during neural network training phase. The validation results for the independent data-sets had an overall accuracy round 100% for both image and a few commission errors (0.1%), therefore demonstrating the feasibility of estimating the presence of active fires using a neural network approach. Although the validation of the neural network classifier had a few commission errors, the producer accuracies were lower due to the presence of omission errors. Image analysis revealed that those false negatives lie in "smoky" portion fire fronts, and due to the low intensity of the signal. The proposed method can be considered

  20. A Spatial Clustering Approach for Stochastic Fracture Network Modelling

    NASA Astrophysics Data System (ADS)

    Seifollahi, S.; Dowd, P. A.; Xu, C.; Fadakar, A. Y.

    2014-07-01

    Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach

  1. A DC programming approach for finding communities in networks.

    PubMed

    Le Thi, Hoai An; Nguyen, Manh Cuong; Dinh, Tao Pham

    2014-12-01

    Automatic discovery of community structures in complex networks is a fundamental task in many disciplines, including physics, biology, and the social sciences. The most used criterion for characterizing the existence of a community structure in a network is modularity, a quantitative measure proposed by Newman and Girvan (2004). The discovery community can be formulated as the so-called modularity maximization problem that consists of finding a partition of nodes of a network with the highest modularity. In this letter, we propose a fast and scalable algorithm called DCAM, based on DC (difference of convex function) programming and DCA (DC algorithms), an innovative approach in nonconvex programming framework for solving the modularity maximization problem. The special structure of the problem considered here has been well exploited to get an inexpensive DCA scheme that requires only a matrix-vector product at each iteration. Starting with a very large number of communities, DCAM furnishes, as output results, an optimal partition together with the optimal number of communities [Formula: see text]; that is, the number of communities is discovered automatically during DCAM's iterations. Numerical experiments are performed on a variety of real-world network data sets with up to 4,194,304 nodes and 30,359,198 edges. The comparative results with height reference algorithms show that the proposed approach outperforms them not only on quality and rapidity but also on scalability. Moreover, it realizes a very good trade-off between the quality of solutions and the run time.

  2. Complex networks approach to geophysical time series analysis: Detecting paleoclimate transitions via recurrence networks

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We present a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. Based on different model systems, we demonstrate that there are fundamental interrelationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis. Finally, we illustrate the potential of our approach for detecting hidden dynamical transitions from geoscientific time series by applying it to different paleoclimate records. In particular, we are able to resolve previously unknown climatic regime shifts in East Africa during the last about 4 million years, which might have had a considerable influence on the evolution of hominids in the area.

  3. A brain network instantiating approach and avoidance motivation.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy

    2012-09-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation.

  4. An optimal control approach to probabilistic Boolean networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiuli

    2012-12-01

    External control of some genes in a genetic regulatory network is useful for avoiding undesirable states associated with some diseases. For this purpose, a number of stochastic optimal control approaches have been proposed. Probabilistic Boolean networks (PBNs) as powerful tools for modeling gene regulatory systems have attracted considerable attention in systems biology. In this paper, we deal with a problem of optimal intervention in a PBN with the help of the theory of discrete time Markov decision process. Specifically, we first formulate a control model for a PBN as a first passage model for discrete time Markov decision processes and then find, using a value iteration algorithm, optimal effective treatments with the minimal expected first passage time over the space of all possible treatments. In order to demonstrate the feasibility of our approach, an example is also displayed.

  5. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  6. A novel approach to characterize information radiation in complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao

    2016-06-01

    The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better "radiation explosive power", while the small-world network has better "radiation staying power". The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.

  7. A neural network approach to dynamic task assignment of multirobots.

    PubMed

    Zhu, Anmin; Yang, Simon X

    2006-09-01

    In this paper, a neural network approach to task assignment, based on a self-organizing map (SOM), is proposed for a multirobot system in dynamic environments subject to uncertainties. It is capable of dynamically controlling a group of mobile robots to achieve multiple tasks at different locations, so that the desired number of robots will arrive at every target location from arbitrary initial locations. In the proposed approach, the robot motion planning is integrated with the task assignment, thus the robots start to move once the overall task is given. The robot navigation can be dynamically adjusted to guarantee that each target location has the desired number of robots, even under uncertainties such as when some robots break down. The proposed approach is capable of dealing with changing environments. The effectiveness and efficiency of the proposed approach are demonstrated by simulation studies.

  8. A Continuum Approach For Neural Network Modelling Of Anisotropic Materials

    NASA Astrophysics Data System (ADS)

    Man, Hou; Furukawa, Tomonari

    2010-05-01

    This paper presents an approach for constitutive modelling of anisotropic materials using neural networks on a continuum basis. The proposed approach develops the models by using an error function formulated from the minimum total potential energy principle. The variation of the strain energy of a deformed geometry is approximated by using the full field strain measurement with the neural network constitutive model (NNCM) and the coordinate frame transformation. It is subsequently compared with the variation of the applied external work, such that the discrepancy is fed back to update the model properties. The proposed approach is, therefore, able to develop the NNCM without the presence of stress data. This not only facilitates the use of multi-axial load tests and non-standard specimens to produce more realistic experimental results, but also reduces the number of different specimen configurations used for the model development. A numerical example is presented in this paper to validate the performance and applicability of the proposed approach by modelling a carbon fibre reinforced plastic (CFRP) lamina. Artificial experimental results of tensile tests with two different specimens are used to facilitate the validation. The results emphasise the flexibility and applicability of the proposed approach for constitutive modelling of anisotropic materials.

  9. Using cloud association rule data mining approach in optical networks

    NASA Astrophysics Data System (ADS)

    Ma, Bin

    2007-11-01

    In the current DWDM network, one of the critical design issues in the utilization of networks is careful planning to minimize burst dropping resulting from resource contention. The provision of suitable planning before metadata are sent is critical to improve the rate of successful transmission. In this paper, we attempt to adopt a novel data mining approaches to determining a suitable routing path in the OBS network. Instead of using label switching techniques in DWDM, we proposed the hybrid OBS routing planning on the basics of Cloud Association Rules Algorithm, thus reduced the transmission collision rate in OBS routing. This paper searches for the optimal routing path from all the possible routing paths using cloud association rule approach with Apriori-gen algorithm based on the PACNet topology. The heuristic rules discovered by Apriori-gen algorithm are stored in the Knowledge Base (KB) as references for determining the most suitable routing path. The Knowledge Base of the routing path are set up by means of optimal path routing with the highest successful rate which is mined from the database of historical routing paths using cloud association rules. The experiment results show that the successful rates of routing paths obtained by the proposed routing planning approach can effectively improve the successful rates of transmission.

  10. Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit

    PubMed Central

    Spielberg, Jeffrey M.; Heller, Wendy; Miller, Gregory A.

    2013-01-01

    Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures. PMID:23785328

  11. A Predictive Approach to Network Reverse-Engineering

    NASA Astrophysics Data System (ADS)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  12. Assessing Collaboration Networks in Educational Research: A Co-Authorship-Based Social Network Analysis Approach

    ERIC Educational Resources Information Center

    Munoz, David Andres; Queupil, Juan Pablo; Fraser, Pablo

    2016-01-01

    Purpose: The purpose of this paper is to analyze collaboration networks and their patterns among higher education institutions (HEIs) in Chile and the Latin American region. This will provide evidence to educational managements in order to properly allocate their efforts to improve collaboration. Design/methodology/approach: This quantitative…

  13. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    PubMed Central

    2012-01-01

    cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. Conclusions Stochastic Boolean networks (SBNs) are proposed as an efficient approach to modelling gene regulatory networks (GRNs). The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files. PMID:22929591

  14. ADHD classification using bag of words approach on network features

    NASA Astrophysics Data System (ADS)

    Solmaz, Berkan; Dey, Soumyabrata; Rao, A. Ravishankar; Shah, Mubarak

    2012-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) is receiving lots of attention nowadays mainly because it is one of the common brain disorders among children and not much information is known about the cause of this disorder. In this study, we propose to use a novel approach for automatic classification of ADHD conditioned subjects and control subjects using functional Magnetic Resonance Imaging (fMRI) data of resting state brains. For this purpose, we compute the correlation between every possible voxel pairs within a subject and over the time frame of the experimental protocol. A network of voxels is constructed by representing a high correlation value between any two voxels as an edge. A Bag-of-Words (BoW) approach is used to represent each subject as a histogram of network features; such as the number of degrees per voxel. The classification is done using a Support Vector Machine (SVM). We also investigate the use of raw intensity values in the time series for each voxel. Here, every subject is represented as a combined histogram of network and raw intensity features. Experimental results verified that the classification accuracy improves when the combined histogram is used. We tested our approach on a highly challenging dataset released by NITRC for ADHD-200 competition and obtained promising results. The dataset not only has a large size but also includes subjects from different demography and edge groups. To the best of our knowledge, this is the first paper to propose BoW approach in any functional brain disorder classification and we believe that this approach will be useful in analysis of many brain related conditions.

  15. A network approach for researching partnerships in health

    PubMed Central

    Lewis, Jenny M

    2005-01-01

    Background The last decade has witnessed a significant move towards new modes of governing that are based on coordination and collaboration. In particular, local level partnerships have been widely introduced around the world. There are few comprehensive approaches for researching the effects of these partnerships. The aim of this paper is to outline a network approach that combines structure and agency based explanations to research partnerships in health. Network research based on two Primary Care Partnerships (PCPs) in Victoria is used to demonstrate the utility of this approach. The paper examines multiple types of ties between people (structure), and the use and value of relationships to partners (agency), using interviews with the people involved in two PCPs – one in metropolitan Melbourne and one in a rural area. Results Network maps of ties based on work, strategic information and policy advice, show that there are many strong connections in both PCPs. Not surprisingly, PCP staff are central and highly connected. Of more interest are the ties that are dependent on these dedicated partnership staff, as they reveal which actors become weakly linked or disconnected without them. Network measures indicate that work ties are the most dispersed and strategic information ties are the most concentrated around fewer people. Divisions of general practice are weakly linked, while local government officials and Department of Human Services (DHS) regional staff appear to play important bridging roles. Finally, the relationships between partners have changed and improved, and most of those interviewed value their new or improved links with partners. Conclusion Improving service coordination and health promotion planning requires engaging people and building strong relationships. Mapping ties is a useful means for assessing the strengths and weaknesses of partnerships, and network analysis indicates concentration and dispersion, the importance of particular individuals

  16. HEMODOSE: A Biodosimetry Tool Based on Multi-type Blood Cell Counts

    PubMed Central

    Hu, Shaowen; Blakely, William F.; Cucinotta, Francis A.

    2015-01-01

    Abstract Peripheral blood cell counts are important biomarkers of radiation exposure. In this work, a simplified compartmental modeling approach is applied to simulate the perturbation of the hematopoiesis system in humans after radiation exposure, and HemoDose software is reported to estimate individuals’ absorbed doses based on multi-type blood cell counts. Testing with patient data in some historical accidents indicates that either single or serial granulocyte, lymphocyte, leukocyte, and platelet counts after exposure can be robust indicators of the absorbed doses. In addition, such correlation exists not only in the early time window (1 or 2 d) but also in the late phase (up to 4 wk) after exposure, when the four types of cell counts are combined for analysis. These demonstrate the capability of HemoDose as a rapid point-of-care diagnostic or centralized high-throughput assay system for personnel exposed to unintended high doses of radiation, especially in large-scale nuclear/radiological disaster scenarios involving mass casualties. PMID:26011498

  17. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    PubMed Central

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-01-01

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results. PMID:26610495

  18. A Passive Testing Approach for Protocols in Wireless Sensor Networks.

    PubMed

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-11-19

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  19. Chemical reaction network approaches to Biochemical Systems Theory.

    PubMed

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed.

  20. Network Analysis: A Novel Approach to Understand Suicidal Behaviour

    PubMed Central

    de Beurs, Derek

    2017-01-01

    Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.

  1. Approaches for recognizing disease genes based on network.

    PubMed

    Zou, Quan; Li, Jinjin; Wang, Chunyu; Zeng, Xiangxiang

    2014-01-01

    Diseases are closely related to genes, thus indicating that genetic abnormalities may lead to certain diseases. The recognition of disease genes has long been a goal in biology, which may contribute to the improvement of health care and understanding gene functions, pathways, and interactions. However, few large-scale gene-gene association datasets, disease-disease association datasets, and gene-disease association datasets are available. A number of machine learning methods have been used to recognize disease genes based on networks. This paper states the relationship between disease and gene, summarizes the approaches used to recognize disease genes based on network, analyzes the core problems and challenges of the methods, and outlooks future research direction.

  2. Multidimensional stock network analysis: An Escoufier's RV coefficient approach

    NASA Astrophysics Data System (ADS)

    Lee, Gan Siew; Djauhari, Maman A.

    2013-09-01

    The current practice of stocks network analysis is based on the assumption that the time series of closed stock price could represent the behaviour of the each stock. This assumption leads to consider minimal spanning tree (MST) and sub-dominant ultrametric (SDU) as an indispensible tool to filter the economic information contained in the network. Recently, there is an attempt where researchers represent stock not only as a univariate time series of closed price but as a bivariate time series of closed price and volume. In this case, they developed the so-called multidimensional MST to filter the important economic information. However, in this paper, we show that their approach is only applicable for that bivariate time series only. This leads us to introduce a new methodology to construct MST where each stock is represented by a multivariate time series. An example of Malaysian stock exchange will be presented and discussed to illustrate the advantages of the method.

  3. Sport, how people choose it: A network analysis approach.

    PubMed

    Ferreri, Luca; Ivaldi, Marco; Daolio, Fabio; Giacobini, Mario; Rainoldi, Alberto; Tomassini, Marco

    2015-01-01

    In order to investigate the behaviour of athletes in choosing sports, we analyse data from part of the We-Sport database, a vertical social network that links athletes through sports. In particular, we explore connections between people sharing common sports and the role of age and gender by applying "network science" approaches and methods. The results show a disassortative tendency of athletes in choosing sports, a negative correlation between age and number of chosen sports and a positive correlation between age of connected athletes. Some interesting patterns of connection between age classes are depicted. In addition, we propose a method to classify sports, based on the analyses of the behaviour of people practising them. Thanks to this brand new classifications, we highlight the links of class of sports and their unexpected features. We emphasise some gender dependency affinity in choosing sport classes.

  4. A Rawlsian Approach to Distribute Responsibilities in Networks

    PubMed Central

    2009-01-01

    Due to their non-hierarchical structure, socio-technical networks are prone to the occurrence of the problem of many hands. In the present paper an approach is introduced in which people’s opinions on responsibility are empirically traced. The approach is based on the Rawlsian concept of Wide Reflective Equilibrium (WRE) in which people’s considered judgments on a case are reflectively weighed against moral principles and background theories, ideally leading to a state of equilibrium. Application of the method to a hypothetical case with an artificially constructed network showed that it is possible to uncover the relevant data to assess a consensus amongst people in terms of their individual WRE. It appeared that the moral background theories people endorse are not predictive for their actual distribution of responsibilities but that they indicate ways of reasoning and justifying outcomes. Two ways of ascribing responsibilities were discerned, corresponding to two requirements of a desirable responsibility distribution: fairness and completeness. Applying the method triggered learning effects, both with regard to conceptual clarification and moral considerations, and in the sense that it led to some convergence of opinions. It is recommended to apply the method to a real engineering case in order to see whether this approach leads to an overlapping consensus on a responsibility distribution which is justifiable to all and in which no responsibilities are left unfulfilled, therewith trying to contribute to the solution of the problem of many hands. PMID:19626463

  5. Neural network approach to B →Xuℓν

    NASA Astrophysics Data System (ADS)

    Gambino, Paolo; Healey, Kristopher J.; Mondino, Cristina

    2016-07-01

    We use artificial neural networks to parametrize the shape functions in inclusive semileptonic B decays without charm. Our approach avoids the adoption of functional form models and allows for a straightforward implementation of all experimental and theoretical constraints on the shape functions. The results are used to extract |Vu b| in the GGOU framework and compared with the original GGOU paper and the latest HFAG results, finding good agreement in both cases. The possible impact of future Belle-II data on the MX distribution is also discussed.

  6. Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    DTIC Science & Technology

    2009-03-01

    9 Compton presented a slightly different approach, stating that the NTO should be structured similar format to the ATO and include each mission...Comparison [4] 40 The simplicity of the design of the DTN simulation program is inherent in the logical structured flow. All aspects required to...a metric section to keep track of mission and network performance. Decision trees are structures used to create a hierarchal logical flow diagram

  7. Scalar and Multivariate Approaches for Optimal Network Design in Antarctica

    NASA Astrophysics Data System (ADS)

    Hryniw, Natalia

    Observations are crucial for weather and climate, not only for daily forecasts and logistical purposes, for but maintaining representative records and for tuning atmospheric models. Here scalar theory for optimal network design is expanded in a multivariate framework, to allow for optimal station siting for full field optimization. Ensemble sensitivity theory is expanded to produce the covariance trace approach, which optimizes for the trace of the covariance matrix. Relative entropy is also used for multivariate optimization as an information theory approach for finding optimal locations. Antarctic surface temperature data is used as a testbed for these methods. Both methods produce different results which are tied to the fundamental physical parameters of the Antarctic temperature field.

  8. Bridging the Gap between Genotype and Phenotype via Network Approaches

    PubMed Central

    Kim, Yoo-Ah; Przytycka, Teresa M.

    2013-01-01

    In the last few years we have witnessed tremendous progress in detecting associations between genetic variations and complex traits. While genome-wide association studies have been able to discover genomic regions that may influence many common human diseases, these discoveries created an urgent need for methods that extend the knowledge of genotype-phenotype relationships to the level of the molecular mechanisms behind them. To address this emerging need, computational approaches increasingly utilize a pathway-centric perspective. These new methods often utilize known or predicted interactions between genes and/or gene products. In this review, we survey recently developed network based methods that attempt to bridge the genotype-phenotype gap. We note that although these methods help narrow the gap between genotype and phenotype relationships, these approaches alone cannot provide the precise details of underlying mechanisms and current research is still far from closing the gap. PMID:23755063

  9. A Systems Approach to Scalable Transportation Network Modeling

    SciTech Connect

    Perumalla, Kalyan S

    2006-01-01

    Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory and speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.

  10. Patterns of work attitudes: A neural network approach

    NASA Astrophysics Data System (ADS)

    Mengov, George D.; Zinovieva, Irina L.; Sotirov, George R.

    2000-05-01

    In this paper we introduce a neural networks based approach to analyzing empirical data and models from work and organizational psychology (WOP), and suggest possible implications for the practice of managers and business consultants. With this method it becomes possible to have quantitative answers to a bunch of questions like: What are the characteristics of an organization in terms of its employees' motivation? What distinct attitudes towards the work exist? Which pattern is most desirable from the standpoint of productivity and professional achievement? What will be the dynamics of behavior as quantified by our method, during an ongoing organizational change or consultancy intervention? Etc. Our investigation is founded on the theoretical achievements of Maslow (1954, 1970) in human motivation, and of Hackman & Oldham (1975, 1980) in job diagnostics, and applies the mathematical algorithm of the dARTMAP variation (Carpenter et al., 1998) of the Adaptive Resonance Theory (ART) neural networks introduced by Grossberg (1976). We exploit the ART capabilities to visualize the knowledge accumulated in the network's long-term memory in order to interpret the findings in organizational research.

  11. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    PubMed

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  12. A perturbation-theoretic approach to Lagrangian flow networks

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.

    2017-03-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.

  13. Pattern recognition tool based on complex network-based approach

    NASA Astrophysics Data System (ADS)

    Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir

    2013-02-01

    This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.

  14. Random walk approach for dispersive transport in pipe networks

    NASA Astrophysics Data System (ADS)

    Sämann, Robert; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: particle transport, random walk, pipe, network, HYSTEM-EXTAN, OpenGeoSys After heavy pluvial events in urban areas the available drainage system may be undersized at peak flows (Fuchs, 2013). Consequently, rainwater in the pipe network is likely to spill out through manholes. The presence of hazardous contaminants in the pipe drainage system represents a potential risk to humans especially when the contaminated drainage water reaches the land surface. Real-time forecasting of contaminants in the drainage system needs a quick calculation. Numerical models to predict the fate of contaminants are usually based on finite volume methods. Those are not applicable here because of their volume averaging elements. Thus, a more efficient method is preferable, which is independent from spatial discretization. In the present study, a particle-based method is chosen to calculate transport paths and spatial distribution of contaminants within a pipe network. A random walk method for particles in turbulent flow in partially filled pipes has been developed. Different approaches for in-pipe-mixing and node-mixing with respect to the geometry in a drainage network are shown. A comparison of dispersive behavior and calculation time is given to find the fastest model. The HYSTEM-EXTRAN (itwh, 2002) model is used to provide hydrodynamic conditions in the pipe network according to surface runoff scenarios in order to real-time predict contaminant transport in an urban pipe network system. The newly developed particle-based model will later be coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). References: Fuchs, L. (2013). Gefährdungsanalyse zur Überflutungsvorsorge kommunaler Entwässerungssysteme. Sanierung und Anpassung von Entwässerungssystemen-Alternde Infrastruktur und Klimawandel, Österreichischer Wasser-und Abfallwirtschaftsverband, Wien, ISBN, 978-3. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie Gmb

  15. A neural network based reputation bootstrapping approach for service selection

    NASA Astrophysics Data System (ADS)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  16. Checking the reliability of a linear-programming based approach towards detecting community structures in networks.

    PubMed

    Chen, W Y C; Dress, A W M; Yu, W Q

    2007-09-01

    Here, the reliability of a recent approach to use parameterised linear programming for detecting community structures in network has been investigated. Using a one-parameter family of objective functions, a number of "perturbation experiments' document that our approach works rather well. A real-life network and a family of benchmark network are also analysed.

  17. A Network Approach to Non-Print Media Cataloging for Schools: A Report of an Indiana Department of Public Instruction and Indiana Cooperative Library Services Authority (INCOLSA) Project Using the OCLC System. Final Report.

    ERIC Educational Resources Information Center

    Alexander, Janice E.; Markuson, Barbara Evans

    This report describes a demonstration of cooperative cataloging of nonprint media in a network environment. The project was jointly managed by the Indiana Department of Public Instruction and the Indiana Cooperative Library Services Authority (INCOLSA), a state-wide multi-type library network. Staff at large school library media centers in Indiana…

  18. Neural network approach to classification of infrasound signals

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Chang

    As part of the International Monitoring Systems of the Preparatory Commissions for the Comprehensive Nuclear Test-Ban Treaty Organization, the Infrasound Group at the University of Alaska Fairbanks maintains and operates two infrasound stations to monitor global nuclear activity. In addition, the group specializes in detecting and classifying the man-made and naturally produced signals recorded at both stations by computing various characterization parameters (e.g. mean of the cross correlation maxima, trace velocity, direction of arrival, and planarity values) using the in-house developed weighted least-squares algorithm. Classifying commonly observed low-frequency (0.015--0.1 Hz) signals at out stations, namely mountain associated waves and high trace-velocity signals, using traditional approach (e.g. analysis of power spectral density) presents a problem. Such signals can be separated statistically by setting a window to the trace-velocity estimate for each signal types, and the feasibility of such technique is demonstrated by displaying and comparing various summary plots (e.g. universal, seasonal and azimuthal variations) produced by analyzing infrasound data (2004--2007) from the Fairbanks and Antarctic arrays. Such plots with the availability of magnetic activity information (from the College International Geophysical Observatory located at Fairbanks, Alaska) leads to possible physical sources of the two signal types. Throughout this thesis a newly developed robust algorithm (sum of squares of variance ratios) with improved detection quality (under low signal to noise ratios) over two well-known detection algorithms (mean of the cross correlation maxima and Fisher Statistics) are investigated for its efficacy as a new detector. A neural network is examined for its ability to automatically classify the two signals described above against clutter (spurious signals with common characteristics). Four identical perceptron networks are trained and validated (with

  19. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management

    EPA Science Inventory

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing i...

  20. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    EPA Science Inventory

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing in...

  1. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  2. Optimization-based Approach to Cross-layer Resource Management in Wireless Networked Control Systems

    DTIC Science & Technology

    2013-05-01

    distribution is unlimited. Optimization-based approach to cross-layer resource management in Wireless networked control systems The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 cross-layer resource management , sampling rate adaptation, networked control system REPORT...7749 2 ABSTRACT Optimization-based approach to cross-layer resource management in Wireless networked control systems Report Title Wireless Networked

  3. A biplex approach to PageRank centrality: From classic to multiplex networks.

    PubMed

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  4. Multi-casting approach for vascular networks in cellularized hydrogels.

    PubMed

    Justin, Alexander W; Brooks, Roger A; Markaki, Athina E

    2016-12-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel.

  5. Multi-casting approach for vascular networks in cellularized hydrogels

    PubMed Central

    Justin, Alexander W.; Brooks, Roger A.

    2016-01-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200–250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel. PMID:27928031

  6. Game theoretic approach for cooperative feature extraction in camera networks

    NASA Astrophysics Data System (ADS)

    Redondi, Alessandro E. C.; Baroffio, Luca; Cesana, Matteo; Tagliasacchi, Marco

    2016-07-01

    Visual sensor networks (VSNs) consist of several camera nodes with wireless communication capabilities that can perform visual analysis tasks such as object identification, recognition, and tracking. Often, VSN deployments result in many camera nodes with overlapping fields of view. In the past, such redundancy has been exploited in two different ways: (1) to improve the accuracy/quality of the visual analysis task by exploiting multiview information or (2) to reduce the energy consumed for performing the visual task, by applying temporal scheduling techniques among the cameras. We propose a game theoretic framework based on the Nash bargaining solution to bridge the gap between the two aforementioned approaches. The key tenet of the proposed framework is for cameras to reduce the consumed energy in the analysis process by exploiting the redundancy in the reciprocal fields of view. Experimental results in both simulated and real-life scenarios confirm that the proposed scheme is able to increase the network lifetime, with a negligible loss in terms of visual analysis accuracy.

  7. Multimodal approaches to define network oscillations in depression.

    PubMed

    Smart, Otis Lkuwamy; Tiruvadi, Vineet Ravi; Mayberg, Helen S

    2015-06-15

    The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients.

  8. A tessellated continuum approach to thermal analysis: discontinuity networks

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Davey, K.; Prosser, R.

    2017-01-01

    Tessellated continuum mechanics is an approach for the representation of thermo-mechanical behaviour of porous media on tessellated continua. It involves the application of iteration function schemes using affine contraction and expansion maps, respectively, for the creation of porous fractal materials and associated tessellated continua. Highly complex geometries can be produced using a modest number of contraction mappings. The associated tessellations form the mesh in a numerical procedure. This paper tests the hypothesis that thermal analysis of porous structures can be achieved using a discontinuous Galerkin finite element method on a tessellation. Discontinuous behaviour is identified at a discontinuity network in a tessellation; its use is shown to provide a good representation of the physics relating to cellular heat exchanger designs. Results for different cellular designs (with corresponding tessellations) are contrasted against those obtained from direct analysis and very high accuracy is observed.

  9. A network approach to diagnostic biomarkers in progressive supranuclear palsy.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2014-04-01

    Diagnosis of progressive supranuclear palsy (PSP) remains challenging because of the clinical overlap with Parkinson's disease (PD). To date, disease-specific biomarkers have yet to be identified. In the absence of reliable biomarkers, we used an integrated network approach to identify genes and related biological pathways associated with PSP. We tested a highly ranked gene in cellular whole-blood samples from 122 patients enrolled in the Prognostic Biomarker Study. Biological and functional analysis identified 13 modules related to activation of leukocytes and lymphocytes, protein dephosphorylation, and phosphatase activity. Integration of these results with those from microarrays identified ptpn1 as a potential biomarker for PSP. Assessment of biomarker performance revealed that ptpn1 could be used to distinguish PSP patients from PD patients with 86% diagnostic accuracy. Ptpn1 may be a diagnostic marker useful for distinguishing PSP and PD. Further evaluation in a larger well-characterized prospective study is warranted.

  10. Omics and Exercise: Global Approaches for Mapping Exercise Biological Networks.

    PubMed

    Hoffman, Nolan J

    2017-03-27

    The application of global "-omics" technologies to exercise has introduced new opportunities to map the complexity and interconnectedness of biological networks underlying the tissue-specific responses and systemic health benefits of exercise. This review will introduce major research tracks and recent advancements in this emerging field, as well as critical gaps in understanding the orchestration of molecular exercise dynamics that will benefit from unbiased omics investigations. Furthermore, significant research hurdles that need to be overcome to effectively fill these gaps related to data collection, computation, interpretation, and integration across omics applications will be discussed. Collectively, a cross-disciplinary physiological and omics-based systems approach will lead to discovery of a wealth of novel exercise-regulated targets for future mechanistic validation. This frontier in exercise biology will aid the development of personalized therapeutic strategies to improve athletic performance and human health through precision exercise medicine.

  11. A Comparison of Three Instructional Approaches in Teaching Network Analysis to Electronics Technology Students.

    ERIC Educational Resources Information Center

    Sappington, Hal M.; Miller, F. Milton

    1980-01-01

    Compares the effects of using three approaches to teach network analysis in a beginning college level electronics course upon cognitive achievement, knowledge retention, and attitude. Results show the electronics technology instructor may not need to teach both the mesh current approach and the superposition approach to network analysis. (CT)

  12. Linguistic complex networks: Rationale, application, interpretation, and directions. Reply to comments on "Approaching human language with complex networks"

    NASA Astrophysics Data System (ADS)

    Cong, Jin; Liu, Haitao

    2014-12-01

    Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.

  13. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  14. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    PubMed

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-07

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  15. A Risk Based Approach to Node Insertion Within Social Networks

    DTIC Science & Technology

    2015-03-26

    Unfortunately, the covert nature of terrorist networks makes the effects of these techniques unknown and possibly detrimental. To avoid potentially harmful ...unknown and possibly detrimental. To avoid potentially harmful changes to enemy networks, tactical involvement must evolve, beginning with the

  16. A Complex Network Approach to Distributional Semantic Models.

    PubMed

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  17. The Embedded Self: A Social Networks Approach to Identity Theory

    ERIC Educational Resources Information Center

    Walker, Mark H.; Lynn, Freda B.

    2013-01-01

    Despite the fact that key sociological theories of self and identity view the self as fundamentally rooted in networks of interpersonal relationships, empirical research investigating how personal network structure influences the self is conspicuously lacking. To address this gap, we examine links between network structure and role identity…

  18. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    SciTech Connect

    Chinthavali, Supriya

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  19. From Microactions to Macrostructure and Back: A Structurational Approach to the Evolution of Organizational Networks

    ERIC Educational Resources Information Center

    Whitbred, Robert; Fonti, Fabio; Steglich, Christian; Contractor, Noshir

    2011-01-01

    Structuration theory (ST) and network analysis are promising approaches for studying the emergence of communication networks. We offer a model that integrates the conceptual richness of structuration with the precision of relevant concepts and mechanisms offered from communication network research. We leverage methodological advancements (i.e.,…

  20. Comorbidities of Psoriasis - Exploring the Links by Network Approach

    PubMed Central

    Sundarrajan, Sudharsana; Arumugam, Mohanapriya

    2016-01-01

    Increasing epidemiological studies in patients with psoriasis report the frequent occurrence of one or more associated disorders. Psoriasis is associated with multiple comorbidities including autoimmune disease, neurological disorders, cardiometabolic diseases and inflammatory-bowel disease. An integrated system biology approach is utilized to decipher the molecular alliance of psoriasis with its comorbidities. An unbiased integrative network medicine methodology is adopted for the investigation of diseasome, biological process and pathways of five most common psoriasis associated comorbidities. A significant overlap was observed between genes acting in similar direction in psoriasis and its comorbidities proving the mandatory occurrence of either one of its comorbidities. The biological processes involved in inflammatory response and cell signaling formed a common basis between psoriasis and its associated comorbidities. The pathway analysis revealed the presence of few common pathways such as angiogenesis and few uncommon pathways which includes CCKR signaling map and gonadotrophin-realising hormone receptor pathway overlapping in all the comorbidities. The work shed light on few common genes and pathways that were previously overlooked. These fruitful targets may serve as a starting point for diagnosis and/or treatment of psoriasis comorbidities. The current research provides an evidence for the existence of shared component hypothesis between psoriasis and its comorbidities. PMID:26966903

  1. Probabilistic approaches to fault detection in networked discrete event systems.

    PubMed

    Athanasopoulou, Eleftheria; Hadjicostis, Christoforos N

    2005-09-01

    In this paper, we consider distributed systems that can be modeled as finite state machines with known behavior under fault-free conditions, and we study the detection of a general class of faults that manifest themselves as permanent changes in the next-state transition functionality of the system. This scenario could arise in a variety of situations encountered in communication networks, including faults occurred due to design or implementation errors during the execution of communication protocols. In our approach, fault diagnosis is performed by an external observer/diagnoser that functions as a finite state machine and which has access to the input sequence applied to the system but has only limited access to the system state or output. In particular, we assume that the observer/diagnoser is only able to obtain partial information regarding the state of the given system at intermittent time intervals that are determined by certain synchronizing conditions between the system and the observer/diagnoser. By adopting a probabilistic framework, we analyze ways to optimally choose these synchronizing conditions and develop adaptive strategies that achieve a low probability of aliasing, i.e., a low probability that the external observer/diagnoser incorrectly declares the system as fault-free. An application of these ideas in the context of protocol testing/classification is provided as an example.

  2. Comorbidities of Psoriasis - Exploring the Links by Network Approach.

    PubMed

    Sundarrajan, Sudharsana; Arumugam, Mohanapriya

    2016-01-01

    Increasing epidemiological studies in patients with psoriasis report the frequent occurrence of one or more associated disorders. Psoriasis is associated with multiple comorbidities including autoimmune disease, neurological disorders, cardiometabolic diseases and inflammatory-bowel disease. An integrated system biology approach is utilized to decipher the molecular alliance of psoriasis with its comorbidities. An unbiased integrative network medicine methodology is adopted for the investigation of diseasome, biological process and pathways of five most common psoriasis associated comorbidities. A significant overlap was observed between genes acting in similar direction in psoriasis and its comorbidities proving the mandatory occurrence of either one of its comorbidities. The biological processes involved in inflammatory response and cell signaling formed a common basis between psoriasis and its associated comorbidities. The pathway analysis revealed the presence of few common pathways such as angiogenesis and few uncommon pathways which includes CCKR signaling map and gonadotrophin-realising hormone receptor pathway overlapping in all the comorbidities. The work shed light on few common genes and pathways that were previously overlooked. These fruitful targets may serve as a starting point for diagnosis and/or treatment of psoriasis comorbidities. The current research provides an evidence for the existence of shared component hypothesis between psoriasis and its comorbidities.

  3. Nationwide Network of TalentPoints: The Hungarian Approach to Talent Support

    ERIC Educational Resources Information Center

    Csermely, Peter; Rajnai, Gabor; Sulyok, Katalin

    2013-01-01

    In 2006 a novel approach to talent support was promoted by several talent support programmes in Hungary. The new idea was a network approach. The nationwide network of so-called TalentPoints and its framework, the Hungarian Genius Program, gained substantial European Union funding in 2009, and today it is growing rapidly. A novel concept of talent…

  4. A Scalable Approach to Modeling Cascading Risk in the MDAP Network

    DTIC Science & Technology

    2014-05-01

    interdependencies and complexity. – Focus on funding interdependency • Network -centric approach (Brown and Owen, 2012; Raja et al., 2012) • Automated analysis for...program outcomes: “program-centric” + “program network approach” for acquisition and management. – Cascading effects recast as a sequential decision... Interdependency   Determiner Module  MNI_MOD MDAP  Network   Identifier Module  • Network and Program Centric analysis. • Novel Integration of methodologies for

  5. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach

    PubMed Central

    Li, Jun; Zhao, Patrick X.

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  6. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.

    PubMed

    Tian, Xue W; Lim, Joon S

    2015-01-01

    Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.

  7. Neural Network Approach Towards Logic Testing and Design for Testability.

    DTIC Science & Technology

    2007-11-02

    conventional Hopfield network of N neurons describes only binary relations between neurons. With this model gates having more than two inputs need...neuron doubles the search space. Thus, finding a valid test set using Hopfield model is either increasingly hard or the network converges to an invalid...This report considers the problem of applying neural network for logic testing and proposes an efficient method based on the hyperneural model. The

  8. The Cable and Wireless approach to network synchronization

    NASA Technical Reports Server (NTRS)

    Calvert, Robert D.

    1990-01-01

    The philosophy adopted by Cable and Wireless for the synchronization of its world-wide network is presented. The architectures of some clock systems already deployed and how network synchronization had been implemented at selected locations are discussed. This includes some innovative designs as the network spans both first and third world countries with a combination of North Amercan and European hierarchy equipment. Different parts of the global network are linked together by a combination of terrestrial microwave, submarine cable and satellite technology. The impact of synchronization on Intelsat Intermediate Data Rate (IDR) operation and the restoration of submarine cable systems are addressed.

  9. Locus minimization in breed prediction using artificial neural network approach.

    PubMed

    Iquebal, M A; Ansari, M S; Sarika; Dixit, S P; Verma, N K; Aggarwal, R A K; Jayakumar, S; Rai, A; Kumar, D

    2014-12-01

    Molecular markers, viz. microsatellites and single nucleotide polymorphisms, have revolutionized breed identification through the use of small samples of biological tissue or germplasm, such as blood, carcass samples, embryos, ova and semen, that show no evident phenotype. Classical tools of molecular data analysis for breed identification have limitations, such as the unavailability of referral breed data, causing increased cost of collection each time, compromised computational accuracy and complexity of the methodology used. We report here the successful use of an artificial neural network (ANN) in background to decrease the cost of genotyping by locus minimization. The webserver is freely accessible (http://nabg.iasri.res.in/bisgoat) to the research community. We demonstrate that the machine learning (ANN) approach for breed identification is capable of multifold advantages such as locus minimization, leading to a drastic reduction in cost, and web availability of reference breed data, alleviating the need for repeated genotyping each time one investigates the identity of an unknown breed. To develop this model web implementation based on ANN, we used 51,850 samples of allelic data of microsatellite-marker-based DNA fingerprinting on 25 loci covering 22 registered goat breeds of India for training. Minimizing loci to up to nine loci through the use of a multilayer perceptron model, we achieved 96.63% training accuracy. This server can be an indispensable tool for identification of existing breeds and new synthetic commercial breeds, leading to protection of intellectual property in case of sovereignty and bio-piracy disputes. This server can be widely used as a model for cost reduction by locus minimization for various other flora and fauna in terms of variety, breed and/or line identification, especially in conservation and improvement programs.

  10. Development of a decentralized multi-axis synchronous control approach for real-time networks.

    PubMed

    Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang

    2017-03-23

    The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network.

  11. How Fast Can Networks Synchronize? A Random Matrix Theory Approach

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2004-03-01

    Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).

  12. Cluster Approach to Network Interaction in Pedagogical University

    ERIC Educational Resources Information Center

    Chekaleva, Nadezhda V.; Makarova, Natalia S.; Drobotenko, Yulia B.

    2016-01-01

    The study presented in the article is devoted to the analysis of theory and practice of network interaction within the framework of education clusters. Education clusters are considered to be a novel form of network interaction in pedagogical education in Russia. The aim of the article is to show the advantages and disadvantages of the cluster…

  13. A Graph Oriented Approach for Network Forensic Analysis

    ERIC Educational Resources Information Center

    Wang, Wei

    2010-01-01

    Network forensic analysis is a process that analyzes intrusion evidence captured from networked environment to identify suspicious entities and stepwise actions in an attack scenario. Unfortunately, the overwhelming amount and low quality of output from security sensors make it difficult for analysts to obtain a succinct high-level view of complex…

  14. Efficiency comparison of graphical approaches for designing contaminant detection networks in groundwater

    NASA Astrophysics Data System (ADS)

    Hudak, Paul F.

    2002-12-01

    Graphical approaches for locating monitoring wells near landfills in aquifers dominated by intergranular porosity were evaluated. Both perpendicular groundwater monitoring networks (wells constrained to a monitoring locus perpendicular to flow) and equidistant networks (wells located the same distance along flow paths) were considered, along with several setbacks between wells and a landfill and different flow fields. For an orthogonal landfill oblique to groundwater flow, equidistant networks generally outperformed their perpendicular counterparts. Equidistant monitoring networks with well locations compressed 10-20% closer to the downgradient corner of a landfill outperformed other networks over a wide range of setbacks. However, compression reduced the detection efficiency of an equidistant network at a field setting with divergent flow, a nonlinear buffer zone boundary, and discharge zones near the sides of a landfill. Graphical approaches described in this paper identify effective monitoring networks that can be refined to site-specific conditions.

  15. Modeling Pedestrian's Conformity Violation Behavior: A Complex Network Based Approach

    PubMed Central

    Zhou, Zhuping; Hu, Qizhou; Wang, Wei

    2014-01-01

    Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network's degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases. PMID:25530755

  16. Modeling pedestrian's conformity violation behavior: a complex network based approach.

    PubMed

    Zhou, Zhuping; Hu, Qizhou; Wang, Wei

    2014-01-01

    Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network's degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases.

  17. Distributed Reinforcement Learning Approach for Vehicular Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Wu, Celimuge; Kumekawa, Kazuya; Kato, Toshihiko

    In Vehicular Ad hoc Networks (VANETs), general purpose ad hoc routing protocols such as AODV cannot work efficiently due to the frequent changes in network topology caused by vehicle movement. This paper proposes a VANET routing protocol QLAODV (Q-Learning AODV) which suits unicast applications in high mobility scenarios. QLAODV is a distributed reinforcement learning routing protocol, which uses a Q-Learning algorithm to infer network state information and uses unicast control packets to check the path availability in a real time manner in order to allow Q-Learning to work efficiently in a highly dynamic network environment. QLAODV is favored by its dynamic route change mechanism, which makes it capable of reacting quickly to network topology changes. We present an analysis of the performance of QLAODV by simulation using different mobility models. The simulation results show that QLAODV can efficiently handle unicast applications in VANETs.

  18. Complex network approach to classifying classical piano compositions

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Zhang, Huishu; Huang, Jiping

    2016-10-01

    Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.

  19. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  20. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  1. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.

    PubMed

    Khalil, B; Ouarda, T B M J

    2009-11-01

    An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.

  2. A multiple network learning approach to capture system-wide condition-specific responses

    PubMed Central

    Roy, Sushmita; Werner-Washburne, Margaret; Lane, Terran

    2011-01-01

    Motivation: Condition-specific networks capture system-wide behavior under varying conditions such as environmental stresses, cell types or tissues. These networks frequently comprise parts that are unique to each condition, and parts that are shared among related conditions. Existing approaches for learning condition-specific networks typically identify either only differences or only similarities across conditions. Most of these approaches first learn networks per condition independently, and then identify similarities and differences in a post-learning step. Such approaches do not exploit the shared information across conditions during network learning. Results: We describe an approach for learning condition-specific networks that identifies the shared and unique subgraphs during network learning simultaneously, rather than as a post-processing step. Our approach learns networks across condition sets, shares data from different conditions and produces high-quality networks that capture biologically meaningful information. On simulated data, our approach outperformed an existing approach that learns networks independently for each condition, especially for small training datasets. On microarray data of hundreds of deletion mutants in two, yeast stationary-phase cell populations, the inferred network structure identified several common and population-specific effects of these deletion mutants and several high-confidence cases of double-deletion pairs, which can be experimentally tested. Our results are consistent with and extend the existing knowledge base of differentiated cell populations in yeast stationary phase. Availability and Implementation: C++ code can be accessed from http://www.broadinstitute.org/~sroy/condspec/ Contact: sroy@broadinstitute.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21551143

  3. SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach

    NASA Astrophysics Data System (ADS)

    Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore

    The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.

  4. A multi-layer network approach to MEG connectivity analysis

    PubMed Central

    Brookes, Matthew J.; Tewarie, Prejaas K.; Hunt, Benjamin A.E.; Robson, Sian E.; Gascoyne, Lauren E.; Liddle, Elizabeth B.; Liddle, Peter F.; Morris, Peter G.

    2016-01-01

    Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between neural oscillations within a large range of different frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral network hierarchy likely helps to mediate simultaneous formation of multiple brain networks, which support ongoing task demand. However, to date it has been largely overlooked, with many electrophysiological functional connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope based functional connectivity metrics with a multi-layer network framework in order to derive a more complete picture of connectivity within and between frequencies. We test this methodology using MEG data recorded during a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band, visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy controls. We further show that these connectivity differences are predictive of the severity of persistent symptoms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia. PMID:26908313

  5. A multi-layer network approach to MEG connectivity analysis.

    PubMed

    Brookes, Matthew J; Tewarie, Prejaas K; Hunt, Benjamin A E; Robson, Sian E; Gascoyne, Lauren E; Liddle, Elizabeth B; Liddle, Peter F; Morris, Peter G

    2016-05-15

    Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between neural oscillations within a large range of different frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral network hierarchy likely helps to mediate simultaneous formation of multiple brain networks, which support ongoing task demand. However, to date it has been largely overlooked, with many electrophysiological functional connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope based functional connectivity metrics with a multi-layer network framework in order to derive a more complete picture of connectivity within and between frequencies. We test this methodology using MEG data recorded during a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band, visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy controls. We further show that these connectivity differences are predictive of the severity of persistent symptoms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia.

  6. A complex network approach for the growth of aerogels

    NASA Astrophysics Data System (ADS)

    Morales, R. V.; da Cunha, C. R.; Rambo, C. R.

    2014-07-01

    The formation of the gel structure of a finite set of inorganic particles interacting via long range potentials is studied via Monte Carlo simulations for different conditions of temperature and concentration. We found that there are certain specific conditions wherein gelation can occur. Moreover, the integrated network of connected particles is investigated. A divergence of an order parameter was observed and indicates the transition from random Erdös-Rényi to scale-free networks. The effects of a reaction limited process are also investigated and indicate that the dissociation of particles favors the formation of random networks.

  7. The complex networks approach for authorship attribution of books

    NASA Astrophysics Data System (ADS)

    Mehri, Ali; Darooneh, Amir H.; Shariati, Ashrafalsadat

    2012-04-01

    Authorship analysis by means of textual features is an important task in linguistic studies. We employ complex networks theory to tackle this disputed problem. In this work, we focus on some measurable quantities of word co-occurrence network of each book for authorship characterization. Based on the network features, attribution probability is defined for authorship identification. Furthermore, two scaling exponents, q-parameter and α-exponent, are combined to classify personal writing style with acceptable high resolution power. The q-parameter, generally known as the nonextensivity measure, is calculated for degree distribution and the α-exponent comes from a power law relationship between number of links and number of nodes in the co-occurrence network constructed for different books written by each author. The applicability of the presented method is evaluated in an experiment with thirty six books of five Persian litterateurs. Our results show high accuracy rate in authorship attribution.

  8. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  9. Multi-type Childhood Abuse, Strategies of Coping, and Psychological Adaptations in Young Adults

    PubMed Central

    Sesar, Kristina; Šimić, Nataša; Barišić, Marijana

    2010-01-01

    Aim To retrospectively analyze the rate of multi-type abuse in childhood and the effects of childhood abuse and type of coping strategies on the psychological adaptation of young adults in a sample form the student population of the University of Mostar. Methods The study was conducted on a convenience sample of 233 students from the University of Mostar (196 female and 37 male), with a median age of 20 (interquartile range, 2). Exposure to abuse was determined using the Child Maltreatment Scales for Adults, which assesses emotional, physical, and sexual abuse, neglect, and witnessing family violence. Psychological adaptation was explored by the Trauma Symptom Checklist, which assesses anxiety/depression, sexual problems, trauma symptoms, and somatic symptoms. Strategies of coping with stress were explored by the Coping Inventory for Stressful Situations. Results Multi-type abuse in childhood was experienced by 172 participants (74%) and all types of abuse by 11 (5%) participants. Emotional and physical maltreatment were the most frequent types of abuse and mostly occurred together with other types of abuse. Significant association was found between all types of abuse (r = 0.436-0.778, P < 0.050). Exposure to sexual abuse in childhood and coping strategies were significant predictors of anxiety/depression (R2 = 0.3553), traumatic symptoms (R2 = 0.2299), somatic symptoms (R2 = 0.2173), and sexual problems (R2 = 0.1550, P < 0.001). Conclusion Exposure to multi-type abuse in childhood is a traumatic experience with long-term negative effects. Problem-oriented coping strategies ensure a better psychosocial adaptation than emotion-oriented strategies. PMID:20960590

  10. RMB Exchange Rate Forecast Approach Based on BP Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Sun

    RMB exchange rate system has reformed since July, 2005. This article chose RMB exchange rate data during a period from July, 2005 to September 2010 to establish BP neural network model to forecast RMB exchange rate in the future by using MATLAB software. The result showed that BP neural network is effective to forecast RMB exchange rate and also indicated that RMB exchange rate will continue to appreciate in the future.

  11. Directional MAC Approach for Wireless Body Area Networks

    PubMed Central

    Hussain, Md. Asdaque; Alam, Md. Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol. PMID:22346602

  12. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  13. Community-level demographic consequences of urbanization: an ecological network approach.

    PubMed

    Rodewald, Amanda D; Rohr, Rudolf P; Fortuna, Miguel A; Bascompte, Jordi

    2014-11-01

    Ecological networks are known to influence ecosystem attributes, but we poorly understand how interspecific network structure affect population demography of multiple species, particularly for vertebrates. Establishing the link between network structure and demography is at the crux of being able to use networks to understand population dynamics and to inform conservation. We addressed the critical but unanswered question, does network structure explain demographic consequences of urbanization? We studied 141 ecological networks representing interactions between plants and nesting birds in forests across an urbanization gradient in Ohio, USA, from 2001 to 2011. Nest predators were identified by video-recording nests and surveyed from 2004 to 2011. As landscapes urbanized, bird-plant networks were more nested, less compartmentalized and dominated by strong interactions between a few species (i.e. low evenness). Evenness of interaction strengths promoted avian nest survival, and evenness explained demography better than urbanization, level of invasion, numbers of predators or other qualitative network metrics. Highly uneven networks had approximately half the nesting success as the most even networks. Thus, nest survival reflected how urbanization altered species interactions, particularly with respect to how nest placement affected search efficiency of predators. The demographic effects of urbanization were not direct, but were filtered through bird-plant networks. This study illustrates how network structure can influence demography at the community level and further, that knowledge of species interactions and a network approach may be requisite to understanding demographic responses to environmental change.

  14. Trauma-Exposed Latina Immigrants’ Networks: A Social Network Analysis Approach

    PubMed Central

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A.; Fernandez, Nicole C.; Cabling, Mark; Kaltman, Stacey

    2015-01-01

    Objective Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. Methods In 2011–2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Results Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Conclusions Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted. PMID:28078194

  15. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence

    PubMed Central

    Latkin, Carl A.; Davey-Rothwell, Melissa A.; Knowlton, Amy R.; Alexander, Kamila A.; Williams, Chyvette T.; Boodram, Basmattee

    2013-01-01

    This article reviews current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates and treatment access and outcomes. Social network analysis is a value tool to link social structural factors to individual behaviors. Social networks provide an avenue for low cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, and optimizing HIV medical care and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics. PMID:23673888

  16. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    NASA Technical Reports Server (NTRS)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  17. GPM ground validation via commercial cellular networks: an exploratory approach

    NASA Astrophysics Data System (ADS)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Brasjen, Noud; Uijlenhoet, Remko

    2016-04-01

    The suitability of commercial microwave link networks for ground validation of GPM (Global Precipitation Measurement) data is evaluated here. Two state-of-the-art rainfall products are compared over the land surface of the Netherlands for a period of 7 months, i.e., rainfall maps from commercial cellular communication networks and Integrated Multi-satellite Retrievals for GPM (IMERG). Commercial microwave link networks are nowadays the core component in telecommunications worldwide. Rainfall rates can be retrieved from measurements of attenuation between transmitting and receiving antennas. If adequately set up, these networks enable rainfall monitoring tens of meters above the ground at high spatiotemporal resolutions (temporal sampling of seconds to tens of minutes, and spatial sampling of hundreds of meters to tens of kilometers). The GPM mission is the successor of TRMM (Tropical Rainfall Measurement Mission). For two years now, IMERG offers rainfall estimates across the globe (180°W - 180°E and 60°N - 60°S) at spatiotemporal resolutions of 0.1° x 0.1° every 30 min. These two data sets are compared against a Dutch gauge-adjusted radar data set, considered to be the ground truth given its accuracy, spatiotemporal resolution and availability. The suitability of microwave link networks in satellite rainfall evaluation is of special interest, given the independent character of this technique, its high spatiotemporal resolutions and availability. These are valuable assets for water management and modeling of floods, landslides, and weather extremes; especially in places where rain gauge networks are scarce or poorly maintained, or where weather radar networks are too expensive to acquire and/or maintain.

  18. An automated approach to network features of protein structure ensembles

    PubMed Central

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  19. Efficient learning strategy of Chinese characters based on network approach.

    PubMed

    Yan, Xiaoyong; Fan, Ying; Di, Zengru; Havlin, Shlomo; Wu, Jinshan

    2013-01-01

    We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW) strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  20. EXAMINE: a computational approach to reconstructing gene regulatory networks.

    PubMed

    Deng, Xutao; Geng, Huimin; Ali, Hesham

    2005-08-01

    Reverse-engineering of gene networks using linear models often results in an underdetermined system because of excessive unknown parameters. In addition, the practical utility of linear models has remained unclear. We address these problems by developing an improved method, EXpression Array MINing Engine (EXAMINE), to infer gene regulatory networks from time-series gene expression data sets. EXAMINE takes advantage of sparse graph theory to overcome the excessive-parameter problem with an adaptive-connectivity model and fitting algorithm. EXAMINE also guarantees that the most parsimonious network structure will be found with its incremental adaptive fitting process. Compared to previous linear models, where a fully connected model is used, EXAMINE reduces the number of parameters by O(N), thereby increasing the chance of recovering the underlying regulatory network. The fitting algorithm increments the connectivity during the fitting process until a satisfactory fit is obtained. We performed a systematic study to explore the data mining ability of linear models. A guideline for using linear models is provided: If the system is small (3-20 elements), more than 90% of the regulation pathways can be determined correctly. For a large-scale system, either clustering is needed or it is necessary to integrate information in addition to expression profile. Coupled with the clustering method, we applied EXAMINE to rat central nervous system development (CNS) data with 112 genes. We were able to efficiently generate regulatory networks with statistically significant pathways that have been predicted previously.

  1. A NETWORK-THEORETICAL APPROACH TO UNDERSTANDING INTERSTELLAR CHEMISTRY

    SciTech Connect

    Jolley, Craig C.; Douglas, Trevor

    2010-10-20

    Recent years have seen dramatic advances in computational models of chemical processes in the interstellar medium (ISM). Typically, these models have been used to calculate changes in chemical abundances with time; the calculated abundances can then be compared with chemical abundances derived from observations. In this study, the output from an astrochemical simulation has been used to generate directed graphs with weighted edges; these have been analyzed with the tools of network theory to uncover whole-network properties of reaction systems in dark molecular clouds. The results allow the development of a model in which global network properties can be rationalized in terms of the basic physical properties of the reaction system. The ISM network exhibits an exponential degree distribution, which is likely to be a generic feature of chemical networks involving a broad range of reaction rate constants. While species abundances span several orders of magnitude, the formation and destruction rates for most species are approximately balanced-departures from this rule indicate species (such as CO) that play a critical role in shaping the dynamics of the system. Future theoretical or observational studies focusing on individual molecular species will be able to situate them in terms of their role in the complete system or quantify the degree to which they deviate from the typical system behavior.

  2. Combing the hairball with BioFabric: a new approach for visualization of large networks

    PubMed Central

    2012-01-01

    Background The analysis of large, complex networks is an important aspect of ongoing biological research. Yet there is a need for entirely new, scalable approaches for network visualization that can provide more insight into the structure and function of these complex networks. Results To address this need, we have developed a software tool named BioFabric, which uses a novel network visualization technique that depicts nodes as one-dimensional horizontal lines arranged in unique rows. This is in distinct contrast to the traditional approach that represents nodes as discrete symbols that behave essentially as zero-dimensional points. BioFabric then depicts each edge in the network using a vertical line assigned to its own unique column, which spans between the source and target rows, i.e. nodes. This method of displaying the network allows a full-scale view to be organized in a rational fashion; interesting network structures, such as sets of nodes with similar connectivity, can be quickly scanned and visually identified in the full network view, even in networks with well over 100,000 edges. This approach means that the network is being represented as a fundamentally linear, sequential entity, where the horizontal scroll bar provides the basic navigation tool for browsing the entire network. Conclusions BioFabric provides a novel and powerful way of looking at any size of network, including very large networks, using horizontal lines to represent nodes and vertical lines to represent edges. It is freely available as an open-source Java application. PMID:23102059

  3. Quantitative Approaches to Analyzing the Structure of Continuing Professional Development Networks.

    ERIC Educational Resources Information Center

    West, Russell F.

    A review of the antecedents of the recent interest in social network analysis makes a case for using network information in mapping professional groups as part of the program planning process. Three major streams of theory and research have converged into a broad multidisciplinary approach to viewing social structure that is termed "network…

  4. Quantifying gene network connectivity in silico: Scalability and accuracy of a modular approach

    PubMed Central

    Yalamanchili, Nirupama; Zak, Daniel E.; Ogunnaike, Babatunde A.; Schwaber, James S.; Kriete, Andres; Kholodenko, Boris N.

    2008-01-01

    Large, complex datasets that are generated from microarray experiments create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene’s mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analyzing in silico steady-state changes in the activities of only the module outputs -communicating intermediates- that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, we are able to evaluate the accuracy of the modular approach and its sensitivity to key assumptions. PMID:16986625

  5. Research into alternative network approaches for space operations

    NASA Technical Reports Server (NTRS)

    Kusmanoff, Antone L.; Barton, Timothy J.

    1990-01-01

    The main goal is to resolve the interoperability problem of applications employing DOD TCP/IP (Department of Defence Transmission Control Protocol/Internet Protocol) family of protocols on a CCITT/ISO based network. The objective is to allow them to communicate over the CCITT/ISO protocol GPLAN (General Purpose Local Area Network) network without modification to the user's application programs. There were two primary assumptions associated with the solution that was actually realized. The first is that the solution had to allow for future movement to the exclusive use of the CCITT/ISO standards. The second is that the solution had to be software transparent to the currently installed TCP/IP and CCITT/ISO user application programs.

  6. An entropy-driven matrix completion (E-MC) approach to complex network mapping

    NASA Astrophysics Data System (ADS)

    Koochakzadeh, Ali; Pal, Piya

    2016-05-01

    Mapping the topology of a complex network in a resource-efficient manner is a challenging problem with applications in internet mapping, social network inference, and so forth. We propose a new entropy driven algorithm leveraging ideas from matrix completion, to map the network using monitors (or sensors) which, when placed on judiciously selected nodes, are capable of discovering their immediate neighbors. The main challenge is to maximize the portion of discovered network using only a limited number of available monitors. To this end, (i) a new measure of entropy or uncertainty is associated with each node, in terms of the currently discovered edges incident on that node, and (ii) a greedy algorithm is developed to select a candidate node for monitor placement based on its entropy. Utilizing the fact that many complex networks of interest (such as social networks), have a low-rank adjacency matrix, a matrix completion algorithm, namely 1-bit matrix completion, is combined with the greedy algorithm to further boost its performance. The low rank property of the network adjacency matrix can be used to extrapolate a portion of missing edges, and consequently update the node entropies, so as to efficiently guide the network discovery algorithm towards placing monitors on the nodes that can turn out to be more informative. Simulations performed on a variety of real world networks such as social networks and peer networks demonstrate the superior performance of the matrix-completion guided approach in discovering the network topology.

  7. A Systematic Approach to Local Area Network Administration

    DTIC Science & Technology

    1989-03-01

    1988 10:49pm HELP BAT 1152 Apr 19, 1988 09:04pmro~ ort lJjame D> Cop =Typ e LEL0 ~L ]~~~o The 1 DIR Version 3.50 - Copyright (c) Bourbaki , Inc. 1984...1989 01:llpm The 1 DIR Version 3.50 - Copyright (c) Bourbaki , Inc. 1984, 1985 45 3. 3COM NETWORK D:\\APPS\\DBASE3P IDIR SCREEN \\APPS\\DBASE3P iveD Name... Bourbaki , Inc. 1984, 1985 4. TOKEN RING NETWORK BATCH FILE DIRECTORY Drive D Name Ext Size Statistics Toggles Select=> IDIR COM 49823 Disk Usage Optons

  8. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  9. A SOCIAL NETWORK ANALYSIS APPROACH TO UNDERSTAND CHANGES IN A CANCER DISPARITIES COMMUNITY PARTNERSHIP NETWORK.

    PubMed

    Luque, John S; Tyson, Dinorah Martinez; Bynum, Shalanda A; Noel-Thomas, Shalewa; Wells, Kristen J; Vadaparampil, Susan T; Gwede, Clement K; Meade, Cathy D

    2011-11-01

    The Tampa Bay Community Cancer Network (TBCCN) is one of the Community Network Program sites funded (2005-10) by the National Cancer Institute's Center to Reduce Cancer Health Disparities. TBCCN was tasked to form a sustainable, community-based partnership network focused on the goal of reducing cancer health disparities among racial-ethnic minority and medically underserved populations. This article reports evaluation outcome results from a social network analysis and discusses the varying TBCCN partner roles-in education, training, and research-over a span of three years (2007-09). The network analysis included 20 local community partner organizations covering a tricounty area in Southwest Florida. In addition, multiple externally funded, community-based participatory research pilot projects with community-academic partners have either been completed or are currently in progress, covering research topics including culturally targeted colorectal and prostate cancer screening education, patient navigation focused on preventing cervical cancer in rural Latinas, and community perceptions of biobanking. The social network analysis identified a trend toward increased network decentralization based on betweenness centrality and overall increase in number of linkages, suggesting network sustainability. Degree centrality, trust, and multiplexity exhibited stability over the three-year time period. These results suggest increased interaction and interdependence among partner organizations and less dependence on the cancer center. Social network analysis enabled us to quantitatively evaluate partnership network functioning of TBCCN in terms of network structure and information and resources flows, which are integral to understanding effective coalition practice based on Community Coalition Action Theory ( Butterfoss and Kegler 2009). Sharing the results of the social network analysis with the partnership network is an important component of our coalition building efforts. A

  10. A feedback-based secure path approach for wireless sensor network data collection.

    PubMed

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  11. Networks and social capital: a relational approach to primary healthcare reform

    PubMed Central

    Scott, Catherine; Hofmeyer, Anne

    2007-01-01

    Collaboration among health care providers and across systems is proposed as a strategy to improve health care delivery the world over. Over the past two decades, health care providers have been encouraged to work in partnership and build interdisciplinary teams. More recently, the notion of networks has entered this discourse but the lack of consensus and understanding about what is meant by adopting a network approach in health services limits its use. Also crucial to this discussion is the work of distinguishing the nature and extent of the impact of social relationships – generally referred to as social capital. In this paper, we review the rationale for collaboration in health care systems; provide an overview and synthesis of key concepts; dispel some common misconceptions of networks; and apply the theory to an example of primary healthcare network reform in Alberta (Canada). Our central thesis is that a relational approach to systems change, one based on a synthesis of network theory and social capital can provide the fodation for a multi-focal approach to primary healthcare reform. Action strategies are recommended to move from an awareness of 'networks' to fully translating knowledge from existing theory to guide planning and practice innovations. Decision-makers are encouraged to consider a multi-focal approach that effectively incorporates a network and social capital approach in planning and evaluating primary healthcare reform. PMID:17894868

  12. Variable sampling approach to mitigate instability in networked control systems with delays.

    PubMed

    López-Echeverría, Daniel; Magaña, Mario E

    2012-01-01

    This paper analyzes a new alternative approach to compensate for the effects of time delays on a dynamic networked control system (NCS). The approach is based on the use of time-delay-predicted values as the sampling times of the NCS. We use a one-step-ahead prediction algorithm based on an adaptive time delay neural network. The application of pole placement and linear quadratic regulator methods to compute the feedback gains taking into account the estimated time delays is investigated.

  13. Nursing Home Care Quality: Insights from a Bayesian Network Approach

    ERIC Educational Resources Information Center

    Goodson, Justin; Jang, Wooseung; Rantz, Marilyn

    2008-01-01

    Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…

  14. Fraction Calculation--A Didactic Approach to Constructing Mathematical Networks.

    ERIC Educational Resources Information Center

    Steiner, Gerhard F.; Stoecklin, Markus

    1997-01-01

    Thirty-eight sixth graders were trained in fraction calculation through progressive transformation dialectics (PT) whereas a control group of 38 was taught through a traditional mathematics education framework. The PT group, encouraged to form network-type knowledge representations, performed better on problems that required more than mere…

  15. Forecasting ENSO events: A neural network-extended EOF approach

    SciTech Connect

    Tangang, F.T.; Tang, B.; Monahan, A.H.; Hsieh, W.W.

    1998-01-01

    The authors constructed neural network models to forecast the sea surface temperature anomalies (SSTA) for three regions: Nino 4. Nino 3.5, and Nino 3, representing the western-central, the central, and the eastern-central parts of the equatorial Pacific Ocean, respectively. The inputs were the extended empirical orthogonal functions (EEOF) of the sea level pressure (SLP) field that covered the tropical Indian and Pacific Oceans and evolved for a duration of 1 yr. The EEOFs greatly reduced the size of the neural networks from those of the authors` earlier papers using EOFs. The Nino 4 region appeared to be the best forecasted region, with useful skills up to a year lead time for the 1982-93 forecast period. By network pruning analysis and spectral analysis, four important inputs were identified: modes 1, 2, and 6 of the SLP EEOFs and the SSTA persistence. Mode 1 characterized the low-frequency oscillation (LFO, with 4-5-yr period), and was seen as the typical ENSO signal, while mode 2, with a period of 2-5 yr, characterized the quasi-biennial oscillation (QBO) plus the LFO. Mode 6 was dominated by decadal and interdecadal variations. Thus, forecasting ENSO required information from the QBO, and the decadal-interdecadal oscillations. The nonlinearity of the networks tended to increase with lead time and to become stronger for the eastern regions of the equatorial Pacific Ocean. 35 refs., 14 figs., 4 tabs.

  16. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  17. A Maximal Flow Approach to Dynamic Routing in Communication Networks,

    DTIC Science & Technology

    1980-05-01

    of nodes. In Appendix B we provide a computer program in Fortran for finding the maximal flow in these networks, based on the algorithm of Edmons and... Edmons and Karp is implemented by a Fortran Subroutine called MAXFL. The algorithm finds the shortest path between source and destination on which an

  18. Biology Inspired Approach for Communal Behavior in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control.

  19. A Cultural Approach to Networked-Based Mobile Education

    ERIC Educational Resources Information Center

    Koskimaa, Raine; Lehtonen, Miika; Heinonen, Ulla; Ruokamo, Heli; Tissari, Varpu; Vahtivuori-Hanninen, Sanna; Tella, Seppo

    2007-01-01

    This paper discusses cultural conditions for networked-based mobile education. In our paper, we demonstrate how an Integrated Meta-Model that we have been developing in our MOMENTS project, i.e. Models and Methods for Future Knowledge Construction: Interdisciplinary Implementations with Mobile Technologies, can be used as a heuristic tool for…

  20. Neural Networks Based Approach to Enhance Space Hardware Reliability

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.; Thakoor, Anilkumar; Lu, Thomas; Franco, Lauro; Lin, Tsung Han; McClure, S. S.

    2011-01-01

    This paper demonstrates the use of Neural Networks as a device modeling tool to increase the reliability analysis accuracy of circuits targeted for space applications. The paper tackles a number of case studies of relevance to the design of Flight hardware. The results show that the proposed technique generates more accurate models than the ones regularly used to model circuits.

  1. Analysing Interactions in a Teacher Network Forum: A Sociometric Approach

    ERIC Educational Resources Information Center

    Lisboa, Eliana Santana; Coutinho, Clara Pereira

    2013-01-01

    This article presents the sociometric analysis of the interactions in a forum of a social network created for the professional development of Portuguese-speaking teachers. The main goal of the forum, which was titled Stricto Sensu, was to discuss the educational value of programmes that joined the distance learning model in Brazil. The empirical…

  2. Neural Network Approach to Locating Cryptography in Object Code

    SciTech Connect

    Jason L. Wright; Milos Manic

    2009-09-01

    Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.

  3. Measuring Service Quality in the Networked Environment: Approaches and Considerations.

    ERIC Educational Resources Information Center

    Bertot, John Carlo

    2001-01-01

    This article offers a number of statistics and performance measures that libraries may find useful in determining the overall quality of their network-based services; identifies a number of service quality criteria; and provides a framework to assist librarians in selecting statistics and performance measures based on service quality criteria.…

  4. The Teenage Expertise Network (TEN): An Online Ethnographic Approach

    ERIC Educational Resources Information Center

    Johnson, Nicola F.; Humphry, Nicoli

    2012-01-01

    The take-up of digital technology by young people is a well-known phenomenon and has been subject to socio-cultural analysis in areas such as youth studies and cultural studies. The Teenage Expertise Network (TEN) research project investigates how teenagers develop technological expertise in techno-cultural contexts via the use of a purposefully…

  5. Small "p" Publishing: A Networked Blogging Approach to Academic Discourse

    ERIC Educational Resources Information Center

    Martin, Julia W.; Hughes, Brian

    2012-01-01

    This article highlights a middle ground for academic publishing between formal peer-reviewed journals and informal blogging that we call "Small "p" Publishing." Having implemented and tested a publishing network that illustrates this middle ground, we describe its unique contributions to scholars and learning communities. Three features that…

  6. Real-time, large scale optimization of water network systems using a subdomain approach.

    SciTech Connect

    van Bloemen Waanders, Bart Gustaaf; Biegler, Lorenz T.; Laird, Carl Damon

    2005-03-01

    Certain classes of dynamic network problems can be modeled by a set of hyperbolic partial differential equations describing behavior along network edges and a set of differential and algebraic equations describing behavior at network nodes. In this paper, we demonstrate real-time performance for optimization problems in drinking water networks. While optimization problems subject to partial differential, differential, and algebraic equations can be solved with a variety of techniques, efficient solutions are difficult for large network problems with many degrees of freedom and variable bounds. Sequential optimization strategies can be inefficient for this problem due to the high cost of computing derivatives with respect to many degrees of freedom. Simultaneous techniques can be more efficient, but are difficult because of the need to solve a large nonlinear program; a program that may be too large for current solver. This study describes a dynamic optimization formulation for estimating contaminant sources in drinking water networks, given concentration measurements at various network nodes. We achieve real-time performance by combining an efficient large-scale nonlinear programming algorithm with two problem reduction techniques. D Alembert's principle can be applied to the partial differential equations governing behavior along the network edges (distribution pipes). This allows us to approximate the time-delay relationships between network nodes, removing the need to discretize along the length of the pipes. The efficiency of this approach alone, however, is still dependent on the size of the network and does not scale indefinitely to larger network models. We further reduce the problem size with a subdomain approach and solve smaller inversion problems using a geographic window around the area of contamination. We illustrate the effectiveness of this overall approach and these reduction techniques on an actual metropolitan water network model.

  7. Reorganization of river networks under changing spatiotemporal precipitation patterns: An optimal channel network approach

    NASA Astrophysics Data System (ADS)

    Abed-Elmdoust, Armaghan; Miri, Mohammad-Ali; Singh, Arvind

    2016-11-01

    We investigate the impact of changing nonuniform spatial and temporal precipitation patterns on the evolution of river networks. To achieve this, we develop a two-dimensional optimal channel network (OCN) model with a controllable rainfall distribution to simulate the evolution of river networks, governed by the principle of minimum energy expenditure, inside a prescribed boundary. We show that under nonuniform precipitation conditions, river networks reorganize significantly toward new patterns with different geomorphic and hydrologic signatures. This reorganization is mainly observed in the form of migration of channels of different orders, widening or elongation of basins as well as formation and extinction of channels and basins. In particular, when the precipitation gradient is locally increased, the higher-order channels, including the mainstream river, migrate toward regions with higher precipitation intensity. Through pertinent examples, the reorganization of the drainage network is quantified via stream parameters such as Horton-Strahler and Tokunaga measures, order-based channel total length and river long profiles obtained via simulation of three-dimensional basin topography, while the hydrologic response of the evolved network is investigated using metrics such as hydrograph and power spectral density of simulated streamflows at the outlet of the network. In addition, using OCNs, we investigate the effect of orographic precipitation patterns on multicatchment landscapes composed of several interacting basins. Our results show that network-inspired methods can be utilized as insightful and versatile models for directly exploring the effects of climate change on the evolution of river drainage systems.

  8. Excluded Volume Approach for Ultrathin Carbon Nanotube Network Stabilization: A Mesoscopic Distinct Element Method Study.

    PubMed

    Wang, Yuezhou; Drozdov, Grigorii; Hobbie, Erik K; Dumitrica, Traian

    2017-04-04

    Ultrathin carbon nanotube films have gathered attention for flexible electronics applications. Unfortunately, their network structure changes significantly even under small applied strains. We perform mesoscopic distinct element method simulations and develop an atomic-scale picture of the network stress relaxation. On this basis, we put forward the concept of mesoscale design by the addition of excluded-volume interactions. We integrate silicon nanoparticles into our model and show that the nanoparticle-filled networks present superior stability and mechanical response relative to those of pure films. The approach opens new possibilities for tuning the network microstructure in a manner that is compatible with flexible electronics applications.

  9. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks.

    PubMed

    Yin, Junming; Ho, Qirong; Xing, Eric P

    2013-01-01

    We propose a scalable approach for making inference about latent spaces of large networks. With a succinct representation of networks as a bag of triangular motifs, a parsimonious statistical model, and an efficient stochastic variational inference algorithm, we are able to analyze real networks with over a million vertices and hundreds of latent roles on a single machine in a matter of hours, a setting that is out of reach for many existing methods. When compared to the state-of-the-art probabilistic approaches, our method is several orders of magnitude faster, with competitive or improved accuracy for latent space recovery and link prediction.

  10. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    PubMed

    Kreakie, B J; Hychka, K C; Belaire, J A; Minor, E; Walker, H A

    2016-02-01

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago (n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.

  11. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Kreakie, B. J.; Hychka, K. C.; Belaire, J. A.; Minor, E.; Walker, H. A.

    2016-02-01

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago ( n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.

  12. An improved spanning tree approach for the reliability analysis of supply chain collaborative network

    NASA Astrophysics Data System (ADS)

    Lam, C. Y.; Ip, W. H.

    2012-11-01

    A higher degree of reliability in the collaborative network can increase the competitiveness and performance of an entire supply chain. As supply chain networks grow more complex, the consequences of unreliable behaviour become increasingly severe in terms of cost, effort and time. Moreover, it is computationally difficult to calculate the network reliability of a Non-deterministic Polynomial-time hard (NP-hard) all-terminal network using state enumeration, as this may require a huge number of iterations for topology optimisation. Therefore, this paper proposes an alternative approach of an improved spanning tree for reliability analysis to help effectively evaluate and analyse the reliability of collaborative networks in supply chains and reduce the comparative computational complexity of algorithms. Set theory is employed to evaluate and model the all-terminal reliability of the improved spanning tree algorithm and present a case study of a supply chain used in lamp production to illustrate the application of the proposed approach.

  13. From partnerships to networks: new approaches for measuring U.S. National Heritage Area effectiveness.

    PubMed

    Laven, Daniel N; Krymkowski, Daniel H; Ventriss, Curtis L; Manning, Robert E; Mitchell, Nora J

    2010-08-01

    National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.

  14. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  15. Architectural approach for quality and safety aware healthcare social networks.

    PubMed

    López, Diego M; Blobel, Bernd; González, Carolina

    2012-01-01

    Quality of information and privacy and safety issues are frequently identified as main limitations to make most benefit from social media in healthcare. The objective of the paper is to contribute to the analysis of healthcare social networks (SN), and online healthcare social network services (SNS) by proposing a formal architectural analysis of healthcare SN and SNS, considering the complexity of both systems, but stressing on quality, safety and usability aspects. Quality policies are necessary to control the quality of content published by experts and consumers. Privacy and safety policies protect against inappropriate use of information and users responsibility for sharing information. After the policies are established and documented, a proof of concept online SNS supporting primary healthcare promotion is presented in the paper.

  16. An enhanced stream mining approach for network anomaly detection

    NASA Astrophysics Data System (ADS)

    Bellaachia, Abdelghani; Bhatt, Rajat

    2005-03-01

    Network anomaly detection is one of the hot topics in the market today. Currently, researchers are trying to find a way in which machines could automatically learn both normal and anomalous behavior and thus detect anomalies if and when they occur. Most important applications which could spring out of these systems is intrusion detection and spam mail detection. In this paper, the primary focus on the problem and solution of "real time" network intrusion detection although the underlying theory discussed may be used for other applications of anomaly detection (like spam detection or spy-ware detection) too. Since a machine needs a learning process on its own, data mining has been chosen as a preferred technique. The object of this paper is to present a real time clustering system; we call Enhanced Stream Mining (ESM) which could analyze packet information (headers, and data) to determine intrusions.

  17. A network approach in analysis of the matching hypothesis

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Spivey, Robert; Korniss, Gyorgy; Szymanski, Boleslaw

    2014-03-01

    The matching hypothesis in social psychology claimed that people are more likely to form a committed relationship with someone who is equally attractive. This phenomenon can be well interpreted by the principle of homophily that people are apt to get in touch with others similar to them. Yet, social experiments indicate that people in general tend to prefer more attractive individuals regardless of their own attractiveness. Here study the stochastic matching process for different underlying networks and different attractiveness distributions. We showed that the correlation of attractiveness within couples could purely due to the limited number of acquaintance each person has and such correlation decreases as the network becomes more sparse. We also analyzed the effect of the degree distribution and the attractiveness on the number of individuals that can not find their partners. This work is supported by ARL NS-CTA, ARO, and ONR.

  18. A coclustering approach for mining large protein-protein interaction networks.

    PubMed

    Pizzuti, Clara; Rombo, Simona E

    2012-01-01

    Several approaches have been presented in the literature to cluster Protein-Protein Interaction (PPI) networks. They can be grouped in two main categories: those allowing a protein to participate in different clusters and those generating only nonoverlapping clusters. In both cases, a challenging task is to find a suitable compromise between the biological relevance of the results and a comprehensive coverage of the analyzed networks. Indeed, methods returning high accurate results are often able to cover only small parts of the input PPI network, especially when low-characterized networks are considered. We present a coclustering-based technique able to generate both overlapping and nonoverlapping clusters. The density of the clusters to search for can also be set by the user. We tested our method on the two networks of yeast and human, and compared it to other five well-known techniques on the same interaction data sets. The results showed that, for all the examples considered, our approach always reaches a good compromise between accuracy and network coverage. Furthermore, the behavior of our algorithm is not influenced by the structure of the input network, different from all the techniques considered in the comparison, which returned very good results on the yeast network, while on the human network their outcomes are rather poor.

  19. A statistical mechanics approach to autopoietic immune networks

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2010-07-01

    In this work we aim to bridge theoretical immunology and disordered statistical mechanics. We introduce a model for the behavior of B-cells which naturally merges the clonal selection theory and the autopoietic network theory as a whole. From the analysis of its features we recover several basic phenomena such as low-dose tolerance, dynamical memory of antigens and self/non-self discrimination.

  20. Coevolutionary network approach to cultural dynamics controlled by intolerance

    NASA Astrophysics Data System (ADS)

    Gracia-Lázaro, Carlos; Quijandría, Fernando; Hernández, Laura; Floría, Luis Mario; Moreno, Yamir

    2011-12-01

    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization.

  1. Identification of Gene Networks: An Approach Based on Mathematical Modeling

    DTIC Science & Technology

    2014-08-21

    applied the sensitivity method to a five-gene subnetwork of Escherichia coli and obtained promising preliminary experimental results. (a) Papers... Escherichia coli : ompR, flhC, flhD, flgA, and flgC. The regulatory interactions among these genes have been previously discovered and are part of the...Network Identification. (Submitted). 3 Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR

  2. A review of network-based approaches to drug repositioning.

    PubMed

    Lotfi Shahreza, Maryam; Ghadiri, Nasser; Mousavi, Sayed Rasoul; Varshosaz, Jaleh; Green, James R

    2017-02-27

    Experimental drug development is time-consuming, expensive and limited to a relatively small number of targets. However, recent studies show that repositioning of existing drugs can function more efficiently than de novo experimental drug development to minimize costs and risks. Previous studies have proven that network analysis is a versatile platform for this purpose, as the biological networks are used to model interactions between many different biological concepts. The present study is an attempt to review network-based methods in predicting drug targets for drug repositioning. For each method, the preferred type of data set is described, and their advantages and limitations are discussed. For each method, we seek to provide a brief description, as well as an evaluation based on its performance metrics.We conclude that integrating distinct and complementary data should be used because each type of data set reveals a unique aspect of information about an organism. We also suggest that applying a standard set of evaluation metrics and data sets would be essential in this fast-growing research domain.

  3. Approach and analysis of contention resolution in optical switching network

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong; Dang, Mingrui; Mao, Youju; Zhang, Min; Li, Lemin

    2002-09-01

    As the Internet traffic exponentially growing, the next generation IP network is forced to scale far beyond its present performances. The more and more mature optical switching technology, such as optical burst switching, is expected to provide an ideal infrastructure for meeting the demands. However in optical switching, there is one critical issue, namely contention, which roots from multiple optical data requesting the same output port How to resolve contention in optical domain will have a significant effect on the performance (in terms of the burst-loss rate, average delay time and network throughput) of optical switching network. The paper proposes a contention resolution scheme based on FDL, AWG and TWC. Here FDL is used as two functions, i.e. forwarding and feedback for smaller or longer buffering time requirements respectively. In the paper we incorporate the scheme into the design of optical switch. We descript the optical data buffering strategy when contention occurs. We also study the performance of the scheme in a Markov process model under the assumption of uniform Bernoulli traffic, and validate the analysis through numerical simulation. The computer simulation results show that the scheme can efficiently use FDL buffering and AWG switching capacities, hence can obviously reduce the contentions.

  4. Integrated healthcare networks' performance: a growth curve modeling approach.

    PubMed

    Wan, Thomas T H; Wang, Bill B L

    2003-05-01

    This study examines the effects of integration on the performance ratings of the top 100 integrated healthcare networks (IHNs) in the United States. A strategic-contingency theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. To create a database for the panel study, the top 100 IHNs selected by the SMG Marketing Group in 1998 were followed up in 1999 and 2000. The data were merged with the Dorenfest data on information system integration. A growth curve model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' performance in 1998 and their subsequent rankings in the consecutive years were analyzed. IHNs' initial performance scores were positively influenced by network size, number of affiliated physicians and profit margin, and were negatively associated with average length of stay and technical efficiency. The continuing high performance, judged by maintaining higher performance scores, tended to be enhanced by the use of more managerial or executive decision-support systems. Future studies should include time-varying operational indicators to serve as predictors of network performance.

  5. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  6. Tracing Road Network Bottleneck by Data Driven Approach

    PubMed Central

    Qi, Hongsheng; Liu, Meiqi; Zhang, Lihui; Wang, Dianhai

    2016-01-01

    Urban road congestions change both temporally and spatially. They are essentially caused by network bottlenecks. Therefore, understanding bottleneck dynamics is critical in the goal of reasonably allocating transportation resources. In general, a typical bottleneck experiences the stages of formation, propagation and dispersion. In order to understand the three stages of a bottle neck and how the bottleneck moves on a road network, traffic flow data can be used to reconstruct these dynamics. However, raw traffic flow data is usually flawed in many ways. For instance some portion of data may be missing due to the failure of data collection devices, or some random factors in the data make it hard to identify real bottlenecks. In this paper a “user voting method” is proposed to deal with such raw-data-related issues. In this method, road links are ranked according to the weighed sum of certain performance measures and the links that are ranked relatively high are regarded as recurrent bottlenecks in a network, and several bottlenecks form a bottleneck area. A series of bottleneck parameters can be defined based on the identified bottleneck areas, such as bottleneck coverage, bottleneck link length, etc. Identifying bottleneck areas and calculating the bottleneck parameters for each time interval can reflect the evolution of the bottlenecks and also help trace how the bottlenecks move. PMID:27228150

  7. Active traffic management on road networks: a macroscopic approach.

    PubMed

    Kurzhanskiy, Alex A; Varaiya, Pravin

    2010-10-13

    Active traffic management (ATM) is the ability to dynamically manage recurrent and non-recurrent congestion based on prevailing traffic conditions in order to maximize the effectiveness and efficiency of road networks. It is a continuous process of (i) obtaining and analysing traffic measurement data, (ii) operations planning, i.e. simulating various scenarios and control strategies, (iii) implementing the most promising control strategies in the field, and (iv) maintaining a real-time decision support system that filters current traffic measurements to predict the traffic state in the near future, and to suggest the best available control strategy for the predicted situation. ATM relies on a fast and trusted traffic simulator for the rapid quantitative assessment of a large number of control strategies for the road network under various scenarios, in a matter of minutes. The open-source macrosimulation tool Aurora ROAD NETWORK MODELER is a good candidate for this purpose. The paper describes the underlying dynamical traffic model and what it takes to prepare the model for simulation; covers the traffic performance measures and evaluation of scenarios as part of operations planning; introduces the framework within which the control strategies are modelled and evaluated; and presents the algorithm for real-time traffic state estimation and short-term prediction.

  8. Heuristic approaches for energy-efficient shared restoration in WDM networks

    NASA Astrophysics Data System (ADS)

    Alilou, Shahab

    In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared

  9. Network-based stochastic competitive learning approach to disambiguation in collaborative networks

    NASA Astrophysics Data System (ADS)

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  10. Network-based stochastic competitive learning approach to disambiguation in collaborative networks.

    PubMed

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  11. A subset polynomial neural networks approach for breast cancer diagnosis.

    PubMed

    O'Neill, T J; Penm, Jack; Penm, Jonathan

    2007-01-01

    Breast cancer is a very common and serious cancer for women that is diagnosed in one of every eight Australian women before the age of 85. The conventional method of breast cancer diagnosis is mammography. However, mammography has been reported to have poor diagnostic capability. In this paper we have used subset polynomial neural network techniques in conjunction with fine needle aspiration cytology to undertake this difficult task of predicting breast cancer. The successful findings indicate that adoption of NNs is likely to lead to increased survival of women with breast cancer, improved electronic healthcare, and enhanced quality of life.

  12. Deep space network resource scheduling approach and application

    NASA Technical Reports Server (NTRS)

    Eggemeyer, William C.; Bowling, Alan

    1987-01-01

    Deep Space Network (DSN) resource scheduling is the process of distributing ground-based facilities to track multiple spacecraft. The Jet Propulsion Laboratory has carried out extensive research to find ways of automating this process in an effort to reduce time and manpower costs. This paper presents a resource-scheduling system entitled PLAN-IT with a description of its design philosophy. The PLAN-IT's current on-line usage and limitations in scheduling the resources of the DSN are discussed, along with potential enhancements for DSN application.

  13. Associative nature of event participation dynamics: A network theory approach

    PubMed Central

    Smiljanić, Jelena; Mitrović Dankulov, Marija

    2017-01-01

    The affiliation with various social groups can be a critical factor when it comes to quality of life of each individual, making such groups an essential element of every society. The group dynamics, longevity and effectiveness strongly depend on group’s ability to attract new members and keep them engaged in group activities. It was shown that high heterogeneity of scientist’s engagement in conference activities of the specific scientific community depends on the balance between the numbers of previous attendances and non-attendances and is directly related to scientist’s association with that community. Here we show that the same holds for leisure groups of the Meetup website and further quantify individual members’ association with the group. We examine how structure of personal social networks is evolving with the event attendance. Our results show that member’s increasing engagement in the group activities is primarily associated with the strengthening of already existing ties and increase in the bonding social capital. We also show that Meetup social networks mostly grow trough big events, while small events contribute to the groups cohesiveness. PMID:28166305

  14. Model-Driven Approach for Body Area Network Application Development

    PubMed Central

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-01-01

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394

  15. Model-Driven Approach for Body Area Network Application Development.

    PubMed

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-05-12

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  16. A neural network approach to lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Yaoxiu; Menon, Prahlad G.

    2016-03-01

    Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.

  17. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-11-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

  18. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    PubMed Central

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-01-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy. PMID:27886244

  19. Stock market networks: The dynamic conditional correlation approach

    NASA Astrophysics Data System (ADS)

    Lyócsa, Štefan; Výrost, Tomáš; Baumöhl, Eduard

    2012-08-01

    We demonstrate the economic relevance of minimum spanning trees (MSTs) constructed from dynamic conditional correlations (DCC) for a sample of S&P 100 constituents. An empirical comparison of MST properties shows that using the standard approach of rolling (or sliding-window) correlations yields trees that are more robust, have higher densities and exhibit higher industry clustering than MSTs based on DCC. Our results suggest that these properties are achieved at the expense of the smoothing of market dynamics, which is better preserved by DCC. The DCC approach offers a new perspective for the analysis of complex systems such as stock markets.

  20. Neighborhoods and Adolescent Health-Risk Behavior: An Ecological Network Approach1

    PubMed Central

    Browning, Christopher R.; Soller, Brian; Jackson, Aubrey L.

    2014-01-01

    This study integrates insights from social network analysis, activity space perspectives, and theories of urban and spatial processes to present an innovative approach to neighborhood effects on health-risk behavior among youth. We suggest spatial patterns of neighborhood residents’ non-home routine activities may be conceptualized as ecological, or “eco”-networks, which are two-mode networks that indirectly link residents through socio-spatial overlap in routine activities. We further argue structural configurations of eco-networks are consequential for youth’s behavioral health. In this study we focus on a key structural feature of eco-networks—the neighborhood-level extent to which households share two or more activity locations, or eco-network reinforcement—and its association with two dimensions of health-risk behavior, substance use and delinquency/sexual activity. Using geographic data on non-home routine activity locations among respondents from the Los Angeles Family and Neighborhood Survey (L.A.FANS), we constructed neighborhood-specific eco-networks by connecting sampled households to “activity clusters,” which are sets of spatially-proximate activity locations. We then measured eco-network reinforcement and examined its association with adolescent dimensions of health risk behavior employing a sample of 830 youth ages 12-17 nested in 65 census tracts. We also examined whether neighborhood-level social processes (collective efficacy and intergenerational closure) mediate the association between eco-network reinforcement and the outcomes considered. Results indicated eco-network reinforcement exhibits robust negative associations with both substance use and delinquency/sexual activity scales. Eco-network reinforcement effects were not explained by potential mediating variables. In addition to introducing a novel theoretical and empirical approach to neighborhood effects on youth, our findings highlight the importance of eco-network

  1. Neighborhoods and adolescent health-risk behavior: an ecological network approach.

    PubMed

    Browning, Christopher R; Soller, Brian; Jackson, Aubrey L

    2015-01-01

    This study integrates insights from social network analysis, activity space perspectives, and theories of urban and spatial processes to present an novel approach to neighborhood effects on health-risk behavior among youth. We suggest spatial patterns of neighborhood residents' non-home routines may be conceptualized as ecological, or "eco"-networks, which are two-mode networks that indirectly link residents through socio-spatial overlap in routine activities. We further argue structural configurations of eco-networks are consequential for youth's behavioral health. In this study we focus on a key structural feature of eco-networks--the neighborhood-level extent to which household dyads share two or more activity locations, or eco-network reinforcement--and its association with two dimensions of health-risk behavior, substance use and delinquency/sexual activity. Using geographic data on non-home routine activity locations among respondents from the Los Angeles Family and Neighborhood Survey (L.A.FANS), we constructed neighborhood-specific eco-networks by connecting sampled households to "activity clusters," which are sets of spatially-proximate activity locations. We then measured eco-network reinforcement and examined its association with dimensions of adolescent health risk behavior employing a sample of 830 youth ages 12-17 nested in 65 census tracts. We also examined whether neighborhood-level social processes (collective efficacy and intergenerational closure) mediate the association between eco-network reinforcement and the outcomes considered. Results indicated eco-network reinforcement exhibits robust negative associations with both substance use and delinquency/sexual activity scales. Eco-network reinforcement effects were not explained by potential mediating variables. In addition to introducing a novel theoretical and empirical approach to neighborhood effects on youth, our findings highlight the importance of intersecting conventional routines for

  2. Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach

    PubMed Central

    2014-01-01

    Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely

  3. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    PubMed Central

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach. PMID:24741352

  4. An iterative approach for the optimization of pavement maintenance management at the network level.

    PubMed

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Pellicer, Eugenio; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  5. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    NASA Astrophysics Data System (ADS)

    Das, Suprem R.; Sadeque, Sajia; Jeong, Changwook; Chen, Ruiyi; Alam, Muhammad A.; Janes, David B.

    2016-06-01

    Although transparent conductive oxides such as indium tin oxide (ITO) are widely employed as transparent conducting electrodes (TCEs) for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs), copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide) have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  6. A scenario planning approach for disasters on Swiss road network

    NASA Astrophysics Data System (ADS)

    Mendes, G. A.; Axhausen, K. W.; Andrade, J. S.; Herrmann, H. J.

    2014-05-01

    We study a vehicular traffic scenario on Swiss roads in an emergency situation, calculating how sequentially roads block due to excessive traffic load until global collapse (gridlock) occurs and in this way displays the fragilities of the system. We used a database from Bundesamt für Raumentwicklung which contains length and maximum allowed speed of all roads in Switzerland. The present work could be interesting for government agencies in planning and managing for emergency logistics for a country or a big city. The model used to generate the flux on the Swiss road network was proposed by Mendes et al. [Physica A 391, 362 (2012)]. It is based on the conservation of the number of vehicles and allows for an easy and fast way to follow the formation of traffic jams in large systems. We also analyze the difference between a nonlinear and a linear model and the distribution of fluxes on the Swiss road.

  7. Decentralised ? - filtering of networked control systems: a jump system approach

    NASA Astrophysics Data System (ADS)

    Al-Radhawi, Muhammad Ali; Bettayeb, Maamar

    2014-10-01

    We consider the problem of decentralised estimation of discrete-time interconnected systems with local estimators communicating with their subsystems over lossy communication channels. Assuming that the packet losses follow the Gilbert-Elliot model, the networked estimation problem can be formulated into a Markovian jump linear system framework. Modelling subsystem interactions as sum quadratic constrained uncertainties, we design mode-dependent decentralised ?-estimators that robustly stabilise the estimator system and guarantee a given disturbance attenuation level. The estimation gains are derived with necessary and sufficient rank-constrained linear matrix inequality conditions. Results are also provided for local mode-dependent estimators. Estimator synthesis is done using a cone-complementarity linearisation algorithm for the rank-constraints. The results are illustrated via an example.

  8. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  9. Predictive vector quantization using a neural network approach

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Rizvi, Syed A.; Nasrabadi, Nasser M.

    1993-07-01

    A new predictive vector quantization (PVQ) technique capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks (vectors) of pixels is introduced. The two components of the PVQ scheme, the vector predictor and the vector quantizer, are implemented by two different classes of neural networks. A multilayer perceptron is used for the predictive component and Kohonen self- organizing feature maps are used to design the codebook for the vector quantizer. The multilayer perceptron uses the nonlinearity condition associated with its processing units to perform a nonlinear vector prediction. The second component of the PVQ scheme vector quantizers the residual vector that is formed by subtracting the output of the perceptron from the original input vector. The joint-optimization task of designing the two components of the PVQ scheme is also achieved. Simulation results are presented for still images with high visual quality.

  10. Transfer Error and Correction Approach in Mobile Network

    NASA Astrophysics Data System (ADS)

    Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou

    With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.

  11. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    PubMed

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.

  12. A game-theoretical approach to multimedia social networks security.

    PubMed

    Liu, Enqiang; Liu, Zengliang; Shao, Fei; Zhang, Zhiyong

    2014-01-01

    The contents access and sharing in multimedia social networks (MSNs) mainly rely on access control models and mechanisms. Simple adoptions of security policies in the traditional access control model cannot effectively establish a trust relationship among parties. This paper proposed a novel two-party trust architecture (TPTA) to apply in a generic MSN scenario. According to the architecture, security policies are adopted through game-theoretic analyses and decisions. Based on formalized utilities of security policies and security rules, the choice of security policies in content access is described as a game between the content provider and the content requester. By the game method for the combination of security policies utility and its influences on each party's benefits, the Nash equilibrium is achieved, that is, an optimal and stable combination of security policies, to establish and enhance trust among stakeholders.

  13. A Game-Theoretical Approach to Multimedia Social Networks Security

    PubMed Central

    Liu, Enqiang; Liu, Zengliang; Shao, Fei; Zhang, Zhiyong

    2014-01-01

    The contents access and sharing in multimedia social networks (MSNs) mainly rely on access control models and mechanisms. Simple adoptions of security policies in the traditional access control model cannot effectively establish a trust relationship among parties. This paper proposed a novel two-party trust architecture (TPTA) to apply in a generic MSN scenario. According to the architecture, security policies are adopted through game-theoretic analyses and decisions. Based on formalized utilities of security policies and security rules, the choice of security policies in content access is described as a game between the content provider and the content requester. By the game method for the combination of security policies utility and its influences on each party's benefits, the Nash equilibrium is achieved, that is, an optimal and stable combination of security policies, to establish and enhance trust among stakeholders. PMID:24977226

  14. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach.

    PubMed

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene.

  15. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  16. A quantitative approach to measure road network information based on edge diversity

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Zhang, Hong; Lan, Tian; Cao, Weiwei; He, Jing

    2015-12-01

    The measure of map information has been one of the key issues in assessing cartographic quality and map generalization algorithms. It is also important for developing efficient approaches to transfer geospatial information. Road network is the most common linear object in real world. Approximately describe road network information will benefit road map generalization, navigation map production and urban planning. Most of current approaches focused on node diversities and supposed that all the edges are the same, which is inconsistent to real-life condition, and thus show limitations in measuring network information. As real-life traffic flow are directed and of different quantities, the original undirected vector road map was first converted to a directed topographic connectivity map. Then in consideration of preferential attachment in complex network study and rich-club phenomenon in social network, the from and to weights of each edge are assigned. The from weight of a given edge is defined as the connectivity of its end node to the sum of the connectivities of all the neighbors of the from nodes of the edge. After getting the from and to weights of each edge, edge information, node information and the whole network structure information entropies could be obtained based on information theory. The approach has been applied to several 1 square mile road network samples. Results show that information entropies based on edge diversities could successfully describe the structural differences of road networks. This approach is a complementarity to current map information measurements, and can be extended to measure other kinds of geographical objects.

  17. Integrative network modeling approaches to personalized cancer medicine

    PubMed Central

    Kidd, Brian A; Readhead, Ben P; Eden, Caroline; Parekh, Samir; Dudley, Joel T

    2016-01-01

    The ability to collect millions of molecular measurements from patients is a now a reality for clinical medicine. This reality has created the challenge of how to integrate these vast amounts of data into models that accurately predict complex pathophysiology and can translate this complexity into clinically actionable outputs. Integrative informatics and data-driven approaches provide a framework for analyzing large-scale datasets and combining them into multiscale models that can be used to determine the key drivers of disease and identify optimal therapies for treating tumors. In this perspective we discuss how an integrative modeling approach is being used to inform individual treatment decisions, highlighting a recent case report that illustrates the challenges and opportunities for personalized oncology. PMID:27019658

  18. Systems Biology Approach to Identify Gene Network Signatures for Colorectal Cancer

    PubMed Central

    Sonachalam, Madhankumar; Shen, Jeffrey; Huang, Hui; Wu, Xiaogang

    2012-01-01

    In this work, we integrated prior knowledge from gene signatures and protein interactions with gene set enrichment analysis (GSEA), and gene/protein network modeling together to identify gene network signatures from gene expression microarray data. We demonstrated how to apply this approach into discovering gene network signatures for colorectal cancer (CRC) from microarray datasets. First, we used GSEA to analyze the microarray data through enriching differential genes in different CRC-related gene sets from two publicly available up-to-date gene set databases – Molecular Signatures Database (MSigDB) and Gene Signatures Database (GeneSigDB). Second, we compared the enriched gene sets through enrichment score, false-discovery rate, and nominal p-value. Third, we constructed an integrated protein–protein interaction (PPI) network through connecting these enriched genes by high-quality interactions from a human annotated and predicted protein interaction database, with a confidence score labeled for each interaction. Finally, we mapped differential gene expressions onto the constructed network to build a comprehensive network model containing visualized transcriptome and proteome data. The results show that although MSigDB has more CRC-relevant gene sets than GeneSigDB, the integrated PPI network connecting the enriched genes from both MSigDB and GeneSigDB can provide a more complete view for discovering gene network signatures. We also found several important sub-network signatures for CRC, such as TP53 sub-network, PCNA sub-network, and IL8 sub-network, corresponding to apoptosis, DNA repair, and immune response, respectively. PMID:22629282

  19. An Efficient Hardware-Software Approach to Network Fault Tolerance with InfiniBand

    SciTech Connect

    Vishnu, Abhinav; Krishnan, Manoj Kumar; Panda, Dhabaleswar K.

    2009-09-01

    In the last decade or so, clusters have observed a tremendous rise in popularity due to excellent price to performance ratio. A variety of Interconnects have been proposed during this period, with InfiniBand leading the way due to its high performance and open standard. Increasing size of the InfiniBand clusters has reduced the mean time between failures of various components of these clusters tremendously. In this paper, we specifically focus on the network component failure and propose a hybrid hardware-software approach to handling network faults. The hybrid approach leverages the user-transparent network fault detection and recovery using Automatic Path Migration (APM), and the software approach is used in the wake of APM failure. Using Global Arrays as the programming model, we implement this approach with Aggregate Remote Memory Copy Interface (ARMCI), the runtime system of Global Arrays. We evaluate our approach using various benchmarks (siosi7, pentane, h2o7 and siosi3) with NWChem, a very popular {\\em ab initio} quantum chemistry application. Using the proposed approach, the applications run to completion without restart on emulated network faults and acceptable overhead for benchmarks executing for a longer period of time.

  20. An evolutionary game approach for determination of the structural conflicts in signed networks

    NASA Astrophysics Data System (ADS)

    Tan, Shaolin; Lü, Jinhu

    2016-02-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks.

  1. Parameter estimation in spiking neural networks: a reverse-engineering approach.

    PubMed

    Rostro-Gonzalez, H; Cessac, B; Vieville, T

    2012-04-01

    This paper presents a reverse engineering approach for parameter estimation in spiking neural networks (SNNs). We consider the deterministic evolution of a time-discretized network with spiking neurons, where synaptic transmission has delays, modeled as a neural network of the generalized integrate and fire type. Our approach aims at by-passing the fact that the parameter estimation in SNN results in a non-deterministic polynomial-time hard problem when delays are to be considered. Here, this assumption has been reformulated as a linear programming (LP) problem in order to perform the solution in a polynomial time. Besides, the LP problem formulation makes the fact that the reverse engineering of a neural network can be performed from the observation of the spike times explicit. Furthermore, we point out how the LP adjustment mechanism is local to each neuron and has the same structure as a 'Hebbian' rule. Finally, we present a generalization of this approach to the design of input-output (I/O) transformations as a practical method to 'program' a spiking network, i.e. find a set of parameters allowing us to exactly reproduce the network output, given an input. Numerical verifications and illustrations are provided.

  2. Analysis and models of bilateral investment treaties using a social networks approach

    NASA Astrophysics Data System (ADS)

    Saban, Daniela; Bonomo, Flavia; Stier-Moses, Nicolás E.

    2010-09-01

    Bilateral investment treaties (BITs) are agreements between two countries for the reciprocal encouragement, promotion and protection of investments in each other’s territories by companies based in either country. Germany and Pakistan signed the first BIT in 1959 and since then, BITs are one of the most popular and widespread form of international agreement. In this work we study the proliferation of BITs using a social networks approach. We propose a network growth model that dynamically replicates the empirical topological characteristics of the BIT network.

  3. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    NASA Astrophysics Data System (ADS)

    Yin, Guisheng; Chi, Kuo; Dong, Yuxin; Dong, Hongbin

    2017-04-01

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks.

  4. Approximate-master-equation approach for the Kinouchi-Copelli neural model on networks.

    PubMed

    Wang, Chong-Yang; Wu, Zhi-Xi; Chen, Michael Z Q

    2017-01-01

    In this work, we use the approximate-master-equation approach to study the dynamics of the Kinouchi-Copelli neural model on various networks. By categorizing each neuron in terms of its state and also the states of its neighbors, we are able to uncover how the coupled system evolves with respective to time by directly solving a set of ordinary differential equations. In particular, we can easily calculate the statistical properties of the time evolution of the network instantaneous response, the network response curve, the dynamic range, and the critical point in the framework of the approximate-master-equation approach. The possible usage of the proposed theoretical approach to other spreading phenomena is briefly discussed.

  5. Approximate-master-equation approach for the Kinouchi-Copelli neural model on networks

    NASA Astrophysics Data System (ADS)

    Wang, Chong-Yang; Wu, Zhi-Xi; Chen, Michael Z. Q.

    2017-01-01

    In this work, we use the approximate-master-equation approach to study the dynamics of the Kinouchi-Copelli neural model on various networks. By categorizing each neuron in terms of its state and also the states of its neighbors, we are able to uncover how the coupled system evolves with respective to time by directly solving a set of ordinary differential equations. In particular, we can easily calculate the statistical properties of the time evolution of the network instantaneous response, the network response curve, the dynamic range, and the critical point in the framework of the approximate-master-equation approach. The possible usage of the proposed theoretical approach to other spreading phenomena is briefly discussed.

  6. A generative modeling approach to connectivity-Electrical conduction in vascular networks.

    PubMed

    Hald, Bjørn Olav

    2016-06-21

    The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel generative approach to connectivity based on the observation that biological organization is hierarchical and composed of a limited set of building blocks, i.e. a vascular network consists of blood vessels which in turn are composed by one or more cell types. Fast electrical communication is crucial to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub-networks are more sensitive to electrical perturbations. In summary, the capacity for electrical signaling in microvascular networks is strongly shaped by the morphology and connectivity of vascular (particularly endothelial) cells. While the presented software can be used by itself or as a starting point for more sophisticated models of vascular dynamics, the generative approach can be applied to other biological systems, e.g. nervous tissue, the lymphatics, or the biliary system.

  7. Protein interaction network for Alzheimer's disease using computational approach.

    PubMed

    Srinivasa Rao, V; Srinivas, K; Kumar, G N Sunand; Sujin, G N

    2013-01-01

    Alzheimer's disease (AD) is the most common form of dementia. It is the sixth leading cause of death in old age people. Despite recent advances in the field of drug design, the medical treatment for the disease is purely symptomatic and hardly effective. Thus there is a need to understand the molecular mechanism behind the disease in order to improve the drug aspects of the disease. We provided two contributions in the field of proteomics in drug design. First, we have constructed a protein-protein interaction network for Alzheimer's disease reviewed proteins with 1412 interactions predicted among 969 proteins. Second, the disease proteins were given confidence scores to prioritize and then analyzed for their homology nature with respect to paralogs and homologs. The homology persisted with the mouse giving a basis for drug design phase. The method will create a new drug design technique in the field of bioinformatics by linking drug design process with protein-protein interactions via signal pathways. This method can be improvised for other diseases in future.

  8. Estimation of incident clearance times using Bayesian Networks approach.

    PubMed

    Ozbay, Kaan; Noyan, Nebahat

    2006-05-01

    Effective incident management requires a full understanding of various characteristics of incidents to accurately estimate incident durations and to help make more efficient decisions to reduce the impact of non-recurring congestion due to these accidents. Our goal is thus to have a comprehensive and clear description of incident clearance patterns and to represent these patterns with formalisms based on Bayesian Networks (BNs). BNs can be used to create dynamic incident duration estimation trees that can be extracted in the presence of a real incident for which data might only be partially available. This capability will enable traffic operators to create case-specific incident management strategies in the presence of incomplete information. In this paper, we employ a unique database created using incident data collected in Northern Virginia. This database is then used to demonstrate the advantages of employing BNs as a powerful modeling and analysis tool especially due to their ability to consider the stochastic variations of the data and to allow bi-directional induction in decision-making. In addition to the presentation of the basic theory behind BNs in the context of our problem and the validation of our estimation results, the dependency relations among all variables in the estimated BN that can be used for both quantitative and qualitative analysis are also discussed in detail.

  9. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    SciTech Connect

    Rodionov, Dmitry A; Novichkov, Pavel S

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  10. Algebraic approach to small-world network models

    NASA Astrophysics Data System (ADS)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  11. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    NASA Technical Reports Server (NTRS)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  12. An Optimization Approach to Coexistence of Bluetooth and Wi-Fi Networks Operating in ISM Environment

    NASA Astrophysics Data System (ADS)

    Klajbor, Tomasz; Rak, Jacek; Wozniak, Jozef

    Unlicensed ISM band is used by various wireless technologies. Therefore, issues related to ensuring the required efficiency and quality of operation of coexisting networks become essential. The paper addresses the problem of mutual interferences between IEEE 802.11b transmitters (commercially named Wi-Fi) and Bluetooth (BT) devices.An optimization approach to modeling the topology of BT scatternets is introduced, resulting in more efficient utilization of ISM environment consisting of BT and Wi-Fi networks. To achieve it, the Integer Linear Programming approach has been proposed. Example results presented in the paper illustrate significant benefits of using the proposed modeling strategy.

  13. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  14. The network approach and interventions to prevent HIV among injection drug users.

    PubMed Central

    Neaigus, A

    1998-01-01

    OBJECTIVE: To review human immunodeficiency virus (HIV) risk reduction interventions among injecting drug users (IDUs) that have adopted a network approach. METHODS: The design and outcomes of selected network-based interventions among IDUs are reviewed using the network concepts of the dyad (two-person relationship), the personal risk network (an index person and all of his or her relationship), and the "sociometric" network (the complete set of relations between people in a population) and community. RESULTS: In a dyad intervention among HIV-serodiscordant couples, many of which included IDUs, there were no HIV seroconversions. Participants in personal risk network interventions were more likely to reduce drug risks and in some of these interventions, sexual risks, than were participants in individual-based interventions. Sociometric network interventions reached more IDUs and may be more cost-effective than individual-based interventions. CONCLUSION: Network-based HIV risk reduction interventions among IDUs, and others at risk for HIV, hold promise and should be encouraged. PMID:9722819

  15. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg

  16. Modeling of Diffusion through a Network: A New Approach using Cellular Automata and Network Science Techniques

    DTIC Science & Technology

    2010-05-01

    to Professor Chris Arney and LTC Donovan Phillips for providing valuable feedback on this project. vii MODELING OF DIFFUSION THROUGH A...only does the study of networks afford the U.S. Army greater information sharing abilities, it could also give a better understanding of enemy...These models are named for the conditions by which a node changes state. The first model gives each node its own threshold which must be reached before

  17. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    NASA Astrophysics Data System (ADS)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  18. Optimal Control of Gene Regulatory Networks with Effectiveness of Multiple Drugs: A Boolean Network Approach

    PubMed Central

    Kobayashi, Koichi; Hiraishi, Kunihiko

    2013-01-01

    Developing control theory of gene regulatory networks is one of the significant topics in the field of systems biology, and it is expected to apply the obtained results to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of gene regulatory networks, and gene expression is expressed by a binary value (0 or 1). In the control problem, we assume that the concentration level of a part of genes is arbitrarily determined as the control input. However, there are cases that no gene satisfying this assumption exists, and it is important to consider structural control via external stimuli. Furthermore, these controls are realized by multiple drugs, and it is also important to consider multiple effects such as duration of effect and side effects. In this paper, we propose a BN model with two types of the control inputs and an optimal control method with duration of drug effectiveness. First, a BN model and duration of drug effectiveness are discussed. Next, the optimal control problem is formulated and is reduced to an integer linear programming problem. Finally, numerical simulations are shown. PMID:24058904

  19. Computer Mediated Social Network Approach to Software Support and Maintenance

    DTIC Science & Technology

    2010-06-01

    mathematics (Euler, 1741;  Sachs, Stiebitz, & Wilson, 1988), philosophy ( Durkheim , 2001), the social science domain (Granovetter  1973; 1983; Milgram, 1967...to philosophy  ( Durkheim , 2001), to the strength of the connections a (Granovetter 1973; Granovetter, 1983) and the  number of connections (Milgram...Qualitative, quantitative, and mixed method approaches  (Second ed.) Sage Publications Inc.   Durkheim , É. (2001). The elementary forms of religious life, New

  20. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  1. Child Multi-Type Maltreatment and Associated Depression and PTSD Symptoms: The Role of Social Support and Stress

    ERIC Educational Resources Information Center

    Vranceanu, Ana-Maria; Hobfoll, Stevan E.; Johnson, Robert J.

    2007-01-01

    Objective: This retrospective, cross-sectional study explored the hypothesis that multiple forms of child abuse and neglect (child multi-type maltreatment; CMM) would be associated with women's lower social support and higher stress in adulthood, and that this, in turn, would amplify their vulnerability to symptoms of depression and posttraumatic…

  2. Communication, Collaboration and Cooperation: An Evaluation of Nova Scotia's Borrow Anywhere, Return Anywhere (BARA) Multi-Type Library Initiative

    ERIC Educational Resources Information Center

    van den Hoogen, Suzanne; Parrott, Denise

    2012-01-01

    Partnerships and collaborations among libraries are proven to enhance collective resources. The collaboration of multi-type libraries offers a unique opportunity to explore the potential of different libraries working together to provide the best possible service to their community members. This article provides a detailed report of a multi-type…

  3. Novel delay-partitioning stabilization approach for networked control system via Wirtinger-based inequalities.

    PubMed

    Li, Zhichen; Bai, Yan; Huang, Congzhi; Cai, Yunfei

    2016-03-01

    This paper studies the problems of stability analysis and state feedback stabilization for networked control system. By developing a novel delay-partitioning approach, the information on both the range of network-induced delay and the maximum number of consecutive data packet dropouts can be taken into full consideration. Various augmented Lyapunov-Krasovskii functionals (LKFs) with triple-integral terms are constructed for the two delay subintervals. Moreover, the Wirtinger-based inequalities in combination with an improved reciprocal convexity are utilized to estimate the derivatives of LKFs more accurately. The proposed approaches have improved the stability conditions without increasing much computational complexity. Based on the obtained stability criterion, a stabilization controller design approach is also given. Finally, four numerical examples are presented to illustrate the effectiveness and outperformance of the proposed approaches.

  4. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches.

    PubMed

    Cantone, Irene; Marucci, Lucia; Iorio, Francesco; Ricci, Maria Aurelia; Belcastro, Vincenzo; Bansal, Mukesh; Santini, Stefania; di Bernardo, Mario; di Bernardo, Diego; Cosma, Maria Pia

    2009-04-03

    Systems biology approaches are extensively used to model and reverse engineer gene regulatory networks from experimental data. Conversely, synthetic biology allows "de novo" construction of a regulatory network to seed new functions in the cell. At present, the usefulness and predictive ability of modeling and reverse engineering cannot be assessed and compared rigorously. We built in the yeast Saccharomyces cerevisiae a synthetic network, IRMA, for in vivo "benchmarking" of reverse-engineering and modeling approaches. The network is composed of five genes regulating each other through a variety of regulatory interactions; it is negligibly affected by endogenous genes, and it is responsive to small molecules. We measured time series and steady-state expression data after multiple perturbations. These data were used to assess state-of-the-art modeling and reverse-engineering techniques. A semiquantitative model was able to capture and predict the behavior of the network. Reverse engineering based on differential equations and Bayesian networks correctly inferred regulatory interactions from the experimental data.

  5. Approach of virtual observations generation of a multi-reference GPS station network

    NASA Astrophysics Data System (ADS)

    Yu, Guorong

    2007-11-01

    The generation of virtual reference station observations to relay the corrections to the rover receiver for use with standard RTK software is one of important architectures of reference station networks RTK positioning. The approach of virtual observations generation based on a multi-reference GPS station network is presented in this paper. Ambiguities for the baselines in the reference network are determined firstly. The inter-reference-station differential spatially-correlated errors are estimated using highly accurate coordinates of the reference stations and resolved ambiguities. These spatially-correlated errors are interpolated among the network region as corrections. These network-generated corrections are used to correct the zero-differential observables of one reference station, which is usually the closest one to the rover (the so-called primary reference station). These corrected zero-differential observables, named virtual observations, are processed using conventional single reference station differential GPS algorithms. A test conducted using regional reference networks in Jiangsu(China) demonstrates the effectiveness of the approach to reduce the time to integer ambiguity resolution, and to increase the distance over which centimeter level accuracies can be achieved.

  6. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    PubMed

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.

  7. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    SciTech Connect

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motif mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.

  8. Neural network approach to damage detection in a building from ambient vibration measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, Mitsuru; Masri, Sami F.; Chassiakos, A. G.; Caughey, T. K.

    1998-04-01

    A neural network-based approach is presented for the detection of changes in the characteristics of structure- unknown systems. The approach relies on the use of vibration measurements from a `healthy' system to train a neural network for identification purposes. Subsequently, the trained network is fed comparable vibration measurements from the same structure under different episodes of response in order to monitor the health of the structure. It is shown, through simulation studies with linear as well as nonlinear models typically encountered in the applied mechanics field, that the proposed damage detection methodology is capable of detecting relatively small changes in the structural parameters. The methodology is applied to actual data obtained from ambient vibration measurements on a steel building structure, which was damaged under strong seismic motion during the Hyogo-Ken Nanbu Earthquake of January 17, 1995. The measurements were done before and after repairs to the damaged frame were made. A neural network is trained with data after the repairs, which represents `healthy' condition of the building. The trained network, which is subsequently fed data before the repairs, successfully identified the difference between damaged story and undamaged story. Through this study, it is shown that the proposed approach has the potential of being a practical tool for damage detection methodology, which leads to smart civil structures.

  9. Teaching the bioinformatics of signaling networks: an integrated approach to facilitate multi-disciplinary learning.

    PubMed

    Korcsmaros, Tamas; Dunai, Zsuzsanna A; Vellai, Tibor; Csermely, Peter

    2013-09-01

    The number of bioinformatics tools and resources that support molecular and cell biology approaches is continuously expanding. Moreover, systems and network biology analyses are accompanied more and more by integrated bioinformatics methods. Traditional information-centered university teaching methods often fail, as (1) it is impossible to cover all existing approaches in the frame of a single course, and (2) a large segment of the current bioinformation can become obsolete in a few years. Signaling network offers an excellent example for teaching bioinformatics resources and tools, as it is both focused and complex at the same time. Here, we present an outline of a university bioinformatics course with four sample practices to demonstrate how signaling network studies can integrate biochemistry, genetics, cell biology and network sciences. We show that several bioinformatics resources and tools, as well as important concepts and current trends, can also be integrated to signaling network studies. The research-type hands-on experiences we show enable the students to improve key competences such as teamworking, creative and critical thinking and problem solving. Our classroom course curriculum can be re-formulated as an e-learning material or applied as a part of a specific training course. The multi-disciplinary approach and the mosaic setup of the course have the additional benefit to support the advanced teaching of talented students.

  10. A new collaborative knowledge-based approach for wireless sensor networks.

    PubMed

    Canada-Bago, Joaquin; Fernandez-Prieto, Jose Angel; Gadeo-Martos, Manuel Angel; Velasco, Juan Ramón

    2010-01-01

    This work presents a new approach for collaboration among sensors in Wireless Sensor Networks. These networks are composed of a large number of sensor nodes with constrained resources: limited computational capability, memory, power sources, etc. Nowadays, there is a growing interest in the integration of Soft Computing technologies into Wireless Sensor Networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks. The objective of this work is to design a collaborative knowledge-based network, in which each sensor executes an adapted Fuzzy Rule-Based System, which presents significant advantages such as: experts can define interpretable knowledge with uncertainty and imprecision, collaborative knowledge can be separated from control or modeling knowledge and the collaborative approach may support neighbor sensor failures and communication errors. As a real-world application of this approach, we demonstrate a collaborative modeling system for pests, in which an alarm about the development of olive tree fly is inferred. The results show that knowledge-based sensors are suitable for a wide range of applications and that the behavior of a knowledge-based sensor may be modified by inferences and knowledge of neighbor sensors in order to obtain a more accurate and reliable output.

  11. Differential neural network approach in information process for prediction of roadside air pollution by peat fire

    NASA Astrophysics Data System (ADS)

    Lozhkin, V.; Tarkhov, D.; Timofeev, V.; Lozhkina, O.; Vasilyev, A.

    2016-11-01

    The paper presents a novel differential neural network model estimating the dispersion of CO emissions from a peat fire near a highway. We have developed approaches for the optimization of the model on the base of simulated and experimental measurements of CO concentrations in the area of dispersion of the smoke cloud. The numerical solutions of the problem are presented in the form of neural network approximations by the Gaussian model and in the form of neural network approximate solutions of partial differential equations. The trained neural network model can be used for the prediction of emergency when wind speed and direction and other fire parameters are changing. The method is also recommended for the development of air quality monitoring and predicting information systems.

  12. The Impact of the Network Topology on the Viral Prevalence: A Node-Based Approach

    PubMed Central

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2015-01-01

    This paper addresses the impact of the structure of the viral propagation network on the viral prevalence. For that purpose, a new epidemic model of computer virus, known as the node-based SLBS model, is proposed. Our analysis shows that the maximum eigenvalue of the underlying network is a key factor determining the viral prevalence. Specifically, the value range of the maximum eigenvalue is partitioned into three subintervals: viruses tend to extinction very quickly or approach extinction or persist depending on into which subinterval the maximum eigenvalue of the propagation network falls. Consequently, computer virus can be contained by adjusting the propagation network so that its maximum eigenvalue falls into the desired subinterval. PMID:26222539

  13. Multimodal signalling in the North American barn swallow: a phenotype network approach.

    PubMed

    Wilkins, Matthew R; Shizuka, Daizaburo; Joseph, Maxwell B; Hubbard, Joanna K; Safran, Rebecca J

    2015-10-07

    Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow (Hirundo rustica erythrogaster). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male-male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems.

  14. Computational approaches to the topology, stability and dynamics of metabolic networks.

    PubMed

    Steuer, Ralf

    2007-01-01

    Cellular metabolism is characterized by an intricate network of interactions between biochemical fluxes, metabolic compounds and regulatory interactions. To investigate and eventually understand the emergent global behavior arising from such networks of interaction is not possible by intuitive reasoning alone. This contribution seeks to describe recent computational approaches that aim to asses the topological and functional properties of metabolic networks. In particular, based on a recently proposed method, it is shown that it is possible to acquire a quantitative picture of the possible dynamics of metabolic systems, without assuming detailed knowledge of the underlying enzyme-kinetic rate equations and parameters. Rather, the method builds upon a statistical exploration of the comprehensive parameter space to evaluate the dynamic capabilities of a metabolic system, thus providing a first step towards the transition from topology to function of metabolic pathways. Utilizing this approach, the role of feedback mechanisms in the maintenance of stability is discussed using minimal models of cellular pathways.

  15. A network-based gene-weighting approach for pathway analysis.

    PubMed

    Fang, Zhaoyuan; Tian, Weidong; Ji, Hongbin

    2012-03-01

    Classical algorithms aiming at identifying biological pathways significantly related to studying conditions frequently reduced pathways to gene sets, with an obvious ignorance of the constitutive non-equivalence of various genes within a defined pathway. We here designed a network-based method to determine such non-equivalence in terms of gene weights. The gene weights determined are biologically consistent and robust to network perturbations. By integrating the gene weights into the classical gene set analysis, with a subsequent correction for the "over-counting" bias associated with multi-subunit proteins, we have developed a novel gene-weighed pathway analysis approach, as implemented in an R package called "Gene Associaqtion Network-based Pathway Analysis" (GANPA). Through analysis of several microarray datasets, including the p53 dataset, asthma dataset and three breast cancer datasets, we demonstrated that our approach is biologically reliable and reproducible, and therefore helpful for microarray data interpretation and hypothesis generation.

  16. Multimodal signalling in the North American barn swallow: a phenotype network approach

    PubMed Central

    Wilkins, Matthew R.; Shizuka, Daizaburo; Joseph, Maxwell B.; Hubbard, Joanna K.; Safran, Rebecca J.

    2015-01-01

    Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow (Hirundo rustica erythrogaster). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male–male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems. PMID:26423842

  17. Performance of the Levenberg–Marquardt neural network approach in nuclear mass prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Hai Fei; Hao Wang, Li; Yin, Jing Peng; Chen, Peng Hui; Zhang, Hong Fei

    2017-04-01

    Resorting to a neural network approach we refined several representative and sophisticated global nuclear mass models within the latest atomic mass evaluation (AME2012). In the training process, a quite robust algorithm named the Levenberg–Marquardt (LM) method is employed to determine the weights and biases of the neural network. As a result, this LM neural network approach demonstrates a very useful tool for further improving the accuracy of mass models. For a simple liquid drop formula the root mean square (rms) deviation between the predictions and the 2353 experimental known masses are sharply reduced from 2.455 MeV to 0.235 MeV, and for the other revisited mass models, the rms is remarkably improved by about 30%.

  18. An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells.

    PubMed

    Lobingier, Braden T; Hüttenhain, Ruth; Eichel, Kelsie; Miller, Kenneth B; Ting, Alice Y; von Zastrow, Mark; Krogan, Nevan J

    2017-04-06

    Cells operate through protein interaction networks organized in space and time. Here, we describe an approach to resolve both dimensions simultaneously by using proximity labeling mediated by engineered ascorbic acid peroxidase (APEX). APEX has been used to capture entire organelle proteomes with high temporal resolution, but its breadth of labeling is generally thought to preclude the higher spatial resolution necessary to interrogate specific protein networks. We provide a solution to this problem by combining quantitative proteomics with a system of spatial references. As proof of principle, we apply this approach to interrogate proteins engaged by G-protein-coupled receptors as they dynamically signal and traffic in response to ligand-induced activation. The method resolves known binding partners, as well as previously unidentified network components. Validating its utility as a discovery pipeline, we establish that two of these proteins promote ubiquitin-linked receptor downregulation after prolonged activation.

  19. Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches.

    PubMed

    Havemann, Frank; Gläser, Jochen; Heinz, Michael; Struck, Alexander

    2012-01-01

    The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in networks of papers. We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.

  20. Compression approach of street networks considering the structural and functional features of streets

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Zhang, Xiping

    2015-10-01

    The compression of networks is an important aspect of complex networks and spatial generalization. Previous studies show that the dual graph for street-street relationships more accurately reflects the morphological features of street networks than the traditional methods. In this study, a dual graph for street-street relationship is constructed based on complex networks theory. We introduce the concept of m-order neighbors and take into account the factors of the node’s degree, closeness centrality, betweenness centrality, and distance within the dual graph. We also consider the importance contributions of the node itself and its 1- to m-order neighbors and define the evaluation model of node importance. We then propose a street compression process based on the evaluation of node importance for dual graph by considering the structural and functional features of streets. The degree distribution and topological similarity index are introduced to evaluate the level of maintaining the global structure and topological characteristics of the road network and to validate the efficiency of the proposed method. A real urban road network is used for the experiments. Results show that the proposed approach can be used in selecting important streets that can retain the global structural properties and topological connectivity of the street network.

  1. Networking between community health programs: a team-work approach to improving health service provision

    PubMed Central

    2014-01-01

    Background Networking between non-government organisations in the health sector is recognised as an effective method of improving service delivery. The Uttarakhand Cluster was established in 2008 as a collaboration of community health programs in rural north India with the aim of building capacity, increasing visibility and improving linkages with the government. This qualitative research, conducted between 2011-2012, examined the factors contributing to formation and sustainability of this clustering approach. Methods Annual focus group discussions, indicator surveys and participant observation were used to document and observe the factors involved in the formation and sustainability of an NGO network in North India. Results The analysis demonstrated that relationships were central to the formation and sustainability of the cluster. The elements of small group relationships: forming, storming, norming and performing emerged as a helpful way to describe the phases which have contributed to the functioning of this network with common values, strong leadership, resource sharing and visible progress encouraging the ongoing commitment of programs to the network goals. Conclusions In conclusion, this case study demonstrates an example of a successful and effective network of community health programs. The development of relationships was seen to be to be an important part of promoting effective resource sharing, training opportunities, government networking and resource mobilisation and will be important for other health networks to consider. PMID:25015212

  2. A network theory approach for a better understanding of overland flow connectivity

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Heckmann, Tobias; Temme, Arnaud; Anders, Niels; Keesstra, Saskia

    2016-04-01

    Hydrological connectivity describes the physical coupling, or linkages of different elements within a landscape regarding (sub)surface flows. A firm understanding of hydrological connectivity is important for catchment management applications, for e.g. habitat and species protection, and for flood resistance and resilience improvement. Thinking about (geomorphological) systems as networks can lead to new insights, which has been recognised within the scientific community as well, seeing the recent increase in the use of network (graph) theory within the geosciences. Network theory supports the analysis and understanding of complex systems by providing data structures for modelling objects and their linkages, and a versatile toolbox to quantitatively appraise network structure and properties. The objective of this study was to characterise overland flow connectivity dynamics on hillslopes in a humid sub-Mediterranean environment by using a combination of high-resolution digital-terrain models, overland flow sensors and a network approach. Results showed that there are significant differences between overland flow on agricultural areas and semi-natural shrubs areas. Positive correlations between connectivity and precipitation characteristics were found, while negative correlations between connectivity and soil moisture were found, probably due to soil water repellency. The combination of a structural network to determine potential connectivity with dynamic networks to determine the actual connectivity proved a powerful tool in analysing overland flow connectivity.

  3. t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks.

    PubMed

    Zhu, Lin; You, Zhu-Hong; Huang, De-Shuang; Wang, Bing

    2013-01-01

    Protein-protein interaction (PPI) networks provide insights into understanding of biological processes, function and the underlying complex evolutionary mechanisms of the cell. Modeling PPI network is an important and fundamental problem in system biology, where it is still of major concern to find a better fitting model that requires less structural assumptions and is more robust against the large fraction of noisy PPIs. In this paper, we propose a new approach called t-logistic semantic embedding (t-LSE) to model PPI networks. t-LSE tries to adaptively learn a metric embedding under the simple geometric assumption of PPI networks, and a non-convex cost function was adopted to deal with the noise in PPI networks. The experimental results show the superiority of the fit of t-LSE over other network models to PPI data. Furthermore, the robust loss function adopted here leads to big improvements for dealing with the noise in PPI network. The proposed model could thus facilitate further graph-based studies of PPIs and may help infer the hidden underlying biological knowledge. The Matlab code implementing the proposed method is freely available from the web site: http://home.ustc.edu.cn/~yzh33108/PPIModel.htm.

  4. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    PubMed

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  5. Competence-Based Vocational Education and Training (VET): An Approach of Shaping and Networking

    ERIC Educational Resources Information Center

    Bohne, Christoph; Eicker, Friedhelm; Haseloff, Gesine

    2017-01-01

    Purpose: The purpose of this paper is to develop a vocational scientific constructivist concept meant for shaping competence-based and networked teaching and learning in vocational education and training (VET). Design/methodology/approach: VET must enable learners to shape work within the context of conceptions based on the development of society.…

  6. Approaches to Forecasting Demands for Library Network Services. Report No. 10.

    ERIC Educational Resources Information Center

    Kang, Jong Hoa

    The problem of forecasting monthly demands for library network services is considered in terms of using forecasts as inputs to policy analysis models, and in terms of using forecasts to aid in the making of budgeting and staffing decisions. Box-Jenkins time-series methodology, adaptive filtering, and regression approaches are examined and compared…

  7. Collaboration Levels in Asynchronous Discussion Forums: A Social Network Analysis Approach

    ERIC Educational Resources Information Center

    Luhrs, Cecilia; McAnally-Salas, Lewis

    2016-01-01

    Computer Supported Collaborative Learning literature relates high levels of collaboration to enhanced learning outcomes. However, an agreement on what is considered a high level of collaboration is unclear, especially if a qualitative approach is taken. This study describes how methods of Social Network Analysis were used to design a collaboration…

  8. A Networking Approach to Groundwater Education in West Oakland County, Michigan.

    ERIC Educational Resources Information Center

    Dean, Lillian F.

    1984-01-01

    A public education project in West Oakland County (Michigan) was started to encourage individual citizen responsibility and action related to groundwater protection. A description of the project is provided, showing the effectiveness of using a networking approach for broad public education. (JN)

  9. Network-Based Approach to Optimize Personnel Recovery for the Joint Force

    DTIC Science & Technology

    2011-05-26

    NUMBER Andrew M . Smith , Major, USAF 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...NETWORK-BASED APPROACH TO OPTIMIZE PERSONNEL RECOVERY FOR THE JOINT FORCE by Andrew M . Smith Major, USAF A paper submitted to the

  10. Multi-level security for computer networking - SAC digital network approach

    NASA Astrophysics Data System (ADS)

    Griess, W.; Poutre, D. L.

    The functional features and architecture of the SACDIN (SAC digital network) are detailed. SACDIN is the new data transmission segment for directing SAC's strategic forces. The system has 135 processor nodes at 32 locations and processes, distributes and stores data of any level of security classification. The sophistication of access nodes is dependent on the location. A reference monitor mediates the multilevel security by implementation of the multi-state machine concept, i.e., the Bell-LaPadula model (1973, 1974), which concludes that a secure state can never lead to an unsecure state. The monitor is controlled by the internal access control mechanism, which resides in PROM. Details of the access process are provided, including message flow on trusted paths appropriate to the security clearance of the user.

  11. Infectious disease surveillance in animal movement networks: An approach based on the friendship paradox.

    PubMed

    Amaku, Marcos; Grisi-Filho, José Henrique de Hildebrand; Negreiros, Rísia Lopes; Dias, Ricardo Augusto; Ferreira, Fernando; Ferreira Neto, José Soares; Cipullo, Rafael Ishibashi; Marques, Fernando Silveira; Ossada, Raul

    2015-10-01

    The network of animal movements among livestock premises is an important topological structure for the spread of infectious diseases. The central focus of this study was to analyze strategies for selecting premises based on the friendship paradox ("your friends have more friends than you do") - in which premises that neighbor randomly selected premises are sampled for surveillance or control - to determine whether these strategies are viable alternatives for the surveillance and control of diseases in scenarios with insufficient data on animal movement. To test the effectiveness of these strategies, we performed three sets of simulations. In the first set, we examined the risk of spreading an infectious disease using the cattle movement network of the state of Mato Grosso, Brazil. All tested strategies based on the friendship paradox have comparable performance to the hub control strategy (controlling premises that sold more animals) and superior performance to random sampling in terms of both reducing the risk of purchasing infected animals and the number of premises that need to be controlled. In the second and third sets of simulations, we observed that the friendship paradox strategies were more sensitive than the random sampling strategy to detect cases and disease, respectively. The survey of the entire animal movement network to identify animal premises with a key role in trade is not always possible, either because the data are insufficient or because informal trade is significant. If surveying the network is not possible, all approaches based on knowledge of the network become useless. As an alternative, knowing that there is a hidden movement network that follows rules inherent to all networks, such as the friendship paradox, can be used to our advantage. Strategies based on the friendship paradox do not assume knowledge of the animal movement network and therefore may be viable alternatives for the surveillance or control of infectious diseases in the

  12. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    NASA Astrophysics Data System (ADS)

    Schlechtingen, Meik; Ferreira Santos, Ilmar

    2011-07-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.

  13. A two-stage approach for a multi-objective component assignment problem for a stochastic-flow network

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2013-03-01

    Many real-life systems, such as computer systems, manufacturing systems and logistics systems, are modelled as stochastic-flow networks (SFNs) to evaluate network reliability. Here, network reliability, defined as the probability that the network successfully transmits d units of data/commodity from an origin to a destination, is a performance indicator of the systems. Network reliability maximization is a particular objective, but is costly for many system supervisors. This article solves the multi-objective problem of reliability maximization and cost minimization by finding the optimal component assignment for SFN, in which a set of multi-state components is ready to be assigned to the network. A two-stage approach integrating Non-dominated Sorting Genetic Algorithm II and simple additive weighting are proposed to solve this problem, where network reliability is evaluated in terms of minimal paths and recursive sum of disjoint products. Several practical examples related to computer networks are utilized to demonstrate the proposed approach.

  14. Statistical methods and neural network approaches for classification of data from multiple sources

    NASA Technical Reports Server (NTRS)

    Benediktsson, Jon Atli; Swain, Philip H.

    1990-01-01

    Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.

  15. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  16. Behavior-based network management: a unique model-based approach to implementing cyber superiority

    NASA Astrophysics Data System (ADS)

    Seng, Jocelyn M.

    2016-05-01

    Behavior-Based Network Management (BBNM) is a technological and strategic approach to mastering the identification and assessment of network behavior, whether human-driven or machine-generated. Recognizing that all five U.S. Air Force (USAF) mission areas rely on the cyber domain to support, enhance and execute their tasks, BBNM is designed to elevate awareness and improve the ability to better understand the degree of reliance placed upon a digital capability and the operational risk.2 Thus, the objective of BBNM is to provide a holistic view of the digital battle space to better assess the effects of security, monitoring, provisioning, utilization management, allocation to support mission sustainment and change control. Leveraging advances in conceptual modeling made possible by a novel advancement in software design and implementation known as Vector Relational Data Modeling (VRDM™), the BBNM approach entails creating a network simulation in which meaning can be inferred and used to manage network behavior according to policy, such as quickly detecting and countering malicious behavior. Initial research configurations have yielded executable BBNM models as combinations of conceptualized behavior within a network management simulation that includes only concepts of threats and definitions of "good" behavior. A proof of concept assessment called "Lab Rat," was designed to demonstrate the simplicity of network modeling and the ability to perform adaptation. The model was tested on real world threat data and demonstrated adaptive and inferential learning behavior. Preliminary results indicate this is a viable approach towards achieving cyber superiority in today's volatile, uncertain, complex and ambiguous (VUCA) environment.

  17. Prognostic transcriptional association networks: a new supervised approach based on regression trees

    PubMed Central

    Nepomuceno-Chamorro, Isabel; Azuaje, Francisco; Devaux, Yvan; Nazarov, Petr V.; Muller, Arnaud; Aguilar-Ruiz, Jesús S.; Wagner, Daniel R.

    2011-01-01

    Motivation: The application of information encoded in molecular networks for prognostic purposes is a crucial objective of systems biomedicine. This approach has not been widely investigated in the cardiovascular research area. Within this area, the prediction of clinical outcomes after suffering a heart attack would represent a significant step forward. We developed a new quantitative prediction-based method for this prognostic problem based on the discovery of clinically relevant transcriptional association networks. This method integrates regression trees and clinical class-specific networks, and can be applied to other clinical domains. Results: Before analyzing our cardiovascular disease dataset, we tested the usefulness of our approach on a benchmark dataset with control and disease patients. We also compared it to several algorithms to infer transcriptional association networks and classification models. Comparative results provided evidence of the prediction power of our approach. Next, we discovered new models for predicting good and bad outcomes after myocardial infarction. Using blood-derived gene expression data, our models reported areas under the receiver operating characteristic curve above 0.70. Our model could also outperform different techniques based on co-expressed gene modules. We also predicted processes that may represent novel therapeutic targets for heart disease, such as the synthesis of leucine and isoleucine. Availability: The SATuRNo software is freely available at http://www.lsi.us.es/isanepo/toolsSaturno/. Contact: inepomuceno@us.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21098433

  18. A practical approach for outdoors distributed target localization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Béjar, Benjamín; Zazo, Santiago

    2012-12-01

    Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensus-based implementation of the algorithm is proposed based on an augmented Lagrangian approach and primal-dual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.

  19. Propagation of New Innovations: An Approach to Classify Human Behavior and Movement from Available Social Network Data

    NASA Technical Reports Server (NTRS)

    Mahmud, Faisal; Samiul, Hasan

    2010-01-01

    It is interesting to observe new innovations, products, or ideas propagating into the society. One important factor of this propagation is the role of individual's social network; while another factor is individual's activities. In this paper, an approach will be made to analyze the propagation of different ideas in a popular social network. Individuals' responses to different activities in the network will be analyzed. The properties of network will also be investigated for successful propagation of innovations.

  20. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    SciTech Connect

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  1. A holistic approach to ZigBee performance enhancement for home automation networks.

    PubMed

    Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep

    2014-08-14

    Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.

  2. Network Analysis-Based Approach for Exploring the Potential Diagnostic Biomarkers of Acute Myocardial Infarction

    PubMed Central

    Chen, Jiaqi; Yu, Ling; Zhang, Siwei; Chen, Xia

    2016-01-01

    Acute myocardial infarction (AMI) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for AMI have not been identified. In order to explore the potential diagnostic biomarkers and possible regulatory targets of AMI, we used a network analysis-based approach to analyze microarray expression profiling of peripheral blood in patients with AMI. The significant differentially-expressed genes (DEGs) were screened by Limma and constructed a gene function regulatory network (GO-Tree) to obtain the inherent affiliation of significant function terms. The pathway action network was constructed, and the signal transfer relationship between pathway terms was mined in order to investigate the impact of core pathway terms in AMI. Subsequently, constructed the transcription regulatory network of DEGs. Weighted gene co-expression network analysis (WGCNA) was employed to identify significantly altered gene modules and hub genes in two groups. Subsequently, the transcription regulation network of DEGs was constructed. We found that specific gene modules may provide a better insight into the potential diagnostic biomarkers of AMI. Our findings revealed and verified that NCF4, AQP9, NFIL3, DYSF, GZMA, TBX21, PRF1 and PTGDR genes by RT-qPCR. TBX21 and PRF1 may be potential candidates for diagnostic biomarker and possible regulatory targets in AMI. PMID:28018242

  3. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

    PubMed

    Niida, Atsushi; Imoto, Seiya; Nagasaki, Masao; Yamaguchi, Rui; Miyano, Satoru

    2010-01-01

    Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

  4. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease

    PubMed Central

    Zhang, Bin; Gaiteri, Chris; Bodea, Liviu-Gabriel; Wang, Zhi; McElwee, Joshua; Podtelezhnikov, Alexei A.; Zhang, Chunsheng; Xie, Tao; Tran, Linh; Dobrin, Radu; Fluder, Eugene; Clurman, Bruce; Melquist, Stacey; Narayanan, Manikandan; Suver, Christine; Shah, Hardik; Mahajan, Milind; Gillis, Tammy; Mysore, Jayalakshmi; MacDonald, Marcy E.; Lamb, John R.; Bennett, David A; Molony, Cliona; Stone, David J.; Gudnason, Vilmundur; Myers, Amanda J.; Schadt, Eric E.; Neumann, Harald; Zhu, Jun; Emilsson, Valur

    2013-01-01

    SUMMARY The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer’s disease (LOAD), we constructed gene regulatory networks in 1647 post-mortem brain tissues from LOAD patients and non-demented subjects, and demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune and microglia-specific module dominated by genes involved in pathogen phagocytosis, containing TYROBP as a key regulator and up-regulated in LOAD. Mouse microglia cells over-expressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a novel framework to test models of disease mechanisms underlying LOAD. PMID:23622250

  5. A geovisual analytic approach to understanding geo-social relationships in the international trade network.

    PubMed

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.

  6. A Holistic Approach to ZigBee Performance Enhancement for Home Automation Networks

    PubMed Central

    Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep

    2014-01-01

    Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network. PMID:25196004

  7. Modeling of multisensory convergence with a network of spiking neurons: a reverse engineering approach.

    PubMed

    Lim, Hun Ki; Keniston, Leslie P; Cios, Krzysztof J

    2011-07-01

    Multisensory processing in the brain underlies a wide variety of perceptual phenomena, but little is known about the underlying mechanisms of how multisensory neurons are formed. This lack of knowledge is due to the difficulty for biological experiments to manipulate and test the parameters of multisensory convergence, the first and definitive step in the multisensory process. Therefore, by using a computational model of multisensory convergence, this study seeks to provide insight into the mechanisms of multisensory convergence. To reverse-engineer multisensory convergence, we used a biologically realistic neuron model and a biology-inspired plasticity rule, but did not make any a priori assumptions about multisensory properties of neurons in the network. The network consisted of two separate projection areas that converged upon neurons in a third area, and stimulation involved activation of one of the projection areas (or the other) or their combination. Experiments consisted of two parts: network training and multisensory simulation. Analyses were performed, first, to find multisensory properties in the simulated networks; second, to reveal properties of the network using graph theoretical approach; and third, to generate hypothesis related to the multisensory convergence. The results showed that the generation of multisensory neurons related to the topological properties of the network, in particular, the strengths of connections after training, was found to play an important role in forming and thus distinguishing multisensory neuron types.

  8. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  9. An effective access control approach to support mobility in IPv6 networks

    NASA Astrophysics Data System (ADS)

    Peng, Xue-hai; Lin, Chuang

    2005-11-01

    Access control is an important method to improve network security and prevent protected resources from being used by some nodes without authority. Moreover, mobility is an important trend of internet. In this paper, based on the architecture of hierarchical mobile IPv6, we proposed an effective access control approach to support mobility in IPv6 networks, which can ensure the operation of access control when a mobile node roams in these domains with different polices, with decreased delay of access negotiation and cost of delivering messages.

  10. First principles and effective theory approaches to dynamics of complex networks

    NASA Astrophysics Data System (ADS)

    Dehmamy, Nima

    This dissertation concerns modeling two aspects of dynamics of complex networks: (1) response dynamics and (2) growth and formation. A particularly challenging class of networks are ones in which both nodes and links are evolving over time -- the most prominent example is a financial network. In the first part of the dissertation we present a model for the response dynamics in networks near a metastable point. We start with a Landau-Ginzburg approach and show that the most general lowest order Lagrangians for dynamical weighted networks can be used to derive conditions for stability under external shocks. Using a closely related model, which is easier to solve numerically, we propose a powerful and intuitive set of equations for response dynamics of financial networks. We find the stability conditions of the model and find two phases: "calm" phase , in which changes are sub-exponential and where the system moves to a new, close-by equilibrium; "frantic" phase, where changes are exponential, with negative blows resulting in crashes and positive ones leading to formation of "bubbles". We empirically verify these claims by analyzing data from Eurozone crisis of 2009-2012 and stock markets. We show that the model correctly identifies the time-line of the Eurozone crisis, and in the stock market data it correctly reproduces the auto-correlations and phases observed in the data. The second half of the dissertation addresses the following question: Do networks that form due to local interactions (local in real space, or in an abstract parameter space) have characteristics different from networks formed of random or non-local interactions? Using interacting fields obeying Fokker-Planck equations we show that many network characteristics such as degree distribution, degree-degree correlation and clustering can either be derived analytically or there are analytical bounds on their behaviour. In particular, we derive recursive equations for all powers of the ensemble average

  11. Module Anchored Network Inference: A Sequential Module-Based Approach to Novel Gene Network Construction from Genomic Expression Data on Human Disease Mechanism

    PubMed Central

    Keller, Susanna R.; Lee, Jae K.

    2017-01-01

    Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM) challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI), that constructs networks by analyzing sequentially small adjacent building blocks (modules). Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships. PMID:28197408

  12. Implementing a Trauma-Informed Approach in Pediatric Health Care Networks.

    PubMed

    Marsac, Meghan L; Kassam-Adams, Nancy; Hildenbrand, Aimee K; Nicholls, Elizabeth; Winston, Flaura K; Leff, Stephen S; Fein, Joel

    2016-01-01

    Pediatric health care networks serve millions of children each year. Pediatric illness and injury are among the most common potentially emotionally traumatic experiences for children and their families. In addition, millions of children who present for medical care (including well visits) have been exposed to prior traumatic events, such as violence or natural disasters. Given the daily challenges of working in pediatric health care networks, medical professionals and support staff can experience trauma symptoms related to their work. The application of a trauma-informed approach to medical care has the potential to mitigate these negative consequences. Trauma-informed care minimizes the potential for medical care to become traumatic or trigger trauma reactions, addresses distress, provides emotional support for the entire family, encourages positive coping, and provides anticipatory guidance regarding the recovery process. When used in conjunction with family-centered practices, trauma-informed approaches enhance the quality of care for patients and their families and the well-being of medical professionals and support staff. Barriers to routine integration of trauma-informed approaches into pediatric medicine include a lack of available training and unclear best-practice guidelines. This article highlights the importance of implementing a trauma-informed approach and offers a framework for training pediatric health care networks in trauma-informed care practices.

  13. Artificial neuron-glia networks learning approach based on cooperative coevolution.

    PubMed

    Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B

    2015-06-01

    Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.

  14. A Network Biology Approach to Discover the Molecular Biomarker Associated with Hepatocellular Carcinoma

    PubMed Central

    Zhuang, Liwei; Wu, Yun; Han, Jiwu; Ling, Xiaohua; Wang, Liguo; Zhu, Chengyan; Fu, Yili

    2014-01-01

    In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular carcinoma (HCC) investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study, we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be used as suitable targets for therapeutic intervention in HCC. PMID:24949431

  15. A multilevel approach to network meta-analysis within a frequentist framework.

    PubMed

    Greco, Teresa; Edefonti, Valeria; Biondi-Zoccai, Giuseppe; Decarli, Adriano; Gasparini, Mauro; Zangrillo, Alberto; Landoni, Giovanni

    2015-05-01

    Meta-analysis is a powerful tool to summarize knowledge. Pairwise or network meta-analysis may be carried out with multivariate models that account for the dependence between treatment estimates and quantify the correlation across studies. From a different perspective, meta-analysis may be viewed as a special case of multilevel analysis having a hierarchical data structure. Hence, we introduce an alternative frequentist approach, called multilevel network meta-analysis, which also allows to account for publication bias and the presence of inconsistency. We propose our approach for a three-level data structure set-up: arms within studies at the first level, studies within study designs at the second level and design configuration at the third level. This strategy differs from the traditional frequentist modeling because it works directly on an arm-based data structure. An advantage of using multilevel analysis is its flexibility, since it naturally allows to add further levels to the model and to accommodate for multiple outcome variables. Moreover, multilevel modeling may be carried out with widely available statistical programs. Finally, we compare the results from our approach with those from a Bayesian network meta-analysis on a binary endpoint which examines the effect on mortality of some anesthetics at the longest follow-up available. In addition, we compare results from the Bayesian and multilevel network meta-analysis approaches on a publicly available "Thrombolytic drugs" database. We also provide the reader with a blueprint of SAS codes for fitting the proposed models, although our approach does not rely on any specific software.

  16. Estimation of relative humidity based on artificial neural network approach in the Aegean Region of Turkey

    NASA Astrophysics Data System (ADS)

    Yasar, Abdulkadir; Simsek, Erdoğan; Bilgili, Mehmet; Yucel, Ahmet; Ilhan, Ilhami

    2012-01-01

    The aim of this study is to estimate the monthly mean relative humidity (MRH) values in the Aegean Region of Turkey with the help of the topographical and meteorological parameters based on artificial neural network (ANN) approach. The monthly MRH values were calculated from the measurement in the meteorological observing stations established in Izmir, Mugla, Aydin, Denizli, Usak, Manisa, Kutahya and Afyonkarahisar provinces between 2000 and 2006. Latitude, longitude, altitude, precipitation and months of the year were used in the input layer of the ANN network, while the MRH was used in output layer of the network. The ANN model was developed using MATLAB software, and then actual values were compared with those obtained by ANN and multi-linear regression methods. It seemed that the obtained values were in the acceptable error limits. It is concluded that the determination of relative humidity values is possible at any target point of the region where the measurement cannot be performed.

  17. Synchronization of Coupled Reaction-Diffusion Neural Networks With Directed Topology via an Adaptive Approach.

    PubMed

    Zhang, Hao; Sheng, Yin; Zeng, Zhigang

    2017-03-15

    This paper investigates the synchronization issue of coupled reaction-diffusion neural networks with directed topology via an adaptive approach. Due to the complexity of the network structure and the presence of space variables, it is difficult to design proper adaptive strategies on coupling weights to accomplish the synchronous goal. Under the assumptions of two kinds of special network structures, that is, directed spanning path and directed spanning tree, some novel edge-based adaptive laws, which utilized the local information of node dynamics fully are designed on the coupling weights for reaching synchronization. By constructing appropriate energy function, and utilizing some analytical techniques, several sufficient conditions are given. Finally, some simulation examples are given to verify the effectiveness of the obtained theoretical results.

  18. A Bayesian network approach to the database search problem in criminal proceedings

    PubMed Central

    2012-01-01

    Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions

  19. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    PubMed Central

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  20. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.

    PubMed

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-09-25

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  1. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    PubMed

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  2. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    PubMed Central

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-01-01

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731

  3. A Network Pharmacology Approach to Explore the Pharmacological Mechanism of Xiaoyao Powder on Anovulatory Infertility

    PubMed Central

    Zeng, Liuting

    2016-01-01

    Aim. To explore the pharmacological mechanism of Xiaoyao powder (XYP) on anovulatory infertility by a network pharmacology approach. Method. Collect XYP's active compounds by traditional Chinese medicine (TCM) databases, and input them into PharmMapper to get their targets. Then note these targets by Kyoto Encyclopedia of Genes and Genomes (KEGG) and filter out targets that can be noted by human signal pathway. Get the information of modern pharmacology of active compounds and recipe's traditional effects through databases. Acquire infertility targets by Therapeutic Target Database (TTD). Collect the interactions of all the targets and other human proteins via String and INACT. Put all the targets into the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to do GO enrichment analysis. Finally, draw the network by Cytoscape by the information above. Result. Six network pictures and two GO enrichment analysis pictures are visualized. Conclusion. According to this network pharmacology approach some signal pathways of XYP acting on infertility are found for the first time. Some biological processes can also be identified as XYP's effects on anovulatory infertility. We believe that evaluating the efficacy of TCM recipes and uncovering the pharmacological mechanism on a systematic level will be a significant method for future studies. PMID:28074099

  4. Network-based approaches for drug response prediction and targeted therapy development in cancer.

    PubMed

    Dorel, Mathurin; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna

    2015-08-21

    Signaling pathways implicated in cancer create a complex network with numerous regulatory loops and redundant pathways. This complexity explains frequent failure of one-drug-one-target paradigm of treatment, resulting in drug resistance in patients. To overcome the robustness of cell signaling network, cancer treatment should be extended to a combination therapy approach. Integrating and analyzing patient high-throughput data together with the information about biological signaling machinery may help deciphering molecular patterns specific to each patient and finding the best combinations of candidates for therapeutic targeting. We review state of the art in the field of targeted cancer medicine from the computational systems biology perspective. We summarize major signaling network resources and describe their characteristics with respect to applicability for drug response prediction and intervention targets suggestion. Thus discuss methods for prediction of drug sensitivity and intervention combinations using signaling networks together with high-throughput data. Gradual integration of these approaches into clinical routine will improve prediction of response to standard treatments and adjustment of intervention schemes.

  5. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states.

  6. Attack-tolerant networked control system: an approach for detection the controller stealthy hijacking attack

    NASA Astrophysics Data System (ADS)

    Atta Yaseen, Amer; Bayart, Mireille

    2017-01-01

    In this work, a new approach will be introduced as a development for the attack-tolerant scheme in the Networked Control System (NCS). The objective is to be able to detect an attack such as the Stuxnet case where the controller is reprogrammed and hijacked. Besides the ability to detect the stealthy controller hijacking attack, the advantage of this approach is that there is no need for a priori mathematical model of the controller. In order to implement the proposed scheme, a specific detector for the controller hijacking attack is designed. The performance of this scheme is evaluated be connected the detector to NCS with basic security elements such as Data Encryption Standard (DES), Message Digest (MD5), and timestamp. The detector is tested along with networked PI controller under stealthy hijacking attack. The test results of the proposed method show that the hijacked controller can be significantly detected and recovered.

  7. A hybrid hopfield network-simulated annealing approach for frequency assignment in satellite communications systems.

    PubMed

    Salcedo-Sanz, Sancho; Santiago-Mozos, Ricardo; Bousoño-Calzón, Carlos

    2004-04-01

    A hybrid Hopfield network-simulated annealing algorithm (HopSA) is presented for the frequency assignment problem (FAP) in satellite communications. The goal of this NP-complete problem is minimizing the cochannel interference between satellite communication systems by rearranging the frequency assignment, for the systems can accommodate the increasing demands. The HopSA algorithm consists of a fast digital Hopfield neural network which manages the problem constraints hybridized with a simulated annealing which improves the quality of the solutions obtained. We analyze the problem and its formulation, describing and discussing the HopSA algorithm and solving a set of benchmark problems. The results obtained are compared with other existing approaches in order to show the performance of the HopSA approach.

  8. Neuro-classification of multi-type Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.

    1991-01-01

    Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.

  9. Pathway and Network Approaches for Identification of Cancer Signature Markers from Omics Data

    PubMed Central

    Wang, Jinlian; Zuo, Yiming; Man, Yan-gao; Avital, Itzhak; Stojadinovic, Alexander; Liu, Meng; Yang, Xiaowei; Varghese, Rency S.; Tadesse, Mahlet G; Ressom, Habtom W

    2015-01-01

    The advancement of high throughput omic technologies during the past few years has made it possible to perform many complex assays in a much shorter time than the traditional approaches. The rapid accumulation and wide availability of omic data generated by these technologies offer great opportunities to unravel disease mechanisms, but also presents significant challenges to extract knowledge from such massive data and to evaluate the findings. To address these challenges, a number of pathway and network based approaches have been introduced. This review article evaluates these methods and discusses their application in cancer biomarker discovery using hepatocellular carcinoma (HCC) as an example. PMID:25553089

  10. Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach

    PubMed Central

    Illan, Ignacio A.; Górriz, Juan M.; Ramírez, Javier; Meyer-Base, Anke

    2014-01-01

    This work presents a spatial-component (SC) based approach to aid the diagnosis of Alzheimer's disease (AD) using magnetic resonance images. In this approach, the whole brain image is subdivided in regions or spatial components, and a Bayesian network is used to model the dependencies between affected regions of AD. The structure of relations between affected regions allows to detect neurodegeneration with an estimated performance of 88% on more than 400 subjects and predict neurodegeneration with 80% accuracy, supporting the conclusion that modeling the dependencies between components increases the recognition of different patterns of brain degeneration in AD. PMID:25505408

  11. On the Contributions of a Network Approach to Personality Theory and Research.

    PubMed

    Furr, R Michael; Fleeson, William; Anderson, Michelle; Arnold, Elizabeth Mayfield

    2012-07-01

    Understanding personality structure and processes is one of the most fundamental goals in personality psychology. The network approach presented by Cramer et al. represents a useful path toward this goal, and we address two facets of their approach. First, we examine the possibility that it solves the problem of breadth, which has inhibited the integration of trait theory with social cognitive theory. Second, we evaluate the value and usability of their proposed method (qgraph), doing so by conducting idiographic analyses of the symptom structure of Borderline Personality Disorder.

  12. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-01-01

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks. PMID:26610496

  13. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  14. A complex network approach for nanoparticle agglomeration analysis in nanoscale images

    NASA Astrophysics Data System (ADS)

    Machado, Bruno Brandoli; Scabini, Leonardo Felipe; Margarido Orue, Jonatan Patrick; de Arruda, Mauro Santos; Goncalves, Diogo Nunes; Goncalves, Wesley Nunes; Moreira, Raphaell; Rodrigues-Jr, Jose F.

    2017-02-01

    Complex networks have been widely used in science and technology because of their ability to represent several systems. One of these systems is found in Biochemistry, in which the synthesis of new nanoparticles is a hot topic. However, the interpretation of experimental results in the search of new nanoparticles poses several challenges. This is due to the characteristics of nanoparticle images and due to their multiple intricate properties; one property of recurrent interest is the agglomeration of particles. Addressing this issue, this paper introduces an approach that uses complex networks to detect and describe nanoparticle agglomerates so to foster easier and more insightful analyses. In this approach, each detected particle in an image corresponds to a vertice and the distances between the particles define a criterion for creating edges. Edges are created if the distance is smaller than a radius of interest. Once this network is set, we calculate several discrete measures able to reveal the most outstanding agglomerates in a nanoparticle image. Experimental results using images of scanning tunneling microscopy (STM) of gold nanoparticles demonstrated the effectiveness of the proposed approach over several samples, as reflected by the separability between particles in three usual settings. The results also demonstrated efficacy for both convex and non-convex agglomerates.

  15. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  16. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach

    PubMed Central

    2012-01-01

    Background Torcetrapib, a cholesteryl ester transfer protein (CETP) inhibitor which raises high-density lipoprotein (HDL) cholesterol and reduces low-density lipoprotein (LDL) cholesterol level, has been documented to increase mortality and cardiac events associated with adverse effects. However, it is still unclear the underlying mechanisms of the off-target effects of torcetrapib. Results In the present study, we developed a systems biology approach by combining a human reassembled signaling network with the publicly available microarray gene expression data to provide unique insights into the off-target adverse effects for torcetrapib. Cytoscape with three plugins including BisoGenet, NetworkAnalyzer and ClusterONE was utilized to establish a context-specific drug-gene interaction network. The DAVID functional annotation tool was applied for gene ontology (GO) analysis, while pathway enrichment analysis was clustered by ToppFun. Furthermore, potential off-targets of torcetrapib were predicted by a reverse docking approach. In general, 10503 nodes were retrieved from the integrative signaling network and 47660 inter-connected relations were obtained from the BisoGenet plugin. In addition, 388 significantly up-regulated genes were detected by Significance Analysis of Microarray (SAM) in adrenal carcinoma cells treated with torcetrapib. After constructing the human signaling network, the over-expressed microarray genes were mapped to illustrate the context-specific network. Subsequently, three conspicuous gene regulatory networks (GRNs) modules were unearthed, which contributed to the off-target effects of torcetrapib. GO analysis reflected dramatically over-represented biological processes associated with torcetrapib including activation of cell death, apoptosis and regulation of RNA metabolic process. Enriched signaling pathways uncovered that IL-2 Receptor Beta Chain in T cell Activation, Platelet-Derived Growth Factor Receptor (PDGFR) beta signaling pathway, IL

  17. A variational approach to the growth dynamics of pre-stressed actin filament networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  18. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    PubMed

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  19. Information theoretic approach to complex biological network reconstruction: application to cytokine release in RAW 264.7 macrophages

    PubMed Central

    2014-01-01

    Background High-throughput methods for biological measurements generate vast amounts of quantitative data, which necessitate the development of advanced approaches to data analysis to help understand the underlying mechanisms and networks. Reconstruction of biological networks from measured data of different components is a significant challenge in systems biology. Results We use an information theoretic approach to reconstruct phosphoprotein-cytokine networks in RAW 264.7 macrophage cells. Cytokines are secreted upon activation of a wide range of regulatory signals transduced by the phosphoprotein network. Identifying these components can help identify regulatory modules responsible for the inflammatory phenotype. The information theoretic approach is based on estimation of mutual information of interactions by using kernel density estimators. Mutual information provides a measure of statistical dependencies between interacting components. Using the topology of the network derived, we develop a data-driven parsimonious input–output model of the phosphoprotein-cytokine network. Conclusions We demonstrate the applicability of our information theoretic approach to reconstruction of biological networks. For the phosphoprotein-cytokine network, this approach not only captures most of the known signaling components involved in cytokine release but also predicts new signaling components involved in the release of cytokines. The results of this study are important for gaining a clear understanding of macrophage activation during the inflammation process. PMID:24964861

  20. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia.

    PubMed

    Kim, D; Burge, J; Lane, T; Pearlson, G D; Kiehl, K A; Calhoun, V D

    2008-10-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.P., 2007. Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp.) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge, J., Lane, T., 2005. Learning Class-Discriminative Dynamic Bayesian Networks. Proceedings of the International Conference on Machine Learning, Bonn, Germany, pp. 97-104.). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, A., 1991. Probability, random variables, and stochastic processes. McGraw-Hill, New York.). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions

  1. Parametric motion control of robotic arms: A biologically based approach using neural networks

    NASA Technical Reports Server (NTRS)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  2. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches

    NASA Astrophysics Data System (ADS)

    Sivakumar, B.; Jayawardena, A. W.; Fernando, T. M. K. G.

    2002-08-01

    The use of two non-linear black-box approaches, phase-space reconstruction (PSR) and artificial neural networks (ANN), for forecasting river flow dynamics is studied and a comparison of their performances is made. This is done by attempting 1-day and 7-day ahead forecasts of the daily river flow from the Nakhon Sawan station at the Chao Phraya River basin in Thailand. The results indicate a reasonably good performance of both approaches for both 1-day and 7-day ahead forecasts. However, the performance of the PSR approach is found to be consistently better than that of ANN. One reason for this could be that in the PSR approach the flow series in the phase-space is represented step by step in local neighborhoods, rather than a global approximation as is done in ANN. Another reason could be the use of the multi-layer perceptron (MLP) in ANN, since MLPs may not be most appropriate for forecasting at longer lead times. The selection of training set for the ANN may also contribute to such results. A comparison of the optimal number of variables for capturing the flow dynamics, as identified by the two approaches, indicates a large discrepancy in the case of 7-day ahead forecasts (1 and 7 variables, respectively), though for 1-day ahead forecasts it is found to be consistent (3 variables). A possible explanation for this could be the influence of noise in the data, an observation also made from the 1-day ahead forecast results using the PSR approach. The present results lead to observation on: (1) the use of other neural networks for runoff forecasting, particularly at longer lead times; (2) the influence of training set used in the ANN; and (3) the effect of noise on forecast accuracy, particularly in the PSR approach.

  3. Reducing the computational complexity of information theoretic approaches for reconstructing gene regulatory networks.

    PubMed

    Qiu, Peng; Gentles, Andrew J; Plevritis, Sylvia K

    2010-02-01

    Information theoretic approaches are increasingly being used for reconstructing regulatory networks from microarray data. These approaches start by computing the pairwise mutual information (MI) between all gene pairs. The resulting MI matrix is then manipulated to identify regulatory relationships. A barrier to these approaches is the time-consuming step of computing the MI matrix. We present a method to reduce this computation time. We apply spectral analysis to re-order the genes, so that genes that share regulatory relationships are more likely to be placed close to each other. Then, using a "sliding window" approach with appropriate window size and step size, we compute the MI for the genes within the sliding window, and the remainder is assumed to be zero. Using both simulated data and microarray data, we demonstrate that our method does not incur performance loss in regions of high-precision and low-recall, while the computational time is significantly lowered. The proposed method can be used with any method that relies on the mutual information to reconstruct networks.

  4. Community-Based Groundwater Monitoring Network Using a Citizen-Science Approach.

    PubMed

    Little, Kathleen E; Hayashi, Masaki; Liang, Steve

    2016-05-01

    Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land-use change, and climatic variability. It is important to have a spatially distributed, long-term monitoring well network for sustainable groundwater resource management. Community-based monitoring involving citizen scientists provides an approach to complement existing government-run monitoring programs. This article demonstrates the feasibility of establishing a large-scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km(2) ) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web-based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5-year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community-based groundwater monitoring provides an effective and affordable tool for sustainable water resources management.

  5. The multiscale importance of road segments in a network disruption scenario: a risk-based approach.

    PubMed

    Freiria, Susana; Tavares, Alexandre O; Pedro Julião, Rui

    2015-03-01

    This article addresses the problem of the multiscale importance of road networks, with the aim of helping to establish a more resilient network in the event of a road disruption scenario. A new model for identifying the most important roads is described and applied on a local and regional scale. The work presented here represents a step forward, since it focuses on the interaction between identifying the most important roads in a network that connect people and health services, the specificity of the natural hazards that threaten the normal functioning of the network, and an assessment of the consequences of three real-world interruptions from a multiscale perspective. The case studies concern three different past events: road interruptions due to a flood, a forest fire, and a mass movement. On the basis of the results obtained, it is possible to establish the roads for which risk management should be a priority. The multiscale perspective shows that in a road interruption the regional system may have the capacity to reorganize itself, although the interruption may have consequences for local dynamics. Coordination between local and regional scales is therefore important. The model proposed here allows for the scaling of emergency response facilities and human and physical resources. It represents an innovative approach to defining priorities, not only in the prevention phase but also in terms of the response to natural disasters, such as awareness of the consequences of road disruption for the rescue services sent out to local communities.

  6. A novel approach to thermochromic liquid crystal calibration using neural networks

    NASA Astrophysics Data System (ADS)

    Grewal, G. S.; Bharara, M.; Cobb, J. E.; Dubey, V. N.; Claremont, D. J.

    2006-07-01

    Liquid crystal thermography (LCT) is a common surface temperature measurement technique. Typically, the colour response is calibrated against temperature by building an analytical relation between the temperature and the hue of the colour. A suitable polynomial fit is then used to describe this relation after removing the discontinuity in the hue. The variability of hue at each calibration point determines the temperature resolution. However, this technique does not take into consideration the variability in R, G and B intensities used to determine the hue, leading to uncertainty in the measured temperature. This paper describes a novel technique using neural networks to calibrate thermochromic liquid crystal (TLC) material and compensate for high variability in RGB intensities along with other sources of noise in the data. A TLC-based temperature measurement system and calibration results are presented. In our measurements, the lighting intensity (8-bit mean intensity of black surface ± standard deviation) is changed from a minimum of 16.65 ± 2.30 to a maximum of 31.41 ± 3.85. The neural networks were trained on the steady-state TLC calibration system. The results indicate that the neural networks can cope with the variation in lighting by merging the shifted hue curves into a single curve determined by the regression analysis of the test data. Performance characteristics studied on various network configurations relevant to the analysis are described. This approach may be useful in developing liquid crystal thermography for various biomedical applications.

  7. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    SciTech Connect

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.; Grama, Ananth

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  8. Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology.

    PubMed

    Lee, Hyekyoung; Kang, Hyejin; Chung, Moo K; Lim, Seonhee; Kim, Bung-Nyun; Lee, Dong Soo

    2017-03-01

    Finding underlying relationships among multiple imaging modalities in a coherent fashion is one of the challenging problems in multimodal analysis. In this study, we propose a novel approach based on multidimensional persistence. In the extension of the previous threshold-free method of persistent homology, we visualize and discriminate the topological change of integrated brain networks by varying not only threshold but also mixing ratio between two different imaging modalities. The multidimensional persistence is implemented by a new bimodal integration method called 1D projection. When the mixing ratio is predefined, it constructs an integrated edge weight matrix by projecting two different connectivity information onto the one dimensional shared space. We applied the proposed methods to PET and MRI data from 23 attention deficit hyperactivity disorder (ADHD) children, 21 autism spectrum disorder (ASD), and 10 pediatric control subjects. From the results, we found that the brain networks of ASD, ADHD children and controls differ, with ASD and ADHD showing asymmetrical changes of connected structures between metabolic and morphological connectivities. The difference of connected structure between ASD and the controls was mainly observed in the metabolic connectivity. However, ADHD showed the maximum difference when two connectivity information were integrated with the ratio 0.6. These results provide a multidimensional homological understanding of disease-related PET and MRI networks that disclose the network association with ASD and ADHD. Hum Brain Mapp 38:1387-1402, 2017. © 2016 Wiley Periodicals, Inc.

  9. An improved least cost routing approach for WDM optical network without wavelength converters

    NASA Astrophysics Data System (ADS)

    Bonani, Luiz H.; Forghani-elahabad, Majid

    2016-12-01

    Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.

  10. A new approach to shortest paths on networks based on the quantum bosonic mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Wang, Hailong; Tang, Shaoting; Ma, Lili; Zhang, Zhanli; Zheng, Zhiming

    2011-01-01

    This paper presents quantum bosonic shortest path searching (QBSPS), a natural, practical and highly heuristic physical algorithm for reasoning about the recognition of network structure via quantum dynamics. QBSPS is based on an Anderson-like itinerant bosonic system in which a boson's Green function is used as a navigation pointer for one to accurately approach the terminals. QBSPS is demonstrated by rigorous mathematical and physical proofs and plenty of simulations, showing how it can be used as a greedy routing to seek the shortest path between different locations. In methodology, it is an interesting and new algorithm rooted in the quantum mechanism other than combinatorics. In practice, for the all-pairs shortest-path problem in a random scale-free network with N vertices, QBSPS runs in O(μ(N) ln ln N) time. In application, we suggest that the corresponding experimental realizations are feasible by considering path searching in quantum optical communication networks; in this situation, the method performs a pure local search on networks without requiring the global structure that is necessary for current graph algorithms.

  11. A majorization-minimization approach to design of power distribution networks

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael

    2010-01-01

    We consider optimization approaches to design cost-effective electrical networks for power distribution. This involves a trade-off between minimizing the power loss due to resistive heating of the lines and minimizing the construction cost (modeled by a linear cost in the number of lines plus a linear cost on the conductance of each line). We begin with a convex optimization method based on the paper 'Minimizing Effective Resistance of a Graph' [Ghosh, Boyd & Saberi]. However, this does not address the Alternating Current (AC) realm and the combinatorial aspect of adding/removing lines of the network. Hence, we consider a non-convex continuation method that imposes a concave cost of the conductance of each line thereby favoring sparser solutions. By varying a parameter of this penalty we extrapolate from the convex problem (with non-sparse solutions) to the combinatorial problem (with sparse solutions). This is used as a heuristic to find good solutions (local minima) of the non-convex problem. To perform the necessary non-convex optimization steps, we use the majorization-minimization algorithm that performs a sequence of convex optimizations obtained by iteratively linearizing the concave part of the objective. A number of examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.

  12. AN INTEGRATED NETWORK APPROACH TO IDENTIFYING BIOLOGICAL PATHWAYS AND ENVIRONMENTAL EXPOSURE INTERACTIONS IN COMPLEX DISEASES

    PubMed Central

    DARABOS, CHRISTIAN; QIU, JINGYA; MOORE, JASON H.

    2015-01-01

    Complex diseases are the result of intricate interactions between genetic, epigenetic and environmental factors. In previous studies, we used epidemiological and genetic data linking environmental exposure or genetic variants to phenotypic disease to construct Human Phenotype Networks and separately analyze the effects of both environment and genetic factors on disease interactions. To better capture the intricacies of the interactions between environmental exposure and the biological pathways in complex disorders, we integrate both aspects into a single “tripartite” network. Despite extensive research, the mechanisms by which chemical agents disrupt biological pathways are still poorly understood. In this study, we use our integrated network model to identify specific biological pathway candidates possibly disrupted by environmental agents. We conjecture that a higher number of co-occurrences between an environmental substance and biological pathway pair can be associated with a higher likelihood that the substance is involved in disrupting that pathway. We validate our model by demonstrating its ability to detect known arsenic and signal transduction pathway interactions and speculate on candidate cell-cell junction organization pathways disrupted by cadmium. The validation was supported by distinct publications of cell biology and genetic studies that associated environmental exposure to pathway disruption. The integrated network approach is a novel method for detecting the biological effects of environmental exposures. A better understanding of the molecular processes associated with specific environmental exposures will help in developing targeted molecular therapies for patients who have been exposed to the toxicity of environmental chemicals. PMID:26776169

  13. A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks

    PubMed Central

    Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes

    2016-01-01

    Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches. PMID:27792136

  14. A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks.

    PubMed

    Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes

    2016-10-25

    Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches.

  15. Towards stable kinetics of large metabolic networks: Nonequilibrium potential function approach

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Cong; Yuan, Ruo-Shi; Ao, Ping; Xu, Min-Juan; Zhu, Xiao-Mei

    2016-06-01

    While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we show that a stable metabolic network can be systematically established via a biologically motivated regulatory process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between the flux balance and the spread of workloads on the network. Our approach allows further constraints such as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion rate versus cell viability and futile cycles is investigated in depth.

  16. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.

    PubMed

    Vilimek, Miloslav

    2014-01-01

    This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

  17. [A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].

    PubMed

    Bińczyk, E

    2001-01-01

    The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.

  18. Solving Bilevel Programming Problems Using a Neural Network Approach and Its Application to Power System Environment

    NASA Astrophysics Data System (ADS)

    Yaakob, Shamshul Bahar; Watada, Junzo

    In this paper, a hybrid neural network approach to solve mixed integer quadratic bilevel programming problems is proposed. Bilevel programming problems arise when one optimization problem, the upper problem, is constrained by another optimization, the lower problem. The mixed integer quadratic bilevel programming problem is transformed into a double-layered neural network. The combination of a genetic algorithm (GA) and a meta-controlled Boltzmann machine (BM) enables us to formulate a hybrid neural network approach to solving bilevel programming problems. The GA is used to generate the feasible partial solutions of the upper level and to provide the parameters for the lower level. The meta-controlled BM is employed to cope with the lower level problem. The lower level solution is transmitted to the upper level. This procedure enables us to obtain the whole upper level solution. The iterative processes can converge on the complete solution of this problem to generate an optimal one. The proposed method leads the mixed integer quadratic bilevel programming problem to a global optimal solution. Finally, a numerical example is used to illustrate the application of the method in a power system environment, which shows that the algorithm is feasible and advantageous.

  19. A novel approach to synchronization of nonlinearly coupled network systems with delays

    NASA Astrophysics Data System (ADS)

    Tseng, Jui-Pin

    2016-06-01

    In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh-Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.

  20. NASA Water-Cycle Solutions Networks and Community of Practice Approaches to enhance Decision-making

    NASA Astrophysics Data System (ADS)

    Pozzi, W.; Ward, J.; Cox, E. L.; Lawford, R. G.; Matthews, D.; Houser, P.; Doherty, M.

    2009-12-01

    The Japanese Aerospace Exploration Agency (JAXA) has created the Asian Water Cycle Initiative regional network for South Asia and NASA has launched two networks to enhance the rapid transitioning of scientific achievements and NASA technology into operational use. All three networks meet a new type of scientific challenge by providing strong linkage among the scientific communities, the space agencies, and decision makers. We focus here on the two NASA-sponsored networks that carry out complementary approaches: WaterNet focused on large-scale national/international collaborations; North Olympic Peninsula Solution Network developed a local proof of concept project first, then began integration and collaboration at progressively larger scales, culminating with a national-level discourse via the National Association of Resource, Conservation and Development councils (NARC&DC). The ultimate goals of both groups were to bring NASA Science and Technology products to organizations/groups to improve decision making and to create collaborations and networks that would extend beyond the parent groups and expand and continue to be sustainable, after the original projects were completed. This paper provides a summary of lessons learned. The primary objective of the NOPSN is to bring NASA science and technology tools to watershed managers to improve the scientific basis of decision making in NASA national application areas of water management, agricultural efficiency, and ecological forecasting. To achieve this objective, the NOPSN team first developed and implemented a local proof-of-concept project for the Dungeness River, Washington, to improve water forecasting. The team then developed local and regional collaborations with water resource managers, stakeholder groups, and local, state, and federal agencies to identify environmental issues, challenges, and needs that could be addressed with NASA technology. Finally,through its partnership with NARC&D, it provided the NOPSN

  1. Yeast Augmented Network Analysis (YANA): a new systems approach to identify therapeutic targets for human genetic diseases

    PubMed Central

    Wiley, David J.; Juan, Ilona; Le, Hao; Cai, Xiaodong; Baumbach, Lisa; Beattie, Christine; D'Urso, Gennaro

    2014-01-01

    Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA) approach and test it with the X-linked spinal muscular atrophy (SMA) disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish) SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases. PMID:25075304

  2. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.

    PubMed

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-07-05

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.

  3. Cooperative Management of a Lithium-Ion Battery Energy Storage Network: A Distributed MPC Approach

    SciTech Connect

    Fang, Huazhen; Wu, Di; Yang, Tao

    2016-12-12

    This paper presents a study of cooperative power supply and storage for a network of Lithium-ion energy storage systems (LiBESSs). We propose to develop a distributed model predictive control (MPC) approach for two reasons. First, able to account for the practical constraints of a LiBESS, the MPC can enable a constraint-aware operation. Second, a distributed management can cope with a complex network that integrates a large number of LiBESSs over a complex communication topology. With this motivation, we then build a fully distributed MPC algorithm from an optimization perspective, which is based on an extension of the alternating direction method of multipliers (ADMM) method. A simulation example is provided to demonstrate the effectiveness of the proposed algorithm.

  4. What are the Evolutionary Origins of Mitochondria? A Complex Network Approach

    PubMed Central

    Carvalho, Daniel S.; Andrade, Roberto F. S.; Pinho, Suani T. R.; Góes-Neto, Aristóteles; Lobão, Thierry C. P.; Bomfim, Gilberto C.; El-Hani, Charbel N.

    2015-01-01

    Mitochondria originated endosymbiotically from an Alphaproteobacteria-like ancestor. However, it is still uncertain which extant group of Alphaproteobacteria is phylogenetically closer to the mitochondrial ancestor. The proposed groups comprise the order Rickettsiales, the family Rhodospirillaceae, and the genus Rickettsia. In this study, we apply a new complex network approach to investigate the evolutionary origins of mitochondria, analyzing protein sequences modules in a critical network obtained through a critical similarity threshold between the studied sequences. The dataset included three ATP synthase subunits (4, 6, and 9) and its alphaproteobacterial homologs (b, a, and c). In all the subunits, the results gave no support to the hypothesis that Rickettsiales are closely related to the mitochondrial ancestor. Our findings support the hypothesis that mitochondria share a common ancestor with a clade containing all Alphaproteobacteria orders, except Rickettsiales. PMID:26332127

  5. Object-oriented Approach to High-level Network Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2000-01-01

    An absolute prerequisite for the management of large investigating methods to build high-level monitoring computer networks is the ability to measure their systems that are built on top of existing monitoring performance. Unless we monitor a system, we cannot tools. Due to the heterogeneous nature of the hope to manage and control its performance. In this underlying systems at NASA Langley Research Center, paper, we describe a network monitoring system that we use an object-oriented approach for the design, we are currently designing and implementing. Keeping, first, we use UML (Unified Modeling Language) to in mind the complexity of the task and the required model users' requirements. Second, we identify the flexibility for future changes, we use an object-oriented existing capabilities of the underlying monitoring design methodology. The system is built using the system. Third, we try to map the former with the latter. APIs offered by the HP OpenView system.

  6. Delay-decomposing approach to robust stability for switched interval networks with state-dependent switching.

    PubMed

    Li, Ning; Cao, Jinde; Hayat, Tasawar

    2014-08-01

    This paper is concerned with a class of nonlinear uncertain switched networks with discrete time-varying delays . Based on the strictly complete property of the matrices system and the delay-decomposing approach, exploiting a new Lyapunov-Krasovskii functional decomposing the delays in integral terms, the switching rule depending on the state of the network is designed. Moreover, by piecewise delay method, discussing the Lyapunov functional in every different subintervals, some new delay-dependent robust stability criteria are derived in terms of linear matrix inequalities, which lead to much less conservative results than those in the existing references and improve previous results. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  7. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  8. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  9. Pivot to the Homeland - An Escalated Maritime Interdictions Approach Towards Combating Transnational Criminal Networks in the Western Hemisphere

    DTIC Science & Technology

    2015-06-03

    flow toward U.S. shores (Figure 8). If bulk shipments are not interdicted before making landfall, cocaine moves through Central America and Mexico...Interdictions Approach towards Combating Transnational Criminal Networks in the Western Hemisphere 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...HOMELAND – AN ESCALATED MARITIME INTERDICTIONS APPROACH TOWARDS COMBATING TRANSNATIONAL ORGANIZED CRIMINAL NETWORKS IN THE WESTERN HEMISPHERE by

  10. Unravelling River System Impairments in Stream Networks with an Integrated Risk Approach

    NASA Astrophysics Data System (ADS)

    Van Looy, Kris; Piffady, Jérémy; Tormos, Thierry; Villeneuve, Bertrand; Valette, Laurent; Chandesris, André; Souchon, Yves

    2015-06-01

    Rivers are complex systems for which it is hard to make reliable assessments of causes and responses to impairments. We present a holistic risk-based framework for river ecosystem assessment integrating all potential intervening processes and functions. Risk approaches allow us to deal with uncertainty both in the construction of indicators for magnitude of stressors and in the inference of environmental processes and their impairment. Yet, here we go further than simply replacing uncertainty by a risk factor. We introduce a more accurate and rigorous notion of risk with a transcription of uncertainty in causal relationships in probability distributions for the magnitude of impairment and the weight of different descriptors, with an associated confidence in the diagnostic. We discuss how Bayesian belief networks and Bayesian hierarchical inference allow us to deal with this risk concept to predict impairments and potential recovery of river ecosystems. We developed a comprehensive approach for river ecosystem assessment, which offers an appealing tool to facilitate diagnosis of the likely causes of impairment and predict future conditions. The ability of the risk approaches to integrate multi-scale quantitative and qualitative descriptors in the identification of multiple stressor sources and pathways in the stream network, and their impairment of specific processes and structures is illustrated for the national-level risk analysis for hydromorphology and pesticide pollution. Not only does the risk-based framework provide a more complete picture of environmental impairments, but it also offers a comprehensive, user-friendly tool to instruct the decision process.

  11. A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation

    PubMed Central

    Saura, Santiago; Rondinini, Carlo

    2016-01-01

    One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718

  12. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.

    PubMed

    Breitling, Rainer; Gilbert, David; Heiner, Monika; Orton, Richard

    2008-09-01

    Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach--qualitative Petri nets, and quantitative approaches--continuous Petri nets and ordinary differential equations (ODEs). We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present a number of novel computational tools that can help to explore alternative modular models in an easy and intuitive manner. These tools, which are based on Petri net theory, offer convenient ways of composing hierarchical ODE models, and permit a qualitative analysis of their behaviour. We illustrate the central concepts using signal transduction as our main example. The ultimate aim is to introduce a general approach that provides the foundations for a structured formal engineering of large-scale models of biochemical networks.

  13. On trends and climatic effects of multi-type and cascading hazards in the Andes of Peru

    NASA Astrophysics Data System (ADS)

    Huggel, C.; Raissig, A.; Romero, G.; Rohrer, M.; Salzmann, N.; Díaz, A.; Acuña, D.

    2012-04-01

    Multi-type hydrometeorological hazards such as landslides, debris flows and floods are recurring all over the Andes region and cause death to local people and widespread damage to population centers and infrastructure. Such disastrous events are also a threat to development because they often destroy livelihood conditions of the most poor and vulnerable people. The southern Peruvian Andes are formed by steep and complex terrain, with many remote settlements. A distinctly dry, cold, and a wet, warmer season characterize the climate. Heavy precipitation events have observed to cause landslides and debris flows with volumes of 104 up to as much as 107 m3. The climatic conditions causing the landslides are often poorly understood which is an drawback for more effective risk management. Furthermore, it is unclear whether the frequency of these events has increased over the past decades and whether there is a relation to climate change. Here we systematically analyze existing multi-type disaster inventories over the period 1970-2010 and their spatio-temporal patterns. To better understand the climatic effects we compiled a record of available meteorological stations. However, these stations are relatively sparse and therefore we included satellite data such as from the Tropical Rainfall Measurement Mission (TRMM) in the analysis. The results show that no clear trend can be detected in the disaster series, but important insight into spatio-temporal patterns reveal that some regions have experienced an increase over some periods of the past 40 years. Heavy precipitation events have generally increased since the mid-1960s but the effect on landslide and flooding activity cannot yet be clearly observed. Improved understanding of multi-type hydrometerological hazards is likely to come from more detailed investigations of selected case studies. We could show, for instance, that both rainfall intensity and antecedent rainfall are important factors for landslide generation in

  14. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach

    PubMed Central

    Qi, Quan; Li, Rui; Li, Hui-ying; Cao, Yu-bing; Bai, Ming; Fan, Xiao-jing; Wang, Shu-yan; Zhang, Bo; Li, Shao

    2016-01-01

    Aim: Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. Methods: The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. Results: The nuciferine target profile was enriched with signaling pathways and biological functions, including “regulation of lipase activity”, “response to nicotine” and “regulation of cell proliferation”. Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. Conclusion: By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels. PMID:27180984

  15. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism.

    PubMed

    Venkataraman, Archana; Duncan, James S; Yang, Daniel Y-J; Pelphrey, Kevin A

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of "language" and "comprehension" as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes "social" and "person". The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.

  16. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    PubMed Central

    Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561

  17. A Kalman-Filter Based Approach to Identification of Time-Varying Gene Regulatory Networks

    PubMed Central

    Xiong, Jie; Zhou, Tong

    2013-01-01

    Motivation Conventional identification methods for gene regulatory networks (GRNs) have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy that recovers time-varying GRNs. Results It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points are detected by a Kalman-filter based method. The observed time series are divided into several segments using these detection results; and each time series segment belonging to two successive demarcating change points is associated with an individual static regulatory network. In the second step, conditional network structure identification methods are used to reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change points precisely and recover each individual topology structure effectively. Moreover, computation results with the developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches, which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem. PMID:24116005

  18. Ion track based tunable device as humidity sensor: a neural network approach

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the

  19. Propagation of computer virus both across the Internet and external computers: A complex-network approach

    NASA Astrophysics Data System (ADS)

    Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi; Jin, Jian; He, Li

    2014-08-01

    Based on the assumption that external computers (particularly, infected external computers) are connected to the Internet, and by considering the influence of the Internet topology on computer virus spreading, this paper establishes a novel computer virus propagation model with a complex-network approach. This model possesses a unique (viral) equilibrium which is globally attractive. Some numerical simulations are also given to illustrate this result. Further study shows that the computers with higher node degrees are more susceptible to infection than those with lower node degrees. In this regard, some appropriate protective measures are suggested.

  20. Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach

    NASA Technical Reports Server (NTRS)

    Mak, Victor W. K.

    1986-01-01

    Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.

  1. Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading - An approach based on multiplex networks

    NASA Astrophysics Data System (ADS)

    Kan, Jia-Qian; Zhang, Hai-Feng

    2017-03-01

    In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.

  2. SIGNATURES OF ILLICIT NUCLEAR PROCUREMENT NETWORKS: AN OVERVIEW OF PRELIMINARY APPROACHES AND RESULTS

    SciTech Connect

    Webster, Jennifer B.; Erikson, Luke E.; Gastelum, Zoe N.; Lewis, Valerie A.; Best, Daniel M.; Hogan, Emilie A.; Chikkagoudar, Satish

    2014-05-12

    The illicit trafficking of strategic nuclear commodities (defined here as the goods needed for a covert nuclear program excluding special nuclear materials) poses a significant challenge to the international nuclear nonproliferation community. Export control regulations, both domestically and internationally, seek to inhibit the spread of strategic nuclear commodities by restricting their sale to parties that may use them for nefarious purposes. However, export controls alone are not sufficient for preventing the illicit transfer of strategic nuclear goods. There are two major pitfalls to relying solely on export control regulations for the deterrence of proliferation of strategic goods. First, export control enforcement today relies heavily on the honesty and willingness of participants to adhere to the legal framework already in place. Secondly, current practices focus on the evaluation of single records which allow for the necessary goods to be purchased separately and hidden within the thousands of legitimate commerce transactions that occur each day, disregarding strategic information regarding several purchases. Our research presents two preliminary data-centric approaches for investigating procurement networks of strategic nuclear commodities. Pacific Northwest National Laboratory (PNNL) has been putting significant effort into nonproliferation activities as an institution, both in terms of the classical nuclear material focused approach and in the examination of other strategic goods necessary to implement a nuclear program. In particular, the PNNL Signature Discovery Initiative (SDI) has codified several scientific methodologies for the detection, characterization, and prediction of signatures that are indicative of a phenomenon of interest. The methodologies and tools developed under SDI have already been applied successfully to problems in bio-forensics, cyber security and power grid balancing efforts and they have now made the nonproliferation of

  3. A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra

    NASA Astrophysics Data System (ADS)

    D'Andrea, Eleonora; Pagnotta, Stefano; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Palleschi, Vincenzo; Lazzerini, Beatrice

    2015-03-01

    A `hybrid' method is proposed for the quantitative analysis of materials by LIBS, combining the precision of the calibration-free LIBS (CF-LIBS) algorithm with the quickness of artificial neural networks. The method allows the precise determination of the samples' composition even in the presence of relatively large laser fluctuations and matrix effects. To show the strength and robustness of this approach, a number of synthetic LIBS spectra of Cu-Ni binary alloys with different composition were computer-simulated, in correspondence of different plasma temperatures, electron number densities and ablated mass. The CF-LIBS/ANN approach here proposed demonstrated to be capable, after appropriate training, of `learning' the basic physical relations between the experimentally measured line intensities and the plasma parameters. Because of that the composition of the sample can be correctly determined, as in CF-LIBS measurements, but in a much shorter time.

  4. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  5. Book Review: Water Diplomacy: A Negotiated Approach to Managing Complex Water Networks

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal

    2013-01-01

    All nations have built their economies around water that is naturally available. Almost all sectors of the economy depend on water. Yet there is conflict among various users for the finite amount of water that is available. Managers and practitioners have long held the notion that competition rather than collaboration is the solution when there is conflict. Water Diplomacy: A Negotiated Approach to Managing Complex Water Networks, by Shafiqul Islam and Lawrence Susskind, provides a refreshingly compelling alternative to overcoming water conflicts. The book argues that the dynamic sociopolitical and socioeconomic constraints of water resources are best addressed in a "diplomacy" framework. The book rebuts, using several case studies, the technically rigid competition approach of today's water sharing practice.

  6. An H(∞) control approach to robust learning of feedforward neural networks.

    PubMed

    Jing, Xingjian

    2011-09-01

    A novel H(∞) robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined H(∞) "noise" attenuation level. Several existing BP-type algorithms are shown to be special cases of the new H(∞)-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method.

  7. A new approach for modelling gene regulatory networks using fuzzy petri nets.

    PubMed

    Hamed, Raed I; Ahson, S I; Parveen, R

    2010-02-04

    Gene Regulatory Networks are models of genes and gene interactions at the expression level. The advent of microarray technology has challenged computer scientists to develop better algorithms for modeling the underlying regulatory relationship in between the genes. Fuzzy system has an ability to search microarray datasets for activator/repressor regulatory relationship. In this paper, we present a fuzzy reasoning model based on the Fuzzy Petri Net. The model considers the regulatory triplets by means of predicting changes in expression level of the target based on input expression level. This method eliminates possible false predictions from the classical fuzzy model thereby allowing a wider search space for inferring regulatory relationship. Through formalization of fuzzy reasoning, we propose an approach to construct a rulebased reasoning system. The experimental results show the proposed approach is feasible and acceptable to predict changes in expression level of the target gene.

  8. A new approach for QoS support in optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Xu, Changbiao; Long, Keping; Zhang, Bibo; Yang, Shizhong

    2005-11-01

    This paper presents a new approach for quality of service (QoS) support in optical burst switching (OBS) networks. In the approach, the data channels of an outgoing link at a core node are divided into multiple groups, with each group corresponding to a service class. The number of data channels in each group is mainly determined by data traffic. In general, a data burst (DB) can be sent on a data channel reserved by its burst head packet (BHP) only in its own group. Upon failing to reserve any bandwidth in its own group, the BHP tries to re-reserve even preempt bandwidth on a data channel in a lower-priority group. A lower-priority BHP can't reserve bandwidth on any data channel in a higherpriority group. In addition, this paper also investigates the reasonable relation between the preempting DB length and the preempted DB length.

  9. Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach.

    PubMed

    Shi, Ming; Shen, Weiming; Wang, Hong-Qiang; Chong, Yanwen

    2016-12-01

    Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)-guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l1-norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real-world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.

  10. Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning

    NASA Astrophysics Data System (ADS)

    Jwo, Dah-Jing; Huang, Hung-Chih

    2004-09-01

    The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.

  11. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    PubMed Central

    Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.

    2015-01-01

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739

  12. Research and collaboration overview of Institut Pasteur International Network: a bibliometric approach toward research funding decisions

    PubMed Central

    Mostafavi, Ehsan; Bazrafshan, Azam

    2014-01-01

    Background: Institut Pasteur International Network (IPIN), which includes 32 research institutes around the world, is a network of research and expertise to fight against infectious diseases. A scientometric approach was applied to describe research and collaboration activities of IPIN. Methods: Publications were identified using a manual search of IPIN member addresses in Science Citation Index Expanded (SCIE) between 2006 and 2011. Total publications were then subcategorized by geographic regions. Several scientometric indicators and the H-index were employed to estimate the scientific production of each IPIN member. Subject and geographical overlay maps were also applied to visualize the network activities of the IPIN members. Results: A total number of 12667 publications originated from IPIN members. Each author produced an average number of 2.18 papers and each publication received an average of 13.40 citations. European Pasteur Institutes had the largest amount of publications, authored papers, and H-index values. Biochemistry and molecular biology, microbiology, immunology and infectious diseases were the most important research topics, respectively. Geographic mapping of IPIN publications showed wide international collaboration among IPIN members around the world. Conclusion: IPIN has strong ties with national and international authorities and organizations to investigate the current and future health issues. It is recommended to use scientometric and collaboration indicators as measures of research performance in IPIN future policies and investment decisions. PMID:24596896

  13. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.

    PubMed

    Zhang, Xian-Ming; Han, Qing-Long

    2014-06-01

    This paper is concerned with global asymptotic stability for a class of generalized neural networks with interval time-varying delays by constructing a new Lyapunov-Krasovskii functional which includes some integral terms in the form of ∫(t-h)(t)(h-t-s)(j)ẋ(T)(s)Rjẋ(s)ds(j=1,2,3). Some useful integral inequalities are established for the derivatives of those integral terms introduced in the Lyapunov-Krasovskii functional. A matrix-based quadratic convex approach is introduced to prove not only the negative definiteness of the derivative of the Lyapunov-Krasovskii functional, but also the positive definiteness of the Lyapunov-Krasovskii functional. Some novel stability criteria are formulated in two cases, respectively, where the time-varying delay is continuous uniformly bounded and where the time-varying delay is differentiable uniformly bounded with its time-derivative bounded by constant lower and upper bounds. These criteria are applicable to both static neural networks and local field neural networks. The effectiveness of the proposed method is demonstrated by two numerical examples.

  14. A restricted branch and bound approach for setting the left turn phase sequences in signalized networks

    SciTech Connect

    Pillai, R.S.; Rathi, A.K.; Cohen, S.

    1994-07-01

    The main objective of synchronized signal timing is to keep traffic moving along arterial in platoons throughout the signal system by proper setting of left turn phase sequence at signals along the arterials/networks. The synchronization of traffic signals located along the urban/suburban arterials in metropolitan areas is perhaps one of the most cost-effective method for improving traffic flow along these streets. The popular technique for solving this problem formulates it as a mixed integer linear program and used Land and Powell branch and bound search to arrive at the optimal solution. The computation time tends to be excessive for realistic multiarterial network problems due to the exhaustive nature of the branch and bound search technique. Furthermore, the Land and Powell branch and bound code is known to be numerically unstable, which results in suboptimal solutions for network problems with a range on the cycle time variable. This paper presents the development of a fast and numerically stable heuristic, developed using MINOS linear programming solver. The new heuristic can generate optimal/near-optimal solutions in a fraction of the time needed to compute the optimal solution by Land and Powell code. The solution technique is based on restricted search using branch and bound technique. The efficiency of the heuristic approach is demonstrated by numerical results for a set of test problems.

  15. A system biology approach for understanding the miRNA regulatory network in colon rectal cancer.

    PubMed

    Pradhan, Meeta; Nagulapalli, Kshithija; Ledford, Lakenvia; Pandit, Yogesh; Palakal, Mathew

    2015-01-01

    In this paper we present a systems biology approach to the understanding of the miRNA-regulatory network in colon rectal cancer. An initial set of significant genes in Colon Rectal Cancer (CRC) were obtained by mining relevant literature. An initial set of cancer-related miRNAs were obtained from three databases: miRBase, miRWalk, Targetscan and GEO microarray experiment. First principle methods were then used to generate the global miRNA-gene network. Significant miRNAs and associated transcription factors in the global miRNA-gene network were identified using topological and sub-graph analyses. Eleven novel miRNAs were identified and three of the novel miRNAs, hsa-miR-630, hsa-miR-100 and hsa-miR-99a, were further analysed to elucidate their role in CRC. The proposed methodology effectively made use of literature data and was able to show novel, significant miRNA-transcription associations in CRC.

  16. Network topology, Transport dynamics, and Vulnerability Analysis in River Deltas: A Graph-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Foufoula-Georgiou, E.; Longjas, A.; Zaliapin, I. V.

    2014-12-01

    River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external factors causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying river delta topology and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in quantifying the complexity of the delta network topology, computing its steady state fluxes, and identifying upstream (contributing) and downstream (nourishment) areas from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way of systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  17. A numerically-enhanced machine learning approach to damage diagnosis using a Lamb wave sensing network

    NASA Astrophysics Data System (ADS)

    Sbarufatti, C.; Manson, G.; Worden, K.

    2014-09-01

    This paper describes a methodology for the design of a model-based diagnostic unit. The objective of the work is to define a suitable procedure for the design and verification of diagnostic performance in a simulated environment, trying to maximise the generalisation capability of pattern recognition algorithms when tested with real experimental signals. The system is designed and experimentally verified to solve the fatigue crack damage localisation and assessment problems in a realistic, though rather idealised, Structural Health Monitoring (SHM) framework. The study is applied to a piezoelectric Lamb wave sensor network and is validated experimentally on a simple aluminium skin. The analytically-derived dispersion curves for Lamb wave propagation in aluminium are used in order to determine the wave velocities and thus their arrival time at given sensors. The Local Interaction Simulation Approach (LISA) is used to simulate the entire waveform propagation. Once the agreement between analytical, numerical and experimental data is verified on a baseline undamaged condition, the parametric LISA model has been iteratively run, varying the position and the length of a crack on an aluminium skin panel, generating the virtual experience necessary to train a supervised learning regressor based on Artificial Neural Networks (ANNs). After the algorithm structure has been statistically optimised, the network sensitivity to input variations has been evaluated on simulated signals through a technique inspired by information gap theory. Real Lamb wave signals are then processed into the algorithm, providing feasible real-time indication of damage characteristics.

  18. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  19. Cyber-physical approach to the network-centric robotics control task

    NASA Astrophysics Data System (ADS)

    Muliukha, Vladimir; Ilyashenko, Alexander; Zaborovsky, Vladimir; Lukashin, Alexey

    2016-10-01

    Complex engineering tasks concerning control for groups of mobile robots are developed poorly. In our work for their formalization we use cyber-physical approach, which extends the range of engineering and physical methods for a design of complex technical objects by researching the informational aspects of communication and interaction between objects and with an external environment [1]. The paper analyzes network-centric methods for control of cyber-physical objects. Robots or cyber-physical objects interact with each other by transmitting information via computer networks using preemptive queueing system and randomized push-out mechanism [2],[3]. The main field of application for the results of our work is space robotics. The selection of cyber-physical systems as a special class of designed objects is due to the necessity of integrating various components responsible for computing, communications and control processes. Network-centric solutions allow using universal means for the organization of information exchange to integrate different technologies for the control system.

  20. A Network Model and Computational Approach for the Mo-99 Supply Chain for Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Nagurney, Ladimer; Nagurney, Anna

    2011-11-01

    Technetium-99m, produced from the decay of Molybdenum-99, is the most commonly used radioisotope for medical imaging, specifically in cardiac and cancer diagnostics. The MO-99 is produced in a small number of reactors and is processed and distributed worldwide. We have developed a tractable network model and computational approach for the design and redesign of the MO-99 supply chains. This topic is of special relevance to medical physics given the product's widespread use and the aging of the nuclear reactors where it is produced. This generalized network model, for which we derived formulae for the arc and path multipliers that capture the underlying physics of radioisotope decay, includes total operational cost minimization, and the minimization of cost associated with nuclear waste disposal, coupled with capacity investment (or disinvestment) costs. Its solution yields the optimal link capacities as well as the optimal MO-99 flows so that demand at the medical facilities is satisfied. We illustrate the framework with a Western Hemisphere case study. The framework provides the foundation for further empirical research and the basis for the modeling and analysis of supply chain networks for other very time-sensitive medical products.

  1. Systems approach to studying animal sociality: individual position versus group organization in dynamic social network models.

    PubMed

    Hock, Karlo; Ng, Kah Loon; Fefferman, Nina H

    2010-12-23

    Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against) social behaviors that concordantly increase (or decrease, respectively) fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness.

  2. Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach

    SciTech Connect

    Ambrosiano, John; Newkirk, Ryan; Mc Donald, Mark P

    2010-12-03

    The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk of intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and corrunodity flow models are

  3. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  4. Two-dimensional magnetic modeling of ferromagnetic materials by using a neural networks based hybrid approach

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    This paper presents a hybrid neural network approach to model magnetic hysteresis at macro-magnetic scale. That approach aims to be coupled together with numerical treatments of magnetic hysteresis such as FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, allowing a complete computer simulation with acceptable run times. The proposed Hybrid Neural System consists of four inputs representing the magnetic induction and magnetic field components at each time step and it is trained by 2D and scalar measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the Hybrid Neural System returns the predicted value of the field H at the same time step. Within the Hybrid Neural System, a suitably trained neural network is used for predicting the hysteretic behavior of the material to be modeled. Validations with experimental tests and simulations for symmetric, non-symmetric and minor loops are presented.

  5. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  6. Convolutional neural network approach for buried target recognition in FL-LWIR imagery

    NASA Astrophysics Data System (ADS)

    Stone, K.; Keller, J. M.

    2014-05-01

    A convolutional neural network (CNN) approach to recognition of buried explosive hazards in forward-looking long-wave infrared (FL-LWIR) imagery is presented. The convolutional filters in the first layer of the network are learned in the frequency domain, making enforcement of zero-phase and zero-dc response characteristics much easier. The spatial domain representations of the filters are forced to have unit l2 norm, and penalty terms are added to the online gradient descent update to encourage orthonormality among the convolutional filters, as well smooth first and second order derivatives in the spatial domain. The impact of these modifications on the generalization performance of the CNN model is investigated. The CNN approach is compared to a second recognition algorithm utilizing shearlet and log-gabor decomposition of the image coupled with cell-structured feature extraction and support vector machine classification. Results are presented for multiple FL-LWIR data sets recently collected from US Army test sites. These data sets include vehicle position information allowing accurate transformation between image and world coordinates and realistic evaluation of detection and false alarm rates.

  7. Advantages of mixing bioinformatics and visualization approaches for analyzing sRNA-mediated regulatory bacterial networks

    PubMed Central

    Bourqui, Romain; Benchimol, William; Gaspin, Christine; Sirand-Pugnet, Pascal; Uricaru, Raluca; Dutour, Isabelle

    2015-01-01

    The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA–mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA–mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks. PMID:25477348

  8. The National Ecological Observatory Network's Automated Terrestrial Measurements: Data Flow and Quality Control Approaches

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Loescher, H. W.; Berukoff, S. J.; Ayres, E.; Luo, H.

    2011-12-01

    The National Ecological Observatory Network's Fundamental Instrument Unit (NEON-FIU) is responsible for making automated terrestrial observations at 60 different sites across the continent. FIU will provide data on key local physical, climate and chemical forcings, as well as the biotic responses (CO2, H2O and energy exchanges). The sheer volume of data that will be generated far exceeds that of any other ecological network or agency, (i.e., > 45 Tb/year from 10's of thousands of remotely deployed sensors). We address the question of how to develop and implement a large ecological observatory that can accommodate such a large volume of data while maintaining high quality. Here, we describe our quality assurance and quality control (QA/QC) program to produce quality data while leveraging cyber infrastructure tools and optimizing technician time. Results focus on novel approaches that advance the principles and dataflows used historically (DOE ARM, AmeriFlux, USDA ARS, OK Mesonet) to new state-of-the-art functionality. These automated and semi-automated approaches are also used to inform automated problem tracking to efficiently deploy field. The overarching philosophy relies on attaining the highest levels of accuracy, precision, and operational time, while efficiently optimizing the effort needed to produce quality data products. NEON will define its own standards for QA/QC maintenance by building upon these existing frameworks. Our preliminary results address the challenges associated with automated implementation of sensor command/control, plausibility testing, despiking, and data verification of FIU observations.

  9. A systems biology approach for understanding the collagen regulatory network in alcoholic liver disease.

    PubMed

    Nieto, Natalia

    2012-02-01

    Among the pathogenesis and risk factors of alcoholic liver disease (ALD) are the source of dietary fat, obesity, insulin resistance, adipokines and acetaldehyde. Translocation of Gram-negative bacteria from the gut, the subsequent effects mediated by endotoxin, and the increased production of matricellular proteins, cytokines, chemokines and growth factors, actively participate in the progression of liver injury. In addition, generation of reactive oxygen and nitrogen species and the activation of non-parenchymal cells also contribute to the pathophysiology of ALD. A key event leading to liver damage is the transition of quiescent hepatic stellate cells into activated myofibroblasts, with the consequent deposition of fibrillar collagen I resulting in significant scarring. Thus, it is becoming clearer that matricellular proteins are critical players in the pathophysiology of liver disease; however, additional mechanistic insight is needed to understand the signalling pathways involved in the up-regulation of collagen I protein. At present, systems biology approaches are helping to answer the many unresolved questions in this field and are allowing to more comprehensively identify protein networks regulating pathological collagen I deposition in hopes of determining how to prevent the onset of liver fibrosis and/or to slow disease progression. Thus, this review article provides a snapshot on current efforts for identifying pathological protein regulatory networks in the liver using systems biology tools. These approaches hold great promise for future research in liver disease.

  10. Discovering potential cancer driver genes by an integrated network-based approach.

    PubMed

    Shi, Kai; Gao, Lin; Wang, Bingbo

    2016-08-16

    Although a lot of methods have been proposed to identify driver genes, how to separate the driver mutations from the passenger mutations is still a challenging problem in cancer genomics. The detection of driver genes with rare mutation and low accuracy is unsolved better. In this study, we present an integrated network-based approach to locate potential driver genes in a cohort of patients. The approach is composed of two steps including a network diffusion step and an aggregated ranking step, which fuses the correlation between the gene mutations and gene expression, the relationship between the mutated genes and the heterogeneous characteristic of the patient mutation. We analyze three cancer datasets including Glioblastoma multiforme, Ovarian cancer and Breast cancer. Our method has not only identified the known driver genes with high-frequency mutations, but also discovered the potential driver genes with a rare mutation. At the same time, validation by literature search and functional enrichment analysis reveal that the predicted genes are obviously related to these three kinds of cancers.

  11. An Ecological Approach to Reducing Potentially Inappropriate Medication Use: Canadian Deprescribing Network.

    PubMed

    Tannenbaum, Cara; Farrell, Barbara; Shaw, James; Morgan, Steve; Trimble, Johanna; Currie, Jane; Turner, Justin; Rochon, Paula; Silvius, James

    2017-03-01

    Polypharmacy is growing in Canada, along with adverse drug events and drug-related costs. Part of the solution may be deprescribing, the planned and supervised process of dose reduction or stopping of medications that may be causing harm or are no longer providing benefit. Deprescribing can be a complex process, involving the intersection of patients, health care providers, and organizational and policy factors serving as enablers or barriers. This article describes the justification, theoretical foundation, and process for developing a Canadian Deprescribing Network (CaDeN), a network of individuals, organizations, and decision-makers committed to promoting the appropriate use of medications and non-pharmacological approaches to care, especially among older people in Canada. CaDeN will deploy multiple levels of action across multiple stakeholder groups simultaneously in an ecological approach to health system change. CaDeN proposes a unique model that might be applied both in national settings and for different transformational challenges in health care.

  12. Towards optimization of chemical testing under REACH: a Bayesian network approach to Integrated Testing Strategies.

    PubMed

    Jaworska, Joanna; Gabbert, Silke; Aldenberg, Tom

    2010-01-01

    Integrated Testing Strategies (ITSs) are considered tools for guiding resource efficient decision-making on chemical hazard and risk management. Originating in the mid-nineties from research initiatives on minimizing animal use in toxicity testing, ITS development still lacks a methodologically consistent framework for incorporating all relevant information, for updating and reducing uncertainty across testing stages, and for handling conditionally dependent evidence. This paper presents a conceptual and methodological proposal for improving ITS development. We discuss methodological shortcomings of current ITS approaches, and we identify conceptual requirements for ITS development and optimization. First, ITS development should be based on probabilistic methods in order to quantify and update various uncertainties across testing stages. Second, reasoning should reflect a set of logic rules for consistently combining probabilities of related events. Third, inference should be hypothesis-driven and should reflect causal relationships in order to coherently guide decision-making across testing stages. To meet these requirements, we propose an information-theoretic approach to ITS development, the "ITS inference framework", which can be made operational by using Bayesian networks. As an illustration, we examine a simple two-test battery for assessing rodent carcinogenicity. Finally, we demonstrate how running the Bayesian network reveals a quantitative measure of Weight-of-Evidence.

  13. Neural-Network Approach to Hyperspectral Data Analysis for Volcanic Ash Clouds Monitoring

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Ventress, Lucy; Carboni, Elisa; Grainger, Roy Gordon; Del Frate, Fabio

    2015-11-01

    In this study three artificial neural networks (ANN) were implemented in order to emulate a retrieval model and to estimate the ash Aerosol optical Depth (AOD), particle effective radius (reff) and cloud height from volcanic eruption using hyperspectral remotely sensed data. ANNs were trained using a selection of Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding ash parameters retrieved obtained using the Oxford retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajo ̈kull volcano (Iceland) occurred in 2010. The results of validation provided root mean square error (RMSE) values between neural network outputs and targets lower than standard deviation (STD) of corresponding target outputs, therefore demonstrating the feasibility to estimate volcanic ash parameters using an ANN approach, and its importance in near real time monitoring activities, owing to its fast application. A high accuracy has been achieved for reff and cloud height estimation, while a decreasing in accuracy was obtained when applying the NN approach for AOD estimation, in particular for those values not well characterized during NN training phase.

  14. A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation

    PubMed Central

    Metzler, Melissa A.; Venkatesh, Srirangapatnam G.; Lakshmanan, Jaganathan; Carenbauer, Anne L.; Perez, Sara M.; Andres, Sarah A.; Appana, Savitri; Brock, Guy N.; Wittliff, James L.; Darling, Douglas S.

    2015-01-01

    Objective The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. Methodology A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. Results Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. Conclusion This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  15. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    PubMed Central

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  16. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    PubMed

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  17. Optimizing neural networks for river flow forecasting - Evolutionary Computation methods versus the Levenberg-Marquardt approach

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jarosław J.

    2011-09-01

    SummaryAlthough neural networks have been widely applied to various hydrological problems, including river flow forecasting, for at least 15 years, they have usually been trained by means of gradient-based algorithms. Recently nature inspired Evolutionary Computation algorithms have rapidly developed as optimization methods able to cope not only with non-differentiable functions but also with a great number of local minima. Some of proposed Evolutionary Computation algorithms have been tested for neural networks training, but publications which compare their performance with gradient-based training methods are rare and present contradictory conclusions. The main goal of the present study is to verify the applicability of a number of recently developed Evolutionary Computation optimization methods, mostly from the Differential Evolution family, to multi-layer perceptron neural networks training for daily rainfall-runoff forecasting. In the present paper eight Evolutionary Computation methods, namely the first version of Differential Evolution (DE), Distributed DE with Explorative-Exploitative Population Families, Self-Adaptive DE, DE with Global and Local Neighbors, Grouping DE, JADE, Comprehensive Learning Particle Swarm Optimization and Efficient Population Utilization Strategy Particle Swarm Optimization are tested against the Levenberg-Marquardt algorithm - probably the most efficient in terms of speed and success rate among gradient-based methods. The Annapolis River catchment was selected as the area of this study due to its specific climatic conditions, characterized by significant seasonal changes in runoff, rapid floods, dry summers, severe winters with snowfall, snow melting, frequent freeze and thaw, and presence of river ice - conditions which make flow forecasting more troublesome. The overall performance of the Levenberg-Marquardt algorithm and the DE with Global and Local Neighbors method for neural networks training turns out to be superior to other

  18. A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Latham, John-Paul; Tsang, Chin-Fu; Xiang, Jiansheng; Lang, Philipp

    2015-07-01

    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale "source" fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation.

  19. The National Ecological Observatory Network's Atmospheric and Terrestrial Instrumentation: Quality Control Approaches

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Luo, H.; Ayres, E.; Metzger, S. R.; Loescher, H. W.

    2012-12-01

    The National Ecological Observatory Network's Fundamental Instrument Unit (NEON-FIU) is responsible for making automated terrestrial observations at 60 different sites across the continent. FIU will provide data on key local physical, chemical, and climate forcing, as well as associated biotic responses (CO2, H2O, and energy exchanges). The sheer volume of data that will be generated far exceeds that of any other observatory network or agency, (i.e., > 45 Tb/year from 10's of thousands of remotely deployed sensors). We address the question of how to develop and implement a large ecological observatory that can accommodate such a large volume of data while maintaining high quality. Here, we describe our quality assurance and quality control (QA/QC) program to produce quality data while leveraging cyber infrastructure tools and optimizing technician time. Results focus on novel approaches that advance the quality control techniques that have been historically employed in other networks (DOE-ARM, AmeriFlux, USDA ARS, OK Mesonet) to new state-of-the-art functionality. These automated and semi-automated approaches are also used to inform automated problem tracking to efficiently deploy field staff. Ultimately, NEON will define its own standards for QA/QC and maintenance by building upon these existing frameworks. The overarching philosophy relies on attaining the highest levels of accuracy, precision, and operational time, while efficiently optimizing the effort needed to produce quality data products. Our preliminary results address the challenges associated with automated implementation of sensor command/control, plausibility testing, despiking, and data verification of FIU observations.

  20. Current trends in wireless mesh sensor networks: a review of competing approaches.

    PubMed

    Rodenas-Herraiz, David; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2013-05-10

    Finding a complete mesh-based solution for low-rate wireless personal area networks (LR-WPANs) is still an open issue. To cope with this concern, different competing approaches have emerged in the Wireless Mesh Sensor Networks (WMSNs) field in the last few years. They are usually supported by the IEEE 802.15.4 standard, the most commonly adopted LR-WPAN recommendation for point-to-point topologies. In this work, we review the most relevant and up-to-date WMSN solutions that extend the IEEE 802.15.4 standard to multi-hop mesh networks. To conduct this review, we start by identifying the most significant WMSN requirements (i.e., interoperability, robustness, scalability, mobility or energy-efficiency) that reveal the benefits and shortcomings of each proposal. Then, we re-examine thoroughly the group of proposals following different design guidelines which are usually considered by end-users and developers. Among all of the approaches reviewed, we highlight the IEEE 802.15.5 standard, a recent recommendation that, in its LR-WPAN version, fully satisfies the greatest number of WMSN requirements. As a result, IEEE 802.15.5 can be an appropriate solution for a wide-range of applications, unlike the majority of the remaining solutions reviewed, which are usually designed to solve particular problems, for instance in the home, building and industrial sectors. In this sense, a description of IEEE 802.15.5 is also included, paying special attention to its efficient energy-saving mechanisms. Finally, possible improvements of this recommendation are pointed out in order to offer hints for future research.

  1. Current Trends in Wireless Mesh Sensor Networks: A Review of Competing Approaches

    PubMed Central

    Rodenas-Herraiz, David; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2013-01-01

    Finding a complete mesh-based solution for low-rate wireless personal area networks (LR-WPANs) is still an open issue. To cope with this concern, different competing approaches have emerged in the Wireless Mesh Sensor Networks (WMSNs) field in the last few years. They are usually supported by the IEEE 802.15.4 standard, the most commonly adopted LR-WPAN recommendation for point-to-point topologies. In this work, we review the most relevant and up-to-date WMSN solutions that extend the IEEE 802.15.4 standard to multi-hop mesh networks. To conduct this review, we start by identifying the most significant WMSN requirements (i.e., interoperability, robustness, scalability, mobility or energy-efficiency) that reveal the benefits and shortcomings of each proposal. Then, we re-examine thoroughly the group of proposals following different design guidelines which are usually considered by end-users and developers. Among all of the approaches reviewed, we highlight the IEEE 802.15.5 standard, a recent recommendation that, in its LR-WPAN version, fully satisfies the greatest number of WMSN requirements. As a result, IEEE 802.15.5 can be an appropriate solution for a wide-range of applications, unlike the majority of the remaining solutions reviewed, which are usually designed to solve particular problems, for instance in the home, building and industrial sectors. In this sense, a description of IEEE 802.15.5 is also included, paying special attention to its efficient energy-saving mechanisms. Finally, possible improvements of this recommendation are pointed out in order to offer hints for future research. PMID:23666128

  2. Hierarchical Bayesian approaches for detecting inconsistency in network meta-analysis.

    PubMed

    Zhao, Hong; Hodges, James S; Ma, Haijun; Jiang, Qi; Carlin, Bradley P

    2016-09-10

    Network meta-analysis (NMA), also known as multiple treatment comparisons, is commonly used to incorporate direct and indirect evidence comparing treatments. With recent advances in methods and software, Bayesian approaches to NMA have become quite popular and allow models of previously unanticipated complexity. However, when direct and indirect evidence differ in an NMA, the model is said to suffer from inconsistency. Current inconsistency detection in NMA is usually based on contrast-based (CB) models; however, this approach has certain limitations. In this work, we propose an arm-based random effects model, where we detect discrepancy of direct and indirect evidence for comparing two treatments using the fixed effects in the model while flagging extreme trials using the random effects. We define discrepancy factors to characterize evidence of inconsistency for particular treatment comparisons, which is novel in NMA research. Our approaches permit users to address issues previously tackled via CB models. We compare sources of inconsistency identified by our approach and existing loop-based CB methods using real and simulated datasets and demonstrate that our methods can offer powerful inconsistency detection. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  4. Artificial neural network approach for moiré fringe center determination

    NASA Astrophysics Data System (ADS)

    Woo, Wing Hon; Ratnam, Mani Maran; Yen, Kin Sam

    2015-11-01

    The moiré effect has been used in high-accuracy positioning and alignment systems for decades. Various methods have been proposed to identify and locate moiré fringes in order to relate the pattern information to dimensional and displacement measurement. These methods can be broadly categorized into manual interpretation based on human knowledge and image processing based on computational algorithms. An artificial neural network (ANN) is proposed to locate moiré fringe centers within circular grating moiré patterns. This ANN approach aims to mimic human decision making by eliminating complex mathematical computations or time-consuming image processing algorithms in moiré fringe recognition. A feed-forward backpropagation ANN architecture was adopted in this work. Parametric studies were performed to optimize the ANN architecture. The finalized ANN approach was able to determine the location of the fringe centers with average deviations of 3.167 pixels out of 200 pixels (≈1.6%) and 6.166 pixels out of 200 pixels (≈3.1%) for real moiré patterns that lie within and outside the training intervals, respectively. In addition, a reduction of 43.4% in the computational time was reported using the ANN approach. Finally, the applicability of the ANN approach for moiré fringe center determination was confirmed.

  5. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    PubMed Central

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-01-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges. PMID:27534708

  6. A Graphical Approach to Diagnosing the Validity of the Conditional Independence Assumptions of a Bayesian Network Given Data

    SciTech Connect

    Walsh, Stephen J.; Whitney, Paul D.

    2012-12-14

    Bayesian networks have attained widespread use in data analysis and decision making. Well studied topics include: efficient inference, evidence propagation, parameter learning from data for complete and incomplete data scenarios, expert elicitation for calibrating Bayesian network probabilities, and structure learning. It is not uncommon for the researcher to assume the structure of the Bayesian network or to glean the structure from expert elicitation or domain knowledge. In this scenario, the model may be calibrated through learning the parameters from relevant data. There is a lack of work on model diagnostics for fitted Bayesian networks; this is the contribution of this paper. We key on the definition of (conditional) independence to develop a graphical diagnostic method which indicates if the conditional independence assumptions imposed when one assumes the structure of the Bayesian network are supported by the data. We develop the approach theoretically and describe a Monte Carlo method to generate uncertainty measures for the consistency of the data with conditional independence assumptions under the model structure. We describe how this theoretical information and the data are presented in a graphical diagnostic tool. We demonstrate the approach through data simulated from Bayesian networks under different conditional independence assumptions. We also apply the diagnostic to a real world data set. The results indicate that our approach is a reasonable way of visualizing and inspecting the conditional independence assumption of a Bayesian network given data.

  7. Classification of boreal forest by satellite and inventory data using neural network approach

    NASA Astrophysics Data System (ADS)

    Romanov, A. A.

    2012-12-01

    The main objective of this research was to develop methodology for boreal (Siberian Taiga) land cover classification in a high accuracy level. The study area covers the territories of Central Siberian several parts along the Yenisei River (60-62 degrees North Latitude): the right bank includes mixed forest and dark taiga, the left - pine forests; so were taken as a high heterogeneity and statistically equal surfaces concerning spectral characteristics. Two main types of data were used: time series of middle spatial resolution satellite images (Landsat 5, 7 and SPOT4) and inventory datasets from the nature fieldworks (used for training samples sets preparation). Method of collecting field datasets included a short botany description (type/species of vegetation, density, compactness of the crowns, individual height and max/min diameters representative of each type, surface altitude of the plot), at the same time the geometric characteristic of each training sample unit corresponded to the spatial resolution of satellite images and geo-referenced (prepared datasets both of the preliminary processing and verification). The network of test plots was planned as irregular and determined by the landscape oriented approach. The main focus of the thematic data processing has been allocated for the use of neural networks (fuzzy logic inc.); therefore, the results of field studies have been converting input parameter of type / species of vegetation cover of each unit and the degree of variability. Proposed approach involves the processing of time series separately for each image mainly for the verification: shooting parameters taken into consideration (time, albedo) and thus expected to assess the quality of mapping. So the input variables for the networks were sensor bands, surface altitude, solar angels and land surface temperature (for a few experiments); also given attention to the formation of the formula class on the basis of statistical pre-processing of results of

  8. A mechanism design approach to bandwidth allocation in tactical data networks

    NASA Astrophysics Data System (ADS)

    Mour, Ankur

    The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems'. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today's software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest

  9. A novel electronic device for high speed WDM optical network operations capable of intelligent routing based on simulated electrical network approach

    NASA Astrophysics Data System (ADS)

    Sen, Soumya; Chaubey, V. K.

    2005-04-01

    In this paper, we propose the design of an electronic circuit that maps the whole optical system into the electronic domain and helps in intelligent routing by using simulated electrical network approach (SENA) method. The losses of a linear optical network due to the losses in propagation over the wavelengths and related optical components are modeled as resistances in order to simulate an equivalent electrical network. The concept used in SENA is that current flows in the path of least resistance, which provides a simulation tool to evaluate the optical path with a minimum loss. The developed model has been used to implement an intelligent routing algorithm to find the optimal path without going for time-consuming recursive algorithms for evaluating all possible path combinations. A novel modeling method incorporating some logic control circuitry and memory has been developed to achieve the best optimized path in WDM network.

  10. Pulse-coupled neural networks (PCNN) and new approaches to biosensor applications

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Roppel, Thaddeus A.; Johnson, John L.

    1998-03-01

    Recent developments in pulse coupled neural networks techniques provide an opportunity to extend the toolbox available for exploring new approaches to biosensor applications. This paper presents a demonstration of properties and limitations of new computational intelligence (CI) techniques as shown by and related to an application. New pulse coupled neural networks (PCNN) techniques are supplemented by combination with wavelet analysis and fine- tuned by radial basis functions. This toolbox is exercised to demonstrate its properties and limitations as related to the development of biosensor applications. The approach selected employs abstractions of biological models of peripheral vision and relates them to analysis of time series generated by biosensors such as chemosensors or motion detectors. Detection of targets (rare or interesting events) is facilitated by PCNN multi-scale image factorization. Interpretation of the resulting image set is aided by contrast enhancement and by segmentation using standard PCNNs. Wavelet coefficients provide supplemental discrimination and lead to characteristic sets of numbers useful in identifying image factors of interest. To complete the transition from acquisition of a complex, noisy image to recognition of targets of interest, radial basis function (RBF) analysis is appended. This five- step process (odor image generation, image factoring, PCNN analysis, wavelet analysis and RBF interpretation) was recently suggested, but is expanded and fully implemented here for the first time. This paper explores the properties and limitations of this approach for simulation of biosensors using small, incomplete sets of real-world data. The relationship between selection of appropriate design parameters and the need for supplementing the available data by simulation is investigated. Evolutionary computation is employed off line to explore and evaluate the possibilities and limitations. Sensor fault detection and RBF training vector

  11. Hybrid ICA-Bayesian Network approach reveals distinct effective connectivity differences in schizophrenia

    PubMed Central

    Kim, D.; Burge, J.; Lane, T.; Pearlson, G. D; Kiehl, K. A; Calhoun, V. D.

    2008-01-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge et al., 2007) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge and Lane, 2005). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, 1991). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal and frontal cortices, plus cerebellum during an auditory paradigm. PMID:18602482

  12. A network approach to policy framing: A case study of the National Aboriginal and Torres Strait Islander Health Plan.

    PubMed

    Browne, Jennifer; de Leeuw, Evelyne; Gleeson, Deborah; Adams, Karen; Atkinson, Petah; Hayes, Rick

    2017-01-01

    Aboriginal health policy in Australia represents a unique policy subsystem comprising a diverse network of Aboriginal-specific and "mainstream" organisations, often with competing interests. This paper describes the network structure of organisations attempting to influence national Aboriginal health policy and examines how the different subgroups within the network approached the policy discourse. Public submissions made as part of a policy development process for the National Aboriginal and Torres Strait Islander Health Plan were analysed using a novel combination of network analysis and qualitative framing analysis. Other organisational actors in the network in each submission were identified, and relationships between them determined; these were used to generate a network map depicting the ties between actors. A qualitative framing analysis was undertaken, using inductive coding of the policy discourses in the submissions. The frames were overlaid with the network map to identify the relationship between the structure of the network and the way in which organisations framed Aboriginal health problems. Aboriginal organisations were central to the network and strongly connected with each other. The network consisted of several densely connected subgroups, whose central nodes were closely connected to one another. Each subgroup deployed a particular policy frame, with a frame of "system dysfunction" also adopted by all but one subgroup. Analysis of submissions revealed that many of the stakeholders in Aboriginal health policy actors are connected to one another. These connections help to drive the policy discourse. The combination of network and framing analysis illuminates competing interests within a network, and can assist advocacy organisations to identify which network members are most influential.

  13. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data

    PubMed Central

    Zhang, Wanhong; Zhou, Tong

    2015-01-01

    Motivation Identifying gene regulatory networks (GRNs) which consist of a large number of interacting units has become a problem of paramount importance in systems biology. Situations exist extensively in which causal interacting relationships among these units are required to be reconstructed from measured expression data and other a priori information. Though numerous classical methods have been developed to unravel the interactions of GRNs, these methods either have higher computing complexities or have lower estimation accuracies. Note that great similarities exist between identification of genes that directly regulate a specific gene and a sparse vector reconstruction, which often relates to the determination of the number, location and magnitude of nonzero entries of an unknown vector by solving an underdetermined system of linear equations y = Φx. Based on these similarities, we propose a novel framework of sparse reconstruction to identify the structure of a GRN, so as to increase accuracy of causal regulation estimations, as well as to reduce their computational complexity. Results In this paper, a sparse reconstruction framework is proposed on basis of steady-state experiment data to identify GRN structure. Different from traditional methods, this approach is adopted which is well suitable for a large-scale underdetermined problem in inferring a sparse vector. We investigate how to combine the noisy steady-state experiment data and a sparse reconstruction algorithm to identify causal relationships. Efficiency of this method is tested by an artificial linear network, a mitogen-activated protein kinase (MAPK) pathway network and the in silico networks of the DREAM challenges. The performance of the suggested approach is compared with two state-of-the-art algorithms, the widely adopted total least-squares (TLS) method and those available results on the DREAM project. Actual results show that, with a lower computational cost, the proposed method can

  14. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance. Results In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain. The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in

  15. The Data Transport Network: A Usenet-Based Approach For Data Retrieval From Remote Field Sites

    NASA Astrophysics Data System (ADS)

    Valentic, T. A.

    2005-12-01

    The Data Transport Network coordinates the collection of scientific data, instrument telemetry and post-processing for the delivery of real-time results over the Internet from instruments located at remote field sites with limited or unreliable network connections. The system was originally developed in 1999 for the distribution of large data sets collected by the radar, lidars and imagers at the NSF upper atmosphere research facility in Sondrestrom, Greenland. The system helped to mitigate disruptions in network connectivity and optimized transfers over the site's low-bandwidth satellite link. The core idea behind the system is to transfer data files as attachments in Usenet messages. The messages collected by a local news server are periodically transmitted to other servers on the Internet when link conditions permit. If the network goes down, data files continue to be stored locally and the server will periodically attempt to deliver the files for upwards of two weeks. Using this simple approach, the Data Transport Network is able to handle a large number of independent data streams from multiple instruments. Each data stream is posted into a separate news group. There are no limitations to the types of data files that can be sent and the system uses standard Internet protocols for encoding, accessing and transmitting files. A common framework allows for new data collection or processing programs to be easily integrated. The two-way nature of the communications also allows for data to be delivered to the site as well, a feature used for the remote control of instruments. In recent years, the Data Transport Network has been applied to small, low-power embedded systems. Coupled with satellite-based communications systems such as Iridium, these miniature Data Transport servers have found application in a number of remote instrument deployments in the Arctic. SRI's involvement as a team member in Veco Polar Resources, the NSF Office of Polar Programs Arctic

  16. Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach.

    PubMed

    Tewarie, Prejaas; Hillebrand, Arjan; van Dijk, Bob W; Stam, Cornelis J; O'Neill, George C; Van Mieghem, Piet; Meier, Jil M; Woolrich, Mark W; Morris, Peter G; Brookes, Matthew J

    2016-11-15

    Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum.

  17. An integrated approach to reconstructing genome-scale transcriptional regulatory networks

    DOE PAGES

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.; ...

    2015-02-27

    Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making themmore » highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of

  18. An integrated approach to reconstructing genome-scale transcriptional regulatory networks

    SciTech Connect

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.; Leslie, Christina

    2015-02-27

    Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making them highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of integrating

  19. Predicting manual arm strength: A direct comparison between artificial neural network and multiple regression approaches.

    PubMed

    La Delfa, Nicholas J; Potvin, Jim R

    2016-02-29

    In ergonomics, strength prediction has typically been accomplished using linked-segment biomechanical models, and independent estimates of strength about each axis of the wrist, elbow and shoulder joints. It has recently been shown that multiple regression approaches, using the simple task-relevant inputs of hand location and force direction, may be a better method for predicting manual arm strength (MAS) capabilities. Artificial neural networks (ANNs) also serve as a powerful data fitting approach, but their application to occupational biomechanics and ergonomics is limited. Therefore, the purpose of this study was to perform a direct comparison between ANN and regression models, by evaluating their ability to predict MAS with identical sets of development and validation MAS data. Multi-directional MAS data were obtained from 95 healthy female participants at 36 hand locations within the reach envelope. ANN and regression models were developed using a random, but identical, sample of 85% of the MAS data (n=456). The remaining 15% of the data (n=80) were used to validate the two approaches. When compared to the development data, the ANN predictions had a much higher explained variance (90.2% vs. 66.5%) and much lower RMSD (9.3N vs. 17.2N), vs. the regression model. The ANN also performed better with the independent validation data (r(2)=78.6%, RMSD=15.1) compared to the regression approach (r(2)=65.3%, RMSD=18.6N). These results suggest that ANNs provide a more accurate and robust alternative to regression approaches, and should be considered more often in biomechanics and ergonomics evaluations.

  20. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system.

    PubMed

    Sowa, Steven W; Gelderman, Grant; Leistra, Abigail N; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A; Romeo, Tony; Baldea, Michael; Contreras, Lydia M

    2017-01-26

    Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets.

  1. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach.

    PubMed

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad

    2012-10-01

    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about -0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%.

  2. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach

    PubMed Central

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad

    2012-01-01

    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about –0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%. PMID:23724368

  3. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  4. Visualizing microbial dechlorination processes in underground ecosystem by statistical correlation and network analysis approach.

    PubMed

    Yamazawa, Akira; Date, Yasuhiro; Ito, Keijiro; Kikuchi, Jun

    2014-03-01

    Microbial ecosystems are typified by diverse microbial interactions and competition. Consequently, the microbial networks and metabolic dynamics of bioprocesses catalyzed by these ecosystems are highly complex, and their visualization is regarded as essential to bioengineering technology and innovation. Here we describe a means of visualizing the variants in a microbial community and their metabolic profiles. The approach enables previously unidentified bacterial functions in the ecosystems to be elucidated. We investigated the anaerobic bioremediation of chlorinated ethene in a soil column experiment as a case study. Microbial community and dechlorination profiles in the ecosystem were evaluated by denaturing gradient gel electrophoresis (DGGE) fingerprinting and gas chromatography, respectively. Dechlorination profiles were obtained from changes in dechlorination by microbial community (evaluated by data mining methods). Individual microbes were then associated with their dechlorination profiles by heterogenous correlation analysis. Our correlation-based visualization approach enables deduction of the roles and functions of bacteria in the dechlorination of chlorinated ethenes. Because it estimates functions and relationships between unidentified microbes and metabolites in microbial ecosystems, this approach is proposed as a control-logic tool by which to understand complex microbial processes.

  5. Non-linear global optimization via parameterization and inverse function approximation: an artificial neural networks approach.

    PubMed

    Mayorga, René V; Arriaga, Mariano

    2007-10-01

    In this article, a novel technique for non-linear global optimization is presented. The main goal is to find the optimal global solution of non-linear problems avoiding sub-optimal local solutions or inflection points. The proposed technique is based on a two steps concept: properly keep decreasing the value of the objective function, and calculating the corresponding independent variables by approximating its inverse function. The decreasing process can continue even after reaching local minima and, in general, the algorithm stops when converging to solutions near the global minimum. The implementation of the proposed technique by conventional numerical methods may require a considerable computational effort on the approximation of the inverse function. Thus, here a novel Artificial Neural Network (ANN) approach is implemented to reduce the computational requirements of the proposed optimization technique. This approach is successfully tested on some highly non-linear functions possessing several local minima. The results obtained demonstrate that the proposed approach compares favorably over some current conventional numerical (Matlab functions) methods, and other non-conventional (Evolutionary Algorithms, Simulated Annealing) optimization methods.

  6. A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation

    NASA Astrophysics Data System (ADS)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah

    2016-06-01

    Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.

  7. A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.

    PubMed

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-03-09

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.

  8. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  9. A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks

    PubMed Central

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-01-01

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962

  10. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  11. FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction

    NASA Astrophysics Data System (ADS)

    Suhov, Y.; Stuhl, I.

    2014-08-01

    The paper extends earlier results from Suhov and Kelbert ["FK-DLR states of a quantum Bose-gas with a hardcore interaction," arXiv:1304.0782] and Suhov et al. ["Shift-invariance for FK-DLR states of a 2D quantum Bose-gas," arXiv:1304.4177] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom-Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity z ∈ (0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.

  12. A methodological approach to the analysis of egocentric social networks in public health research: a practical example

    PubMed Central

    Zaletel-Kragelj, Lijana

    2016-01-01

    Abstract Introduction Research on social networks in public health focuses on how social structures and relationships influence health and health-related behaviour. While the sociocentric approach is used to study complete social networks, the egocentric approach is gaining popularity because of its focus on individuals, groups and communities. Methods One of the participants of the healthy lifestyle health education workshop ‘I’m moving’, included in the study of social support for exercise was randomly selected. The participant was denoted as the ego and members of her/his social network as the alteri. Data were collected by personal interviews using a self-made questionnaire. Numerical methods and computer programmes for the analysis of social networks were used for the demonstration of analysis. Results The size, composition and structure of the egocentric social network were obtained by a numerical analysis. The analysis of composition included homophily and homogeneity. Moreover, the analysis of the structure included the degree of the egocentric network, the strength of the ego-alter ties and the average strength of ties. Visualisation of the network was performed by three freely available computer programmes, namely: Egonet.QF, E-net and Pajek. The computer programmes were described and compared by their usefulness. Conclusion Both numerical analysis and visualisation have their benefits. The decision what approach to use is depending on the purpose of the social network analysis. While the numerical analysis can be used in large-scale population-based studies, visualisation of personal networks can help health professionals at creating, performing and evaluation of preventive programmes, especially if focused on behaviour change. PMID:27703548

  13. dNSP: a biologically inspired dynamic Neural network approach to Signal Processing.

    PubMed

    Cano-Izquierdo, José Manuel; Ibarrola, Julio; Pinzolas, Miguel; Almonacid, Miguel

    2008-09-01

    The arriving order of data is one of the intrinsic properties of a signal. Therefore, techniques dealing with this temporal relation are required for identification and signal processing tasks. To perform a classification of the signal according with its temporal characteristics, it would be useful to find a feature vector in which the temporal attributes were embedded. The correlation and power density spectrum functions are suitable tools to manage this issue. These functions are usually defined with statistical formulation. On the other hand, in biology there can be found numerous processes in which signals are processed to give a feature vector; for example, the processing of sound by the auditory system. In this work, the dNSP (dynamic Neural Signal Processing) architecture is proposed. This architecture allows representing a time-varying signal by a spatial (thus statical) vector. Inspired by the aforementioned biological processes, the dNSP performs frequency decomposition using an analogical parallel algorithm carried out by simple processing units. The architecture has been developed under the paradigm of a multilayer neural network, where the different layers are composed by units whose activation functions have been extracted from the theory of Neural Dynamic [Grossberg, S. (1988). Nonlinear neural